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Abstract

Iron is an important micronutrient essential in carrying oxygen and maintaining the

function of many body enzymes. It is of particular importance during gestation as body

demands increase leading to iron deficiency in women with inadequate iron stores at

the start of pregnancy. Animal studies have shown that iron deficiency in pregnancy

leads to offspring with adverse cardiovascular risk profiles compared to offspring of

iron replete mothers. This thesis aimed to examine the association of maternal iron

intake and status in pregnancy with short and long term birth outcomes that are

considered cardiovascular risk indicators later in life.

Analysis of data from three cohorts and one Mendelian randomisation study was

included in this thesis. Total maternal iron intake in early, but not late, pregnancy was

positively associated with birth size. There was no evidence of association between

taking iron-containing supplements in pregnancy and size at birth. However, taking

multivitamin-mineral supplements, which contain iron, in late pregnancy was

associated with an increased risk of preterm birth. Also taking iron supplements up to

32 weeks gestation was associated with lower offspring systolic blood pressure at 10

years. Maternal iron deficiency and anaemia in early pregnancy were associated with

an increased risk of giving birth to a SGA baby. Infant brachio-femoral PWV measured

at 2-6 weeks of age was found to be higher in women who were anaemic in early

pregnancy, but not in those who were only iron deficient. Finally, using a Mendelian

randomisation design, maternal iron status measured by serum ferritin with C282Y

mutation as an instrumental variable, was not found to be associated with adult

offspring BP and adiposity.
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In conclusion, maternal iron intake and status in early pregnancy seem to be

associated with short term birth outcomes like size at birth, while associations with

long term offspring cardiovascular indicators were not detected in this thesis.
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1 Introduction

1.1 Setting the scene

Obesity, high blood pressure (BP) and arterial stiffness are major risk factors that

contribute to premature death from heart disease and stroke. Factors affecting the

development of the fetus before birth, including maternal nutrition in pregnancy, may

influence these risk factors later in life. Diet deficient in essential nutrients including

iron is a common problem during pregnancy. Iron is an essential micronutrient and is

important not only in carrying oxygen, but also to the catalytic activity of a variety of

enzymes. In the fetus, it is vital to the synthesis of haemoglobin (Hb) and brain

development. Iron deficiency anaemia (IDA) in pregnancy is a common problem, even

in high income country settings. Around 50% of pregnant women worldwide are

anaemic, with at least half of this burden due to iron deficiency (ID).

IDA is associated with adverse short-term maternal and birth outcomes, particularly if

present during the first half of pregnancy. Iron supplements are widely recommended

and used during pregnancy globally. However, the evidence on the extent of benefit

they contribute to the offspring’s health is not well established, and their routine use

has its side effects and drawbacks. Dietary iron intake is difficult to assess accurately

and it is unlikely to be sufficient to meet the demands of pregnancy if women start

with inadequate body iron stores at conception.

Evidence from experimental animal models suggests that maternal ID during

pregnancy is associated with fetal growth restriction, as well as offspring obesity and

high BP later in life. The possible biological mechanisms for this observed association
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may be due to ID-induced changes in placental structure and function, enzyme

expression, nutrient absorption and fetal organ development. These observed causal

associations in animal models need to be investigated in humans using epidemiological

study designs high up in the evidence hierarchy.

This thesis describes a lifecourse approach to exploring the associations between

maternal iron intake and status during pregnancy and offspring potential markers of

cardiovascular disease (CVD) risk in population studies. These markers include both

short-term outcomes (size at birth, preterm birth, infant arterial elasticity) and longer-

term outcomes (child and adult BP, adiposity, arterial stiffness and endothelial

function). In this thesis, different epidemiological study designs were utilised to

examine these associations using data collected specifically for this project, as well as

data from multiple existing longitudinal UK birth cohorts.

1.2 Hypothesis

Maternal ID during pregnancy is associated with increased cardiovascular risk in the

offspring.

1.3 Aim & objectives

The work included in this thesis aims to assess the relationship between both maternal

iron status and intake during pregnancy and potential cardiovascular indicators in the

offspring.

The objectives are to:
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1. Examine the relationship of maternal dietary iron intake and iron-containing

supplements with immediate birth outcomes including birth weight and preterm

birth (<37 weeks gestation) (chapter 3)

2. Examine the relationship of maternal iron status measured in early pregnancy,

using serum ferritin (sF) and serum transferrin receptor (sTfR) levels, with birth

weight, preterm birth and infant arterial stiffness (chapter 4)

3. Examine the relationship of maternal iron intake from diet and supplements during

pregnancy with offspring’s vascular profile (BP, arterial stiffness and endothelial

function) and body size in childhood at around 10 years (chapter 5)

4. Examine the relationship of maternal iron status, using HFE genotype as an

instrumental variable (IV), with BP and measures of adiposity including body mass

index (BMI) and waist circumference (WC) in the adult offspring (chapter 6)

5. Examine the relationship of maternal Hb levels and anaemia during pregnancy with

short term birth outcomes (birth weight and preterm birth) and cardiovascular

indicators in the offspring including BP, endothelial function and adiposity at age

10, and arterial stiffness in infancy and at age 10 (chapters 3, 4, 5)
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1.4 Thesis overview

This thesis includes four studies using multiple epidemiological research designs

including Mendelian randomisation, historical and prospective cohort study designs.

The research databases investigated in this thesis come from four sources:

1. CARE:

The Caffeine and Reproductive Health study

2. Baby VIP:

Baby’s Vascular health and Iron in Pregnancy study

3. ALSPAC:

The Avon Longitudinal Study of Parents and Children

4. UKWCS-IBPS:

The UK Women’s Cohort Study – Iron and Blood Pressure Sub-cohort

An outline of how these studies fit together to provide a lifecourse approach to

addressing the hypothesis under investigation in this thesis is illustrated in Figure 1.

The second chapter is a summary of the relevant background evidence linked to the

thesis objectives. Chapters 3 - 6 will describe the four component studies of this

research programme, each going through a study-specific introduction, methodology,

results, discussion and conclusion. In chapter 7, the results of the four studies will be

pulled together in a general discussion chapter, followed by the conclusion in chapter

8.
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CARE: Caffeine and Reproductive Health study (chapter 3)

Baby VIP: Baby’s Vascular health and Iron in Pregnancy study (chapter 4)

ALSPAC: The Avon Longitudinal Study of Parents and Children (chapter 5)

UKWCS-IBPS: The UK Women’s Cohort Study – Iron and Blood Pressure Sub-cohort (chapter 6)

Figure 1: Thesis overview
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2 Background

2.1 Chapter summary

This chapter investigates the research evidence relevant to the hypothesis of interest

in this thesis. It first examines iron status in pregnancy (section 2.2). It then

investigates the evidence linking maternal ID during pregnancy with short-term

adverse birth outcomes including low birth weight (LBW) and preterm birth (sections

2.2.4 and 2.2.5). Intake of iron from the diet and supplements is discussed, and the

evidence linking it to birth outcomes is presented (sections 2.2.7 and 2.2.8).

This is followed by an evaluation of the experimental and the epidemiological evidence

supporting associations between maternal ID in pregnancy and cardiovascular

outcomes in the offspring, and the biological mechanisms potentially underlying such

associations (sections 2.3). It then explores the advantages and limitations of the

available biomarkers to measure iron status (section 2.4), and reviews the

cardiovascular indicators used as outcomes in this thesis, with a particular focus on

arterial stiffness measured by pulse wave velocity (PWV) as a predictor of future CVD

risk (section 2.5). This chapter concludes with a note on the originality and significance

of the research included in this thesis (section 2.6).



31

2.2 Iron status in pregnancy

The human body requires iron for essential physiological functions including oxygen

transport, Hb and myoglobin synthesis, and cell growth and differentiation (Cetin et

al., 2009). It is vital for the function of body enzymes necessary for electron transfer

and oxidation-reduction reactions (Vijayaraghaven, 2004). Its deficiency limits oxygen

delivery to cells. In the fetus, iron is used to synthesize Hb (Milman, 2006b), and is

essential in brain development (Lozoff, 2000). The size of iron stores required at each

stage of pregnancy to ensure an optimal outcome for the mother and the child is still

not exactly known (Lynch, 2011).

Iron balance in the body is determined by several elements: iron intake and

absorption, iron loss and body iron stores. Inadequate iron intake leads to enhancing

dietary iron absorption, mobilizing body iron stores, reducing iron transport to the

bone marrow and eventually lowering Hb levels leading finally to anaemia

(Vijayaraghaven, 2004). Genetics also influence body iron. Women who carry a C282Y

mutation in the HFE gene are more likely, in the homozygous state, to suffer from

haemochromatosis, a condition which is characterised by iron overload in the liver

(Rhodes et al., 1997, Willis et al., 1999). About 12-20% of Northern Europeans are

heterozygotes for this mutation (Rhodes et al., 1997). These HFE gene mutation

carriers are usually asymptomatic. However, they tend to have higher total body iron

stores (Chan et al., 2005, Cade et al., 2005, Beutler et al., 2002, Jackson et al., 2001)
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During pregnancy, all the iron delivered to the fetus comes from maternal stores,

absorption of dietary iron, or turnover of maternal erythrocytes (Wu et al., 2004). As

there is an increased demand for iron during this period to cover the mother’s and the

baby’s needs, this is likely to affect iron balance in the body leading to deficiency,

particularly if the pregnancy starts with inadequate iron stores.

2.2.1 Stages of iron deficiency

ID refers to a spectrum ranging from iron depletion to IDA as illustrated in Figure 2.

Women can experience one or more of these stages at different time points prior to

conception, during pregnancy and post-partum. Biomarkers referred to below that are

used to measure iron status are discussed in detail in section 2.4.

Source: Guidelines for control of iron deficiency anaemia; Ministry of Health, India (National Iron+
Initiative 2013)

Figure 2: Stages of iron deficiency

2.2.1.1 Iron depletion

In iron depletion the amount of stored iron which is measured by sF concentrations is

reduced, however the amount of transport and functional iron may not be affected.

Those with iron depletion do not have iron stores to mobilise if the body requires

additional iron, as in the case of pregnancy (Pavord et al., 2011). This leads to iron-
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deficient erythropoiesis (IDE). In this thesis, a WHO cut-off of 15 ug/l in sF was used to

indicate depleted iron stores in pregnancy (WHO, 2011).

2.2.1.2 Iron deficient erythropoiesis

In IDE, stored iron is depleted and transport iron, measured by transferrin saturation

(TS), is reduced further. The amount of iron absorbed is not sufficient to replace the

amount lost or to provide the amount needed for growth and function. In this stage

the shortage of iron limits red blood cell production and results in increased

erythrocyte protoporphyrin concentration and increase sTfR levels (Pavord et al.,

2011, Vijayaraghaven, 2004). This in turn leads to the development of IDA.

2.2.1.3 Iron deficiency anaemia

Anaemia accounts for 9% of the total disability from all conditions in 2010, with

children under 5 years and women having the highest burden. IDA is the most

common aetiology of anaemia. It is defined as anaemia accompanied by depleted iron

stores and signs of a compromised iron supply to the tissues. It is the most severe form

of ID. Shortage of iron stores, transport, and functional iron result in reduced Hb

production leading to a fall in its blood levels, in addition to low sF, low TS, increased

sTfR and erythrocyte protoporphyrin concentrations (Pavord et al., 2011).

The WHO defines anaemia in pregnancy as a Hb concentration of <11 g/dl (WHO,

2001), while the Centers for Disease Control and Prevention (CDC) defines the cut-off

at 10.5 g/dl from 12 weeks gestation on (Dowdle, 1989, Ramsay et al., 2000). In the

UK, the National Institute for Health and Care Excellence (NICE) defines the cut-off as

11 g/dl at around 12 weeks gestation, and 10.5 g/dl at around 28 weeks gestation,
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which are the two routine antenatal screening points for anaemia in the UK (National

Institute for Clinical Excellence (NICE), 2008).

2.2.2 Iron requirements during pregnancy

During pregnancy, extra iron is required to cover the increasing red cell mass, plasma

volume and the growth of the fetoplacental unit. The body’s capacity to increase

absorption during pregnancy starts with around 8% of ingested iron in the first

trimester and progressively increases to 37% by 36 weeks gestation (Whittaker et al.,

1991). One study when all women had sF >12 ug/l at recruitment in the first trimester

found the proportion of ferrous iron absorbed to be 7, 36 and 66% in gestational

weeks 12, 24 and 36 respectively (Barrett et al., 1994), compared to around 11% in

non-pregnant women (Milman, 2006a). It appears that the increased absorption of

iron during pregnancy is elicited by depleted iron stores. This is shown by the

demonstration of an inverse relationship between sF and iron absorption during

pregnancy (Barrett et al., 1994, O'Brien et al., 1999, O'Brien et al., 2003).

The average total amount of iron which a women needs to mobilize during her

pregnancy is 1200 mg (Milman, 2006a, McMahon, 2010). The fetus takes up about 400

mg over full gestation, with up to 175 mg accumulating in the placenta. Pregnant

women require an extra 1 mg/day in the first trimester, 4-5 mg/day in the second

trimester, and a minimum of an extra 6 mg/day in the third trimester if they were to

meet their pregnancy iron demands (Whittaker et al., 1991). However, it is still

unlikely that iron requirements during late pregnancy can be met through diet alone,

even with optimal absorption, if the pregnancy starts with inadequate iron stores

(Milman, 2008). Therefore, a woman must enter pregnancy with iron stores of ≥300 
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mg if she is to meet her requirements fully (Bothwell, 2000). In fact, in a study that

assessed iron status in early pregnancy, women with initial iron depletion (sF<12 ug/l)

were more likely to have iron depletion and ID (sF<12 ug/l and TS<16%) throughout

pregnancy compared to women who start their pregnancy non–iron depleted, despite

the iron-depleted women receiving iron supplements (Ribot et al., 2012).

2.2.3 Epidemiology of iron deficiency in pregnancy

ID remains the leading single nutrient deficiency in the world (WHO, 2010). It is

estimated to affect 1 to 2 billion people, with women of child-bearing age, infants, and

young children particularly at risk. Around 50% of pregnant women worldwide are

anaemic, with at least half of this burden due to ID (WHO, 2010, WHO, 2001). The

prevalence of IDA varies from 31% of pregnant women in South America to 64% in

south Asia, with about 88% in India alone (Vijayaraghaven, 2004). Up to 40% of women

worldwide have very low iron stores (Scientific Advisory Committee on Nutrition,

2010). ID during pregnancy is not just a problem in low and middle income countries. It

is also common in high income countries (Beard, 1994, Milman et al., 1998, Robinson

et al., 1998). About 25 to 40% of pregnant women in Western societies are estimated

to have ID (Bergmann et al., 2002), with this problem being more pronounced in lower

socioeconomic groups (Godfrey et al., 1991). In Denmark, 42% of women of child-

bearing age were found to have small iron reserves (Milman et al., 1998).

2.2.4 Iron deficiency anaemia in pregnancy and birth outcomes

ID can cause an increased production of norepinephrine, which then stimulates

production of corticotropin-releasing hormone and in turn possibly restricts fetal
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growth (Allen, 2001). There is research evidence that links IDA at different stages of

pregnancy with size at birth and gestational age. A few studies have assessed early

pregnancy Hb in relation to birth outcomes. In a cohort of Chinese textile workers

likely to become pregnant, preconceptional anaemia was associated with reductions in

birth weight, birth length, and head circumference, with an increased risk of LBW and

fetal growth restriction (Ronnenberg et al., 2004). In another Chinese study, rates of

LBW and preterm birth, but not small for gestational age (SGA), were related to early

pregnancy Hb concentration in a U-shaped manner (Zhou et al., 1998). In a cohort

from the United States, IDA in early but not in late pregnancy was associated with

greater risk of LBW and preterm birth (Scholl et al., 1992, Scholl and Hediger, 1994).

Another historical cohort study of around 173,000 pregnant US women found an

increased risk of preterm birth with low Hb levels in the first and second trimester. In

this study, however, high Hb level (>14 g/dl) during the first and second trimester was

associated with SGA (Scanlon et al., 2000).

The mechanism for the association between maternal IDA in early pregnancy and LBW

or prematurity is not clear. However, a few mechanisms have been postulated such as

the role of chronic hypoxia in increasing stress hormones production, increased

oxidative stress and higher risk of maternal infections (Allen, 2001). The main clinical

significance of LBW as an outcome is that it is associated with adverse health

consequences both in the short and long terms. Adverse effects in the short term

include increased risk of infant morbidity and mortality (Richardson et al., 1993). LBW

is associated with around 60–80% of neonatal deaths in low income countries (Lawn et

al.). In the long term, LBW has been shown to be strongly associated with increased
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risk of CVD (Gluckman and Hanson, 2006, Forsén et al., 1999, Poulter et al., 1999, Rich-

Edwards et al., 2005, Stene et al., 2001, Hyppönen et al., 2001, Reilly et al., 2005,

Barker, 1995).

On the other hand, the relationship between maternal IDA in late pregnancy and birth

outcomes seems to be different. In a prospective UK study, the risk of SGA birth was

lower in women with IDA in the third trimester compared to non-anaemic women

(Baker et al., 2009). A retrospective British study of about 154,000 women found that

the lowest incidence of LBW and preterm birth occurred with Hb concentrations

between 9.5 – 10.5 g/100 ml in the third trimester (Steer et al., 1995). High Hb

concentration in late pregnancy has been shown to be associated with adverse birth

outcomes including LBW and preterm birth. One suggested mechanism for this

observed association is the potential for iron to lead to a high-level of production of

reactive oxygen species and increased blood viscosity leading to reduced placental

perfusion (Steer et al., 1995, Milman, 2006a, Casanueva and Viteri, 2003, Casanueva et

al., 2006, Goldenberg et al., 1996).

2.2.5 Iron depletion without anaemia in pregnancy and birth

outcomes

Not much research has explored the effect of iron depletion without anaemia on birth

outcomes, particularly at the start of pregnancy. Ronnenberg et al. reported an

association between preconceptional maternal ferritin with birth weight (Ronnenberg

et al., 2004).  Both low (<12 ug/l) and high (≥60 ug/l) ferritin were associated with 

lower birth weight. sTfR was not associated with adverse birth outcome, but elevated

sF was associated with increased risk of LBW. A Spanish prospective study of 205
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pregnant women found those with iron depletion (sF<12 ug/l) in the first antenatal

visit delivered babies weighing around 200 g less than women without iron depletion,

despite receiving iron supplements during gestation (Ribot et al., 2012).

There is some evidence from another Spanish cohort, where all pregnant women are

recommended iron supplements, linking maternal ID during pregnancy with neonatal

neurological outcomes including general autonomous response, motor performance

and self-regulation capabilities ( Ribot et al., 2012). This could be a direct relationship

or mediated by infant iron status. Maternal ID in pregnancy reduces fetal iron stores

well after birth and into the first year of life. Insufficient iron accretion into liver

storage as a result of preterm birth or maternal ID during pregnancy is a risk factor for

developing infant ID (Kelleher, 2006).

2.2.6 Infant iron deficiency

Infant ID may have adverse effects on infant development (Allen, 2000). Perinatal ID

and IDA during infancy has been associated with an increased risk of delayed

psychomotor and cognitive development as well as behavioural problems into mid-

childhood (Beard, 2008, de Ungria et al., 2000). Some studies suggest that these

changes cannot be reversed with iron repletion therapy beyond 2 years of age

(Grantham-McGregor and Ani, 2001). There is evidence that exclusively breast-fed

infants of ID mothers are at higher risk of developing IDA, with weekly or daily iron

supplementation in the first three months of life not reducing this risk (Yurdakök et al.,

2004).
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2.2.7 Dietary iron intake during pregnancy

In this section, I will review sources of dietary iron, dietary recommendations during

pregnancy, associations of dietary iron with birth outcomes and some possible

interventions to prevent and correct ID and IDA during pregnancy including

fortification. Figure 3 illustrates the types of such interventions in the general

population.

Source: Iron deficiency anaemia: assessment, prevention and control. A guide for programme managers
(WHO, 2001).

Figure 3: Interventions to prevent and correct iron deficiency and iron deficiency

anaemia

2.2.7.1 Sources of dietary iron

The modern British diet is thought to be lower in total iron than that consumed 30

years ago (Heath and Fairweather-Tait, 2002). Dietary iron occurs in two forms: haem,

which comes from meat sources, and non-haem. Iron status is influenced by dietary

iron intake, particularly haem iron, as well as factors affecting its bioavailability for

absorption (Brussaard et al., 1997).
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Recent evidence shows that haem and non-haem iron potentially have different

effects on individual health outcomes (Tzoulaki et al., 2008). Haem iron, which comes

from Hb and myoglobin in animal sources, has a higher bioavailability and is well-

absorbed. Its absorption is further facilitated by organic compounds present in meat

called meat-factors, and is influenced little by other dietary constituents. It also

enhances non-haem iron absorption from other foods consumed at the same time

(Skikne and Baynes, 1994).

About 95% of iron in the average British diet is in the form of non-haem iron (Food

Standards Agency, 2003). The extent to which non-haem iron is absorbed is highly

variable and depends on the individual’s iron status and other dietary components.

Vitamin C enhances non-haem iron absorption when consumed as part of a meal

(Skikne and Baynes, 1994), while high calcium intakes from milk/dairy products during

pregnancy may reduce non-haem iron absorption. In a sample of 576 pregnant

women, ferritin concentrations fell with increasing calcium intake with the proportion

of women with sF values ≤12 ug/l rising from 14% of the women in the lowest quarter

of calcium intake to 29% of the women in the highest quarter (Robinson et al., 1998).

Other potential inhibitors of non-haem iron absorption include phytate in cereal

grains/wholemeal bread, oxalic acid in some vegetables such as spinach and beetroot,

seeds and nuts, and polyphenols in tea/coffee (Skikne and Baynes, 1994). However, a

recent analysis using data from 4 complete diet studies found that sF was the most

important factor in explaining differences in non-haem iron absorption, and that

between-person variations explain a large proportion of the differences in non-haem

iron absorption (Armah et al., 2013). These findings were supported by a recent
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systematic review, with diet having a stronger effect on absorption at low sF levels

(Collings et al., 2013). It is worth noting that inhibitory effects of dietary components

on iron absorption are extended to the absorption of iron supplements as well. The

absorption of iron supplements has been shown to be 40% lower when taken with a

meal (Brise, 1962).

Intake of animal tissue was shown to be directly related to women’s iron stores (Heath

et al., 2007). There is evidence that sF is only positively associated with haem iron

intake and not non-haem or total dietary iron (Cade et al., 2005). Therefore the rising

number of vegetarians in high income countries may increase the prevalence of ID. In

addition to the absence of haem iron from their diet, vegetarians usually have a high

intake of beans, lentils, cereals and fruit which contain inhibitors of non-haem iron

absorption such as phytates and polyphenols (Hallberg, 2002). Consumption of a

lacto-ovo vegetarian diet results in 70% lower non-haem iron absorption compared to

a non-vegetarian diet (Hunt et al. 1999).

2.2.7.2 Dietary iron recommendations during pregnancy

In the UK, the Reference Nutrient Intake (RNI) for women aged 19-50 years is 14.8

mg/day with no specific recommended increment during pregnancy (Department of

Health, 1991). The RNI is the amount of a nutrient that is enough to ensure that the

needs of 97.5% of the population are being met. The Lower Reference Nutrient Intake

(LRNI) is the amount adequate for only the small number of people who have low

requirements (2.5%), which is 8 mg/day for iron in women of child-bearing age

(Department of Health, 1991). National-level data on iron intake of pregnant women in

the UK are not available, however the average intake in the UK for women of
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childbearing age is below the RNI. The mean daily dietary intake of total iron from the

2001 National Diet and Nutrition Survey (NDNS) in Great Britain is 10 mg/day for

women aged 19-64 years, with an average of 0.5 mg/day from haem-iron (Foods

Standards Agency, 2003). Around 25% of all women aged 19-64 years, 41% of women

aged <34 years and 53% of women receiving income-benefits had daily dietary iron

intakes lower than the LRNI of 8 mg/day (Scientific Advisory Committee on Nutrition,

2008).

In the United States, the recommended iron intake during pregnancy is 27 mg/day

(IOM, 2001). However, median iron intake in pregnant women was 15 mg/day in the

US National Health and Nutrition Examination Survey (NHANES III) (National Center for

Health Statistics, 1994). Relatively low iron intake is also seen in other European

countries, for example, Denmark (Andersen et al., 1995). There is also evidence from a

nutritional survey in Norway suggesting that women’s dietary patterns do not change

with pregnancy (Crozier et al., 2009, Trygg et al., 1995). In this survey, 96% of pregnant

women had an iron intake <18 mg/day with an average iron intake of 11 mg/day

(Trygg et al., 1995). In the 4th edition of Nordic Nutrition Recommendations (NNR), the

recommended daily intake of dietary iron was 15 mg/day for women of childbearing

age, including pregnant and lactating women, even though it stated that the

physiological need of some women for iron during the last two thirds of pregnancy

cannot be satisfied from food alone (without supplements) (Nordic Council of

Ministers, 2004). The 5th edition of NNR did not change this recommendation due to

insufficient available evidence (Domellöf et al., 2013).
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The Scientific Advisory Committee on Nutrition (SACN) report on Iron and Health

recommends reducing red and processed meat consumption due to links with

colorectal cancer incidence (Scientific Advisory Committee on Nutrition, 2010). The

report states that setting a maximum recommended intake of 70 g cooked meat/day

would have little impact on the proportion of the adult population with low iron

intakes. The above recommendation is largely based on evidence from prospective

studies of diet and colorectal cancer in middle-aged participants. However, a pooled

analysis of around 61,566 younger participants from the EIPC-Oxford cohort aged 35-

69 years at baseline observed no significant difference in colorectal cancer incidence

between meat eaters and vegetarians (Key et al., 2009). Therefore, recommending

meat as the source of haem iron during the limited span of pregnancy is unlikely to

have adverse effects in relation to the lifetime risk of colorectal cancer given the

available research evidence and potentially positive benefits due to iron availability.

2.2.7.3 Iron fortification

Fortified foods may have the potential to reduce micronutrient deficiencies including

iron during pregnancy (Yang and Huffman, 2011). In the Americas, iron-fortified flour is

wide-spread (Walter et al., 2001). In the UK, the addition of iron to white and brown

flour is mandatory (Heath and Fairweather-Tait, 2002). Breakfast cereals are

commonly iron-fortified as well. However, fortification-iron is regarded to have poor

bio-availability (Hurrell, 1997). Despite the increase in breakfast cereals consumption,

the apparent decrease of red meat intake may be more influential on population iron

levels as it has much better absorption (Heath and Fairweather-Tait, 2002). A study in

Denmark found that 40% of women of child-bearing age had low iron status despite
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having a national iron fortification program of flour (Milman et al., 2003). In order to

meet the iron demand in pregnancy, women should make considerable changes in

their dietary pattern which some argue to be unrealistic, hence the recommendation

of iron supplements.

2.2.7.4 Dietary iron in pregnancy and birth outcomes

Few studies have explored the association of iron intake from dietary sources and birth

outcomes compared to those that have explored the effect of iron supplements. This

section attempts to review the available evidence linking dietary iron intake and two

main birth outcomes, birth weight and preterm birth. The studies described below

were retrieved as a result of an electronic database search (Appendix 10.1). The search

was limited to the English Language and human research. A total of 654 papers were

retrieved, and their titles were scanned for relevance. The references of retrieved

relevant papers were also hand-searched.

There were no interventional studies found investigating these relationships. In terms

of observational studies, there were five UK studies that examined the relationship of

dietary iron intake in pregnancy with birth outcomes. A cohort study in London, which

included 513 pregnant women at 12 weeks gestation and assessed intake via a 7-day

food diary, found a social gradient in median iron intake from the diet ranging from

11.4 mg/day in women from social class V to 14.7 mg/day in women from social class I

(Wynn et al., 1994). The median iron intake was 11.8 mg/day in mothers with babies

weighing 3500-4500 g (n=165) and 9.8 mg/day in mothers of LBW babies (<2500 g)

(n=28). The correlation between total dietary iron intake and birth weight was stronger
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in mothers with babies weighing less than the median birth weight of 3270 g (r=0.25)

compared to those weighing more than 3270 g (r=0.08) (Doyle et al., 1990).

Another British cohort study undertaken in Southampton measured dietary intake

during pregnancy using a 100-item food frequency questionnaire (FFQ) and a 4-day

diary (Godfrey et al., 1996). The women in this study had a mean iron intake (from

food and supplements) of 15.5 and 16.8 mg/day in early and late pregnancy

respectively. These levels were higher than that observed in other studies and the

British NDNS levels (Food Standards Agency, 2003). For every 1 mg/day decrease in

iron intake in late pregnancy, birth weight fell by 63 g. However, a cohort undertaken

in Portsmouth showed no evidence of association between maternal iron intake and

birth weight. This study used two methods to assess dietary iron intake; a 7-day food

diary at antenatal booking, and a FFQ at 28 weeks gestation. The median iron intake

was 10.2 mg/day from food alone and 10.8 mg/day in total using the diary, compared

to 12.4 mg/day from food alone and 15.7 in total mg/day using the FFQ (Mathews et

al., 1999). These results suggest that FFQs may lead to overestimation.

A prospective study in London and Manchester recruited 500 pregnant adolescents

(14-18 years) and assessed micronutrient dietary intake by another dietary assessment

method; three 24-hour recalls in the third trimester (Baker et al., 2009). The median

intake of iron of 10.8 mg/day, including supplements, was similar to that described by

Mathews et al. using the 7-day diary. Participants with dietary iron intake (from food

only) below the lowest quartile of 7.7mg/day were almost 4 times more likely to

deliver SGA infants (OR=3.7, 95% confidence interval (CI) 1.2, 11.8) (Baker et al., 2009).
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The association of iron intake with smoking was examined in a London study that

assessed maternal dietary intake using a 7-day weighed diary at 28 and 36 weeks

gestation (Haste et al., 1991). The mean iron intake was 9.3 mg/day for smokers, 11.7

mg/day for non-smokers at 28 weeks, and 8.5 mg/day for smokers and 11.2 mg/day

for non-smokers at 36 weeks. Lower dietary iron intake between 28 and 36 weeks of

pregnancy was associated with higher risk of SGA, reinforcing the findings by Baker et

al. However, there was no association detected in this study between iron intake and

gestational age at delivery (Haste et al., 1991).

In terms of studies outside the UK, a prospective study of 826 pregnant women aged

12-29 years in Camden, New Jersey, ascertained dietary intake using two 24-hour

recalls and supplement use by interview at each trimester of pregnancy. This study

investigated the association between maternal iron status and intake. Lower sF was

associated with lower iron intake in early pregnancy (Scholl and Hediger, 1994, Scholl

et al., 1992). There was a mean difference of about 4.5 mg/day in iron intake between

anaemic and non-anaemic women (defined by sF <12 ug/l). These associations were

not observed in the third trimester. There was a significant association between ID and

both LBW and preterm birth in this study. This is in contrast to another US study

performed in Boston which found no evidence of association between iron intake and

birth size. This study assessed micronutrients intake from food and supplements at 27

weeks gestation using a FFQ (Lagiou et al., 2005). A longitudinal study in Iran which

assessed dietary iron intake among other micronutrients using a 24-hour recall found a

significant positive association between iron intake in the third trimester of pregnancy

with birth weight (Tabrizi and Saraswathi, 2011). Regarding other study designs such as
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case-control studies, one study in New Zealand which assessed dietary intake at birth

using a FFQ, reported an association of iron supplements only with a reduced risk of

SGA (Mitchell et al., 2004). However, a study in Saudi Arabia, also estimating maternal

iron intake from a FFQ administered after delivery, found no difference in mean birth

weight between mothers with above and below the recommended dietary intake of

iron of 30 mg/day using univariable analysis (Al-Shoshan, 2007).

There is recent evidence from a Korean birth cohort which included 1087 pregnant

women of an effect modification of the relationship between maternal iron intake

during pregnancy and birth weight by maternal genotype (GSTM1 polymorphism) (Hur

et al., 2013). This suggests that the potential effect of increasing dietary iron intake in

pregnancy on offspring outcome might be selective depending on the mother’s

genotype. Table 1 summarises the characteristics of the studies discussed above.

2.2.7.4.1 Limitations of studies on maternal iron intake and birth outcomes

Many studies that assessed total iron intake did not model the relationships separately

for iron from food and that from dietary supplements (Doyle et al., 1990, Godfrey et

al., 1996, Mathews et al., 1999). Studies that combine dietary iron intake with a

measure of iron status in pregnant women are rare (Scholl et al., 1992). These studies

have not considered the potential different effects of haem and non-haem iron

considering their different bioavailability profile. Also, the potential of effect

modification by other micronutrients such as vitamin C has not been investigated.

Some of the studies reviewed above had design and statistical analysis limitations

which are likely to affect the generalisability of their results. The research described in

chapters 3 and 5 of this thesis takes the above-mentioned limitations into account.
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Study ID Design Study

size (n)

Exposure

assessment

Main

outcome

Main finding

Al-Shoshan

2007

Retrospective 1771 FFQ* 24 hours
after delivery

BW**
(grams)

No evidence of
association

Baker 2009 Prospective 500 three non-
consecutive 24-
hour recalls in

trimester 3

SGA** &
preterm

birth

Higher SGA risk in
lowest quartile of

iron intake

Godfrey 1996 Prospective 538 Two FFQs at < 17
weeks and 32

weeks

BW &
placental

weight

Total iron intake
positively associated

with BW

Haste 1991 Prospective 169 7-day weighed
food diaries at 28

& 36 weeks

SGA &
preterm

birth

Lower iron intake
associated with
higher SGA risk

Hur 2013 Prospective 1087 24-hour recall BW
(grams)

Positive association
stratified by

genotype (GSTM1)

Lagiou 2005 Prospective 222 FFQ at 27 weeks BW
(grams)

No evidence of
association

Mathews 1999,

2004

Prospective 693 7-day food diary
at booking & FFQ

at 28 weeks

BW &
placental

weight
(grams)

No evidence of
association

Mitchell 2004 Case-control 844 FFQ at birth SGA Iron supplements
associated with
higher SGA risk

Scholl 1992,

1994

Prospective 826 Two 24-hour
recall “early in

pregnancy”
3 interviews

at first, second &
third trimesters

BW
(grams)

&
preterm

birth

Association between
ID with low BW and

preterm birth

Tabrizi 2011 Prospective 450 Three 24-hour
recalls for each

trimester

BW (kg) Positive association

Wynn 1994,

Doyle 1990

Prospective 513 7-day food diary
at booking

BW
(grams)

Total iron intake
positively correlated

with BW

*Food frequency questionnaire **Birth weight *** Small of gestational age

Table 1: Summary of studies of dietary iron intake in pregnancy and birth outcome



49

2.2.8 Iron supplementation in pregnancy

Iron supplements are widely recommended and used during pregnancy worldwide.

Iron supplementation is commonly recommended from the second trimester of

pregnancy because iron demand starts to increase at around that period. However, the

timing of supplementation is critical in terms of evidence of effectiveness or harm.

2.2.8.1 Routine iron supplementation programmes

World Health Organization (WHO) guidelines for pregnant women recommend a

standard daily dose of 60 mg of iron for 6 months or 120 mg iron daily if taken for less

than 6 months. WHO also recommends weekly folic acid and iron (60 mg)

supplementations to all women of reproductive age in areas were the prevalence of

anaemia is higher than 20% of women in this age group , or higher than 40% in

pregnant women (WHO, 2006).

In the USA, routine low-dose iron supplementation (30 mg/day) is recommended for

all pregnant women (CDC, 1998). In Canada, the current recommendation is to provide

supplements of ≈16 mg/day throughout pregnancy (Cockell et al., 2009). European 

Union guidelines recommend iron supplements in the second half of pregnancy

(Commission of the European Communities, 1993). Recently, a review by the 5th Nordic

Nutrition Recommendations concluded that 40-60 mg/day of iron supplementation

should be offered from week 18-20 of gestation or earlier, depending on sF measured

in early pregnancy. The purpose is to prevent ID and IDA at delivery as the review

acknowledges that there is no evidence of benefit on the offspring (Domellöf et al.,

2013).
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In the UK, NICE does not recommend routine iron supplementation during pregnancy.

Rather it recommends that Hb levels less than 11 g/dl in the first trimester and 10.5

g/dl at 28 weeks gestation are investigated by testing for sF levels and iron

supplementation considered if indicated (National Institute for Clinical Excellence

(NICE), 2008). The Scientific Advisory Committee on Nutrition’s (SACN) Iron and Health

Report supports the NICE guidelines in not recommending routine iron supplements to

pregnant women (Scientific Advisory Committee on Nutrition, 2010). However, there is

no recommendation for detection or intervention in pregnant women who are iron-

deficient but not anaemic.

2.2.8.2 Experimental evidence of effectiveness/harm of iron

supplementation

Most randomised controlled trials of iron supplementation in pregnancy have

concentrated on maternal indices of ID and/or anaemia as outcomes. Many have

shown positive effects on maternal iron status (Pena-Rosas and Viteri, 2009). One

randomised controlled trial (RCT) showed that a supplement of at least 40 mg/day iron

from 18 weeks gestation onwards prevented IDA in 90% of women during pregnancy

and post-partum (Milman et al., 2005). However, other studies show that routine iron

supplementation of non-anaemic women in pregnancy does not prevent iron

depletion by late pregnancy, particularly in women who start their pregnancy with

inadequate iron stores (Ribot et al., 2012, Cogswell et al., 2003).

The evidence surrounding the effects of iron supplements in pregnancy on infant

outcomes is less consistent (Scholl and Reilly, 2000, Rasmussen, 2001, Scholl, 1998,

Haram et al., 2001, Lao et al., 2001, Allen, 2000). The evidence in favour of iron
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supplementation to increase average birth weight and significantly reduce the

incidence of LBW is observed more clearly in studies conducted in low income country

settings where the prevalence of ID is substantially high (Mishra et al., 2005). Many

studies examining the relationship between routine iron supplements and birth weight

have not differentiated between iron-deficient and non-iron-deficient mothers.

However, one small study found that supplementation with iron during pregnancy

improves newborn birth weight only in those women who start pregnancy with ID

(Aranda et al., 2011). A Cochrane review found that a mother is less likely to have IDA

if taking iron supplements. Higher infant ferritin concentrations at 3 and 6 months and

birth length were also observed in the supplemented group. However, it concluded

that the evidence for benefit was inconclusive in relation to clinically-important infant

outcomes (Pena-Rosas and Viteri, 2009).

A placebo-controlled RCT in Hong-Kong published after the Cochrane review showed

favourable effects of taking iron supplements in the second trimester on birth weight

and incidence of SGA (Chan et al., 2009). In a recent systematic review by Haider et al.

of 48 RCTs and 44 cohort studies, iron supplement intake during pregnancy was

associated with higher Hb levels and lower risk of anaemia in the mother, and lower

risk of LBW in the infant (Figure 4). There was also a dose-response positive

relationship between iron dose and birth weight. However, intake of iron supplements

was not associated with duration of gestation, risk of preterm birth or SGA births

(Haider, 2013).
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I−V=inverse variance method  D+L=DerSimonian and Laird method 

Source: Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and
meta-analysis (Haider, 2013).

Figure 4: Forest plot for effect of iron supplement use on low birth weight

2.2.8.3 Potential adverse effects of iron supplements

Despite the inconclusive evidence on the benefit of routine iron supplementation

during pregnancy on infant outcomes, it remains widely recommended on a national

and international level. The assumption underlying this recommendation is that

supplementation, even if not beneficial, would be harmless to mother and baby.

However, based on some emerging research evidence, this assumption may not be

true. There are potential drawbacks of taking routine iron supplements, particularly in

late pregnancy, that need to be weighed against the benefits of correcting maternal

IDA. High-dose iron supplements (>100 mg/day) are associated with side-effects such

as nausea, vomiting and constipation (British Medical Association and Royal
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Pharmaceutical Society of Great Britain, 2010). The United States’ Institute of Medicine

has established an upper tolerable dose of 45 mg/day to minimize the risk of side-

effects (IOM, 2001).

In addition to gastrointestinal side effects, iron can inhibit the absorption of other

minerals such as manganese, copper and zinc (O'Brien et al., 2000, Rossander-Hulten

et al., 1991, O'Brien et al., 1999, Gambling et al., 2011). There is concern that giving

iron supplements could lead to other micronutrient deficiencies by competing for

gastrointestinal uptake (Langley-Evans, 2009). Hence, the interaction of different

micronutrients needs to be taken into consideration, and the potential for negative

interactions is likely to increase if iron is taken as part of a multivitamin-mineral

supplement (MVM). Iron supplements can also reduce the absorption of dietary non-

haem iron (Roughead and Hunt, 2000), and can increase oxidative stress and the

production of free radicals (Casanueva and Viteri, 2003, Scholl, 2005). It has also been

shown that iron transfer to the fetus is better in non-iron-supplemented than in

supplemented women (O'Brien et al., 2003). A better understanding of iron regulation

and its interactions with other micronutrients would be useful to maximise

effectiveness of iron supplementation programmes.

Iron in supplements can be found in two forms: ferrous and ferric. Ferrous iron

supplements such as ferrous fumarate, ferrous sulphate, and ferrous gluconate are

better absorbed than ferric iron (Hoffman et al., 2000). The amount of iron available

for absorption varies according to the supplement with ferrous fumarate having the

highest amount of elemental iron available for absorption. As the dose of iron in the

supplement increases, the proportion of iron absorbed decreases so that if iron
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supplements are recommended they should be taken in two or three equally spaced

doses.

About 10-15% of Northern European population is heterozygous for the common

mutations in the HFE gene that predispose to iron overload (Merryweather-Clarke et

al., 2000). Blanket routine supplementation may be harmful in women with this

genetic predisposition (Zoller and Cox, 2005). Individually-tailored use of iron

supplements according to blood indices for iron status may be recommended to avoid

the potential harms (Milman, 2006b). However, this may not be cost-effective on a

population level.

It has been postulated that iron supplements in ID women may increase the risk of

oxidative damage and haemoconcentration (Lynch, 2011). Studying animal models

suggests that glucose tolerance is reduced by iron supplementation (Dongiovanni et

al., 2008). Links have been made between iron intake and the risk of type 2 diabetes

and gestational diabetes (GDM) (Rajpathak et al., 2006, Qiu et al., 2011, Bowers et al.,

2011). However, these are mainly observed for haem iron from meat sources and

therefore the relationship could be between meat consumption and diabetes risk

rather than iron per se. Evidence from a RCT in Iran showed that iron supplementation

in women with Hb >13.2 g/dl in the second trimester is positively linked to gestational

hypertension, as well as an increase in the risk of SGA birth (Ziaei et al., 2007).

However, this association was not supported by another RCT which found no link

between iron supplements in the second trimester and GDM (Chan et al., 2009). In

other studies, multiple biomarkers of iron status were also elevated in pre-eclamptic

compared to healthy pregnant women (Rayman et al., 2002).
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2.2.8.4 The case for selective iron supplementation

Taking account of the above, some experts caution the administration of iron

supplements to iron-replete women, especially those at risk of pregnancy

complications such as pre-eclampsia and GDM (Weinberg, 2009), and those who are

genetically predisposed to iron overload. It seems that any positive effects of iron

supplementation on infant outcomes such as birth weight are enhanced the earlier

iron supplements are taken in pregnancy (Agarwal et al., 1991). Therefore, individually-

tailored use of iron supplements according to blood indices for iron status in early

pregnancy such as ferritin levels can avoid any potential harms of mass

supplementation to all pregnant women regardless of their iron status (Milman,

2006b).

One of the dilemmas of selective iron supplementation is the choice of a cut-off point

beyond which iron supplements potentially have no benefit on health of the mother

and baby. It has been suggested that pregnant women with sF >70 ug/l have no need

for iron supplements (Milman et al., 2006). However, clinically significant cut-off

points may vary according to stage of pregnancy. Also, selective supplementation may

be considered unrealistic and not cost-effective for health services. There is a need for

further research into the effectiveness, cost-effectiveness and feasibility of such

selective supplementation policies in high and middle income countries. Routine iron

supplementation to all pregnant women seems to be the most effective option in low

income countries due to high prevalence of ID and anaemia.
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2.3 Maternal iron in pregnancy and cardiovascular

disease risk in the offspring

Fetal life is a period of rapid development. Inadequate or imbalanced maternal

nutrition during this period can alter physiological structures and/or functions leading

to an increased risk of chronic disease in later life (Hanson et al., 2009). Fetal growth

and development is likely to be most sensitive to maternal dietary deficiencies during

early pregnancy (Wu et al., 2004). Birth weight has been strongly linked to CVD

morbidity and mortality (Barker, 2004). The initial Barker and colleagues finding 25

years ago of an association between weight at birth and mortality from ischaemic

heart disease has resulted in extensive research into the developmental origins of

health and disease (Lawlor and Davey Smith, 2005, Barker et al., 1989). However, the

epidemiological evidence for the association between fetal growth during pregnancy

and adult chronic disease risk still comes mainly from studies that have used birth

weight as a proxy for fetal nutrition during pregnancy (Scientific Advisory Committee

on Nutrition, 2011). There is a gap in the research evidence with regards to examining

the relationship between maternal micronutrient status, including iron, during

pregnancy and CVD outcomes and risk factors in the offspring. In this thesis, the

markers of cardiovascular status used to assess outcomes are discussed in section 2.5.

2.3.1 Experimental studies

Maternal ID during pregnancy in animal models results in the development of offspring

obesity, hypertension and other adverse cardiovascular outcomes in the long-term

(Zhang et al., 2005, Gambling et al., 2003a, Lisle et al., 2003, Andersen et al., 2006,
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Gambling et al., 2004b, Gambling et al., 2003b, Crowe et al., 1995). This effect is

observed even when the pups maintain normal iron levels throughout postnatal life

(Gambling et al., 2003b, Gambling et al., 2003a, Crowe et al., 1995, Gambling et al.,

2004b). The effect of maternal ID seems to be strongest when it is present in early

pregnancy. In one study, diet-induced IDA in rhesus monkeys by the third trimester of

pregnancy did not have an effect on growth or neurological development of the

offspring (Golub et al., 2006).

Pups of rat models fed an iron-deficient diet prior to and throughout pregnancy have

higher mortality rate, are born smaller, have larger hearts and smaller kidneys and

spleens. Raised BP in males born to mothers in the intervention group was observed

despite the offspring having a normal iron status (Gambling et al., 2003b). In another

study, systolic BP was raised in both males and female offspring of iron-restricted

dams at 3 months of age (Lewis et al., 2001). The postnatal rise in systolic BP

associated with maternal anaemia during pregnancy was not related to the greater

placental to birth weight ratio (Crowe et al., 1995). Iron supplementation during early,

but not late, pregnancy reverses the effect of ID on birth size and the expression of

iron metabolism genes (Gambling et al., 2004a).

2.3.2 Postulated biological mechanisms for the association

between maternal ID and CVD risk in the offspring

Evidence from animal studies shows that birth weight is dependent on the mother's

iron status and not that of the neonate (Gambling and McArdle, 2004). Thus, maternal

ID may affect fetal development by indirect mechanisms (Figure 5). ID-induced

changes in maternal metabolism may have downstream effects on placental structure
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and function, enzyme expression, nutrient interactions and fetal organ development

(Gambling and McArdle, 2004, McArdle et al., 2006). These potential biological

pathways are reviewed below.

*FGR: fetal growth restriction

**Reversal window of adverse offspring outcomes if iron is administered by 12.5 days of rat gestation
(Andersen et al., 2006)

Figure 5: Potential biological pathways for the observed effect of maternal iron

deficiency on offspring CVD risk

2.3.2.1 Placental structure and function

The placenta is the principal organ that delivers nutrients to the developing fetus.

Therefore, any stress that interferes with placental development or function is likely to

have adverse consequences for the developing fetus. The placental structure is altered

in maternal anaemia. Changes due to maternal IDA include reduced capillary length
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and surface area and increased placental vascularisation at term (Lewis et al., 2001,

Gambling et al., 2003a). The surface area of capillaries involved in gas exchange is

strongly and inversely related to maternal sF concentrations (Steer et al., 1995).

Maternal anaemia has also been shown to be associated with increased placental

weight and the ratio of fetal weight to placental weight (Godfrey et al., 1991,

Ronnenberg et al., 2004). The relationship between maternal ID with placental size and

birth weight exists across the normal range for these measures and is not just

restricted to severely anaemic mothers. This increase in placental weight has been

interpreted as compensatory placental hypertrophy.

In terms of placental function, increased cytokine, leptin and tumour necrosis factor

levels in the placenta have been associated with ID. Maternal ID has also been shown

to cause fetal plasma amino acid and cholesterol and triacylglycerol levels to be

decreased, suggesting decreased placental transport of amino acid and non-esterified

fatty acids to the fetus (Lewis et al., 2001).

2.3.2.2 Enzyme expression

ID may reduce the activity of the enzymes that use iron as a cofactor, for example

enzymes involved in neurotransmitter synthesis and neuronal energy (Gambling and

McArdle, 2004). There is evidence that maternal ID leads to a reduction in γ-

aminobutyric acid metabolism that is not reversible by postnatal iron supplementation

(Cockell et al., 2009). In addition, areas of the brain that are involved in higher

cognitive functions have lower cytochrome c oxidase activity in neonatal rats born to

ID mothers (Vijayaraghaven, 2004)
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2.3.2.3 Nutrient interactions

The effect of altered iron status on the metabolism of other metals, such as copper,

and mediators of cell function during pregnancy have been observed (Gambling et al.,

2003a). Generally, ID results in increased copper levels in the liver and rise in serum

ceruloplasmin concentrations (Gambling and McArdle, 2004). In pregnancy, maternal

ID has a differential effect on copper metabolism in the mother and fetus (Gambling et

al., 2004b). In the maternal liver, copper levels are inversely correlated with those of

iron, while in the fetus both iron and copper levels are reduced. A similar differential

effect between mother and fetus is also seen in vitamin A metabolism. Maternal liver

retinol levels are reduced in maternal ID, while in the fetus the opposite is seen, as the

level of iron decreases the levels of retinol in the fetal liver increase (Gambling et al.,

2001). This restriction in nutrient supply may have an impact on fetal development.

2.3.2.4 Fetal organ development

ID may also interfere with normal fetal kidney development by reducing nephron

number (Gambling and McArdle, 2004). This may result in the observed association

between maternal ID and high BP in the offspring as kidney nephron number is an

important determinant of BP. Nephron number is established during kidney

development, beyond which point the number cannot be increased (Golub et al.,

2006). Low nephron number reduces the surface area available for filtration, and

therefore limits the ability of the kidney to excrete sodium and maintain normal

extracellular fluid volume and BP (Brenner et al., 1988). Expanding on their earlier

work with the Wistar ID model, Hales and colleagues (Lisle et al., 2003) have

investigated the effect of maternal ID on the renal morphology of the adult offspring in
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rats. Their results show a reduction in the number of glomeruli in the kidney of

offspring born to ID mothers. Offspring from both control and ID mothers also show an

inverse relationship between glomerular number and BP.

2.3.3 Epidemiological studies

There is some indirect epidemiological evidence supporting the associations observed

in animal studies described above. Godfrey et al. found that maternal ID during

pregnancy in humans is associated with a high ratio of placental weight to birth

weight, which is considered a predictor of adult hypertension (Godfrey et al., 1991).

The relationship between maternal iron status in pregnancy and children’s BP has been

directly investigated in few studies. All of them have used maternal Hb as a proxy for

maternal iron status in pregnancy, with two of them including iron intake from diet

and supplements as an additional marker for maternal iron status (Belfort et al., 2008,

Brion et al., 2008). Table 2 summarises the characteristics of studies that have

investigated the associations of indicators of maternal iron status in pregnancy with

long-term health outcomes in the offspring.

Brion et al. analysed data from the ALSPAC cohort with a sample size of 1255 women

in Bristol, UK with Hb information. In this study, there was an association between

maternal anaemia with lower offspring systolic BP at 7 years only in women who did

not take iron supplements during pregnancy (Brion et al., 2008). This is a direction of

association opposite to what is expected from animal study findings. This study will be

further discussed in chapters 5 and 7, in comparison with analysis included in this

thesis using data from the same cohort.
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In another study with a sample size of 1167 pregnant American women, there was no

association between first and second trimester maternal Hb and anaemia with

offspring BP at 3 years. However, offspring BP was positively associated with first

trimester iron intake, again in contrast to animal studies findings. No relationship was

observed in this study between second trimester iron intake and offspring BP (Belfort

et al., 2008).

In a follow-up of a calcium supplementation trial in pregnancy in Argentina, Bergel et

al. found a positive association between maternal Hb during pregnancy and offspring

systolic BP at 5-9 years (Bergel et al., 2000). In contrast, Law et al. found an

association between maternal anaemia in pregnancy (<10 g/dl) and higher offspring

systolic BP at 4 years of 405 British children (Law et al., 1991). Godfrey et al. also found

a negative association between systolic BP of 77 Jamaican children with an average

age of 11 years and lowest maternal Hb during pregnancy (Godfrey et al., 1994).

Whincup et al. found no evidence of association between lowest maternal Hb and

change in mean corpuscular volume (MCV) during pregnancy with BP at 9-11 years of

662 children (Whincup et al., 1994).

To summarise, the direction of association between maternal Hb and offspring BP

during childhood in two of these studies was against that expected from the results of

animal studies as discussed in section 2.3.1 (Brion et al., 2008, Bergel et al., 2000). Two

studies supported the direction of association observed in animal studies, i.e. maternal

anaemia associated with higher offspring BP (Law et al., 1991, Godfrey et al., 1994),

while the remaining two found no association (Belfort et al., 2008, Whincup et al.,

1994). However, it is important to note that all of these studies did not use a direct
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biomarker of iron status such as sF, and only two of them assessed maternal iron

intake as an exposure ((Belfort et al., 2008, Brion et al., 2008).

In terms of other offspring health outcomes, data from the ALSPAC study on maternal

HFE, TF and TMPRSS6 genotypes were used as instrumental variables to investigate the

association of maternal iron status and offspring’s IQ at 8 years using a Mendelian

randomization (MR) design (Lewis et al., 2014). The study found strong associations

between maternal Hb levels in pregnancy and the selected genotypes. However, there

was no evidence of association between offspring’s cognitive function at 8 with either

maternal genotype or Hb levels in pregnancy.
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Study ID Design Study size (n) Exposure assessment Main outcome Main finding

Belfort

2008

Prospective

cohort

1,167 Semi-quantitative
FFQ* in the first

second trimesters, Hb
& MCV** extracted

from electronic
laboratory database

Offspring BP
#

at 3 years
Maternal iron

intake
positively

associated with
Offspring BP

Brion

2008

Prospective

cohort

1,255 (Hb)

7,484

(supplement)

7,130 (diet)

FFQ at 32 weeks
Questionnaires at 18

and 32 weeks for
supplements

Hb extracted from
medical records

Offspring BP at
7 years

Maternal
anaemia

associated with
lower offspring

BP in women
not taking

supplements
Law

1991

Historical

cohort

405 Lowest Hb during
pregnancy extracted
from medical records

Offspring BP at
4 years

Maternal
anaemia

associated with
higher

offspring BP
Godfrey

1994

Prospective

cohort

77 Lowest Hb out of up
to 6 measurements

throughout
pregnancy

Offspring BP at
10-12 years

Negative
association

Whincup

1994

Historical

cohort

662 Lowest Hb in
pregnancy and
change in MCV
extracted from
medical records

Offspring BP at
9-11 years

No association

Bergel

2000

Prospective

RCT
#

follow-up

518 Lowest Hb during
pregnancy recorded

in the trial

Offspring BP at
5-9 years

Positive
association

Lewis

2014

Prospective

cohort,

Mendelian

randomization

11,696 Maternal genotype at
single nucleotide

polymorphisms in the
HFE, TF and TMPRSS6
genes as instrumental

variables

Offspring
cognitive
function

measured by a
shortened

version Of The
Wechsler

Intelligence
Scale For
Children

(WISC-III)

No association

* Food frequency questionnaire
** Mean corpuscular volume
#Blood pressure #Randomised controlled trial

Table 2: Characteristics of epidemiological studies investigating the association of

maternal iron status and long term offspring health outcomes
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2.4 Measures of iron status

The importance of iron status in pregnancy has been discussed earlier in this chapter in

section 2.2. There are several biomarkers used to assess iron status. A nutritional

biomarker is a biological specimen that acts as an indicator of nutritional status with

respect to either intake and/or metabolism of dietary constituents (Potischman and

Freudenheim, 2003). Below is a review of iron status biomarkers used in this thesis

and their pros and cons.

2.4.1 Haemoglobin

The use of functional indices as biomarkers is useful when intake and status are

sufficiently compromised to cause physiological and biochemical disturbances

(Hambidge, 2003). An example is the use of Hb as an indicator of IDA (Zimmermann,

2008, Zimmermann and Hurrell, 2007). Hb is easy to measure and relatively cheap.

Monitoring it is part of routine antenatal care for all pregnant women in most

countries. However, this measure lacks sufficient sensitivity and specificity as there are

other causes of anaemia that may not be related to ID or may coincide with it,

including other nutritional deficiencies such as folic acid and vitamin B12, chronic

inflammation, infections and hereditary causes (Rasmussen, 2001). It is also possible

to be iron-deficient but not to the level of causing anaemia as 20-30% of body iron

could be lost before Hb falls below the specified cut-off for the diagnosis of anaemia

(Cook, 2005) (Figure 2).
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2.4.2 Serum ferritin

The use of body stores as a measure of nutrient status is appropriate to use with iron,

as it is stored when intake in generous and released when intake is less adequate or

demand is increased, as for example in pregnancy. Circulating sF levels have a strong

positive correlation with tissue iron stores (Cook, 2005). sF is the most widely used

biomarker in the assessment of iron status. It is the second line of investigation of

anaemia in pregnancy. Levels under 12 ug/l indicate absent iron stores i.e. iron

depletion. In the presence of anaemia, such a level is diagnostic of IDA (Zimmermann,

2008).

However, ferritin is considered an acute phase protein and can be elevated in

inflammatory conditions independent of body iron stores, thus affecting test

sensitivity. Levels between 12-100 ug/l are difficult to interpret because inflammation

even in the presence of ID can cause elevation of sF (Worwood, 1997). It is considered

unreliable as a test for iron status in conditions of malignancy, heavy alcohol intake,

thyroid and liver disease (Zimmermann, 2008). In the diagnosis of IDA, a practical

approach to minimize this problem is to use a screening test for inflammation such as

C-reactive protein to try and exclude the false negatives (Cook et al., 2003). In

pregnancy, ferritin is considered a marker of infection such as sepsis, which is

associated with premature rupture of membranes leading to preterm birth. This may

limit ferritin’s use as an accurate marker of iron status to use in investigating the

associations between maternal iron status and birth outcomes (Goldenberg et al.,

1998, Scholl, 1998).
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2.4.3 Serum transferrin receptor

Circulating sTfR is a glycoprotein which constitutes the soluble form of the membrane

receptor produced by proteolytic cleavage (Baynes, 1996). It transfers circulating iron

into developing red cells (Zimmermann, 2008). Both the expression of TfR on the cell

surface and the concentration of the soluble TfR are inversely related to the supply of

iron reaching the cell membranes and the level of intracellular iron (Baynes, 1996,

Hambidge, 2003). The advantage of sTfR over sF is that it can distinguish IDA from

anaemia of chronic inflammation and it can identify iron depletion and functional ID in

patients with concurrent inflammation (Allen et al., 1998).

IDE is the most common cause of raised sTfR. Depleted iron stores without IDE is not

associated with raised sTfR, and is best indicated by low sF level. As ID progresses

beyond depletion of iron stores into negative iron status, with inadequate iron supply

from erythropoiesis, sTfR levels begin to rise, and continue to rise as IDE progressively

worsens prior to the development of anaemia (Skikne, 2008).

The use of sTfR as a measure of iron status is limited by the current availability of

several commercial assays that yield different values. There is a pressing need to

calibrate sTfR assays against international reference standards to provide

comparability across studies.

2.4.4 Serum transferrin receptor to serum ferritin ratio (R/F)

R/F ratio quantifies the entire spectrum of iron status from positive iron stores

through to negative iron balance, and is particularly useful in evaluating iron status in

population studies (Skikne, 2008). In the absence of inflammation, it is the most
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sensitive method to assess iron status as it combines the use of sF as a measure of iron

stores and sTfR as a measure of tissue ID (Zimmermann, 2008, Akesson et al., 1998,

Carriaga et al., 1991, Rusia et al., 1999).

A study set out to determine the diagnostic value of R/F ratio against bone marrow

aspirate examination found that it had the best diagnostic efficiency with a sensitivity

of 81% and a specificity of 97%. SF alone with a cut-off of 60 ug/l had the same

specificity but lower sensitivity (76%) (Ruivard et al., 2000). A close linear relationship

was demonstrated between the logarithm of the concentrations, in micrograms per

litre, of R/F ratio with body iron as calculated form the Hb iron after correction for the

absorption of dietary iron (Cook et al., 2003). However, the use of R/F ratio as a gold

standard measure of iron status is still limited by the lack of standardisation of the

different commercial sTfR assays.

2.5 Measures of cardiovascular disease risk

Earlier in this chapter, the evidence around the association between maternal iron

status and offspring cardiovascular risk has been discussed (section 2.3). Several

measures of CVD risk indicators are used as outcomes in the included studies in this

thesis. Below is an evaluation of those indicators and the rationale behind using them.

2.5.1 Pulse wave velocity

Stiff arteries increase the velocity at which the pulse wave travels across the vascular

tree, resulting in earlier return of the reflected wave from peripheral sites. This leads

to suboptimal ventricular-arterial interaction and increased left ventricular afterload

(Cheung, 2010). PWV provides a measure of arterial stiffness which is a convenient,
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precise and reliable. It can be used as an integrated index of vascular pathology over

the life-course (Cruickshank et al., 2009). PWV is the speed at which the forward

pressure of flow wave is transmitted from the aorta through the arterial tree.

Measuring PWV over an arterial segment assesses the stiffness along the length of it or

regional stiffness (Cheung, 2010). PWV is inversely related to arterial distensibility. The

stiffer the artery, the faster is the pulse wave. It is determined by dividing the distance

of the pulse travel, between two arterial sites, by the transit time (Cheung, 2010). .

2.5.1.1 Pulse wave velocity versus pulse wave analysis

The augmentation index is a measure of central pulse wave analysis. It is the difference

between the first and second peaks of the central arterial waveform, expressed as a

percentage of pulse pressure. It is determined by aortic PWV, age, height and diastolic

BP (Laurent et al., 2006). It is negative in healthy young adults but becomes

increasingly positive as arteries stiffen (the lower the AI is the better). PWV, as a

measure of arterial elasticity, discards information about the shape of the pulse wave.

Pulse wave analysis on the other hand, gives information about arterial elasticity and

wave reflection distal to the measurement site and pulse pressure proximal to it. Both

approaches are complementary. PWV as a means of estimating arterial elasticity is

based on a well-understood and tested theoretical model. It does not permit

quantification of functional stiffness per se but provides information about wave

reflection and pulse pressure (Greenwald, 2002).

2.5.1.2 Pulse wave velocity as a predictor of cardiovascular disease

Prediction of CVD morbidity and mortality can be realized through studying arterial

stiffness. Structural vascular abnormalities, in particular increased arterial stiffness,
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have been considered early markers of accelerated vascular aging. Arterial stiffness is a

strong independent cardiovascular risk factor in adults (Meaume et al., 2001).

Vascular dysfunction plays a key role in the pathophysiology of hypertension. Arterial

stiffness, measured non-invasively by PWV in adults, have been associated with

systemic hypertension and left ventricular hypertrophy (Ligi et al., 2010). Therefore,

PWV has been widely used as a predictor of CVD in adults (Weber et al., 2008, Jadhav

and Kadam, 2005), and is associated with higher CVD mortality, coronary heart

disease, and stroke (Vlachopoulos et al., 2010, Sutton-Tyrrell et al., 2005). Age is a

major determinant of PWV, and its influence should be taken into account when using

PWV as a marker of cardiovascular risk (Tomiyama and Yamashina, 2004). However, it

is still not determined whether PWV measured in infancy is a predictor of long term

cardiovascular health.

2.5.1.3 Developmental origins of arterial stiffness

Increased arterial stiffness measured in children, adolescents and young adults, has

been correlated with LBW, which points towards an influence of the fetal

developmental journey on arterial wall structure and function later in life . However,

the relationship seems to be complex, and there is considerable heterogeneity in the

evidence according to which measure of arterial stiffness was used, at which age

arterial stiffness was assessed, and the degree of prematurity and LBW considered.

Oren et al. found an inverse association between gestational age and carotid-femoral

PWV measured in young adults, but a positive association with birth weight, which was

attenuated when excluding offspring of diabetic mothers (Oren et al., 2003). Lurbe et

al. used augmentation index as a measure of pulse wave reflection in 7-18 year old
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children and adolescents and found it to be higher in those born with LBW (Lurbe et

al., 2003). Cheung et al. found that among 8 year old children who were born preterm,

only those with intrauterine growth retardation (IUGR) had increased brachio-radial

PWV (Cheung et al., 2004). In another study, carotid-radial PWV in adolescents was

higher in those born preterm compared to those born at term (Rossi et al., 2011). A

negative correlation was observed between carotid artery stiffness measured by

ultrasound in 9-year old children and birth weight, despite observing no differences in

arterial stiffness index between the normal weight and LBW groups (Martin et al.,

2000). On the other hand, Salvi et al. also found no evidence of a linear relationship

between PWV at 16-19 years of age and birth weight, though there was a positive

relationship with LBW (Salvi et al., 2012). However, in another study there was no

association observed between carotid and aortic arterial stiffness measured by

ultrasound in 7-12 year old children with preterm birth or SGA (Bonamy et al., 2008,

Bonamy et al., 2005). Schack-Nielsen et al. also reported a null association between

aorto-radial and aorto-femoral PWV in 10 year old Danish children and birth weight,

but arterial stiffness was positively associated with duration of breastfeeding (Schack-

Nielsen et al., 2005).

In adults, the evidence is also inconsistent. Some found no evidence of association

between birth weight or LBW and arterial stiffness in adulthood with an age range of

25 years to middle age (Montgomery et al., 2000, Te Velde et al., 2004, Kumaran et al.,

2000), while a study of 55 year olds found that arterial compliance was lower in those

who had been small at birth (Martyn et al., 1995).
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The mechanism of association between LBW and increased arterial stiffness in

childhood and adulthood remains unclear. Endothelial dysfunction in preterm and SGA

babies suggests that functional alterations in arterial tone may contribute to it

(Cheung, 2010). Therefore, this relationship may not be apparent when using

structural methods to assess arterial stiffness such as PWV. Another proposed

mechanism is altered synthesis of elastin in the arterial wall (Cheung, 2010). Arterial

stiffness could be caused by a deficiency of in elastin synthesis in the wall of large

arteries (Martyn and Greenwald, 1997). Elastin normally accumulates in the late

prenatal period and its synthesis falls rapidly after birth (Ligi et al., 2010). Decreased

elastin content in the umbilical arteries, which are direct branches of fetal iliac arteries,

was associated with increased arterial stiffness in one study (Burkhardt et al., 2009).

Gestational age was observed to be correlated with elastin content. Reduction in the

elastin content of umbilical cord arteries has been shown to be associated with both

preterm and SGA infants (Ligi et al., 2010).

In summary, there is some evidence linking size at birth and prematurity with arterial

stiffness later in life. However, the methods used to assess arterial stiffness in these

studies vary significantly, as does the age at which arterial stiffness was assessed.

These issues render the studies quite heterogeneous and therefore difficult to draw

solid conclusions about the magnitude of the association and potential thresholds in

birth weight or gestational age at which adverse programming is likely.
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2.5.1.4 Association between arterial stiffness and other cardiovascular

markers in children

In the Lifestyle of Our Kids Study, carotid-femoral PWV was positively correlated with

BMI, percentage body fat and WC in children with an average age of 10 years (Sakuragi

et al., 2009). Brachial-ankle PWV in healthy adolescents was found to be associated

with BP, BMI, percent body fat, waist-to-height ratio, sex, homocysteine levels, and

metabolic risk variables (triglycerides, high-density lipoprotein cholesterol, atherogenic

index, glucose, insulin, and insulin resistance) (Miyai et al., 2009, Im et al., 2007). PWV

was associated with physical activity and dietary fat energy percentage in 10 year old

Danish children. (Schack-Nielsen et al., 2005). A study which measured carotid-radial

PWV in 33 obese adolescents and 18 lean controls (average age 14 years) found lower

PWV in the obese group which might reflect general vasodilatation (Dangardt et al.,

2008).

2.5.1.5 Studies of arterial stiffness in infants

Few studies measured arterial stiffness in infants. Akira et al. assessed aortic stiffness

in infants using an index measured by ultrasound to estimate the aortic systolic and

diastolic diameters and their correlation with BP, and found that it increased with

gestational age at birth (Akira and Yoshiyuki, 2006). Using pulse pressure

measurement (distensibility coefficient, and whole body arterial compliance measured

by ultrasound and recording of aortic pulse pressure), increased arterial stiffness was

observed as early as the fifth day of life in very LBW premature infants, and persisted

at least until the 7th week of life (Tauzin et al., 2006). Skilton et al. observed an

increased aortic wall thickness, a marker of atherosclerosis, in SGA infants (Skilton et
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al., 2005). Sehgal et al. calculated arterial wall stiffness index in appropriate for

gestational age (AGA) and SGA infants, and found an increase with very SGA (<3rd

centile) (Sehgal et al., 2014).

Very few population studies to date have examined arterial stiffness using PWV in the

first weeks of life. Koudsi et al. measured aortic PWV in 30 babies in Manchester within

3 days of birth. They found an inverse association between maternal systolic BP at 28

weeks gestation and neonatal PWV, contrary to their hypothesis of a positive

association between the two. Neonatal PWV was positively correlated with birth

weight, birth length and neonatal systolic BP (Koudsi et al., 2007).

2.5.1.6 Maternal/early life nutrition and offspring PWV

Few studies have examined the relationship between maternal nutritional exposures

and arterial stiffness in the offspring. One study examined the association of maternal

vitamin D status during late pregnancy and arterial compliance measured by PWV at 9

years of age and found no evidence of association (Gale et al., 2007). Brachial PWV and

augmentation index were used to evaluate arterial structure and function in 8 year old

children who had participated in a RCT of dietary n-3 and n-6 fatty acid modification

over the first 5 years of life (Ayer et al., 2009). This study also found no evidence of

association between the dietary intervention and arterial stiffness in children.

Another study investigated whether fish oil supplementation versus olive oil

supplementation of lactating mothers could modify PWV in their children after 2.5

years and found no association (Larnkjaer et al., 2006). Adolescent children of women

who have received daily balanced protein-calorie supplements during pregnancy as

part of a community trial in South India had a more favourable lower augmentation
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index as a measure of arterial stiffness than children of women who did not receive

the supplements (Kinra et al., 2008).

However, to date there are no published comparable studies assessing the relationship

between maternal dietary exposures or nutritional status during pregnancy and infant

arterial stiffness within the first few weeks of life. In chapter 4 of this thesis, the first

research study to address this important question is presented.

2.5.2 Blood pressure

BP is strongly and directly linked to the risk of coronary and cerebrovascular events

(Psaty et al., 2001). Almost 30% of coronary heart events can be attributed to high BP

(Wilson et al., 1998). From middle age onwards, BP is strongly and directly related to

vascular and overall mortality, without any evidence of a threshold down to at least

115/75 mm Hg (Prospective Studies Collaboration 2002). Lowering population-wide

diastolic BP by only 2 mm Hg can reduce the prevalence of hypertension by 17 %, the

risk of coronary heart disease by 6 % and the risk of stroke/transient ischaemic attacks

by 15 % (Cook et al., 1995).

2.5.2.1 Developmental origins of hypertension

Adult BP has been inversely linked to birth weight (Barker et al., 2007). However,

changes that occur in utero during fetal development that contribute to the

developmental origins of CVD, including high BP, do not necessarily result in fetal

growth restriction or LBW. There is evidence that children from deprived

backgrounds, those whose mothers experience pregnancy-induced hypertension,

those whose mothers smoke throughout pregnancy, those with LBW, who are not
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breast-fed, who have high sodium diets in infancy and who are obese in childhood or

adolescence tend to have higher BP as adults (Lawlor and Davey Smith, 2005).

Postulated mechanisms for the developmental origins of high BP include fetal

exposure to increased glucocorticoids, attenuation in kidney structure and function by

permanently reducing nephron number, reduced elastin content of arterial walls, and

epigenetic mechanisms involving changes in telomere length and sympathetic over-

activity (Adair and Dahly, 2005). Maternal nutritional status prior to conception and

during pregnancy is likely to be one of the important contributors to the origins of

offspring adult hypertension.

2.5.2.2 Maternal nutrition in pregnancy and offspring BP

In animal studies, there is strong evidence of association between hypertension in the

offspring and sub-optimal maternal nutritional statuses, including general under-

nutrition, low-protein, and vitamin deficient diets (Woodall et al., 1996, Langley and

Jackson, 1994, Sinclair et al., 2007). Earlier in this chapter, the evidence generated by

animal studies of the effect of a maternal diet deficient in iron on offspring’s BP was

reviewed (section 2.3.1).

In humans, there is observational evidence of association between protein-

carbohydrate balance and fat intake during pregnancy with adult and adolescent

offspring BP (Campbell et al., 1996, Adair et al., 2001). Natural experiments, such as

the Dutch Hunger Winter, revealed links between starvation of pregnant women in the

first trimester of pregnancy and offspring hypertension (Schulz, 2010). There is also

evidence of effect on child BP from follow-up RCTs of supplementation during

pregnancy, such as calcium (Belizán et al., 1997), prebiotics (Aaltonen et al., 2008) and
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multiple micronutrient supplements (Vaidya et al., 2008). Epidemiological evidence

linking maternal iron intake in pregnancy and offspring BP in childhood was explored

earlier in this chapter in section 2.3.3.

2.5.3 Obesity

Obesity is an important cardiovascular risk indicator in the offspring when considering

the influence of lifecourse exposures on this risk. The prevalence of obesity has been

on the rise since the early 1980s. Worldwide, at least 2.6 million people died of causes

attributable to obesity in the year 2000 (Ezzati M et al, 2004). Being obese or

overweight can increase the risk of developing chronic diseases such as type 2

diabetes, hypertension, CVD, cancer and all-cause mortality (Pi‐Sunyer, 2012). It can

also have a major impact on the individual’s self-esteem, quality of life and educational

attainment. Tackling obesity is now the concern of most Western governments who

accept its major public health significance. The Foresight report states that, by 2050

over half of the UK adult population could be obese and the NHS costs attributable to

overweight and obesity are projected to double to £10 billion per year. The wider costs

to society and business are estimated to reach £50 billion per year (Foresight Report,

2007).

2.5.3.1 Measures of adiposity

BMI is calculated by dividing the weight in kilograms by the height in metres squared.

It is accepted by the WHO as the appropriate method of classifying overweight and

obesity in adults with cut-offs of 25 kg/m2 for overweight and 20 kg/m2 for obese

(WHO, 1995). However, it is argued that different populations need different cut-offs

due to population-specific differences in disease risk. Indians have a marked tendency
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for abdominal obesity and insulin resistance and perhaps the greatest amplification of

risk as weight increases. Lower BMI cut-offs of 23 kg/m2 in Asia and 24 kg/m2 in

Hispanic countries are conventionally used (Sanchez-Castillo et al., 2006). However,

deriving population-specific BMI cut-off points is difficult as the increase in observed

risk varies from 22 to 25 kg/m2 in different populations. WHO therefore recommends

that the current BMI cut-off points should be retained as the international

classification and additional points are to be used for public health action reporting

(WHO expert consultation, 2004).

WC and waist-to-hip ratio are considered as measures of abdominal or central obesity.

They have been linked to CVD incidence (de Koning et al., 2007). In the elderly, a U-

shaped relationship was shown between WC and mortality (de Hollander et al., 2012).

There are conflicting results regarding the association between this measure in

adulthood and birth weight (Tian et al., 2006, Schooling et al., 2010). So far, the WHO

has not specified cut-off points for WC and waist-to-hip ratio with regards to CVD risk

prediction, as it did with BMI (Nishida et al., 2009). Some suggest a cut-off point for

WC of 90 cm in men and 80 cm in women to mark increased CVD risk (Dobbelsteyn

et al., 2001).

2.5.3.2 Developmental origins of obesity

There is now substantial evidence that early fetal and childhood ‘programming’

influences the development of obesity and its associated chronic diseases such as

diabetes and hypertension in later life. This evidence started to emerge when Barker

and colleagues observed that LBW was associated with a greater risk of developing

abdominal obesity, diabetes and hypertension in late middle-age (Barker, 1998). The
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life-course influences are now thought to be much more complex than the association

with the crude measure of birth weight. Possible mechanisms could be through

epigenetic and transcriptional regulation of key metabolic genes in response to

nutritional stimuli during pregnancy that mediate persistent changes leading to an

adult metabolic syndrome phenotype (Bruce and Hanson, 2010).

The concept of life-course influences on obesity and risk of chronic diseases and the

complex interactions involved is illustrated in Figure 6.

Source: Ending malnutrition by 2020: an agenda for change in the millennium (James et al., 2000).

Figure 6: Life-course influences on obesity and chronic disease risk

2.5.3.3 Maternal nutrition in pregnancy and offspring obesity

Experimental evidence in animal studies supports a role of maternal nutritional quality

in pregnancy on the development of obesity in the offspring (Howie et al., 2009, Bayol
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et al., 2007, Remacle et al., 2011). The evidence specifically linking maternal ID with

offspring adiposity in animal studies was reviewed earlier in this chapter in section

2.3.1.

Higher risk of obesity was observed among children of women who experienced the

Dutch Famine (Painter et al., 2005), which extended to the second generation (Painter

et al., 2008). However, despite the ample evidence from animal studies,

epidemiological studies that characterise the relationship of maternal dietary patterns

and components during pregnancy with offspring obesity later in life, as well the

potential long-term effects of dietary interventions in the mother on offspring obesity,

are almost lacking.

2.6 Significance of this thesis

2.6.1 How is this research scientifically novel?

This thesis is uniquely placed to contribute to the developmental origins of CVD

research by analysing dietary exposures, biomarkers and clinical outcome data from

large cohort studies (CARE, ALSPAC, UKWCS), as well as including a new study which

utilises novel ways of exposure and outcome assessment (Baby VIP).

Data specifically collected for this thesis:

1. New data on the offspring of a sub-sample of the UKWCS

2. The Baby VIP study

Existing data analysed in this thesis come from the following cohorts:

1. The CARE study
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2. ALSPAC study

3. HFE genotype data from the UKWCS

This programme of research is novel in several aspects:

 Maternal iron intake from the diet as well as supplements is assessed as a

predictor of birth outcomes, including stratifying by type of iron (haem and non-

haem) and testing for effect modification by vitamin C (chapters 3 & 5)

 The Baby VIP study (chapter 4) is the first study to examine the relationship

between a measure of maternal nutritional status during pregnancy and infant

PWV as a proxy for later cardiovascular risk.

 The best available measure of body iron status is used in the Baby VIP study:

the R/F ratio.

 Infant PWV has not been assessed before in a population study with a sample

size in hundreds. This is a novel measure which could provide a non-invasive

predictor of later cardiovascular health that is easier to perform in infants than BP.

 Chapter 5 builds on the previous analysis performed in ALSPAC by Brion et al,

by analysing additional offspring CVD markers as well as BP, including arterial

stiffness, endothelial function and BMI. The sample included is bigger than the

previous analysis, the outcome measurements are taken at a later offspring age,

and include arterial stiffness and endothelial function and adiposity, which were

not analysed in the Brion study.

 The UKWCS-IBPS element of the thesis (chapter 6) is the first study that uses a

MR design to examine a transgenerational relationship between maternal

micronutrient status and adult health indicators.
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 All the above elements exploring the hypothesis of interest at different stages

in the lifecourse are pulled together in this thesis for the first time

2.6.2 Relevance to public health

Any intervention that could result even in a modest reduction in BP, obesity and/or

arterial stiffness at a population level, would have a significant public health impact on

CVD morbidity and mortality. Maternal iron supplementation and/or optimising

dietary iron intake during pregnancy could be such intervention. The outcome of this

study will inform the debate on whether there is benefit to the offspring from

recommending increased iron intake universally through diet and/or supplements

during pregnancy, restricting this to mothers with IDA, or those who have ID even

without anaemia. Positive results would suggest increasing iron intake during

pregnancy is beneficial to the offspring’s health in the long term. Negative results

would suggest a different relationship between maternal iron status and offspring CVD

risk in humans compared to that which has been observed in animal studies.
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2.7 Conclusion

Maternal ID and IDA during pregnancy is a common problem if women start their

pregnancy with inadequate iron stores. It is potentially associated with adverse

consequences for the baby in the short term, including LBW, prematurity and infant

IDA, particularly if the deficiency is present early in pregnancy. Methods to optimise

iron intake during pregnancy include dietary optimisation of iron intake from natural

sources, iron fortification of certain elements of the diet such as flour, and iron

supplementation. The benefit of such interventions with regards to infant outcomes is

not consistent, particularly in high income country settings.

Maternal ID in pregnancy has been shown to be causally associated with higher risk of

offspring hypertension and obesity in animal studies. However, the available

epidemiological evidence is insufficient to make any conclusions regarding the

presence and direction of such associations. This thesis will test in humans the

hypothesis generated by animal studies using epidemiological study designs. It will

contribute to the evidence-base on whether a mother’s iron intake and status during

pregnancy are important predictors of later cardiovascular risk in her children. Each

study included in this project addresses at least one aspect of the research question of

whether maternal ID during pregnancy is associated with increased offspring’s

cardiovascular risk later in life.
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3 Associations of dietary iron and

supplement intake in pregnancy with birth

outcomes in a cohort of British women: the

CARE study

This chapter commences the investigation of the relationship between markers of

maternal iron status during pregnancy, including intake from the diet and

supplements, and Hb and MCV, with short-term birth outcomes including size at birth

and duration of gestation.

Work from this chapter has formed the basis of two peer-reviewed papers (Alwan et

al., 2011, Alwan et al., 2010), and three conference presentations.
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3.1 Chapter summary

The aim of this study was to investigate the associations between dietary supplements

and iron intake in pregnancy with size at birth and preterm birth using data from a

prospective cohort of 1274 pregnant women aged 18-45 years in Leeds, UK, The

Caffeine and Reproductive Health study (CARE). Dietary intake was reported in a 24-

hour recall administered by a research midwife at 12-week gestation. Dietary

supplement intake was ascertained using dietary recall and three questionnaires (first,

second and third trimesters). Information on delivery details and antenatal pregnancy

complications was obtained from the hospital maternity records.

Reported dietary supplement use declined from 82% of women in the first trimester of

pregnancy to 22% in the second trimester and 33% in the third trimester. Folic acid

was the most commonly reported supplement taken. 24%, 15% and 8% reported

taking iron-containing supplements in the first, second and third trimesters

respectively.

Eighty percent of women reported dietary iron intake below the UK RNI of 14.8

mg/day. Women with dietary iron intake >14.8 mg/day were more likely to be older,

have a higher energy intake, have higher education and take daily supplements during

the first trimester. They were less likely to be smokers, live in a deprived area, or

report a chronic illness.

Vegetarian participants were less likely to have low dietary iron intake (OR=0.5, 95% CI

0.4, 0.8) and more likely to take iron-containing supplements during the first and

second trimesters. Total iron intake, from food and supplements, was positively
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associated with birth weight centile (adjusted change=2.5 centiles per 10 mg increase

in iron, 95% CI 0.4, 4.6). Taking any type of daily supplement during any trimester was

not significantly associated with size at birth taking into account known relevant

confounders. Women taking MVM supplements in the third trimester were more likely

to experience preterm birth (adjusted OR=3.4, 95% CI 1.2, 9.6, P=0.02). Hb at 28 weeks

was associated with increased risk of SGA (adjusted OR per g/dl increase in Hb 1.4,

95% CI 1, 1.8, P=0.03).
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3.2 Background

3.2.1 Dietary iron intake during pregnancy

Dietary recommendations and population levels of intake of iron from the diet during

pregnancy have been reviewed earlier in chapter 2 (section 2.2.7). Results of studies

investigating the relationship between dietary maternal iron intake during pregnancy

and size at birth and/or gestational age are conflicting (Doyle et al., 1990, Godfrey et

al., 1996, Scholl and Hediger, 1994, Mathews et al., 2004, Scholl et al., 1992, Lagiou et

al., 2005, Al-Shoshan, 2007, Baker et al., 2009, Mitchell et al., 2004, Haste et al., 1991,

Mathews et al., 1999). These have been reviewed in section 2.2.7.4 and summarised in

Table 1. Many studies that assessed total iron intake did not model the relationships

separately for iron from food and that from dietary supplements. Neither did they

consider the potential differential effects of haem and non-haem iron. One study

assessed the relationship between ascorbic acid and anaemia and well as vitamin C

intake and iron status (Baker et al., 2009). However the potential interaction between

iron intake and the vitamin C intake and other micronutrients has not been explored

(Gibney et al., 2004).

3.2.2 Dietary supplement intake during pregnancy

Dietary supplements during pregnancy are becoming an attractive option considered

by international agencies to improve the nutritional status of pregnant women in

developing countries. Multivitamin-mineral supplements (MVM) supplements have

been routinely recommended for pregnant women and those who might become

pregnant in some developed countries such as the United States (Willett and Stampfer,
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2001). They are not routinely recommended during pregnancy by the WHO, or in other

developed countries such as the UK. These preparations are readily available over-the-

counter, and heavily advertised and promoted to expectant mothers especially in

Western countries. They are considered relatively cheap, feasible and have the

potential to improve maternal nutrition when administered through national antenatal

programmes. However, dietary supplements are not subject to the same rigorous

safety and efficacy standards as prescription medications (Gardiner et al., 2008). Their

proposed use during pregnancy is supported by findings from several RCTs in low and

middle income country settings, where deficiency in micronutrients is more prevalent

and more pronounced than high income countries.

3.2.2.1 Multivitamin-mineral supplements and birth outcomes

Multiple-micronutrient deficiency is common among pregnant women in low-income

countries (Lumbiganon, 2007). However, pregnant women in developed countries are

expected to have better baseline nutrient status compared to pregnant women in

developing countries, and nutritional deficiencies are more likely to be restricted to

specific micronutrients such as iron. Therefore, the effect of supplementation

programmes in terms of birth outcomes may vary between the two settings.

3.2.2.1.1 Evidence from low and middle income countries

Studies in Nepal, India, Indonesia, Guinea-Bissau and Tanzania have shown positive

effects on adverse birth outcomes such as infant mortality and LBW (Osrin et al., 2005,

Gupta et al., 2007, The supplementation with Multiple Micronutrients Intervention

Trial (SUMMIT) Study Group, 2008, Kaestel et al., 2005, Fawzi et al., 2007). However,

other trials in Nepal, Mexico and Zimbabwe have failed to demonstrate a significant
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effect on the incidence of LBW (Christian et al., 2003, Friis et al., 2004, Ramakrishnan

et al., 2003, Christian et al., 2008), and some have even demonstrated an increased

risk of adverse outcomes (Roberfroid et al., 2008, Christian et al., 2008) . In relation to

the incidence of neural tube defects (NTD), a direct comparison of folate versus

multivitamin supplementation indicated a significant reduction in the folate group

suggesting that folate supplementation may be more useful that MVM considering this

outcome (Lumley et al., 2002).

According to a Cochrane systematic review, there was a favourable effect of MVM

supplementation on the incidence of LBW and SGA compared to none or placebo

supplementation. However, there was insufficient evidence to suggest replacement of

iron and folate supplementation with multiple micronutrient supplements. The review,

which included 9 trials and around 15,000 women, recommended further research to

quantify the degree of maternal or fetal benefit and to assess the risk of excess

supplementation and the potential for adverse interactions between micronutrients.

All the trials included in this review were conducted in low income countries (Haider

and Bhutta, 2006).

An updated review by the same authors, including data from 17 studies all conducted

in developing countries, showed a significant reduction of 9% in the risk of SGA

compared to iron-folate supplementation (Haider et al., 2011). Also, a recent meta-

analysis by Shah et al. of 13 RCTs on the effect of MVM supplements on infant

outcomes showed a significant reduction in the risk of LBW in women who received

these supplements during pregnancy compared to placebo (RR=0.8, 95% CI 0.7, 0.9).

Mean birth weight was also higher as compared to women who took combined iron
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and folic acid supplementation (Shah et al., 2009). There were no differences in the

risk of preterm birth or SGA. One third of the women included were in the first

trimester, half were in the second trimester and the rest in the third trimester during

the trials. All, but one, of the included trials were conducted in a developing country.

This review included a trial of HIV positive women, which the Cochrane review did not

include.

3.2.2.1.2 Evidence from high income countries

Although multivitamin supplements have been recommended for women who might

become pregnant in some high income countries such as the United States (Willett and

Stampfer, 2001), there are few studies examining their effect on birth outcomes in

developed countries, where there is likely to be a significant difference in women’s

baseline nutrient status compared to low income countries. A RCT in France showed

significant positive effects for micronutrient supplementation versus placebo on the

incidence of LBW (Hininger et al., 2004). However, this study had a relatively small

sample size of 100 women and a very small number of babies born with LBW. The

supplements given in this study were iron-free, and thus differ from currently available

over the counter MVM preparations for pregnant women. There was no difference

detected in the oxidative stress parameters measured in the study between

supplemented and unsupplemented women.

The Camden study which examined the association of multivitamin supplementation

intake in pregnancy with birth outcomes was conducted in a disadvantaged urban

setting in the USA (Scholl et al., 1997). Reduced risks of both LBW and preterm delivery

were associated with supplement use in the first and second trimester. Analysis was
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restricted to data obtained by 28 weeks of pregnancy and did not report on the

relationship between infant outcomes and supplement use in the third trimester of

pregnancy.

In summary, MVM supplements are likely to improve infant outcomes in low income

countries. There is a possibility in well-nourished women however of reduced

bioavailability of micronutrients due to interactions, and there is no strong evidence of

benefit of regular intake during pregnancy in high income country settings.

3.3 Hypothesis and objectives

It is hypothesised that women with adequate iron intake and those who take dietary

supplements during pregnancy have, on average, bigger babies.

The objectives of this study were to:

1. Investigate the association between maternal iron intake during early

pregnancy with both birth weight/SGA and preterm birth

2. Assess whether any relationships differ by source of iron (food versus dietary

supplements) or by type of iron (haem versus non-haem)

3. Explore the role of vitamin C intake as an effect modifier in the association

investigated by objective 1

4. Examine the relationship between supplement use during the first, second and

third trimesters of pregnancy with birth weight and preterm delivery

5. Examine the relationship of maternal Hb during pregnancy with birth

weight/SGA
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3.4 Methods

3.4.1 Study design and participants

The CARE study is a prospective birth cohort in which low-risk pregnant women aged

18-45 years with singleton pregnancies were prospectively recruited at 8 to 12 weeks

gestation from the Leeds Teaching Hospitals maternity units between 2003 and 2006

(CARE Study Group, 2008, Boylan et al., 2008). This was part of a multicentre study into

maternal diet and birth outcomes. Women with concurrent medical disorders,

psychiatric illness, HIV infection, or hepatitis B infection were excluded.

Eligible women were identified by screening their pre-booking maternity notes. They

were contacted then sent detailed information about the study and were asked to

return a reply slip to state whether they were willing to take part. A total of 4571

eligible women were approached in Leeds. Of these, 1374 consented. Those who

agreed to participate were then interviewed. This interview was conducted either at

the hospital, the participant’s general practice, or her home by a research midwife.

Demographic details were obtained using a self-reported questionnaire. Figure 7

illustrates the study’s data collection points.

As part of the original study of caffeine and birth outcomes, it was planned to follow-

up women several weeks after delivery to investigate how their caffeine metabolism

had returned to normal, using a caffeine challenge. To reduce costs without

introducing selection bias, follow up was aimed at all cases defined as women with

LBW or SGA babies (< 2500 grams) but only a sample of controls, taken to be the two

closest births either side of the case, following a nested case-control design. The
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interviews for the third trimester data were performed retrospectively on this sub-

sample of the cohort (n=425) with a ratio of 2 controls for every case. Almost all of the

sampled women who were approached returned data for the third trimester of

pregnancy.

Figure 7: CARE study data collection points

3.4.2 Exposure assessment

3.4.2.1 Questionnaire assessment of supplement use

Supplement use was ascertained throughout pregnancy using questionnaires in the

first, second and third trimesters. The questionnaires were interviewer-administered

during the first and third trimesters and self-administered during the second trimester.
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The respondents were asked to report the type/brand, frequency and the amount of

all the dietary supplements they were using during each trimester. The questions were

free text rather than multiple choice questions, asking participants to tick the type of

supplements they were using to ensure all sources were covered. The supplements’

types were then coded during data entry.

3.4.2.2 Recall dietary assessment

Dietary and supplement intake was reported through a 24-hour dietary recall

administered by a research midwife at 8-12 weeks gestation (appendix 10.2). Values

for the proportion of haem iron in each type of meat were used to derive haem values

for each of the food codes. These values were derived by recording the meat content

of each product, together with food tables values (McCance, 1990), to calculate a

weighted mean meat content of each food item consumed. A literature search was

carried out to arrive at ‘haem factors’ for different animal products that reflect the

haem iron content of these foods. Values derived from the Schricker and modified

Schricker methods, and the Hornsey method were used to calculate mean values for

haem iron (Schricker and Stouffer, 1982, Hornsey, 1956). These values were then used

to generate total iron values for each relevant food (O'Hara, 2004). The non-haem iron

values were derived as the difference between total iron from food tables (McCance,

1990) and calculated haem values. Total iron was derived from adding dietary intake

and supplement intake as reported in the recall. Iron content of each supplement

reported was added to the dietary intake multiplied by total number of supplement

tablets/capsules taken during the 24-hour recall. Vitamin C intake from the diet was
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reported in the 24-hour recall and categorized into above or equal to/below the RNI of

50 mg/day in the analysis.

3.4.2.3 Haemoglobin

Data on Hb concentrations and MCV at 12 weeks (n=558) and 28 weeks (n=572) were

extracted from the electronic antenatal laboratory records for a sub-sample of the

cohort which was selected randomly from the main sample using study identification

numbers.

3.4.3 Outcome assessment

The two primary outcome measures were birth weight and preterm birth. Birth weight

and gestational age were extracted from the medical delivery notes. Birth weight was

measured in grams, and as expressed as customised birth weight centile using charts

which take into account gestational age, maternal height, weight, ethnicity and parity,

and neonatal birth weight and sex (Gardosi, 2004). Duration of gestation was

calculated from the date of the last menstrual period, and confirmed by ultrasound

scans dating at around 12 and 20 weeks gestation. SGA was defined as <10th

customised birth weight centile. Preterm birth was defined as delivery at <37 weeks

(259 days) gestation. Information was obtained from the hospital maternity records on

pregnancy and delivery complications.

3.4.4 Assessment of participants characteristics

Socioeconomic status was assessed using the Index of Multiple Deprivation (IMD)

score. The IMD combines a number of indicators, chosen to cover a range of

economic, social and housing issues into a single deprivation score for each small area
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in England. This allows each area to be ranked relative to one another according to

their level of deprivation (Department for Communities and Local Government, 2009).

IMD however, is an area, not an individual, deprivation measure.

Mothers’ educational level, smoking status, alcohol intake, parity, ethnicity, pre-

pregnancy weight, past history of miscarriage, long-term chronic illness and vegetarian

diet were self-reported in a first-trimester questionnaire. Salivary cotinine levels were

measured using an enzyme-linked immunosorbent assay (ELISA) (Cozart Bioscience,

Oxfordshire, UK). Participants were classified on the basis of these cotinine

concentrations as active smokers (>5 ng/ml), passive/occasional smokers (1-5 ng/ml),

or non-smokers (<1 ng/ml) (CARE Study Group, 2008).

3.4.5 Statistical power calculations

Comparing birth weights between mothers with dietary iron intake of >14.8 mg/day

(the recommended UK RNI for women of childbearing age) to those with ≤ 14.8 

mg/day during the first trimester of pregnancy, using the ratios of the low-intake to

the high-intake group and the standard deviation (SD) for birth weight measured in

this study (SD 577 g), this analysis had 85% power to detect a difference of 120 g in

birth weight between the two groups for P <0.05 and a two-sided test.

Comparing birth weights between supplement users and non-users within the first

trimester, using the ratios of users to non-users and standard deviations identified in

the study, this analysis had 80% power to detect a difference of 120 g and 90% power

to detect a difference of 140 g, for P<0.05. Within trimester two, this study had 80%

power to detect a difference of less than 115 g and 90% power to detect a difference
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of 130 g. Within trimester 3, this study had 85% power to detect a doubling of the

prevalence of SGA (from 13% to 26%), and to detect a tripling of the preterm birth rate

(from 5% to 15%) for a two-sided test at P<0.05.

3.4.6 Statistical methods

Univariable comparisons were made using two-sample Student’s t-test for continuous

variables and chi-square test for categorical variables. Multiple linear regression using

birth weight and customised birth weight centile as continuous outcomes, and

unconditional logistic regression with preterm birth and SGA as binary outcomes were

performed using STATA version 11 (College Station, TX, 2009).

Analysis was undertaken using dietary iron intake as a continuous variable and a binary

variable using the UK RNI cut-off of 14.8 mg/day. Total iron from diet and

supplements, assessed by the 24-hour recall, was analysed as a continuous variable.

Intake of iron-containing supplements was analysed as a binary variable. With regards

to supplement intake, analysis was performed using two groups; women who reported

taking any type of daily supplements and those who specifically reported taking MVM

supplements during pregnancy.

Maternal height, weight, ethnicity, parity, neonatal gestation at delivery and baby’s sex

were taken into account in the definition for customised birth centile, and were

adjusted for in the model for birth weight. Statistical adjustment was also made for

salivary cotinine levels, self-reported alcohol consumption, maternal age, maternal

vegetarian diet, IMD, the mother having a university degree, past history of

miscarriage and long-term chronic illness in all models.
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Sensitivity analyses for the linear iron intake model were performed by excluding

vegetarians from the model, and adding an interaction term for daily vitamin C intake

in the model. Sensitivity analyses for the multivitamin models were performed taking

into account clinical diagnosis of IUGR. Subgroup analysis using the multiple linear iron

intake model was performed using type of dietary iron (haem versus non-haem).

Multiple linear regression was also used to explore the association between Hb and

MCV levels at 12 and 28 weeks of pregnancy with iron intake and birth weight/SGA.

3.4.7 Ethical approval

All women participating in the study gave informed written consent and the study was

approved by the Leeds West Local Research Ethics Committee (reference number

03/054). All procedures were in accordance with the Helsinki Declaration of 1975 as

revised in 1983.

3.4.8 Funding

The work included in this chapter was supported by the Wellcome Trust [Grant

number WT87789 to N.A.A.] and the Food Standards Agency, United Kingdom [Grant

number T01033]. The funders had no influence on the design or analysis of the study.
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3.5 Results

3.5.1 Birth outcomes

There were 1259 babies with information on birth weight. Mean birth weight was 3439

g (SD 577 g) with 4.4% babies weighing less than 2500 g (n=55). 13% (n=166) were SGA

(<10th centile), 8% (n=99) weighed less than the 5th centile, and 5% (n=65) less than the

3rd centile. 9% of babies (n=118) weighed more than the 90th centile. Out of the 1234

pregnancies with information on gestational age, 55 (4.5%) delivered their babies

before 37 weeks gestation.

3.5.2 Dietary recall

Based on midwife-administered 24-hour recall dietary assessment at 8 to 12 weeks

gestation, women in the CARE study had average dietary intakes from food above the

RNI values for most vitamins and minerals (The Panel on Dietary Reference Values of

the Committee on Medical Aspects of Food Policy, 1991) except vitamin D, iron, folate,

selenium and iodine.

Table 3 shows the mean intake in the cohort, the nutrient requirements for adult

women plus the additional requirement recommended for consumption during

pregnancy, and the proportion of the women with dietary intakes above the

recommended RNI in pregnancy. The mean total energy intake was 2125 kcal/ day

(95% CI 2084, 2166).
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Micronutrient Mean (SD) RNI* Increment**
% with intakes
>pregnancy RNI

(95% CI)

Thiamin (mg/d) 2.4 (7.7) 0.8 +0.1 85 (83,87)

Riboflavin (mg/d) 1.7 (0.8) 1.1 +0.3 58 (55,61)

Niacin (mg/d) 20 (10) 13 *** 75 (72,77)

Vitamin B6 (mg/d) 2.1 (1.0) 1.2 *** 85 (82,86)

Vitamin B12 (ug/d) 3.9 (3.7) 1.5 *** 79 (77,82)

Folate (ug/d) 257 (119) 200 +100 32 (29,35)

Vitamin C (mg/d) 143 (129) 40 +10 75 (73,78)

Vitamin A (ug retinol
equivalent/d)

803 (665) 600 +100 45 (42,48)

Vitamin D (ug/d) 2.5 (2.7) - 10 2 (1,3)

Vitamin E (mg/d) 7.9 (5.4) - # -

Calcium (mg/d) 938 (471) 700 *** 65 (62,68)

Phosphorus (mg/d) 1344 (501) 550 *** 98 (97,99)

Magnesium (mg/d) 283 (112) 270 *** 49 (46,52)

Iron (mg/d) 11.5 (5.3) 14.8 *** 20 (18,23)

Zinc (mg/d) 8.6 (4.3) 7 *** 59 (56,62)

Copper (mg/d) 1.1 (0.6) 1.2 *** 32 (29,35)

Selenium (ug/d) 58 (37) 60 *** 40 (38,43)

Iodine (ug/d) 118 (82) 140 *** 28 (24,29)

* Reference nutrient intakes for women aged 19-50 years in the UK

**Recommended Increment to RNI during pregnancy ***No increment is recommended

#Safe intake – above 3mg/day for women (The Panel on Dietary Reference Values of the Committee on

Medical Aspects of Food Policy, 1991)

Table 3: Average daily intakes of vitamins and minerals (from diet alone) based on

24-hour dietary recall at 8-12 weeks of pregnancy in the CARE study (n=1257)
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3.5.3 Iron intake

3.5.3.1 Iron intake from diet

1257 women had dietary recall information in the first trimester. The mean dietary

iron intake from food was 11.5 mg/day (SD 5.3) with only 20% (n=257) of women

reporting intake >14.8 mg/day (95% CI 18, 23%). 24% of women reported iron intake

equal or less than the UK LRNI of 8 mg/day (95% CI 22, 27%). Only 4% reported a

dietary iron intake of more than the US recommended intake during pregnancy of 27

mg/day (95% CI: 3, 5%). Mean haem iron intake was 0.6 mg/day (SD 0.8). This estimate

for haem iron changed little after excluding the 114 reported vegetarian participants

(with a haem iron intake of zero). Mean non-haem iron intake was 10.9 mg/day (SD

5.2) (Table 4).

Mean
(mg/day)

Standard
deviation

Median
(mg/day)

Interquartile
range

Iron intake from food 11.5 5.3 10.5 8.1 , 13.7

Haem iron intake 0.6 0.8 0.3 0.1, 0.8

Non-haem iron 10.9 5.2 10 7.6, 13.0

Total iron from food and supplements 16.5 21.1 11.8 8.6, 19.1

Total iron from food and supplements
excluding therapeutic iron
preparations (≥ 65 mg/dose)  

14.3 8.4 11.6 8.5, 18.6

Table 4: Average iron intake from food and dietary supplements as reported in first

trimester 24-hour dietary recall in the CARE study (n=1257)

3.5.3.1.1 Characteristics of women with high versus low iron intake

Women with dietary iron intake >14.8 mg/day were more likely to be older, report a

higher total energy intake, have a university degree, be vegetarian, and take daily

supplements during the first trimester including iron-containing supplements. They
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were less likely to be smokers, live in an area with the worst IMD quartile, or have a

long-term illness (Table 5). Vegetarian participants were less likely to have dietary iron

intake ≤14.8 mg/day (unadjusted odds ratio (OR) 0.5, 95% CI 0.4, 0.8, P=0.004).

Vegetarians were also more likely to take iron-containing supplements during the first

and second trimester (OR 2.9, 95% CI 2.0, 4.3, P<0.0001 for the 1st trimester, OR 2.9,

95% CI 1.9, 4.4, P<0.0001 for the 2nd trimester).

>14.8 mg/day#
(n=257)

≤14.8 mg/day 
(n=1000)

P*

Dietary iron intake (mg/day) (mean, 95% CI) 19.6 (15.0, 31.7) 9.4 (4.5, 13.8) -

Age of mother (years) (mean, 95% CI) 31 (30, 31) 30 (29, 30) 0.004

Pre-pregnancy weight (kg) (mean, 95% CI) 66 (64, 68) 68 (67, 68) 0.1

Total energy intake (kcal) (mean, 95% CI) 2777(2657,2897) 1958(1924,1991) <0.0001

Active smoker at 12 weeks (%, 95% CI) 8 (5, 12) 20 (17, 23) <0.0001

IMD** most deprived quartile (%, 95% CI) 25 (20, 31) 32 (29, 35) 0.03

Caucasian (%, 95% CI) 91 (87, 95) 94 (92, 95) 0.2

Higher education (%, 95% CI) 52 (49, 58) 35 (32, 39) <0.0001

Vegetarian (ovo-lacto) (%, 95% CI) 13 (10, 18) 8 (6, 10) 0.004

Primigravida (%, 95% CI) 47 (41, 54) 46 (43, 49) 0.7

History of long term illness (%, 95% CI) 9 (6, 13) 14 (12, 16) 0.04

Average alcohol consumption more than 0.5
units/day throughout pregnancy (%, 95% CI)

30 (24, 36) 26 (23, 29) 0.2

Past history of miscarriage (%, 95% CI) 20 (16, 26) 25 (22, 27) 0.08

Report taking any form of daily supplements in the
1st trimester questionnaire (%, 95% CI)

87 (82, 91) 81 (78, 83) 0.01

Report taking daily iron-containing supplements in
the first trimester (questionnaire) (%, 95% CI)

29 (23, 35) 23 (20, 25) 0.04

# Reference nutrient intake (RNI) for iron for women aged 19-50 years in the UK
* P-value using two-sample t-test for continuous variables, chi-squared test for categorical variable
**Index of multiple deprivation

Table 5: Characteristics of women by dietary iron intake above versus equal to or

below RNI during the first trimester as reported in a 24-hour dietary recall (n=1257)
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3.5.3.2 Iron intake from supplements

20% of participants (95% CI 18, 22) reported taking iron-containing supplements in the

recall compared to 24% (95% CI: 22, 26) in the first trimester questionnaire (Kappa

agreement = 0.85). 15% (95% CI 13, 18) and 8% (95% CI 7, 10) reported taking iron-

containing supplements in the second and third trimester questionnaires respectively.

Median total iron intake from diet and supplements, as recorded in the recall, was 11.8

mg/day (IQR 8.6, 19.1). 34% (95% CI: 32, 37) of women had an iron intake

>14.8mg/day from diet and supplements. Only 11 participants reported taking iron-

only preparations in the recall, which were assumed to be the conventional

therapeutic preparation with a dose of 65 mg iron/tablet, and 5 reported taking a

preparation of iron and folic acid which contains 100 mg iron per dose. 8, 21 and 29

participants reported taking iron-only supplements in the first, second and third

trimester questionnaires respectively. Median total iron excluding these 16

participants who reported taking iron-only supplements in the recall was 11.6 mg/day

(IQR 8.5, 18.6).

3.5.3.3 Relationship between iron intake and birth weight

Dietary iron intake from food was significantly related to birth weight measured on the

customised birth centile. The unadjusted change in birth weight centile per 10 mg/day

increase in dietary iron intake during the first trimester was 5.2 centile points (95% CI

2.2, 8.2, P=0.001). Adjusting for maternal age, salivary cotinine levels and alcohol

intake attenuated this relationship (adjusted change 3.1 centile points, 95% CI -0.2,

6.3, P=0.07) (Table 6). The estimate changed little when excluding vegetarians, or

including calcium or zinc intake as interaction terms with iron intake (data not shown).
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Considering birth weight in grams as an outcome, the unadjusted difference per 10

mg/day increase in dietary iron intake was 70 g (95% CI: 10, 130, P=0.02). When

adjusting for maternal age, cotinine levels, alcohol intake, maternal weight, height,

parity, ethnicity, gestational age and baby’s sex, the difference was 34 g (95% CI: -13,

80, P=0.2).

There was no evidence of a relationship between haem iron intake and customised

birth centile. Unadjusted difference per 1 mg/day increase in haem iron intake was -

1.2 centile points (95% CI -3.3, 0.8, P=0.2). Birth weight centile was positively

associated with non-haem iron intake (unadjusted change in birth weight centile per 1

mg/day increase in non-haem iron intake 0.6, 95% CI 0.3, 0.9, P<0.0001; adjusted

change 0.3, 95% CI 0, 0.9, P=0.05).

There was a positive relationship between total iron intake, from food and

supplements, with customised birth weight centile (unadjusted change in centile

points per 10 mg/day increase in total iron intake 4.3, 95% CI 2.4, 6.3, P<0.0001,

adjusted change 2.5, 95% CI 0.4, 4.6, P=0.02) (Table 6).

3.5.3.4 Relationship between iron intake and small for gestational age

Participants with dietary iron intake equal to or less than 14.8 mg/day were 1.6 times

more likely to have a SGA baby (95% CI 1.0, 2.5, P=0.05). However, the adjusted

relationship was not significant (1.4, 95% CI 0.9, 2.3, P=0.2). This association is similar

for total iron intake from diet and supplements (Table 6).
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3.5.3.5 Relationship between iron intake and preterm birth

There was no evidence of an association between iron intake from food only, or total

iron intake from diet and supplements as recorded in the recall diary in the first

trimester, with preterm birth (Table 6).

3.5.3.6 Role of vitamin C intake

The relationship between dietary iron intake from food and customised birth weight

centile was significant in participants with vitamin C intake above the RNI of 50 mg/day

(adjusted change in centile points per 10 mg/day increase in dietary iron intake 3.7,

95% CI 0.1, 7.3, P= 0.04), compared to -1.9 percentile units (95% CI -11.1, 7.5, P=0.7)

for those with vitamin C intake ≤50 mg/day (n=253).  However, the interaction 

between iron and vitamin C intakes on the outcome was not statistically significant

(P=0.3). Similar relationships were observed for non-haem iron and total iron intake

from diet and supplements using an interaction term between iron intake and vitamin

C intake in the models (Table 6)

3.5.3.7 Relationship between intake of iron-containing supplements

and birth outcomes

There was no association between daily intake of iron-containing supplements in the

first and second trimester and customised birth centile. There was an inverse

association between taking iron-containing supplements in the third trimester (73% of

which as part of MVM preparations) and customised birth weight centile adjusted for

salivary cotinine levels, alcohol intake and maternal age (adjusted difference -10.7,

95% CI -16.7, -4.8, P <0.0001). When looking at the relationship between taking any
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iron-containing supplement (mainly as part of a MVM supplement) and preterm birth,

there was an increased risk of preterm birth if taken in the third trimester (adjusted OR

3.0, 95% CI 1.2, 7.6, P=0.02).
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Customised birth centile#

Unadjusted

change
95% CI P

Adjusted

change*
95% CI P

Dietary iron intake † 5.2 2.2, 8.2 0.001 3.1 -0.2,6.3 0.07

Dietary iron intake in participants
with vitamin C intake > 50 mg/day

†

5.3 1.9, 8.6 0.002 3.9 0.4, 7.5 0.03

Non-haem iron intake † 5.7 2.6, 8.8 <0.0001 3.4 0.0, 8.8 0.05

Non-haem iron intake in
participants

with vitamin C intake > 50 mg/day
†

5.9 2.5, 9.3 0.001 4.4 0.7, 8.0 0.02

Haem iron intake †† -1.2 -3.3, 0.8 0.2 -0.7 -2.8,1.4 0.6

Total iron intake *** † 4.3 2.4, 6.3 <0.0001 2.5 0.4, 4.6 0.02

Total iron intake *** in
participants with vitamin C intake

> 50 mg/day †

4.4 2.2, 6.5 <0.0001 3.0 0.7, 5.4 0.01

Small for gestational age (<10th centile)

Unadjusted
OR **

95% CI P Adjusted
OR*

95% CI P

Dietary iron intake (≤14.8 mg/day) 
1.6 1.0, 2.5 0.05 1.4 0.9, 2.3 0.2

Total iron intake *** (≤14.8 
mg/day)

1.5 1.0, 2.1 0.04 1.2 0.8, 1.8 0.3

Preterm birth (<37 weeks gestation)

Unadjusted
OR **

95% CI P Adjusted
OR*

95% CI P

Dietary iron intake (≤14.8 mg/day) 1.1 0.7, 2.3 0.7 1.0 0.5, 2.3 0.8

Total iron intake *** (≤14.8 
mg/day)

1.5 0.8, 2.7 0.2 1.3 0.7, 2.5 0.4

#Takes into account: maternal pre-pregnancy weight, height, parity, ethnicity, gestation and baby’s sex

*Adjusted for maternal age, salivary cotinine levels and alcohol intake in a multiple linear regression

model, with an interaction term between iron and vitamin C intakes where the estimates are reported in

the table to be for iron intake in the group with vitamin C intake >50 mg/day

**Odds ratio with dietary iron intake >14.8 mg/day as the reference group

†Percentage point change in birth weight centile per 10 mg/day increase in iron intake

†† Percentage point change in birth weight centile per 1 mg/day increase in haem iron intake

*** From food and supplements excluding therapeutic iron supplement takers (≥ 65mg/dose) 

Table 6: The Relationship between maternal dietary iron intake (mg/day) during

pregnancy and birth outcomes in the CARE study
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3.5.4 Dietary supplement intake

All 1274 participants had information on supplement intake in the first and second

trimester. 425 women had information on supplement intake in the third trimester.

The proportion of pregnant women taking any form of daily supplements was 82%,

22% and 33% for the first, second and third trimester respectively (Table 8).

Out of the women who took daily supplements in the third trimester (n=139), 94%

(n=131) also reported taking daily supplements in the first trimester of their

pregnancy, and 66% (n=91) took daily supplements in their second trimester. Only five

women, who reported taking daily supplements in the third trimester, had not taken

supplements in the first or second trimester.

3.5.4.1 Characteristics of women in supplement-taking and non-

supplement-taking groups

Women who reported taking supplements at any stage of pregnancy were more likely

to have a university degree and be vegetarian, and less likely to be smokers. They were

less likely to be living in an area with an IMD score in the most deprived quartile.

Women who reported taking daily supplements in the first and second trimester were

more likely to be primiparous. However, there was no difference between primiparous

and multiparous women in their use of supplements in the third trimester. There were

also no differences between women who reported taking daily supplements at any

stage in pregnancy with those who did not with regards to pre-pregnancy weight,

ethnic origin or history of long term illness (Table 7).
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Characteristic 1st trimester 2nd trimester 3rd trimester

Taking any daily
supplements (n)

Yes
(1043)

No
(231)

P*
Yes

(274)
No

(1000)
P

Yes
(139)

No
(286)

P

Age of mother (years)
(m

#
, 95% CI**)

30
(30,31)

29
(28,29)

<0.001
31

(31,32)
30

(29,30)
<0.001

31
(30,32)

29
(28,30)

<0.001

Pre-pregnancy weight
(kg)(m, 95% CI)

67
(66,68)

66
(65,68)

0.4
66

(65,68)
68

(67,68)
0.2

67
(64,69)

68
(66,70)

0.4

Total energy intake (kcal)
(m, 95% CI)

2148
(2103, 2193)

2019
(1921, 2117)

0.02
2167

(2075, 2258)
2113

(2068, 2158)
0.3

2095
(1983, 2205)

2214
(2118, 2311)

0.1

Smoker at 12 weeks
(%, 95% CI)

16
(14,18)

28
(21,37)

<0.001
11

(7,15)
19

(17,22)
0.002

15
(10,23)

24
(19,29)

0.04

IMD*** worst quartile
(%, 95% CI)

28
(25,31)

41
(35,48)

<0.001
21

(16,26)
33

(30,36)
<0.001

18
(12,25)

34
(29,40)

0.002

European origin
(%, 95% CI)

94
(92,95)

92
(88,95)

0.9
95

(91,97)
93

(91,95)
0.5

96
(91,98)

96
(93,98)

0.8

University degree
(%, 95% CI)

43
(40,46)

20
(15,25)

<0.001
54

(48,60)
35

(32,38)
<0.001

51
(43,60)

31
(26,37)

<0.001

Vegetarian
(%, 95% CI)

9
(7,11)

7
(4,12)

0.08
16

(12,21)
7

(5,9)
<0.001

15
(10,22)

5
(2,9)

0.003

Primigravida
(%, 95% CI)

47
(44,50)

40
(34,47)

0.04
55

(49,61)
44

(41,47)
0.002

53
(45,62)

50
(44,56)

0.5

History of long term
illness (%, 95% CI)

13
(11,15)

10
(6,15)

0.1
13

(9,18)
13

(11,15)
0.9

15
(10,22)

16
(12,21)

0.7

Average alcohol
consumption >0.5
units/day (%, 95% CI)

28
(25,31)

20
(14,27)

0.03
28

(23,34)
27

(24,30)
0.7

27
(19,35)

25
(20,31)

0.09

Miscarriage history (%,
95% CI)

23
(21,33)

27
(21, 33)

0.3
27

(22,32)
23

(20,26)
0.2

21
(14,29)

23
(18,28)

0.8

#Mean * two-sample t-test for continuous variables, chi-squared test for categorical variables ** Confidence interval *** Index of Multiple Deprivation

Table 7: Characteristics of women by whether they have reported taking any daily supplements in the first, second and third

trimester in the CARE study (n=1274 for first & second trimesters, n=425 for third trimester)
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3.5.4.2 Type of supplements

Women reported taking 22 different types of supplements including folic acid, iron,

combined folic acid-iron preparations, MVM preparations (6 brands), evening

primrose, cod liver oil, omega 3, vitamin C, vitamin B, vitamin D, vitamin E, vitamin A,

calcium, zinc, magnesium and selenium preparations (Table 8). Folic acid was the most

frequently reported daily supplement in the first trimester. MVM supplements were

the most frequently reported daily supplements in the third trimester.

Supplement First trimester Second trimester Third trimester

Folic acid 845 51 2

Iron 8 21 29

Folic acid/iron 2 1 1

Multivitamin-mineral 293 177 79

Evening primrose 6 2 2

Cod liver oil 10 2 3

Omega 3 fish oil 11 12 9

Vitamin C 18 8 15

Vitamin B 7 0 2

Vitamin E 1 3 1

Vitamin A 0 0 1

Calcium 14 8 3

Zinc 7 1 1

Magnesium 2 0 0

Selenium 2 0 0

Table 8: Number of women taking different types of supplements during pregnancy
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3.5.4.3 Relationship between supplement taking and birth weight

Using a multiple linear regression model, taking any type of daily supplement during

the first, second or the third trimester of pregnancy was not associated with the

customised birth weight centile as a measure of birth size (adjusted change in centile

points 2.7, 95% CI -2.5, 7.8, P=0.3 for the first trimester; 3.2, 95% CI -0.9, 7.4, P=0.1 for

the second trimester and 0.5, 95% CI -6.0, 7.0, P=0.9 for the third trimester). These

estimates are based on models adjusted for cotinine levels, self-reported alcohol

intake, IMD group, having a university degree, mother being a vegetarian, history of

long-term chronic illness and past history of miscarriage.

Using birth weight in grams as an outcome, and adjusting for the above factors as well

as maternal age, height, ethnicity, pre-pregnancy weight, parity, gestational age and

baby’s sex, there was also no relationship between taking daily supplements at any

stage in pregnancy and birth weight (adjusted change 6 g , 95% CI -70, 82, P=0.9 for the

first trimester, 24 g , 95% CI -36, 83, P=0.4 for the second trimester, and -7 g , 95% CI -

106, 91, P=0.9 for the third trimester ).

When looking at taking particular types of supplements, taking a daily MVM

preparations at any stage in pregnancy was not associated with size at birth using the

continuous outcomes of birth weight in grams and customised birth weight centile, as

well as the binary outcome of SGA (adjusted OR 1.3, 95% CI 0.8, 1.9, P=0.3 for the first

trimester, 1.1, 95% CI 0.7, 1.9, P=0.7 for the second trimester, 0.9, 95% CI 0.5, 1.7,

P=0.8 for the third trimester) (Table 9). It was not associated with having a baby

weighing less than 3rd centile (adjusted OR 1.5, 95% CI 0.8, 2.7, P=0.3 for the first

trimester, 1.2, 95% CI 0.5, 2.6, P=0.7 for the second trimester, 1.6, 95% CI 0.7, 3.7,
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P=0.3 for the third trimester). There was no evidence of association observed between

maternal MVM supplement intake with having a baby weighing less than 5th centile or

more than 90th centile (data not shown).

3.5.4.4 Relationship between supplement use and preterm birth

A logistic regression model was used to examine the relationship between the risk of

preterm birth and patterns of supplement taking during pregnancy adjusting for

salivary cotinine levels, self-reported alcohol intake, vegetarian diet, ethnicity,

maternal age, baby’s sex, parity, IMD score, having a university degree, past history of

miscarriage and long-term chronic illness. Any type of daily supplement-taking during

the third trimester was associated with an increase in the risk of preterm birth

(adjusted OR=3.0, 95% CI 1.2, 7.4, P=0.02). This relationship was not statistically

significant for supplement-taking in the second trimester (adjusted OR 1.6, 95% CI 0.8,

3.2, P=0.2), and marginally significant in the first trimester though confidence intervals

were wide (adjusted OR 4.3, 95% CI 1.0, 18.2, P=0.05).

Taking MVM supplement preparations during the third trimester was also associated

with an increased risk of preterm birth (adjusted OR 3.4, 95% CI 1.2, 9.6, P=0.02). This

relationship was not statistically significant in the first or second trimester (Table 9).
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Birth weight (grams)

Daily multivitamin
supplements

1
st

trimester

2
nd

trimester

3
rd

trimester

Unadjusted difference
(95% CI

#
)

P
Adjusted difference* (95%

CI)
P

30.0 (-45.7, 105.7)

38.4 (-53.6, 130.5)

-29.1 (-179.9, 121.6)

0.5

0.4

0.7

16.9 (-42.3, 75.8)

29.4 (-43.0, 101.5)

-50.4 (-168.7, 67.9)

0.7

0.3

0.4

Customised birth centile##

1
st

trimester

2
nd

trimester

3
rd

trimester

Unadjusted difference
(95% CI)

P
Adjusted difference**

(95% CI)
P

3.6 (-0.2, 7.5)

5.1 (0.4, 9.7)

1.2 (-6.5, 8.8)

0.06

0.04

0.8

1.8 (-2.3, 5.9)

3.3 (-1.8, 8.3)

-2.3 (-10.3, 5.7)

0.4

0.3

0.8

Small for gestational age (<10
th

centile)

1
st

trimester

2
nd

trimester

3
rd

trimester

Unadjusted odds ratio
(OR) (95% CI)

P Adjusted OR **
(95% CI)

P

1.0 (0.6, 1.4)

0.9 (0.5, 1.4)

0.7 (0.4, 1.3)

0.8

0.6

0.3

1.3 (0.8, 1.9)

1.1 (0.7, 1.9)

0.9 (0.5, 1.7)

0.3

0.7

0.8

Preterm birth (<37 weeks)

1
st

trimester

2
nd

trimester

3
rd

trimester

Unadjusted odds ratio
(OR) (95% CI)

P
Adjusted OR ***

(95% CI)
P

0.9 (0.5, 1.8)

1.0 (0.5, 2.2)

1.8 (0.8, 4.4)

0.8

0.9

0.2

1.3 (0.6, 2.7)

1.8 (0.8, 4.1)

3.4 (1.2, 9.6)

0.5

0.2

0.02
# Confidence intervals
## Takes into account: maternal pre-pregnancy weight, height, parity, ethnicity, gestation and baby’s sex
* Adjusted for gestational age, baby’s sex, maternal age, height, pre-pregnancy weight, ethnicity, parity, salivary
cotinine levels, self-reported alcohol intake, past history of miscarriage, long-term chronic illness, IMD score,
educational attainment and maternal vegetarian diet in a multiple linear regression model
** Adjusted for salivary cotinine levels, self-reported alcohol intake, past history of miscarriage, long-term chronic
illness, IMD score, educational attainment and maternal vegetarian diet in a multiple linear regression model
*** Adjusted for salivary cotinine levels, self-reported alcohol intake, maternal age, maternal vegetarian diet,
ethnicity, baby’s sex, parity, IMD score, educational attainment, past history of miscarriage and long-term chronic
illness in an unconditional logistic regression model

Table 9: The relationship between maternal multivitamin-mineral supplement use

during pregnancy and birth outcomes in the CARE study
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3.5.4.5 Sensitivity analyses

A sensitivity analysis adjusted for the clinical diagnosis of IUGR detected by ultrasound

scan during pregnancy and documented in the maternity notes, in the relationship

between taking a MVM supplement preparation and both birth weight and preterm

birth. The risk of preterm birth when taking supplements in the third trimester

(adjusted OR 3.5, 95% CI 1.2, 10.0, P=0.02) remained broadly unchanged.

To take into account the possibility that the pattern of multivitamin-mineral

supplement use is influenced by previous adverse birth outcomes, the same analysis

was performed separately by parity. In primiparous women, the adjusted OR for the

relationship between taking MVM supplement in the third trimester and preterm birth

was 5.4 (95% CI 1.3, 22.7, P=0.02). In multiparous women, the adjusted OR was 3.7

(95% CI 0.5, 29.4, P=0.2). However, numbers were small resulting in wide confidence

intervals.

3.5.5 Haemoglobin and mean corpuscular volume

558 and 572 participants had information on Hb and MCV at 12 and 28 weeks

gestation respectively. Mean Hb was 12.7 g/dl (SD 0.9 g/dl) at 12 weeks and 11.5 g/dl

(SD 1.0 g/dl) at 28 weeks. The proportion of participants with Hb <11 g/dl was 3% at 12

week and 23% at 28 weeks. Mean MCV was 90 fl (SD 5.0 fl) at 12 weeks and 89 fl (SD

5.5 fl) at 28 weeks.

3.5.5.1 Relationship between blood indices and birth outcomes

There was no relationship between customised birth centile or birth weight in grams

and Hb/MCV at 12 or 28 weeks pregnancy in this study. Hb at 28 weeks was associated



115

with SGA (unadjusted OR per g/dl increase in Hb =1.4, 95% CI 1.1, 1.8, P=0.02; OR

adjusted for maternal age, salivary cotinine levels and alcohol intake 1.4, 95% CI 1, 1.8,

P=0.03). Adjusting for dietary iron intake did not alter this relationship.

3.5.5.2 Relationship between blood indices and dietary iron intake

There was no relationship between maternal Hb/MCV at 12 or 28 weeks pregnancy

with dietary iron intake in the first trimester. However, there was a positive

relationship between taking iron-containing supplements as reported in the first

trimester questionnaire and Hb at 12 and 28 weeks, and MCV at 28 weeks in

univariable analyses. The relationship remained significant for Hb at 12 and 28 weeks

after adjusting for maternal age, ethnicity, parity, educational attainment, vegetarian

diet, and IMD score in multiple linear regression model. Taking iron-containing

supplements in the second trimester was also positively associated with maternal Hb

at 28 weeks with marginal statistical significance in the multivariable model (Table 10).



116

Unadjusted
change

95% CI
#

P
Adjusted
change*

95% CI P value

Dietary iron intake = <14.8 mg/day in the first trimester

Hb at 12 weeks (g/dl) 0.1 -0.1, 0.3 0.2 0.09 -0.1, 0.3 0.4

Hb at 28 weeks (g/dl) -0.1 -0.3, 0.1 0.3 -0.1 -0.3, 0.1 0.4

MCV at 12 weeks (fl**) 0.2 -0.1, 1.2 0.7 0.3 -0.7, 1.3 0.6

MCV at 28 weeks (fl) -0.9 -2.0, 0.2 0.1 -0.8 -1.9, 0.3 0.2

Daily intake of iron-containing supplements in the first trimester

Hb at 12 weeks (g/dl) 0.3 0.1, 0.4 0.005 0.2 0.05, 0.4 0.01

Hb at 28 weeks (g/dl) 0.4 0.2, 0.6 <0.0001 0.3 0.2, 0.5 <0.0001

MCV at 12 weeks (fl**) 0.6 -0.4, 1.5 0.2 0.1 -0.8, 1.1 0.8

MCV at 28 weeks (fl) 1.3 0.4, 2.4 0.008 0.8 -0.2, 1.8 0.1

Daily intake of iron-containing supplements in the second trimester

Hb at 28 weeks (g/dl) 0.3 0.1, 0.6 0.002 0.2 0.0, 0.5 0.05

MCV at 28 weeks (fl) 1.5 0.4, 2.8 0.01 0.7 -0.05, 2.0 0.3

#Confidence intervals

*Adjusted for: maternal age, ethnicity, chronic illness, Index of multiple deprivation score, educational attainment,

parity and vegetarian diet in a linear regression model

Table 10: The Relationship between dietary and supplemental iron intake and

maternal blood indices (Hb and MCV) during pregnancy in the CARE study
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3.6 Discussion

3.6.1 Iron intake in pregnancy

This analysis shows a positive relationship between both total iron intake (from food

and supplements) and non-haem iron intake, derived from 24-hour dietary recall in the

first trimester of pregnancy, and birth weight. There was no association between

maternal iron intake in pregnancy and preterm birth.

3.6.1.1 Confounding

In this dataset, non-haem, rather than haem iron, was positively related to size at

birth. This raises the possibility that the observed relationship is due to residual

confounding by an unmeasured factor associated with both non-haem iron intake and

size at birth. Therefore a sensitivity analysis was carried out by excluding vegetarians

as vegetarian status may be associated with a generally healthier diet & lifestyle. This

did not change the regression estimates. It could be that participants with higher

intake of haem iron are more likely to have adverse birth outcomes due to lifestyle and

socioeconomic factors associated with high meat intake (Hulshof et al., 2003), thus

counteracting any positive effect of haem iron. However, adjusting for educational

status and IMD group did not change the results. Findings from the Motherwell cohort

study suggest that a diet high in low-quality meat might itself reduce fetal growth,

perhaps through stimulating a stress response in the mother (Herrick et al., 2003).

Adjustment for total energy intake is recommended if it is a confounder of the

relationship being examined (Willett et al., 1997). However, we did not adjust for it

here because it did not fulfil the definition of a “true” confounder. Confounding can



118

result if total energy intake is associated with both the exposure of interest and the

main outcome (Pearl, 2000), which is not the case in this study as total energy intake

was not associated with birth weight (data not shown).

3.6.1.2 Effect modification

Although effect modification was not statistically significant for vitamin C, the stronger

association between iron intake and birth weight in participants whose vitamin C

intake was more than 50 mg/day is of interest, as vitamin C is the best known

enhancer of iron absorption (Gibney et al., 2004). We used a cut-off of the pregnancy

RNI of 50 mg/day for vitamin C, but the threshold where daily vitamin C intake starts to

have an effect on iron absorption in vivo is not exactly known.

3.6.1.3 Relationship of iron intake with blood indices

Hb and MCV were used as proxies for iron status to assess the extent of agreement

with iron intake levels. However, there are major limitations for the use of Hb and

MCV levels as indicators of iron status as they do not represent specific or sensitive

measures of body iron stores (Milman, 2006a). These limitations were discussed earlier

in section 2.4.1. There was no evidence of association between dietary iron intake and

Hb or MCV levels. This is not a surprising finding as these blood indices are only

affected when ID is pronounced. It is difficult to determine the direction of the

relationship between iron-containing supplements and Hb. In this analysis, it was

positive. However, anaemic participants are more likely to take iron-containing

supplements. This is supported by the stronger positive relationship between taking

iron-containing supplements in the first trimester and Hb at 28 weeks compared to

that at 12 weeks gestation.
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3.6.2 Supplement intake in pregnancy

This study has shown that taking daily MVM supplements (mostly iron-containing)

during any stage in pregnancy was not associated with birth weight. However, taking

MVM supplements, or any supplements, in the third trimester was associated with a

three-fold increase in risk of preterm birth after adjustment for smoking, alcohol

intake and other relevant maternal and socioeconomic factors. Preterm birth is a

leading cause of perinatal morbidity and mortality with a frequency of about 12-13% of

births is the US and 5-9% in many other developed countries (Goldenberg et al., 2008).

The relationship between preterm birth and any supplement intake in the third

trimester of pregnancy is likely to be driven by MVM supplements as they were the

most common supplements to be taken in the CARE cohort (Table 8). This negative

effect seems more pronounced in primiparous women. The mechanism for this is

unclear and this study’s findings need confirming by other cohorts and/or trials in high

income countries, where pregnant women are predominantly micronutrient-replete.

3.6.2.1 Confounding

Although the number of supplement-taking women in the third trimester was

considerably less than that for the first two trimesters, there was enough statistical

power with the nested case-control design to detect an OR of 3 for the preterm birth

outcome. However, this study is observational so causality cannot be inferred from the

findings. As information on iatrogenic preterm birth was not available, it is possible

that some women knew that they were at risk of preterm birth and that this

knowledge initiated physician or patient-led supplementation. However, in this study,

only 5 women who reported taking daily supplements only in the third trimester, did
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not take supplements in the first and second trimester. None of these 5 women had a

preterm birth. This means that most women have continued taking MVM supplements

from the first or second trimester and have not stopped until the end of pregnancy.

Because this is not a RCT, there is a possibility that residual confounding may be

contributing to this apparent association. There may be unmeasured or uncontrolled

confounders resulting in the apparent negative relationship between multivitamin

supplement taking in the third trimester and preterm birth. However, most factors

known to confound this relationship were taken into account. The possibility that

supplement use may be influenced by a woman knowing that the baby is not growing

as it is expected to do is also taken into account by adjusting for the clinical diagnosis

of IUGR as extracted from the pregnancy medical notes in a sensitivity analysis.

The potential for previous poor pregnancy outcomes influencing the mother’s decision

to take supplements in subsequent pregnancies was also considered. Therefore, past

history of miscarriage was adjusted for in the main models, and a sensitivity analysis

was performed separately for primiparous and multiparous women. The hypothesis is

that women with previous adverse pregnancy outcomes would be more likely to take

supplements as well as experience adverse outcomes in their subsequent pregnancies.

This would confound the relationship between supplement-taking in the third

trimester and preterm birth. However, in contrast to this hypothesis, this relationship

was more pronounced in primiparous women. This means that the effect is not

influenced by previous birth outcomes.
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3.6.2.2 Interpretation of the observed association between maternal

multivitamin-mineral supplement intake and preterm birth

The use of MVM supplements in the CARE cohort was restricted mainly to two

pregnancy-specific brands. Both brands included folate and vitamin C exceeding the

current recommended minimum during pregnancy. One of the brands had the

additional components of B-carotene, vitamin K, selenium and iodine as well as higher

doses of vitamins E, B1, B6, B12 and zinc (at least double) compared with the other

main brand. Women in our cohort were having adequate amounts of these

micronutrients from their diet alone as assessed by the 24 hour dietary recall (Table 3).

This confirms the inverse supplement hypothesis that women who least need

supplements are most likely to take them (Conner et al., 2003).

Some observational studies report a favourable effect of periconceptional use of MVM

supplements on preterm birth and SGA (Catov et al., 2007, Catov et al., 2011). Other

studies have suggested potential adverse effects of some supplements, specifically

those containing antioxidant vitamins such as vitamins C and E, on pregnancy outcome

when taken in women with adequate dietary micronutrient intake. Smedts et al., in a

case control study of offspring with congenital heart disease, found that

periconceptional use of vitamin E supplements with high dietary intake of the same

vitamin was associated with up to nine-fold increase in the risk of congenital heart

disease (Smedts et al., 2009). Another study found that use of vitamins C and E

supplements was associated with an increased risk of premature rupture of

membranes (Spinnato Ii et al., 2008). Unfortunately, this information was not recorded

in the CARE study. In a RCT to assess the effect of vitamins E and C supplementation
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during pregnancy on the incidence of pre-eclampsia, Poston et al. found that more low

birth weight babies were born to women who took these antioxidants than to controls

(Poston et al., 2006). A recent meta-analysis of seven studies concluded that combined

vitamin C and E supplementation had no potential benefit in improvement of maternal

and neonatal outcome and increased the risk of gestational hypertension in women at

risk of pre-eclampsia (Rahimi et al., 2009).

It is well established that there are significant interactions between micronutrients and

their metabolism. It has been shown in rats, for example, that copper deficiency during

pregnancy can result in reduced iron status and vice versa, and that copper overload

induces iron overload, by interfering with the iron regulatory mechanism (Fosset et al.,

2009, Gambling et al., 2008). Others have demonstrated interactions between iron and

zinc (Kelleher and Lönnerdal, 2006). During the third trimester, fetal growth is at its

most rapid. The fetus not only needs minerals to sustain its growth, it is also a stage

when the fetal liver builds up stores for the immediate post-natal period. A reduction

in availability, by interactions between the nutrients in the maternal gut, liver or in the

placenta itself may result in adverse outcomes for the baby.

The pattern of dietary supplement use in the CARE cohort, with most women taking

supplements (mainly folic acid) in the first trimester, is expected as there is no national

recommendation in England for routine supplement-taking during pregnancy apart

from folic acid in the first trimester and vitamin D for pregnant women in “high-risk”

groups (National Institute for Clinical Excellence (NICE), 2008). There is no national

recommendation to take MVM supplements at any stage during pregnancy. However,

they are readily available over-the-counter and are heavily promoted to expectant
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mothers. Health value and susceptibility to illness are major predictors of supplement

use by women, with dietary supplements acting as an insurance against possible ill

health (Conner et al., 2001).

3.6.3 Strengths and limitations of the study

3.6.3.1 Study sample

This was a large prospective cohort study. Although a RCT is the gold standard study

design to investigate causality, this design would be difficult to execute especially

when the exposure is dietary intake. The response rate to take part in the study was

30% out of all the women who were invited. The percentage of LBW babies (<2500 g)

in this study (4.4%) was less than the National UK (7.2%) and the Yorkshire & Humber

region average (7.8%) for 2007 (Office for National Statistics). This raises the possibility

that women who are more likely to have LBW babies were less likely to participate in

this study.

3.6.3.2 Outcome measures

Customised birth weight centile, which takes into account gestational age, maternal

height, weight, ethnicity and parity, and neonatal birth weight and sex was used in this

chapter’s analyses. However, it does not take into account paternal height, which has

been shown to be related to birth weight (Morrison et al., 1991, Nahum and Stanislaw,

2003).

3.6.3.3 Exposure measures

Dietary iron intake was ascertained using 24-hour dietary recall recorded by a midwife-

administered interview at around 12 weeks gestation. This method has been validated,
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and found to be comparable to other dietary assessment methods such as FFQs and

food diaries in estimating iron intake (Bingham et al., 1997). However, the 24-hour

recall has its limitations such as failure to recall diet accurately and the chance of

consuming non-typical diet during the day prior to the assessment. Whilst the study

has a large sample size and hence good probable estimates of mean daily intake, these

may be more widely dispersed than in reality due to the use of this dietary assessment

method. It therefore may over-estimate the proportion of mothers with extremely

high or low iron intakes, for example the proportion with daily iron intake <UK LRNI

(24% in our sample). However, there is evidence, when validating 24-hour recalls

against other methods of dietary assessment, that recall is prone to over-reporting low

intakes and under-reporting high intakes (Gersovitz et al., 1978). The estimation of

haem iron intake may have been subject to greater error than the estimation of non-

haem intake, given that it constitutes a smaller proportion of total dietary iron.

The use of supplements was recorded both in the 24-hour recall and the interviewer-

administered and self-reported questionnaires. The extent of agreement was high

between the two methods in this study for reporting iron-containing supplements

intake, however there is potential for measurement error using both methods. It is

unlikely that women with adverse outcomes would have reported their supplement-

use pattern or dietary intake differently to other women since it is a prospective study,

therefore reducing the chance of differential bias. The supplements reported in the

recall, rather than the questionnaire, were used to add up to the dietary iron in order

to derive the total iron intake variable as they were both reported in the same recall

i.e. came from the same source, hence less chance of reporting bias.
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Lastly, iron intake is used in this study as a proxy for maternal iron status in pregnancy.

Absorption of iron is influenced by several factors including the individual’s iron status

as discussed earlier in section 2.2. Therefore, maternal iron status in early pregnancy

was assessed using biomarkers including sF and sTfR to investigate its association with

birth outcomes in chapter 4 of this thesis.

3.6.4 Implications for research and practice

3.6.4.1 Iron intake in pregnancy

Further research is needed to explore the role of vitamin C intake in the relationship

between dietary and supplementary iron intake and birth outcomes. A RCT of high

dietary iron intake combined with vitamin C at mealtimes during early pregnancy can

provide some important insights, as there are problems with just relying on

supplement intake, as pointed out in this chapter, and earlier in sections 2.2.8.2 and

2.2.8.3. Public health messages about increasing iron intake during early pregnancy

and ways to optimise its absorption need to be promoted.

3.6.4.2 Multivitamin-mineral intake in pregnancy

Most previous trials and observational studies in developed country settings have

looked at the effect of taking multivitamin supplementation in early pregnancy on

maternal and birth outcomes. More research is needed into the effect of taking MVM

supplements in late pregnancy on birth outcomes in relatively well-nourished

populations. Larger cohort studies are required to examine this association in detail

and to validate the findings of this study. Results from our cohort also suggest that a
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trial, in a high income country setting, is needed to weigh the possible benefits and

harms of policies recommending supplementation or restriction of supplementation.

The study findings suggest that clinicians and midwives should be cautious when

recommending over-the-counter MVM supplements to women in their late pregnancy.

As in any clinical situation, they should weigh the potential risks and benefits when

considering prescribing such supplements during late pregnancy. The type of

supplement recommended or prescribed should be more focussed on the specific

vitamin or mineral deficiency the woman has. Although the negative relationship

between MVM in the third trimester and preterm birth needs to be investigated

further, this study did not show any positive effect on birth weight and gestational age

when these supplements are taken in any stage in pregnancy.

Conclusive evidence is provided solely for periconceptional folate supplementation in

the prevention of neural tube defects. A Lancet review in 2005 recommended 16

interventions to improve neonatal survival, out of which two were supplementation

programmes: folic acid to reduce neural tube defects incidence and calcium to reduce

pre-eclampsia and eclampsia incidence (Darmstadt et al., 2005). MVM supplements

may be beneficial in women with poor nutrition and multiple micronutrient

deficiencies. Adverse effects seen in some studies associated with MVM

supplementation may be due to the detrimental effects of certain components such as

vitamins C and E, and/or to the interaction between the multiple ingredients of the

preparation. In summary, there is much less evidence on the need for

supplementation in general during pregnancy in high income compared to low income

countries.
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3.7 Conclusion

In this chapter, a positive association between total iron intake from food and

supplements in the first trimester of pregnancy and customised birth weight centile

was demonstrated. This association was stronger in the high vitamin C intake group,

however effect modification was not significant. Although iron intake from food alone

was not significantly associated with birth weight after adjustment, intake of non-

haem iron was more strongly associated with birth weight than haem iron. Iron intake

during the first trimester of pregnancy, both from diet and supplements, was higher in

vegetarians and women with better socioeconomic profile.

In this study, the use of MVM supplement preparations during the third trimester in

pregnancy was associated with an increased risk of preterm delivery, and was not

associated with birth weight or SGA at any stage in pregnancy. These findings suggest

that, at least in micronutrient-replete mothers, caution must be exercised when

recommending MVM supplements in late pregnancy. This is an observational

prospective study offering weaker causal evidence than a RCT. However, in the

absence of a trial in a developed country setting, this study makes a useful

contribution to the research evidence in this area. The findings generate a concern

regarding multivitamin supplement use in late pregnancy that needs to be investigated

by other studies.

In the next chapter, I extend the investigation commenced in this chapter by

measuring iron status in pregnant mothers using sensitive and specific biomarkers, and

including a measure of the vascular system of the baby, arterial stiffness, as an

outcome, in addition to size at birth and preterm delivery.
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4 Associations of maternal iron status in

early pregnancy with birth outcomes and

infant arterial stiffness: the Baby VIP study

In chapter 3, I investigated the association of maternal iron intake with size at birth

and preterm delivery. In this chapter, I move a step forward by measuring iron status

in mothers early in pregnancy and investigate its association with the same outcomes

assessed in chapter 3 plus an additional innovative outcome measuring arterial

stiffness in the infant: PWV.

The results presented in this chapter have been submitted as a peer-reviewed article

for publication. This work has also formed the basis of three conference presentations

(one already presented and two accepted abstracts).
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4.1 Chapter summary

This chapter aims to examine the association between maternal iron status during the

first trimester of pregnancy, and infant brachio-femoral PWV (bfPWV) at 2-6 weeks of

age. Data from the Baby VIP study were used. This is a historical birth cohort that

recruited 362 babies and their mothers after hospital delivery in Leeds, UK. sF and sTfR

were measured in maternal samples previously obtained in the first trimester of

pregnancy. Maternal Hb, birth weight, gestational age and other covariables used to

derive customised birth weight centile were extracted from the medical records.

Baby’s bfPWV was measured during a home visit at 2-6 weeks.

The cohort included 33 (9%) preterm (<37 weeks gestation) and 64 (18%) SGA infants.

Out of 348 pregnant women with information on sF in the first trimester, 79 (23%) had

iron depletion (<15 ug/l). Prevalence of anaemia at ≤20 weeks (<11 g/dl) and >20 

weeks gestation (<10.5 g/dl) was 5% (16/329) and 14% (48/337) respectively. Mean

infant bfPWV was 6.7 m/s (SD=1.3, n=284). Maternal iron depletion in the first

trimester was associated with a higher risk of a SGA baby (adjusted OR 2.2, 95% CI 1.1,

4.1). However, this relationship was attenuated when including early pregnancy Hb in

the model (adjusted OR 1.6, 95% CI 0.8, 3.2). For every 1g/dl increase in maternal Hb

level in the first half of pregnancy the risk of SGA was reduced by 30% (adjusted 95% CI

0-40%), with levels <11 g/dl associated with a 3-fold increase in the risk of SGA (95%

1.0, 9.0). There was no evidence of association between maternal iron status and

preterm birth or gestational age.

Maternal anaemia at ≤20 weeks gestation was associated with a 1.0 m/s increase in 

infant PWV (adjusted 95% CI 0.1, 1.9, P=0.02). There was no evidence of association
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between infant bfPWV and maternal sF analysed as a continuous variable (adjusted

change in PWV in m/s per 10 ug/l change in sF = 0.02, 95% CI -0.01, 0.1, P=0.3), nor

with maternal iron depletion (adjusted change in PWV in m/s = -0.2, 95% CI -0.6, 0.2,

P=0.3). No evidence of association was observed between maternal sTfR or log R/F

ratio with infant PWV.

In this chapter, depleted iron stores in early pregnancy were found to be associated

with higher risk of having a SGA baby. However, this relationship seems to be

mediated by maternal Hb levels. Increased arterial stiffness in the first few weeks of

life was associated with maternal anaemia in the first half of pregnancy, but not with

ID in the first trimester.
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4.2 Background

The previous evidence on the association of maternal ID in pregnancy with birth

outcomes was explored in sections 2.2.4 and 2.2.5. There are very few studies which

have assessed iron status in the mother early in pregnancy and using multiple

biomarkers, including sF and sTfR, in addition to Hb. Ferritin is the most widely used

biomarker in the assessment of iron status in the general population. In women, levels

under 15 ug/l indicate depleted iron stores (WHO, 2011). However, it is affected by

inflammatory conditions and therefore may not be specific to distinguishing ID.

Measuring STfR may provide more specific information, and it has the advantage over

sF is that it can distinguish IDA from anaemia of chronic inflammation, as well as

identify iron depletion and functional ID in patients with concurrent inflammation

(Allen et al., 1998). The R/F ratio is considered the gold standard marker of iron status

(Zimmermann, 2008), and has been used to assess iron status in pregnant populations

such as the United States National Health and Nutrition Examination Survey (Mei et al.,

2011). The advantages and disadvantages of these biomarkers have been explored

further earlier in this thesis (section 2.4).

The clinical significance of arterial stiffness and its measurement method used in this

chapter, PWV, was also explored in detail earlier in section 2.5.1. Few studies have

examined the relationship between maternal nutritional exposures and arterial

stiffness in the offspring (Larnkjaer et al., 2006, Gale et al., 2007, Kinra et al., 2008). So

far, there have been no comparable studies published that have assessed the

relationship between indicators of maternal nutritional status during pregnancy and

neonatal or infant arterial stiffness.
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4.3 Hypothesis and objectives

It is hypothesised that infants of women with ID in early pregnancy have less

favourable cardiovascular risk profile indicated in this study by lower birth weight and

stiffer arteries, expressed as increased PWV.

The objectives of this chapter are:

1. Examine the relationship of maternal iron status at the end of the first

trimester of pregnancy with offspring’s arterial stiffness measured by brachio-

femoral PWV (bfPWV) within the first few weeks of life (2-6 weeks of age)

2. Examine the relationship of maternal iron status at the end of the first

trimester of pregnancy with birth weight and preterm birth

3. Examine the relationship of birth weight/SGA and gestational age/preterm

birth with offspring’s arterial stiffness measured by bfPWV within the first few

weeks of life (2-6 weeks of age)
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4.4 Methods

4.4.1 Study design

Baby VIP study is a retrospective cohort study. The cohort comprises women aged 18

years or over who have given live birth at the Leeds Teaching Hospitals Trust Maternity

Unit at a gestational age of 34 weeks or over in the period between February 2012 to

January 2013. The participants were recruited from the postnatal wards of Leeds

General Infirmary and St James’s University Hospital after delivery. Upon consenting to

taking part in the study, mothers were asked permission to access theirs’ and their

babies’ medical notes from which clinical information relating to pregnancy and birth

was extracted. They were also asked if the research team could contact them after

they were discharged home to arrange a home visit within 6 weeks. The home visit

was made by a research nurse after an appointment was arranged with the mother

over the phone. During the visit, the nurse obtained mothers’ consent for their babies

to have PWV measured on them, and went on to perform the measurements as

described below. Figure 8 illustrates the Baby VIP study participant flowchart.

Appendices 10.3.1 and 10.3.2 include the study’s consent forms and participant

information sheet.
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Figure 8: Baby VIP study participant flowchart

4.4.2 Exposure measurement

Maternal serum samples previously stored during the first trimester of pregnancy as

part of routine antenatal care were analysed. sF was measured using ELISA

(Demedeitic, Kiel, Germany) following the manufacturer’s instructions. Briefly, 10 ul of

plasma was treated in a sandwich ELISA method, using fluoremetric measurements

and calibrated using standards supplied by the manufacturer. Quality controls were
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included as appropriate. Data are expressed in ug/l. The WHO cut-off of 15 ug/l in sF

was used to indicate depleted iron stores (WHO, 2011). STfR assays were performed

using a commercially available kit based on a polyclonal antibody in a sandwich

enzyme immunoassay (EIA) format (DTFR1; R&D Systems, Minneapolis, MN). This

yielded sTfR levels in nmol/l units. The values were converted to ug/l using a molecular

weight of sTfR of 75000 daltons (R&D technical data sheet). The R/F ratio was obtained

by dividing sTfR over sF (ug/l: ug/l). This was logged to obtain a normal distribution.

In the UK, Hb is measured routinely in pregnancy at around 12 and 28 weeks gestation.

Maternal Hb values were extracted from the antenatal care records and/or the

hospital electronic results server. A cut-off of 11 g/dl in Hb was used to indicate

anaemia at 20 weeks gestation or less, and 10.5 g/dl to indicate anaemia beyond 20

weeks gestation, following the NICE guidelines (National Institute for Clinical

Excellence (NICE), 2008).

4.4.3 Outcome measurement

4.4.3.1 Pulse wave velocity

Brachio-femoral PWV was measured using the Vicorder device (Skidmore Medical),

which uses an oscillometric technique to measure PWV (Figure 9). This kit provides a

non-invasive and minimally-intrusive method of measuring PWV, and is thought to be

less time consuming and less dependent on operator skills (van Leeuwen-Segarceanu

et al., 2010). A standard operating procedure was developed and followed for each

measurement (Appendix 10.3.3). Two infant-size cuffs were attached to the device.

The arm cuff was wrapped around the bare skin of the baby’s arm, with the mid cuff
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(marked) being halfway between the shoulder and the elbow. The leg cuff was

wrapped around the bare skin of the baby’s ipsilateral thigh with the mid cuff point

(marked) being halfway between the groin and the knee. Using a tape measure, the

distance was measured in centimetres between the midpoint of the arm cuff to the

midpoint of the left cuff in a straight line while keeping the baby’s ipsilateral thigh

straight, with the tape kept on the internal side of the arm alongside the trunk, not

externally over the elbow and forearm. The pressure applied was 35 mmHg for both

the arm and the leg. The pulse recording at the two arterial sites (brachial and femoral)

was obtained simultaneously. Transit time was measured as the time delay between

the feet of the proximal and the distal pulse waves. A minimum of two PWV readings

was obtained from each baby. If they were more than 0.3 m/s different, a third reading

was obtained. The average of all available readings for each baby was derived and

used in the analyses. The baby’s age and position at the time of PWV measurement

(sleeping, feeding, lying down or in mother’s arms) was recorded and taken into

account in all the statistical models.
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Figure 9: Vicorder kit (Skidmore Medical)

4.4.3.2 Size at birth

Birth weight in grams and gestational age in days were extracted from the medical

notes. Customised birth weight centile was calculated using charts that take into

account gestational age, maternal height, weight, ethnicity, parity, and neonatal sex

(Gardosi, 2004). SGA was defined as less than the 10th centile. Duration of gestation

was calculated from the date of the last menstrual period, and confirmed by

ultrasound scans dating at around 12 and 20 weeks gestation. Preterm birth was

defined as delivery at less than 37 weeks (259 days) gestation.
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4.4.4 Covariable assessment

A basic demographic and lifestyle questionnaire was administered to the mother by

the research team at the time of recruitment. IMD was derived from each participant’s

postcode using the GeoConvert tool utilising the 2001 UK census data

(geoconvert.mimas.ac.uk). Parity, maternal height, weight, ethnicity, smoking,

pregnancy complications (pre-eclampsia, GDM), BP measurements and intake of iron

supplements were extracted from the mother and the baby’s clinical records.

4.4.5 Statistical methods

Statistical analysis was performed using Stata version 11 (College Station, TX, 2009).

Univariable analysis was performed using the independent samples t-test, one-way

analysis of variance or Mann-Whitney test for continuous variables, and the chi-

squared test for categorical variables. Multivariable linear regression was performed

with PWV, customised birth weight centile, SGA, gestational age and preterm birth as

outcomes, and indicators of maternal iron status including maternal sF, sTfR, Hb and

R/F as predictors. When the outcome was PWV, the models were adjusted for baby

covariables at birth (customised birth weight centile) and at measurement (age,

position, measurement side and type of feeding), and maternal covariables including

age, smoking status, the presence of GDM or pre-eclampsia, systolic and diastolic BP at

booking and 36 weeks gestation, and IMD deprivation score. When the outcomes were

birth weight centile/SGA, the models were adjusted for maternal age, smoking status,

the presence of GDM or pre-eclampsia, and IMD deprivation score. When the

outcomes were gestational age/preterm birth, the models were adjusted for maternal

age, ethnicity, parity, pre-pregnancy BMI, smoking status, the presence of GDM or pre-
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eclampsia, and IMD deprivation score. In all models, sensitivity analyses were

performed taking into account the intake of iron supplements during pregnancy.

When examining the association between infant PWV and birth weight centile or SGA,

multivariable models were adjusted for maternal factors including smoking, pre-

eclampsia, GDM, systolic and diastolic BP at booking and 36 weeks, IMD deprivation

score, and infant factors including type of feeding, baby’s age, position and whether

asleep or awake at the time of measurement.

4.4.6 Sample size calculation

For a difference of 0.3 m/s in neonatal aortic PWV between iron-deficient and non-iron

deficient mothers, using a mean of 4.7 m/s, a SD of 0.6 m/s (Koudsi et al., 2007), and a

prevalence of ID of 20% (Bergmann et al., 2002, Beard, 1994), a sample size of 265

mother-baby pairs was required to achieve a 90% power with P=0.05.

4.4.7 Ethical approval

Ethical approval was obtained from the South Yorkshire Research Ethics Committee of

the NHS National Research Ethics Service (Reference number 11/YH/0064). All

procedures were in accordance with the Helsinki Declaration of 1975 as revised in

1983. Mothers provided their written informed consent for themselves and their

children to participate in this study.

4.4.8 Funding

The work included in this chapter was supported by the Wellcome Trust [Grant

number WT87789 to N.A.A.] and the Scottish Government Rural and Environmental

Services (RESAS) for the laboratory analysis of samples undertaken at the Rowett



140

Research Institute, University of Aberdeen, UK. The funders had no influence on the

design or analysis of the study.
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4.5 Results

4.5.1 Sample characteristics

In total, 362 women living in Leeds, UK and surrounding area were recruited for this

study. 288 (80%) were of white ethnic origin. Mean maternal age was 31 years (SD 6),

and mean maternal pre-pregnancy BMI was 26 kg/m2 (SD 6). 47 women delivered by

elective caesarean section (13%), and 68 (19%) by emergency section. 173 women

were primiparous (40%). The average BP at booking was 112/67 mmHg, and at 36

weeks gestation 116/71 mmHg. 192 women said they never smoked (54%), compared

to 49 (14%) smokers and 113 (32%) ex-smokers. 6 (2%) women had pre-eclampsia

during pregnancy and a similar number had GDM. Half of the babies born to

participants were male. 123 (43%) of those who were followed up at home were

reported to be exclusively breast-fed, 110 (39%) bottle-fed and 53 (19%) received

mixed breast and bottle feeding.

4.5.1.1 Infant pulse wave velocity

The total number of babies with PWV measurements performed at home was 284, out

of a total of 362 mother-baby pairs recruited in hospital (79%). Out of these, 248 (87%)

had a third measurement taken because the first two measurements differed by more

than 0.3 m/s. Mean infant bfPWV was 6.7 m/s (SD 1.3). Mean baby age at the time of

PWV measurement was 25 days (SD 6). 48 babies (16%) were asleep at the time of

measurement.

Baby being asleep was, on average, associated with 0.9 m/s reduction in infant bfPWV

(95% CI 1.3, 0.5, P<0.0001). The baby’s feeding in his/her mother’s arms at the time of
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measurement was, on average, associated with a 0.7 m/s increase in infant bfPWV

(95% CI 0.3, 1.0, P<0.0001), compared to being held in mother’s arms without being

fed. On the other hand, lying in a cot, on a sofa or on the floor at the time of PWV

measurement was associated with a 0.4 m/s reduction in bfPWV (95% CI 0.1, 0.8,

P=0.03) compared to being held in mother’s arms without being fed. Baby’s age at the

time of PWV measurement, type of feeding (breast/bottle/mixed), and side of

measurement (left or right arm and leg) were not associated with bfPWV in this study.

Table 11 describes infant PWV in relation to measurement conditions and baby

characteristics.

Mothers of infants who were followed up at home were likely to be older, primiparous

and have taken multivitamin supplements during pregnancy compared to those whose

infants did not have PWV measurements because a home visit was not possible to

arrange or the mother decline the visit. Otherwise, there were no significant

differences in baseline characteristics of the two groups.

Table 12 compares the characteristics of participants with PWV measurements (n=284)

and those who were not followed up with a home visit (n=78).
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Infant brachio-femoral pulse wave velocity (m/s)

n Mean SD P

Sleeping status <0.001*

asleep 48 5.9 1.1

awake 239 6.8 1.3

Position during
measurement

<0.001**

In mother's arms 121 6.5 1.3

Feeding in mother's arms 101 7.2 1.2

In cot / on sofa or floor 61 6.1 1.1

Measurement side 0.2*

Right 98 6.8 1.4

Left 181 6.6 1.2

Baby's age 0.7*

<28 days 206 6.6 1.3

≥28 days 77 6.7 1.4  

Type of feeding 0.06**

Breast 122 6.9 1.4

Bottled 109 6.5 1.3

Mixed 53 6.4 1.2

*Independent samples t-test

*** One-way analysis of variance

Table 11: Infant brachio-femoral pulse wave velocity (m/s) in relation to

measurement conditions and infant characteristics in the Baby VIP study.
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With PWV measurements N With no PWV measurements N P
#

Gestational age (days) (mean, sd*) 277 (14) 284 276 (14) 78 0.5

Birth weight (grams) (mean, sd) 3339 (636) 284 3293 (621) 78 0.6

Maternal age at antenatal booking (years) (mean, sd) 31.1 (5.5) 284 28.6 (6.0) 78 0.0007

Maternal body mass index at antenatal booking (Kg/m
2
) (mean, sd) 26.5 (6.1) 281 25.3 (4.9) 77 0.1

Index of multiple deprivation (IMD) (mean, sd) 28.6 (19.1) 284 32.7 (19.6) 78 0.1

Maternal haemoglobin at ≤20 weeks gestation (g/dl) (mean, sd) 12.6 (1.0) 263 12.4 (1.2) 66 0.1

Maternal haemoglobin at >20 weeks gestation (g/dl) (mean, sd) 11.6 (1.0) 266 11.4 (1.1) 71 0.2

First trimester maternal serum ferritin (sF) (ug/l) (median, IQR**) 33.4 (17.4, 61.6) 273 28.6 (13.1, 68.7) 75 0.5

First trimester maternal serum transferrin receptor (sTfR) (nmol/l) (median, IQR) 13.1 (10.4, 16.1) 273 12.3 (10.1, 16.1) 75 0.6

First trimester maternal sF/STfR ratio (ug/l) (median, IQR) 27.5 (15.3, 61.9) 273 32.0 (14.0, 72.9) 75 0.6

Primiparous (n, %, 95% CI***) 144, 51 (45, 57) 284 29, 37 (27, 49) 78 0.03

Male baby (n, %, 95% CI) 137, 48 (42, 54) 284 45, 58 (47, 69) 78 0.1

Maternal White ethnicity (n, %, 95% CI) 220, 78 (72, 82) 284 68, 87 (78, 94) 78 0.1

Maternal smoking at antenatal booking (n, %, 95% CI) 36, 13 (9, 18) 278 13, 17 (9, 28) 76 0.5

Gestational diabetes (n, %, 95% CI) 5, 2 (1, 4) 284 1, 1 (0, 7) 78 0.1

Pre-eclampsia (n, %, 95% CI) 3, 1.1 (0, 3) 284 3, 3.9 (1.0, 11) 78 0.1

Anaemia at ≤20 weeks gestation (<11 g/dl) (n, %, 95% CI) 10, 4 (2, 7) 263 6, 9 (3, 19) 66 0.1

Anaemia at >20 weeks gestation (<10.5 g/dl) (n, %, 95% CI) 35,13 (9, 2) 266 13, 18 (10, 29) 71 0.3

Taken iron supplements in pregnancy (n, %, 95% CI) 92, 32 (27, 38) 284 29, 38 (27,49) 77 0.4

Taken multivitamin supplements in pregnancy (n, %, 95% CI) 157, 55 (49, 61) 284 32, 42 (30, 53) 77 0.03

*Standard deviation **Inter quartile range ***Confidence interval
# Independent samples t-test or Mann-Whitney test for continuous variables, and chi-square test for categorical variables

Table 12: Characteristics of Baby VIP study participants (n=362) by whether babies were followed-up by a home visits to measure pulse

wave velocity (PWV)
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4.5.1.2 Birth outcomes

In this study sample (n=362), mean birth weight was 3329 grams (SD 632), with 40

(11%) babies weighing less than 2500 grams. 358 women had information to derive

customised birth weight centile. Mean customised birth weight centile was 41 (SD 29),

with 64 (18%) babies weighing less than the 10th centile (SGA), and 29 (8%) babies

weighing less than the 3rd centile. 20 (6%) babies weighed more than the 90th centile,

of those, only 1 (5%) was born to a mother with GDM. Mean gestational age was 277

days (SD 14) i.e. 39.6 weeks. 33 (9%) babies were born preterm (between 34 and 37

weeks gestation).

Women with SGA babies were more likely to smoke, have lower early pregnancy Hb,

be anaemic at ≤20 weeks gestation, be iron depleted in the first trimester (sF<15 ug/l) 

and have suffered from pre-eclampsia during pregnancy, compared to women with

AGA babies. SGA babies were more likely to be born preterm (<37 weeks gestation),

and to have lower bfPWV compared to AGA babies. Table 13 describes the

characteristics of participants whose babies were born SGA compared to those with

AGA babies.
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SGA
α 

N AGA
αα

N P
#

Gestational age (days) (mean, sd*) 270 (15) 64 279 (13) 294 <0.0001

Birth weight (grams) (mean, sd) 2499 (446) 64 3510 (516) 294 <0.0001

Maternal age at antenatal booking (years) (mean, sd) 30.4 (6.0) 64 30.5 (5.7) 294 0.8

Maternal body mass index at antenatal booking (Kg/m
2
) (mean, sd) 25.7 (5.8) 64 26.3 (5.8) 294 0.4

Index of multiple deprivation (IMD) (mean, sd) 30.6 (19.2) 64 29.2 (19.8) 294 0.6

Maternal haemoglobin at ≤20 weeks gestation (g/dl) (mean, sd) 12.3 (1.1) 54 12.7 (1.0) 272 0.02

Maternal haemoglobin at >20 weeks gestation (g/dl) (mean, sd) 11.6 (1.1) 55 11.6 (1.0) 279 0.9

First trimester maternal serum ferritin (sF) (ug/l) (median, IQR**) 33.5 (12.4, 52.5) 58 30.7 (17.9, 65.7) 286 0.8

First trimester maternal serum transferrin receptor (sTfR) (nmol/l) (median, IQR) 13.6 (10.0, 17.9) 58 12.5 (10.3, 16.0) 286 0.1

First trimester maternal sF/STfR ratio (ug/l) (median, IQR) 38.1 (16.4, 101.2) 58 28.0 (14.4, 61.2) 286 0.6

Infant brachio-femoral pulse wave velocity (m/s) (mean, sd) 6.3 (1.1) 48 6.7 (1.3) 233 0.04

Primiparous (n, %, 95% CI***) 26, 41 (29, 54) 64 145, 49 (44, 55) 294 0.2

Male baby (n, %, 95% CI) 29, 45 (33, 58) 64 151, 51 (46, 57) 294 0.4

Preterm birth (<37 weeks gestation) 12, 19 (10,31) 64 21, 7 (5, 11) 294 0.004

Maternal White ethnicity (n, %, 95% CI) 48, 75 (63, 85) 64 237, 81 (76, 85) 294 0.3

Maternal smoking at antenatal booking (n, %, 95% CI) 13, 22 (13, 35) 58 36, 12 (9, 17) 292 0.04

Gestational diabetes (n, %, 95% CI) 2, 3 (0, 11) 62 4, 1 (0, 3) 294 0.3

Pre-eclampsia (n, %, 95% CI) 3, 5 (1, 13) 64 3, 1 (0, 3) 294 0.04

Anaemia at ≤20 weeks gestation (<11 g/dl) (n, %, 95% CI) 6, 11 (4, 23) 54 10, 4 (2, 7) 272 0.02

Anaemia at >20 weeks gestation (<10.5 g/dl) (n, %, 95% CI) 8,15 (6, 27) 55 40, 14 (10, 19) 279 0.9

Taken iron supplements in pregnancy (n, %, 95% CI) 20, 31 (20, 44) 64 100, 34 (29, 40) 293 0.7

Taken multivitamin supplements in pregnancy (n, %, 95% CI) 30, 47 (34, 60) 64 156, 53 (47, 59) 293 0.4

* Standard deviation  **Inter quartile range  ***Confidence interval α Small for gestational age (<10
th

 birth weight centile) αα Appropriate for gestational age (≥ 10
th

birth weight centile) # Independent samples t-test or Mann-Whitney test for continuous variables, and chi-square test for categorical variables

Table 13: Characteristics of Baby VIP study participants (n=362) by size at birth
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4.5.1.3 Biomarkers of maternal iron status

The first trimester serum samples of 348 mothers were accessed and analysed for sF

and sTfR. Median sF was 13.7 ug/l (Interquartile range [IQR] 16.9, 62.4). 79 women

(23%) had depleted iron stores by the end of the first trimester with sF <15 ug/l, and

278 women (80%) had sF levels < 70 ug/l. Median sTfR was 12.8 nmol/l (IQR 10.2,

16.1). According to the assay manufacturer (DTFR1; R&D Systems, Minneapolis, MN),

the 2.5th - 97.5th percentile range of the reference distribution of sTfR concentration is

0.85 to 3.05 mg/l (n = 1,000) (Punnonen et al., 1997). In our pregnant study population

(n=348), the range between the 2.5th and 97.5th percentiles was 0.6 to 2.0 mg/l after

conversion to equivalent units. Median R/F was 28.4 ug/l (IQR 14.6, 65.4).

Mean maternal Hb was 12.6 g/dl and 11.6 g/dl (SD 1.0) in the first and second halves of

pregnancy respectively. The prevalence of anaemia at ≤20 weeks (<11 g/dl) and >20 

weeks gestation (<10.5 g/dl) was 5% (16/329) and 14% (48/337) respectively. Only half

of anaemic women in the first half (n=8), and 45% of anaemic women in the second

half of pregnancy (n=22), had a first trimester sF of less than 15 ug/l. However, 14

(89%) of anaemic women in the first half of pregnancy and 43 (90%) of anaemic

women in the second half of pregnancy had sF of less than 70 ug/l.

4.5.1.4 Iron supplements

121 women (34%) took iron supplements at some stage during pregnancy. 8 (2%)

started taking them in the first trimester, compared to 67 (18.6%) in the second

trimester, and 46 (13%) in the third trimester. Out of those with iron depletion in the

first trimester (sF<15 ug/l), only 46 (58%) had iron supplements during their
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pregnancy, compared to 13 (81%) of anaemic women in the first half of pregnancy,

and 40 (83%) of anaemic women in the second half of pregnancy.

4.5.2 Regression models

4.5.2.1 Maternal iron status and infant pulse wave velocity models

There was no evidence of association between infant bfPWV and maternal sF analysed

as a continuous variable (adjusted change in PWV in m/s per 10 ug/l change in sF 0.02,

95% CI -0.01, 0.1, P=0.3), nor with maternal iron depletion (adjusted change in PWV in

m/s -0.2, 95% CI -0.6, 0.2, P=0.3). No evidence of association was observed between

maternal sTfR and log R/F with infant bfPWV. However, mothers who were anaemic in

the first half of pregnancy (Hb<11 g/dl) had infants with higher PWV by 1.0 m/s on

average (95% CI 0.1, 1.9, P=0.2) (Table 14). All the multivariable models adjusted for

baby's age, PWV measurement circumstances (position, sleep, side, feeding), maternal

age, smoking, GDM, pre-eclampsia, BP at booking and 36 weeks gestation, area

deprivation score, and customised birth weight centile.

No association was observed between maternal intake of iron supplements at any

stage in pregnancy and infant bfPWV (unadjusted change -0.1, 95% CI -0.5, 0.2).

Adjusting for iron supplement intake in sensitivity analyses did not alter the results of

the models examining the association between biomarkers of maternal iron status (sF,

sTfR and R/F) with infant bfPWV. However, adjusting for maternal iron supplement

intake strengthened the association between maternal anaemia in the first half of

pregnancy and infant PWV. On average, there was 1.2 m/s increase in infant PWV if

maternal Hb before 20 weeks gestation was less than 11 g/dl (95% CI 0.3, 2.1).
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Predictor

Change in infant brachio-femoral pulse wave velocity (m/s)

Unadjusted 95% CI* P Adjusted** Adjusted 95%
CI

P n (multivariable
model)

Maternal serum ferritin (sF) at 12 weeks gest (per
10 ug/l change)

0.02 -0.01, 0.1 0.2 0.02 -0.01, 0.1 0.3 261

Maternal iron depletion at 12 w gest (sF<15 ug/l) -0.2 -0.5, 0.3 0.4 -0.2 -0.6, 0.2 0.3 261

Maternal serum transferrin receptor (sTfR) at 12
weeks gestation (nmol/l)

0.03 -0.004, 0.1 0.1 0 -0.01, 0.04 0.3 261

Maternal log R/F
#

ratio at 12 weeks gestation
(ug/l)

0 -0.1, 0.1 0.9 0 -0.2, 0.1 0.5 261

Maternal haemoglobin (Hb) at ≤20 weeks 
gestation (g/dl)

0.1 -0.1, 0.3 0.3 0.1 -0.1, 0.2 0.6 253

Maternal Hb at >20 weeks gestation (g/dl) 0.2 -0.001, 0.3 0.05 0.2 -0.004, 0.3 0.06 256

Maternal anaemia at ≤20 weeks gestation (<11 
g/dl)

0.7 -0.1, 1.6 0.08 1.0 0.1, 1.9 0.02 253

Maternal anaemia at >20 weeks gestation (<10.5
g/dl)

-0.1 -0.5, 0.4 0.8 0.01 -0.5, 0.5 0.9 256

* Adjusted for baby's age, PWV measurement circumstances (position, feeding, asleep or awake, side), maternal age, smoking, gestational diabetes, pre-eclampsia, blood
pressure at booking and 36 weeks gest, deprivation score and customised birth weight centile (takes into account maternal pre-pregnancy weight, height, ethnicity, parity,
gestational age and baby's sex)

Table 14: Associations of infant brachio-femoral pulse wave velocity at 2-6 weeks (m/s) with indicators of iron status during pregnancy in

the Baby VIP study
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4.5.2.2 Maternal iron status and birth weight centile/SGA models

There was no evidence of association between maternal sF, sTfR, log R/F with birth

weight centile. In univariable analysis, maternal anaemia in early pregnancy was

associated with reduction of 15 centile points in birth weight (95% CI 1, 29, P=0.04).

However, this association was attenuated when adjusting for maternal age, smoking,

GDM, pre-eclampsia and IMD (adjusted change= -11 centile points, 95% CI -25, 3,

P=0.1) (Table 15).

Maternal iron depletion in the first trimester (sF <15 ug/l) was associated with a higher

risk of a SGA baby (adjusted OR 2.2, 95% CI 1.1, 4.1, P=0.02). Adjusting for maternal

iron supplement intake in a sensitivity analysis did not alter this association (adjusted

OR 2.3, 95% CI 1.2, 4.5, P=0.02). However, this relationship was attenuated when

including early pregnancy Hb in the model (adjusted OR 1.6, 95% CI 0.8, 3.2, P=0.2). For

every 1g/dl increase in maternal Hb level in the first half of pregnancy the risk of SGA

was reduced by 30% (adjusted 95% CI 0-40%, P=0.03), with levels <11 g/dl associated

with 3-fold increase in the risk of SGA (95% 1.0, 9.0, P=0.05) (Table 16). Maternal sTfR

was also associated with SGA in the multivariable model adjusting for maternal age,

smoking, GDM, pre-eclampsia and IMD (adjusted OR 1.1 for every 1 nmol/l increase in

sTfR, 95% CI 1.0,1.1, P=0.04).
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Predictor

Change in birth weight centile
#

Unadjusted 95% CI* P Adjusted** Adjusted 95%
CI

P n (multivariable
model)

Maternal serum ferritin (sF) at 12 weeks gest (per
10 ug/l change)

-0.1 -1.0, 0.6 0.9 0.1 -0.6, 0.7 0.9 341

Maternal iron depletion at 12 w gest (sF<15 ug/l) -4.2 -11.3, 2.3 0.3 -4.6 -11.7, 2.5 0.2 341

Maternal serum transferrin receptor (sTfR) at 12
weeks gestation (nmol/l)

-0.2 -0.7, 0.4 0.5 -0.3 -0.8, 0.3 0.3 341

Maternal log R/F ratio at 12 weeks gestation (ug/l) -0.8 -3.4, 1.7 0.5 -1.2 -3.8, 1.3 0.3 341

Maternal haemoglobin (Hb) at ≤20 weeks 
gestation (g/dl)

1.4 -1.7, 4.5 0.4 1.0 -2.0, 4.1 0.6 326

Maternal Hb at >20 weeks gestation (g/dl) -0.8 -3.7, 2.2 0.6 -1.2 -4.4, 1.4 0.3 334

Maternal anaemia at ≤20 weeks gestation (<11 
g/dl)

-15.0 -29.2, -1.0 0.04 -11.2 -25.4, 3.1 0.1 326

Maternal anaemia at >20 weeks gestation (<10.5
g/dl)

-4.5 -13.1, 4.2 0.3 -1.4 -10.1, 7.3 0.8 334

*Confidence interval
** Adjusted for maternal age, smoking, gestational diabetes, pre-eclampsia, and area deprivation score (IMD)
# Customised birth weight centile (takes into account maternal pre-pregnancy weight, height, ethnicity, parity, gestational age and baby's sex)

Table 15: Associations of customised birth weight centile with indicators of iron status during pregnancy in the Baby VIP study
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Predictor

Odd ratio of SGA
#

Unadjusted 95% CI* P Adjusted** Adjusted 95%
CI

P n (multivariable
model)

Maternal serum ferritin (sF) at 12 weeks gest (ug/l) 1.0 0.9, 1.0 0.8 1.0 0.9, 1.0 0.7 341

Maternal iron depletion at 12 w gest (sF<15 ug/l) 2.0 1.1, 3.7 0.02 2.2 1.1, 4.1 0.02 341

Maternal serum transferrin receptor (sTfR) at 12
weeks gestation (nmol/l)

1.0 1.0, 1.1 0.1 1.1 1.0, 1.1 0.04 341

Maternal log R/F ratio at 12 weeks gestation (ug/l) 1.1 0.9, 1.4 0.3 1.2 0.9, 1.5 0.1 341

Maternal haemoglobin (Hb) at ≤20 weeks 
gestation (g/dl)

0.7 0.6, 1.0 0.03 0.7 0.6, 1.0 0.03 326

Maternal Hb at >20 weeks gestation (g/dl) 1.0 0.7, 1.3 0.9 1.1 0.8, 1.4 0.7 334

Maternal anaemia at ≤20 weeks gestation (<11 
g/dl)

3.3 1.1, 9.4 0.03 3.0 1.0, 9.0 0.05 326

Maternal anaemia at >20 weeks gestation (<10.5
g/dl)

1.0 0.5, 2.3 0.9 0.8 0.4, 2.0 0.7 334

*Confidence interval
** Adjusted for maternal age, smoking, gestational diabetes, pre-eclampsia, and area deprivation score (IMD)
# <10

th
customised birth weight centile (takes into account maternal pre-pregnancy weight, height, ethnicity, parity, gestational age and baby's sex)

Table 16: Associations of being born small for gestational age with indicators of iron status during pregnancy in the Baby VIP study
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4.5.2.3 Maternal iron status and gestational age/preterm birth models

There was no evidence of association between maternal iron status measured by sF,

sTfR or log R/F with preterm birth or gestational age. However, there was an

association observed between early pregnancy maternal Hb and gestational age in

univariable analysis. For every 1 g/dl increase in early pregnancy Hb, there was an

increase in gestational age by 2 days (95% CI 0.2, 3.0, P=0.03). This association was

attenuated in the multivariable model adjusting for maternal age, ethnicity, parity,

pre-pregnancy BMI, smoking, GDM, pre-eclampsia and IMD score. Mothers who were

anaemic in the first half of pregnancy had on average a gestation shorter by 7 days

(adjusted 95% CI 0, 14, P=0.05) compared to non-anaemic mothers. Association

estimates are listed in Table 17 and Table 18.
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Predictor

Change in gestational age (days)
#

Unadjusted 95% CI* P Adjusted** Adjusted 95%
CI

P n (multivariable
model)

Maternal serum ferritin (sF) at 12 weeks gest (per
10 ug/l change)

0.1 -0.2, 0.4 0.6 -0.2 -0.4, 0.2 0.6 341

Maternal iron depletion at 12 w gest (sF<15 ug/l) 0.3 -3.4,4.0 0.9 0.02 -3.4, 3.4 0.9 341

Maternal serum transferrin receptor (sTfR) at 12
weeks gestation (nmol/l)

-0.1 -0.2, 0.2 0.5 -0.1 -0.3, 0.2 0.5 341

Maternal log R/F ratio at 12 weeks gestation (ug/l) -0.6 -1.8, 0.6 0.3 0.01 -1.2, 1.3 0.9 341

Maternal haemoglobin (Hb) at ≤20 weeks 
gestation (g/dl)

1.6 0.2, 3.0 0.03 1.1 -0.4, 2.6 0.1 326

Maternal Hb at >20 weeks gestation (g/dl) 0.1 -1.3, 1.5 0.9 -0.5 -1.9, 0.9 0.5 334

Maternal anaemia at ≤20 weeks gestation (<11 
g/dl)

-9.1 -15.8, -2.4 0.008 -6.8 -13.6, 0.1 0.05 326

Maternal anaemia at >20 weeks gestation (<10.5
g/dl)

1.6 -2.4, 5.6 0.4 3.7 -0.4, 7.8 0.07 334

*Confidence interval
** Adjusted for maternal age, pre=pregnancy body mass index, ethnicity, parity, smoking, gestational diabetes, pre-eclampsia, and area deprivation score (IMD)

Table 17: Associations of gestational age with indicators of iron status during pregnancy in the Baby VIP study
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Predictor

OR of preterm birth (<37 weeks gestation)

Unadjusted 95% CI* P Adjusted** Adjusted 95%
CI

P n (multivariable
model)

Maternal serum ferritin (sF) at 12 weeks gest (ug/l) 1.0 0.9, 1.0 0.6 1.0 0.9, 1.0 0.6 341

Maternal iron depletion at 12 w gest (sF<15 ug/l) 1.6 0.7, 3.7 0.3 1.5 0.6, 3.8 0.4 341

Maternal serum transferrin receptor (sTfR) at 12
weeks gestation (nmol/l)

1.0 1.0, 1.1 0.5 1.0 1.0, 1.1 0.5 341

Maternal log R/F ratio at 12 weeks gestation (ug/l) 1.1 0.8, 1.4 0.8 1.0 0.7, 1.5 0.8 341

Maternal haemoglobin (Hb) at ≤20 weeks 
gestation (g/dl)

0.8 0.6, 1.1 0.2 0.9 0.6, 1.4 0.7 326

Maternal Hb at >20 weeks gestation (g/dl) 1.2 0.8, 1.7 0.5 1.3 0.9, 1.9 0.2 334

Maternal anaemia at ≤20 weeks gestation (<11 
g/dl)

2.6 0.7, 9.5 0.2 1.3 0.3, 6.2 0.8 326

Maternal anaemia at >20 weeks gestation (<10.5
g/dl)

0.4 0.1, 1,9 0.3 0.2 0.04, 1.0 0.05 334

*Confidence interval
** Adjusted for maternal age, pre=pregnancy body mass index, ethnicity, parity, smoking, gestational diabetes, pre-eclampsia, and area deprivation score (IMD)

Table 18: Associations of being born preterm with indicators of iron status during pregnancy in the Baby VIP study
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4.5.2.4 Infant pulse wave velocity and birth outcomes models

Infant bfPWV was inversely associated with SGA in a multivariable model that adjusted

for baby's age, PWV measurement circumstances (position, sleep, side, feeding),

maternal age, smoking, GDM, pre-eclampsia, BP at booking and 36 weeks gestation,

and IMD score (adjusted change -0.5 m/s, 95% CI -1.0, -0.1, P=0.01). However, there

was less evidence of this association for very SGA babies (<3rd birth weight centile).

There was no evidence that infant PWV was associated with birth weight centile,

gestational age or preterm birth (Table 19).

Change in infant brachio-femoral pulse wave velocity (m/s)

Unadjusted 95% CI* P Adjusted** Adjusted
95% CI

P

Birth weight centile
#

(per 10 points centile increase)

0.04 -0.01, 0.1 0.1 0.1 -0.01, 0.1 0.08

Small for gestational age
##

-0.4 -0.9, 0 0.04 -0.5 -1.0, -0.1 0.01

Very small for gestational age
###

-0.4 -0.9, 0.2 0.2 -0.4 -1.0, 0.2 0.2

Gestational age

(per 10 days)

0.1 (-0.1, 0.2) 0.4 0.01 -0.1, 0.1 0.8

Preterm birth

(<37 weeks gestation)

-0.5 -1.1, 0.1 0.1 -0.3 -0.9, 0.4 0.4

*Confidence interval

** Adjusted for baby's age, PWV measurement circumstances (position, sleep, side, feeding), maternal
age, smoking, gestational diabetes, pre-eclampsia, blood pressure at booking and 36 weeks gestation,
and deprivation score in case of birth weight centile and SGA as predictors, plus maternal parity,
ethnicity and pre-pregnancy BMI in case of gestational age and preterm birth as predictors

# Takes into account maternal pre-pregnancy weight, height, ethnicity, parity, gestational age and
baby's sex

##<10
th

birth weight centile ### <3
rd

birth weight centile

Table 19: Associations of infant brachio-femoral pulse wave velocity with size at birth

and gestational age in the Baby VIP study (n=267)
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4.6 Discussion

PWV, a potential marker of cardiovascular health later in life, was ascertained in 284

babies aged 2-6 weeks at home in the Baby VIP study. There was no evidence of

association between maternal iron status biomarkers in early pregnancy and infant

PWV. However, maternal anaemia in the first half of pregnancy was associated with

increased infant PWV, which indicates stiffer arteries. Maternal iron depletion in early

pregnancy was associated with higher risk of SGA birth. This relationship seems to be

mediated by early pregnancy maternal Hb, which was independently inversely

associated with SGA.

4.6.1 Strengths and limitations

4.6.1.1 Exposure measures

This study assessed the exposure of interest prospectively, as the maternal serum

samples were collected in the first trimester of pregnancy. Information on maternal Hb

and iron supplements was ascertained objectively from the medical records, rather

than by self-reporting. The best available measure, which utilised the ferritin and

transferrin receptor biomarkers in a ratio that relates directly to total body iron stores,

was used to assess maternal iron status (Zimmermann, 2008). A study set out to

determine the diagnostic value of R/F ratio to determine body iron stores against bone

marrow aspirate examination showed that R/F ratio had the best diagnostic efficiency

with the sensitivity of 81% and a specificity of 97%. SF alone, with a cut-off of 60 ug/l,

had the same specificity but lower sensitivity (76%) (Ruivard et al., 2000).
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Deriving body iron stores estimates from R/F ratio is limited by the current availability

of several commercial assays that yield different sTfR values. The calculation formula

provided by Cook et al. used to deduct body iron stores values can only be used if sTfR

assay commutability is established. Unfortunately, this is not the case in our study. It

was not possible to convert values generated by the R&D assay into values that would

be appropriate for the Cook formula which used another assay to measure sTfR (Cook,

2003). There is a pressing need to calibrate sTfR assays against international reference

standards to provide comparability across studies.

4.6.1.2 Outcome measures

Birth weight was ascertained objectively from the medical birth records. Gestational

age was calculated using information from a dating ultrasound scan at the end of the

first trimester of pregnancy and extracted from the medical records. Therefore, these

two outcome measures were not subject to measurement bias.

PWV, a new and innovative measure of cardiovascular health in neonates and young

infants, was assessed in this study on a relatively large study population compared to

other studies that have assessed PWV in this age group (Alhashemi et al., 2013,Koudsi

et al., 2007). A potential source of error in measuring PWV in peripheral arteries is the

use of the nearest superficial arterial site as a surrogate for inaccessible central

arteries (Cheung, 2010). In this case, the brachial artery was used as a surrogate for the

carotid. The study team have tried, at the pilot stage of Baby VIP, to measure carotid-

femoral PWV, but have found that wrapping a cuff around the baby’s neck caused

distress to parents.
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The estimation of the actual distance between the recording sites using surface

measurements is another potential source of error. The shorter the distance, the -

greater the absolute error in determining transit time (Laurent et al., 2006). However,

the PWV data spread in this study, as reflected by the standard deviation, corresponds

well with most other studies that measured PWV. Also any errors in measuring the

distance between the arterial sites would be non-differential in terms of the exposure

of interest (iron status) as the researcher who performed the measurements was blind

to it. Confounders such as the baby being asleep or awake or position during the time

of the measurement are known to potentially affect the PWV reading (Laurent et al.,

2006). Therefore, these were adjusted for in all the statistical models.

Despite these limitations, PWV remains the most widely used technique for

assessment of arterial stiffness (Cheung, 2010), and in babies, it causes less distress

than measuring BP. It is difficult to compare studies using different measures used to

assess arterial stiffness including PWV, central pressure and augmentation index. PWV

is a direct measure while the other two are indirect surrogate measures but they

provide additional information about wave reflection (Laurent et al., 2006).

4.6.2 Interpretation of results

4.6.2.1 Maternal iron status and infant pulse wave velocity

The elastic properties of the conduit arteries vary along the arterial tree; with more

elastic proximal arteries and stiffer distal arteries. The amplitude of the pressure wave

is higher in peripheral arteries than in central arteries. This is called the ‘amplification

phenomenon’ (Laurent et al., 2006). Also, in younger subject the central arteries are
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usually more elastic than the peripheral arteries (Laurent et al., 2006). This may explain

the relatively higher PWV average that we got in our study (6.7 m/s) compared to the

average in the other study which measured aortic PWV in infants (4.7 m/s) (Koudsi et

al., 2007, Alhashemi et al., 2013). The mean brachio-ankle PWV in children with a

mean age of 14 years is 10 m/s (Niboshi et al., 2006, Im et al., 2007). In adults, average

brachio-ankle PWV was approximately 20% higher than carotid-femoral PWV (Tanaka

et al., 2009). Given this, it is inaccurate to use brachial pressure as a surrogate for

aortic or carotid pulse pressure, particularly in young subjects. Therefore, an

association between maternal iron status in pregnancy and central arterial stiffness in

babies cannot be excluded on the basis of this study.

There is very little research on the ability of PWV measured very early in life to predict

later cardiovascular health. Although we did not find an association with maternal iron

status early in pregnancy, this does not exclude the possibility that maternal iron

status, as measured by R/F ratio, may be linked to offspring cardiovascular indicators

in adulthood. To investigate this relationship, long term follow up of a birth cohort

with information on maternal iron status in pregnancy is required.

In this study, there was an association between maternal anaemia early in pregnancy

and infant arterial stiffness. Anaemia could reflect the extreme of the ID spectrum, and

thus this association would support the hypothesis that ID early in pregnancy is linked

to cardiovascular risk in the offspring. However, only about half of anaemic women in

the study had ferritin values less than 15 ug/l. Analysis in chapter 5 from ALSPAC found

no association between early pregnancy maternal Hb (<18 weeks gestation) and

offspring PWV at 10 years of age (Alwan et al., 2014). In this chapter, this observed
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association could be an expression of a true effect of early pregnancy maternal

anaemia on arterial function in the baby, which may subside later in life. Alternatively,

it could be due to residual confounding as other causes of poor health in the mother

are likely to be associated with both the predictor and outcome.

4.6.2.2 Measures of maternal iron status and birth outcomes (birth

weight and gestational age)

4.6.2.2.1 Maternal anaemia/Hb levels

In this study, anaemia in the first half of pregnancy was associated with a higher risk of

having a baby who is SGA, and every 1 g/dl increase in early pregnancy maternal Hb

was associated with a 30% reduction in the risk of SGA. This result supports the

previous evidence of association between early maternal Hb and anaemia with the risk

of LBW reviewed in section 2.2.4 of this thesis. Maternal Hb in the second half of

pregnancy was not associated with SGA in Baby VIP , while in the analysis presented in

chapter 3 of pregnant women participating in the CARE study, there was a 40%

increase in the risk of SGA with every I g/dl increase in maternal Hb at 28 weeks

gestation. The latter analysis was, however, performed on a bigger sample, so a type II

error due to insufficient sample size in the Baby VIP sample is a possibility.

There was no evidence of association between the incidence of preterm birth and

early pregnancy maternal Hb or anaemia in this study contrary to the findings of

previous studies (Scanlon et al., 2000, Scholl et al., 1992). However, maternal anaemia

in the first half of pregnancy was marginally associated with a reduction in gestational

age when analysed as a continuous outcome, while maternal anaemia in the second
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half of pregnancy was marginally associated with a reduction in the risk of preterm

birth.

The evidence available in the literature of the association between maternal anaemia

and birth outcomes suggests that it is U-shaped (Rasmussen, 2001). Causes of adverse

birth outcomes may differ at the two extremes of the maternal Hb range. While low

Hb in early pregnancy may reflect ID or other nutritional deficiencies such as vitamin B

or folic acid, high Hb values later in pregnancy may reflect inadequate expansion of

plasma volume. Rasmussen suggests that this U-shaped association is spurious due to

the design of research evidence available, as it is more apparent in studies that use

“lowest Hb” than in those that control for the stage of gestation or include data only

from women very early in pregnancy, when changes in plasma volume are minimal

(Rasmussen, 2001, Scanlon et al., 2000, Zhou et al., 1998).

4.6.2.2.2 Maternal ferritin and transferrin receptor levels

Participants in this study who were iron depleted at the beginning of pregnancy were

twice as likely to have SGA babies. Maternal sTfR level measured in the first trimester

of pregnancy, which increases in ID, was also marginally associated with higher risk of

SGA. These results are in line with findings from previous studies (Ribot et al., 2012).

The relationship between maternal iron depletion in the first trimester and SGA was

tested for mediation by maternal Hb, as it was an independent predictor of SGA.

Including maternal Hb in the model attenuated the relationship between maternal iron

depletion and SGA. This may point to the possibility that the mechanism through

which inadequate body iron could potentially result in small size at birth is through the

efficiency of carrying oxygen to the placenta which is reduced by a reduction in
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maternal Hb. IDA increases oxidative stress levels in the liver, heart, kidney and

placenta as well as resulting in hypoxia and inflammation in placenta (Allen, 2001).

4.6.2.3 Infant pulse wave velocity and size at birth

In this study, SGA (<10th birth weight centile) was associated with 0.5 m/s lower infant

PWV on average, while no association was observed in those who were born very SGA

(<3rd birth weight centile). The evidence linking size at birth with PWV later in life was

discussed earlier in section 2.5.1.3 of this thesis. There is some evidence that newborn

arterial stiffness, measured by ultrasound and pulse BP measurement techniques, is

associated with very SGA (section 2.5.1.5). Cheung et al. found that among 8 year old

children who were born preterm, only those with IUGR had increased brachio-radial

PWV (Cheung et al., 2004). Also, using pulse pressure measurement (distensibility

coefficient and whole body arterial compliance by ultrasound recording or aortic pulse

pressure), increased arterial stiffness was observed as early as the fifth day of life in

very low gestational age infants, and persisted at least until the 7th week of life (Tauzin

et al., 2006). Sehgal et al. calculated arterial wall stiffness index and found an increase

with very SGA (<3rd centile) (Sehgal et al., 2014). Akira et al. found decreased arterial

distensibility in SGA (<5th centile) infants using the stiffness index, however, this index

also increased with gestational age at birth (Akira and Yoshiyuki, 2006).

The association observed between SGA and lower PWV is surprising. However, before

interpreting it as contradictory to previous evidence of association and the mechanical

basis for this relationship, there are a few considerations. First, It is cannot be assumed

that PWV at this early age predicts PWV later in life, as there is no evidence to support

such an assumption. Therefore, lower PWV in infancy does not necessarily mean more
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favourable arterial stiffness profile in adulthood. Secondly, the observed association

disappeared when examining it in very SGA babies, who are more likely to be small due

to IUGR. Thirdly, the method of measuring PWV is relevant as the evidence of

association between SGA and increased PWV comes from studies that have used

different methods to assess arterial stiffness in newborns. The mechanism of

association between LBW and increased arterial stiffness in childhood and adulthood

remains unclear. One potential mechanism is altered synthesis of elastin in the arterial

wall, while another is endothelial dysfunction in preterm and SGA babies leading to

functional alterations in arterial tone (Cheung, 2010). Therefore, this relationship may

not be apparent when using structural methods to assess arterial stiffness such as

PWV.
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4.7 Conclusion

To my knowledge, no previous studies have measured PWV in the first weeks of life to

examine its association with maternal iron status in pregnancy. Also, this is the largest

population study published to date which assessed PWV as a measure of arterial

stiffness in infants. There was no evidence of association detected between maternal

iron status early in pregnancy and bfPWV in babies aged 2-6 weeks. This study

demonstrates that infant arterial stiffness can be feasibly assessed using non-invasive

techniques of measuring PWV in population studies. Further research is needed to

validate PWV measured early in life as a potential indicator of cardiovascular risk later

in life and to investigate the relationship between biomarkers of maternal nutritional

status during pregnancy and PWV in the child and adult offspring using prospective

study design. This would help inform the understanding of potential pathways

underlying the developmental origins of CVD.

In the next chapter, I move one step further in the life course and investigate the

association of PWV and other cardiovascular indicators measured in 10 year old

children in the ALSPAC cohort with indicators of maternal iron status including Hb and

iron intake from diet and supplements.



166

5 Associations of maternal iron intake and

haemoglobin in pregnancy with offspring

vascular phenotypes and adiposity at age

10 in the ALSPAC study

In chapters 3 and 4 I have explored the relationship between maternal iron intake and

status during pregnancy and short-term offspring outcomes at birth and in infancy.

Following on from that, this chapter evaluates these relationships with more long-term

outcomes through analysis of data from the ALSPAC cohort. This includes offspring

indicators of cardiovascular risk measured at age 10.

Work from this chapter has formed the basis of a peer-reviewed paper (Alwan et al.,

2014) and a conference presentation.
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5.1 Chapter summary

The aim of this chapter is to examine the relationship between maternal pregnancy

dietary and supplement iron intake and Hb, with offspring’s arterial stiffness measured

by carotid-radial PWV, endothelial function measured by brachial artery flow mediated

dilatation (FMD), BP, and adiposity (measured by BMI), test for mediation by cord

ferritin, birth weight, gestational age, and child dietary iron intake, and for effect

modification by maternal vitamin C intake and offspring sex.

Prospective data from 2958 mothers and children pairs at 10 years of age enrolled in

an English birth cohort, the ALSPAC study in Bristol, was analysed. In this cohort, 2639

(89%) mothers reported dietary iron intake in pregnancy below the UK reference RNI

of 14.8 mg/day. 1328 (45%) reported taking iron supplements, and 129 (4%) were

anaemic by 18 weeks gestation. No evidence of association was observed in this

analysis between indicators of maternal iron status including dietary iron intake in

pregnancy and maternal Hb concentration (which is less likely to be biased by

subjective reporting) and markers of cardiovascular risk in the offspring, apart from a

modest association between taking iron supplements in pregnancy with lower

offspring systolic BP at 10 years (-0.8 mmHg, 99% CI -1.7 to 0, P=0.01 in the sample

with all relevant data observed, and -0.7 mmHg, 99% CI -1.3 to 0, P=0.008 in the

sample with missing data imputed).
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5.2 Background

5.2.1 Previous studies

Although evidence from animal models suggests that maternal ID during pregnancy

can result in the development of obesity and hypertension in the offspring (Gambling

et al., 2003b, Gambling et al., 2003a, Crowe et al., 1995, Gambling et al., 2004b),

evidence in humans regarding the effect of maternal ID on cardiovascular risk

indicators in childhood remains inconclusive. Few studies have investigated the

association of indicators of maternal iron status in pregnancy and BP in childhood.

These are referred to briefly here, and their findings discussed earlier in section 2.3.3

of this thesis.

In a previous analysis of data from the same birth cohort analysed here, the ALSPAC

cohort, Brion et al. reported an association between maternal anaemia and BP at 7

years only in women who did not take iron supplements during pregnancy (Brion et al.,

2008). In another study, Belfort et al, with a sample size of 1167 pregnant American

women, there was no association between first and second trimester maternal

anaemia with offspring BP at 3 years. However, offspring BP was positively associated

with first trimester iron intake, in contrast to animal studies findings (Gambling et al.,

2003b, Gambling et al., 2003a, Crowe et al., 1995, Gambling et al., 2004b), while no

relationship was observed for second trimester iron intake (Belfort et al., 2008). Other

studies examining the association between maternal anaemia in pregnancy and

offspring childhood BP reported conflicting findings ranging from positive to negative,

and including null associations (Whincup et al., 1994, Bergel et al., 2000, Law et al.,
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1991, Godfrey et al., 1994). The characteristics of these studies are summarised in

Table 2.

5.2.2 Mediation in the relationship between iron intake in

pregnancy and offspring cardiovascular health

It has been shown in animal studies that offspring outcomes such as birth weight are

dependent on mother’s iron status and not that of the neonate (Gambling et al., 2002).

However, umbilical cord ferritin is strongly associated with maternal iron status

(Agarwal et al., 1983, Kaneshige, 1981, Singla et al., 1996). There is also evidence of an

association between cord ferritin levels and health outcomes such as mental and

psychomotor development in children (Tamura et al., 2002). Therefore, cord ferritin

could be a potential mediator in the relationships between maternal iron measures in

pregnancy and offspring cardiovascular risk outcomes.

Other potential mediators include child’s dietary iron intake, child’s birth weight, and

gestational age. As noted above, maternal iron levels in pregnancy are related to lower

birth weight and preterm delivery; birth weight and gestational age are in turn

inversely associated with CVD (Barker, 2004). Maternal diet is related to child’s diet

(Brion et al., 2010), and therefore it is likely that maternal iron intake in general,

including during pregnancy, will be related to offspring dietary iron intake and this in

turn may influence the child’s vascular phenotypes and hence mediate the association.
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5.2.3 Effect modification in the relationship between iron intake

in pregnancy and offspring cardiovascular health

Animal studies suggest that the inverse association of maternal iron status with later

offspring cardiovascular outcomes differs by offspring sex, being stronger in males

(Gambling et al., 2003b, Lisle et al., 2003). Furthermore, since vitamin C is a key

enhancer of iron absorption (Gibney et al., 2004, Collings et al., 2013), the relationship

between maternal iron intake and perinatal or longer term outcomes may be stronger

with adequate intake of vitamin C, as has been presented in chapter 3 of this thesis

(Alwan et al., 2011). Therefore, both offspring sex and maternal vitamin C intake in

pregnancy were considered as potential effect modifiers in the relationships under

investigation.

5.2.4 Vascular markers in the offspring

Prediction of CVD morbidity and mortality can be realized through studying endothelial

function and arterial stiffness in adults. FMD of the arm arteries is the most common

technique to measure endothelium-dependent vasodilator function. The technique

measures the ability of the arteries to respond with endothelial nitric oxide release

during reactive hyperaemia (flow mediated) after a 5-minute occlusion of the brachial

artery with a BP cuff (Flammer et al., 2012). It is diminished in patients with

atherosclerosis and with coronary risk factors, and improves with risk-reduction

therapy (Moens et al., 2005). There is evidence that endothelial function is prognostic

of cardiovascular risk (Halcox et al., 2009, Halcox et al., 2002). Endothelial dysfunction

in children, measured by brachial artery FMD, has also been linked to LBW (Leeson et

al., 1997).
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PWV, a measure of arterial stiffness, measures the time taken for the systolic pressure

wave to travel a known distance. It is considered a convenient, precise, reliable, and

integrated index of vascular pathology over the lifecourse (Cruickshank et al., 2009). It

has been widely used as a predictor of CVD in adults (Weber et al., 2008, Jadhav and

Kadam, 2005), and is associated with higher CVD mortality, coronary heart disease,

and stroke (Vlachopoulos et al., 2010, Sutton-Tyrrell et al., 2005). The use of PWV as a

lifecourse marker in investigating the developmental origins of disease has been

explored earlier in this thesis in section 2.5.1.
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5.3 Hypothesis and objectives

It is hypothesised that women with adequate iron intake and those who are not

anaemic during pregnancy have, on average, children with healthier cardiovascular risk

profile.

This chapter builds on the work of Brion et al. utilising ALSPAC data (Brion et al., 2008)

using offspring‘s BP at a later age than the previous analysis, and utilising other

indicators of offspring cardiovascular health as outcomes including PWV, FMD and

BMI, all measured at around 10 years of age.

The objectives of this study are:

1. Examine the associations between indicators of maternal iron status in

pregnancy (maternal iron intake and Hb concentrations) and indicators of

child’s circulatory health (BP, adiposity as assessed by BMI, endothelial

function as assessed by brachial artery FMD, and arterial stiffness as assessed

by carotid-radial PWV).

2. Examine whether any observed associations were mediated by cord blood

ferritin levels, gestational age, offspring’s birth weight, and dietary iron intake

3. Explore whether offspring sex and maternal vitamin C intake moderate any of

these associations as effect modifiers.
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5.4 Methods

5.4.1 Study design and participants

ALSPAC is a longitudinal population-based birth cohort study investigating influences

on health and development across the life course, which recruited pregnant women

between 1990 and 1992 and followed-up their children (n=14541) in the South West

region of England (Fraser et al., 2012, Boyd et al., 2013). All pregnant women resident

in a defined area (the Bristol area) were eligible for recruitment. The women who have

been recruited and have not dropped-out of the study, have completed up to 20

questionnaires, and have had detailed data abstracted from their medical records, plus

a detailed biobank of stored DNA, serum and plasma. Follow-up for the children

included 59 questionnaires and 9 clinical assessment visits to date. The study website

contains details of all the available data through a fully searchable data dictionary

(www.bris.ac.uk/alspac/researchers/data-access/data-dictionary).

Figure 10 shows participants flow-chart for the complete case analysis performed for

this study.
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Figure 10: ALSPAC participant flowchart for the study samples used to investigate the

associations of maternal iron and offspring vascular phenotypes
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5.4.2 Exposure assessment

5.4.2.1 Maternal dietary iron intake

Iron intake from food was assessed using a FFQ sent to mothers at 32 weeks gestation

covering all the main foods consumed in Britain. Mothers were asked how often they were

currently consuming each of 43 food groups (Rogers and Emmett, 1998). The questionnaire

administered to mothers including the food frequency questions can be retrieved from the

ALSPAC study website (www.bristol.ac.uk/alspac/researchers/resources-available/data-

details/questionnaires). Intakes for a range of nutrients, including iron, were derived using

nutrient information on standard-sized portions based on the 5th edition of McCance and

Widdowson’s Composition of Food tables (Holland et al., 1991). The FFQ was used to

calculate an approximate daily nutrient intake for each woman by multiplying the weekly

frequency of consumption of a food by the nutrient content. The nutrient values obtained

were then divided by seven to convert this to a daily intake including energy, protein, total

fat, saturates, monounsaturates and polyunsaturates, total sugar, non-milk extrinsic sugar,

dietary fibre, nine vitamins and five minerals (Rogers and Emmett, 1998).

5.4.2.2 Maternal iron supplements intake

Maternal iron supplement use was obtained from questionnaires sent at 18 weeks

gestation (relating to anytime during pregnancy before the questionnaire date), and 32

weeks gestation (relating to 3 months of pregnancy between the first and second

questionnaire). Mothers were asked whether they had taken iron supplements, vitamins, or

any other supplements. In a separate question, women were also asked to list all pills,
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medicines, and ointments they used, with a reminder to include iron tablets, vitamins,

herbal medicines, etc. Responses at 18 and 32 weeks regarding iron supplements were

combined to generate a binary variable (yes/no) for ‘iron supplement used anytime during

pregnancy up to 32 weeks gestation’.

5.4.2.3 Maternal haemoglobin

Maternal Hb concentrations were extracted from antenatal medical records of study

participants as it was measured routinely in all pregnant women. An ‘Early pregnancy

haemoglobin’ variable was derived, defined as the first measurement of Hb before 18

weeks. A mother was classified as having ‘early pregnancy anaemia’ if her Hb measurement

was less than 11 g/dl, the threshold used to define pregnancy anaemia according to WHO

guidelines (WHO, 2001).

5.4.3 Outcome assessment

BP, PWV, FMD and BMI were measured in child clinics at ages 10-11 years by six trained

research technicians/fieldworkers over a two year study period (Donald et al., 2010).

Carotid-radial pulse wave velocity was measured transcutaneously using a high-fidelity

micromanometer (SPC-301, Millar Instruments, Houston, TX, USA). Integral software

processed the data to calculate the mean time difference between R-wave and pressure

wave on a beat-to-beat basis over 10 seconds, and the PWV was then calculated using the

mean time difference and arterial path length between the two recording points

(SphygmoCor version 7.1, Scanmed, UK) (Donald et al., 2010).
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The right brachial artery was imaged, 5–10 cm above the antecubital fossa, using high-

resolution ultrasound (ALOKA 5500) with the probe held in a stereotactic clamp that

allowed micrometre positional adjustment. Brachial artery FMD was induced by a 5 min

inflation of a pneumatic cuff to 200 mmHg, around the forearm immediately below the

medial epicondyle, followed by rapid deflation using an automatic air regulator (Logan

Research, UK). The diameter of the brachial artery was measured using edge detection

software (Brachial Tools, MIA, IA, USA) from ECG-triggered ultrasound images captured at 3

second intervals throughout the 11 min recording protocol. FMD was expressed as the

maximum percentage change in vessel diameter from baseline. The magnitude of the flow

stimulus was recorded continuously by pulse wave Doppler and expressed as per cent

reactive hyperaemia, derived from the maximum change in flow within 15 seconds of

deflation of the pneumatic cuff, relative to the baseline flow. The coefficients of variation

between technicians for FMD and PWV were 10.5% and 4.6% respectively at the beginning

of the study, and reached 7.7% and 4.1% at the end of the study (Donald et al., 2010).

Weight to the nearest 0.1 kg was measured in light clothing and without shoes using SECA

scales. Height to the nearest 0.1 cm was measured using a Leicester height meter. From

these, BMI was calculated (weight in kg/height in metres2).

5.4.4 Covariable assessment

5.4.4.1 Confounders

Current age of the child was recorded in months at the time of the assessment clinic. Child

sex was recorded at birth from the obstetric records. We considered the following
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covariables to be potential confounders (associated with both exposures and outcomes);

maternal age, pre-pregnancy BMI, educational level (as a marker of socioeconomic status),

smoking in pregnancy, parity, and maternal total energy intake as assessed by FFQ at 32

weeks.

Highest maternal educational qualification was self-reported at 32 weeks gestation, and

was categorized as university degree, A-level or equivalent (A-level is Advanced-level and

indicates a qualification usually taken around 18 years of age by individuals who have

remained in school beyond the legal minimum age at which they can leave (16 years) and

are likely to go on to higher or further education or train for a semi-skilled job), and less

than A-level. Maternal smoking was self-reported at the 18 and 32 weeks gestation

questionnaire. A variable was generated for any smoking during pregnancy reported at

either or both of these time points.

5.4.4.2 Mediators and effect modifiers

On the basis of it being plausible that maternal iron status would affect them and that they

could plausibly causally affect the offspring’s cardiovascular profile (Tamura et al., 2002,

Brion et al., 2010), we considered the following potential mediators of the association; cord

ferritin, gestational age, offspring birth weight and offspring dietary iron intake. Gestational

age at delivery and birth weight were obtained from the obstetric records. Ferritin was

measured in cord heparin plasma at the ALSPAC laboratory using the DELFIA time resolved

fluoroimmunoassay system. Ferritin assays were duplicated where possible and a

coefficient of variation of approximately 4% was obtained. Offspring dietary iron intake was

assessed by a FFQ administered at 3, 4, 7 and 9 years of age (Boyd et al., 2013). We used
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the mean iron intake of these 4 assessments. Maternal vitamin C intake (which we

considered a potential effect modifier of maternal iron status on offspring outcomes) was

calculated from the FFQ as described above for iron intake. A binary variable for dietary

vitamin C intake was created using the UK RNI cut-off of 50 mg/day and used to test for

interaction (Food Standards Agency, 2003). Baby’s sex (also a potential effect modifier) was

obtained from the birth records.

5.4.5 Statistical methods

Analysis was performed using Stata version 11 (StataCorp LP, College Station, TX, USA).

Characteristics of women with iron intake above or equal to the RNI were compared to

those with intake below the RN using two-sample t-test for continuous variables and chi-

squared test for categorical variables.

Linear regression was used to examine the association of maternal dietary iron intake

(assessed as a continuous variable per 10mg/day and also as a binary variable < versus ≥ 

14.8mg/day), whether or not the mother took iron supplements in pregnancy and early

pregnancy Hb (assessed as a continuous 1g/dl and as a binary variable < versus ≥11g/dl) 

with offspring PWV, FMD, BP and BMI all measured at mean age 10 years. Initially,

univariable (no adjustment for covariables) analyses were undertaken followed by

multivariable models that adjusted first for potential confounding factors (maternal age,

pre-pregnancy BMI, educational level, smoking in pregnancy, parity, and maternal total

energy intake for analyses involving dietary iron intake as the exposure), then for potential

mediation by birth weight, gestational age and offspring postnatal dietary iron intake.
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Finally, in the subgroup with data on cord ferritin levels, its role as a mediator was

examined.

The possibilities that offspring sex or maternal adequate intake of vitamin C (≤ versus > 50 

mg/day) modified the association of maternal exposures with offspring outcomes were

assessed by examining stratified (by sex and maternal adequate vitamin C intake) analyses

and by including an interaction term in the confounder adjusted models.

A statistical significance level of 1%, with 99% confidence intervals, was used in the

regression models to reduce the risk of type I error due to multiple statistical testing. Other

strategies for correction for multiple testing, such as the Bonferroni correction, are over-

conservative, and this is a more pragmatic approach that more easily facilitates the use of

confidence intervals.

5.4.5.1 Sensitivity analyses

Sensitivity analysis which aimed at exploring whether missing data might have led to biased

estimates was undertaken. To do this, multivariable multiple imputation was performed in

Stata as described by Royston (Royston, 2004) to impute missing values for variables

included in the main analysis models for any ALSPAC participant in the 12116 sample with

dietary iron intake data. Twenty imputation datasets were generated in which missing

variables values were imputed by chained equations including exposures, outcomes and

covariables as used in the main confounder-adjusted models. The sensitivity analysis results

are obtained by averaging over the results from each of the 20 datasets using Rubin’s rules

(Royston, 2004).
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We also carried out another sensitivity analysis, adding maternal Hb to the models

exploring the associations of maternal iron supplement intake with childhood outcomes.

This was to account for potential reverse causality (the reason for taking the iron

supplements is the mother’s awareness of being anaemic).

5.4.6 Ethical approval

Ethical approval was obtained from the ALSPAC Law and Ethics Committee and the local

research ethics committees, and procedures were in accordance with the Helsinki

Declaration of 1975 as revised in 1983. Participants provided their written informed consent

to participate in this study.

5.4.7 Funding

The work included in this chapter was supported by the Wellcome Trust [Grant number

WT87789 to N.A.A.]. Core support for ALSPAC is provided by the UK Medical Research

Council, the Wellcome Trust and the University of Bristol. Funding for vascular

measurements used in this study was obtained from the British Heart Foundation. The

funders had no influence on the design, analysis or reporting of the study.
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5.5 Results

5.5.1 Study sample descriptives

The ALSPAC live births sample was 14597. Mean birth weight was 3382 grams (SD 581) with

mean gestational age of 38.4 weeks (SD 5.4). The main analysis sample for this chapter was

2958 with complete data on all exposures, outcomes, confounders and mediators (except

for cord ferritin). A description of the study sample characteristics, compared with the total

ALSPAC sample with available maternal dietary data is shown in Table 20.

Mean maternal pregnancy iron intake was 10.7 mg/day (SD 3.2). The mean age of the child

at the time of the focus clinic was 119 months (9.9 years, SD 0.3). Mean child iron intake

was 6.8 mg/day (SD=2.2), 6.8 mg/day (SD=2), 8.8 mg/day (SD 2.5) and 9.2 mg/day (SD 2.6)

at 3, 4, 7 and 9 years of age respectively.

Table 21 summarized participants’ characteristics by dietary maternal iron intake. Women

with dietary iron intake equal to or more than the UK RNI for iron were more likely to be

older, vegetarian, with higher educational qualification, report higher total energy and

vitamin C intake, have lower pre-pregnancy BMI, and were less likely to smoke during

pregnancy.
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Complete case sample Whole ALSPAC sample
with dietary data

Dietary iron intake
#

(mg/day) (m, sd*) 10.7
(3.2)

10.4
(3.4)

Dietary iron intake <UK RNI
##

(%, 95% CI**) 89.2
(88.0, 90.3)

90.3
(89.7, 90.8)

Dietary iron intake <UK LRNI
###

(%, 95% CI) 18.0
(16.7, 19.5)

25.0
(24.2, 25.8)

Dietary vitamin C intake
##

(mg/day) (m, sd) 85.9
(34.5)

80.1
(35.3)

Age of mother (yrs) (m, sd) 29.5
(4.2)

28.5
(4.8)

Pre-pregnancy BMI (kg/m
2
) (m, sd) 22.8

(3.5)
22.9
(3.6)

Total energy intake (kj) (m, sd) 7,483
(1,908)

7,415
(2,081)

Smoking in pregnancy (%, 95% CI**) 15.4
(14.1, 16.7)

25.2
(24.4, 26.0)

Caucasian (%, 95% CI) 98.8
(98.4, 99.2)

97.5
(97.2, 97.8)

University degree (%, 95% CI) 18.6
(17.2, 20.0)

13.8
(13.1, 14.4)

Vegetarian (%, 95% CI) 6.1
(5.3, 7.0)

5.2
(4.8, 5.6)

Primigravida (%, 95% CI) 48.8
(47.0, 50.6)

44.8
(43.9, 45.7)

Early pregnancy maternal anaemia (<11 g/dl)
(%, 95% CI)

4.4
(3.7, 5.1)

5.1
(4.6, 5.5)

Report taking iron supplements Before 32
wks gestation (%, 95% CI)

44.9
(43.1, 46.7)

47.5
(46.6, 48.4)

Child gender (male) (%, 95% CI) 50.8
(49.0, 52.6)

51.5
(50.6, 52.4)

Birth weight (g) (m, sd) 3,448
(499)

3,411
(544)

Gestational age (wks) (m, sd) 39.6
(1.6)

39.5
(1.8)

#Food frequency questionnaire at 32 weeks gestation

## UK Reference Nutrient Intake (14.8 mg/day)

###UK Lower Reference Nutrient Intake (8 mg/day)

*Mean, standard deviation

**95% confidence intervals

Table 20: Study sample characteristics (complete cases for exposures, outcomes,

confounders and mediators n=2958) and ALSPAC sample characteristics (with dietary iron

intake data n=12116)
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Dietary iron intake

≥14.8 mg/day
#

(n=319)
<14.8 mg/day

(n=2,639)
P value*

Dietary iron intake
##

(mg/day) (m, sd**) 16.9
(1.9)

10.1
(2.5)

-

Dietary vitamin C intake
##

(mg/day) (m, sd) 119.3
(35.6)

81.8
(32.1)

<0.001

Age of mother (yrs) (m, sd) 30.0
(4.2)

29.5
(4.2)

0.02

Pre-pregnancy BMI (kg/m
2
) (m, sd) 21.7

(2.5)
22.9
(3.6)

<0.001

Total energy intake (kj) (m, sd) 10,100
(1,921)

7,167
(1,645)

<0.001

Smoking in pregnancy (%, 95% CI***) 10.7
(7.5, 14.6)

15.0
(14.6, 14.4)

0.001

Caucasian (%, 95% CI) 98.1
(96.0, 99.3)

99.0
(98.4, 99.3)

0.2

University degree (%, 95% CI) 27.0
(22.2, 32.2)

17.6
(16.2, 19.1)

<0.001

Vegetarian (%, 95% CI) 11.9
(8.3, 16.6)

5.5
(4.6, 6.4)

<0.001

Primigravida (%, 95% CI) 48.0
(42.4, 53.6)

51.0
(47.0, 50.9)

0.8

Early pregnancy maternal anaemia (<11 g/dl)
(%, 95% CI)

6.6
(4.1, 9.9)

4.1
(3.4, 4.9)

0.04

Report taking iron supplements Before 32 wks
gestation (%, 95% CI)

48.3
(42.7, 53.9)

44.5
(42.6, 46.4)

0.2

Cord ferritin (ug/l) (m, sd) 151.9 (n=-83)
(104.8)

165.4 (n=712)
(123.6)

0.3

Child systolic blood pressure (mmHg) (m, sd) 103.9
(8.7)

103.6
(8.8)

0.5

Child diastolic blood pressure (mmHg) (m, sd) 60.3
(7.3)

59.5
(7.8)

0.08

Child pulse wave velocity (m/s) (m, sd) 7.7
(1.3)

7.5
(1.2)

0.1

Child flow mediated dilatation (%) (m, sd) 8.3
(3.5)

8.0
(3.4)

0.1

Child body mass index (kg/m
2
) (m, sd) 17.9

(2.7)
18.1
(3.0)

0.2

Child gender (male) (%, 95% CI) 55.2
(49.5, 60.7)

50.3
(48.3, 52.2)

0.1

Birth weight (g) (m, sd) 3,439
(486)

3,450
(500)

0.7

Gestational age (wks) (m, sd) 39.5 (1.6) 39.6 (1.6) 0.3

# Reference nutrient intake (RNI) for iron for women aged 19-50 years in the UK ##Food frequency questionnaire at 32 weeks gestation
* P-value using two-sample t-test for continuous variables, chi-squared test for categorical variables
**Mean, standard deviation *** 95% confidence intervals

Table 21: Sample characteristics by dietary iron intake (n=2958 for all, except where cord

ferritin data is used: n=795)
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5.5.2 Complete case regression analyses

In unadjusted analyses, maternal dietary iron intake was associated with offspring BMI, and

maternal pregnancy supplement intake was associated with offspring systolic BP. Child

dietary iron intake was associated with maternal iron intake in pregnancy , from both diet

and supplements, and early pregnancy Hb. Birth weight was associated with both maternal

iron intake from supplements and early pregnancy Hb (Table 22).

With adjustment for confounding characteristics, there were no associations between the

primary exposures and outcomes of interest apart from the inverse association between

maternal iron supplement intake and offspring systolic BP which remained largely

unchanged, with marginal statistical significance at the 1% significance level (0.8 mmHg

lower with reporting taking iron supplements, 99% CI 0 to 1.7, P=0.01). This association was

not markedly affected by adjustment for mediators (birth weight, gestational age, and

offspring dietary iron intake), but was attenuated to the null in the smaller sub-sample with

further adjustment for cord ferritin as a fourth mediator. The results from the unadjusted

and the three adjusted models (confounders, confounders plus 3 mediators, and

confounders plus 4 mediators) are illustrated in table 23 for maternal iron intake and Table

24 for maternal Hb and anaemia.
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Outcomes Mediators

Exposures Offspring
pulse wave
velocity
(m/s)

Offspring
flow

mediated
dilatation

(%)

Offspring
systolic
blood

pressure
(mmHg)

Offspring
diastolic

blood
pressure
(mmHg)

Offspring
body mass

index
(kg/m

2)

Cord
ferritin
(ug/l)

Birth
weight (g)

Gestational
age (wks)

Child dietary
iron intake

(mg/d)*

Maternal pregnancy dietary iron
intake (continuous) (per 10mg/d)

0.2
(0, 0.3)

0.2
(-0.3, 0.5)

-0.1
(-1.6, 0.4)

0.4
(-0.5, 1.3)

-0.8
(-1.2, -0.5)

15.7
(-11.8, 43.1)

22.5
(-33.8, 78.8)

0
(-0.2, 0.2)

1.7
(1.6, 1.9)

Maternal iron intake < 14.8 mg/d -0.1
(-0.3, 0)

-0.3
(-0.7, 0.1)

0.3
(-1.3, 0.7)

-0.8
(-1.7, 0.1)

0.2
(0.1, 0.6)

13.5
(-14.2, 41.3)

10.7
(-47.3, 68.8)

0.1
(-0.1, 0.3)

-1.1
(-1.3, -0.9)

Maternal pregnancy iron supplement
use

0.1
(0, 0.2)

0.2
(0, 0.5)

-1.0
(-1.6, -0.3)

-0.4
(-1.0, 0.2)

-0.1
(-0.3, 0.1)

9.5
(-7.5, 26.6)

93.0
(56.9, 129.0)

0
(-0.1, 0.1)

0.1
(0, 0.2)

Maternal early pregnancy
haemoglobin (g/dl)

-0.1
(-0.1, 0)

-0.1
(-0.2, 0.1)

0.4
(0, 0.7)

0
(-0.3, 0.3)

0.1
(0., 0.2)

0.7
(-8.9, 10.3)

-29.5
(-49.7, -9.3)

0
(-0.1, 0.5)

-0.1
(-0.1, 0)

Maternal early pregnancy anaemia
(<11 g/dl)

0
(-0.2, 0.2)

-0.2
(-0.8, 0.4)

-1.5
(-3.1, 0.1)

-0.4
(-1.8,0.9)

-0.1
(-0.7, 0.4)

-18.3
(-55.6, 17.7)

69.1
(-19.0, 157.2)

-0.2
(-0.4, 0.1)

0.1
(-0.2, 0.4)

Regression coefficients are reported with 95% confidence intervals between brackets
Greyed cell indicate statistical significance at the 5% level
*Average of intake reported over the 4 assessment points (3, 4, 7 and 9 years)

Table 22: Univariable linear regression estimates of exposure-outcome and exposure-mediator relationships (n=2,958 for all, except where

cord ferritin data is used: n=795)
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2
)

Β
#

99% CI P Β 99% CI P Β 99% CI P Β 99% CI P Β 99% CI P

Maternal pregnancy dietary iron intake (continuous) (per 10mg/d)

Unadjusted 0.2 0, 0.4 0.02 0.2 -0.4, 0.6 0.5 -0.6 -1.9, 0.7 0.3 0.4 -0.8, 1.5 0.4 -0.8 -1.3, -0.4 <0.001

Model 1* 0.1 -0.2, 0.4 0.5 0.4 -0.3, 1.2 0.1 -0.3 -2.2, 1.7 0.7 0.7 -1.1, 2.4 0.3 0.1 -.0.5, 0.7 0.7

Model 2** 0.1 -0.2, 0.4 0.3 0.5 -0.3, 1.2 0.1 -0.1 -2.1, 2.0 0.9 1.0 -0.8, 2.8 0.2 0.1 -0.6, 0.7 0.8

Model 3*** 0.5 -0.1, 1.1 0.04 0.3 -1.2, 1.9 0.6 0.7 -3.5, 4.9 0.7 1.2 -2.4, 4.8 0.4 0.2 -1.1, 1.5 0.7

Maternal iron intake < 14.8 mg/d

Unadjusted -0.1 -0.3, 0.1 0.1 -0.3 -0.8, 0.2 0.1 -0.3 -1.7, 1.0 0.5 -0.8 -2.0, 0.4 0.08 0.2 -0.2, 0.7 0.2

Model 1* 0 -0.3, -0.2 0.7 -0.5 -1.1, 0.1 0.05 -0.7 -2.3, 0.8 0.3 -0.9 -2.3, 0.4 0.08 -0.4 -0.9, 0.1 0.03

Model 2** 0 -0.3, 0.2 0.7 -0.5 -1.1, 0.1 0.04 -0.8 -2.3, 0.8 0.2 -1.0 -2.4, 0.3 0.05 -0.4 -0.9, 0.1 0.03

Model 3*** -0.1 -0.6, 0.3 0.5 0.1 -1.0, 1.2 0.8 -0.8 -3.9, 2.2 0.5 -1.2 -3.9, 1.5 0.3 -0.5 -1.5, 0.4 0.2

Maternal pregnancy iron supplement use

Unadjusted -0.1 -0.1, 0.2 0.07 0.2 -0.1, 0.5 0.1 -1.0 -1.8, -0.1 0.003 -0.4 -1.1, 0.3 0.2 -0.1 -0.4, 0.2 0.3

Model 1* 0.1 -0.1, 0.2 0.2 0.2 -0.1, 0.6 0.07 -0.8 -1.7, 0 0.01 -0.3 -1.1, 0.4 0.3 0 -0.2, 0.3 0.7

Model 2** 0.1 -0.1, 0.2 0.1 0.2 -0.1, 0.6 0.06 -0.8 -1.6, 0.1 0.02 -0.2 -1.0, 0.5 0.5 0 -0.3, 0.3 0.9

Model 3*** 0 -0.2, 0.3 0.7 0.1 -0.6, 0.7 0.8 -0.9 -2.6, 0.8 0.2 0.1 -1.4, 1.5 0.9 -0.2 -0.7, 0.3 0.4

# Change per 1 outcome unit
* Adjusting for confounders: maternal age, pre-pregnancy body mass index, smoking in pregnancy, educational qualification (as a proxy for socioeconomic status), parity
(and maternal total energy intake in the models with dietary iron intake as exposure)
** Adjusting for confounders and three mediators: birth weight, gestational age, offspring dietary iron intake
*** Adjusting for confounders and four mediators: birth weight, gestational age, offspring dietary iron intake, cord ferritin

Table 23: Linear regression estimates for associations between maternal iron intake in pregnancy with offspring vascular indicators and

body mass index (n=2958 for all, except where cord ferritin data is used: n=795)
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2
)

Β
#

99% CI P Β 99% CI P Β 99% CI P Β 99% CI P Β 99% CI P

Maternal early pregnancy haemoglobin (g/dl)

Unadjusted -0.1 -0.1, 0 0.07 -0.1 -0.2, 0.1 0.5 0.4 -0.1, 0.8 0.05 0 -0.4, 0.4 0.8 0.1 0, 0.3 0.06

Model 1* 0 -0.1, 0 0.09 -0.1 -0.3, 0.1 0.3 0.2 -0.3, 0.7 0.2 0 -0.5, 0.4 0.8 0 -0.2, 0.1 0.7

Model 2** -0.1 -0.1, 0 0.08 -0.1 -0.3, 0.1 0.3 0.2 -0.3, 0.7 0.3 -0.1 -0.5, 0.4 0.7 0 -0.2, 0.2 0.9

Model 3*** -0.1 -0.2, 0.1 0.3 0 -0.4, 0.3 0.8 0.3 -0.6, 1.3 0.4 -0.1 -0.9, 0.7 0.7 0.1 -0.2, 0.4 0.6

Maternal early pregnancy anaemia (<11 g/dl)

Unadjusted 0 -0.3, 0.3 0.8 -0.2 -1.0, 0.6 0.5 -1.5 -3.6, 0.6 0.06 0.4 -2.2, 1.4 0.5 -0.1 -0.8, 0.6 0.6

Model 1* 0 -0.3, 0.3 0.8 -0.2 -1.0, 0.6 0.6 -1.3 -3.3, 0.8 0.1 -0.3 -2.1, 1.5 0.6 0.1 -0.5, 0.8 0.7

Model 2** 0 -0.3, 0.3 0.8 -.0.2 -0.9, 0.6 0.6 -1.2 -3.2, 0.9 0.1 -0.2 -2.0, 1.6 0.7 0 -0.6, 0.7 0.8

Model 3*** 0 -0.7, 0.3 0.2 -0.1 -1.4, 1.3 0.9 -1.0 -4.6, 2.6 0.5 -0.3 -3.4, 2.8 0.8 0.1 -1.0, 1.2 0.7

# Change per 1 outcome unit
* Adjusting for confounders: maternal age, pre-pregnancy body mass index, smoking in pregnancy, educational qualification (as a proxy for socioeconomic status), parity
(and maternal total energy intake in the models with dietary iron intake as exposure)
** Adjusting for confounders and three mediators: birth weight, gestational age, offspring dietary iron intake
*** Adjusting for confounders and four mediators: birth weight, gestational age, offspring dietary iron intake, cord ferritin

Table 24: Linear regression estimates for associations between maternal haemoglobin and anaemia in pregnancy with offspring vascular

indicators and body mass index (n=2958 for all, except where cord ferritin data is used: n=795)
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5.5.3 Multiply imputed data regression analyses

The main adjusted associations were largely similar when conducted using the multiple

imputation databases (Table 25 & Table 26), compared to those conducted on complete

data presented as primary analyses in this paper (Table 23 & Table 24). However, adjusting

for cord ferritin as a mediator in the inverse association between maternal iron supplement

use and offspring systolic BP in the imputed dataset had less impact than in the complete

dataset (Table 25).

Adjusting for early pregnancy maternal Hb in the association between maternal iron

supplement use and offspring systolic BP as sensitivity analysis did not change the

magnitude of association (-0.8 mmHg, 99% CI 0.1 to -1.7, P=0.03 in the main complete

dataset, and -0.6 mmHg, 99% CI 0 to -1.3, P=0.01 in the imputed dataset).

5.5.4 Interaction and mediation

There was also no evidence of effect modification by maternal vitamin C intake or child sex

on any of the relationships (Table 27 & Table 28). There was also no association between

cord ferritin and either maternal dietary iron intake or maternal Hb.
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2
)

Β 99% CI P Β 99% CI P Β 99% CI P Β 99% CI P Β 99% CI P
Maternal pregnancy dietary iron intake (continuous) (per 10mg/d)

Unadjusted 0 -0.1, 0.1 0.3 0.1 -0.3, 0.4 0.6 -1.0 -1.9, -0.1 0.004 -0.5 -1.3, 0.3 0.1 -0.7 -1.1, -0.4 <0.001

Model 1* -0.1 -0.2, 0.1 0.5 0.5 -0.1, 1.0 0.03 0.2 -1.9, 1.4 0.7 -0.3 -1.6, 1.0 0.6 0.2 -0.3, 0.7 0.3

Model 2** 0 -0.4, 0.3 0.5 0.5 -0.1, 1.0 0.02 0 -1.6, 1.6 0.9 0 -1.3, 1.4 0.9 0.1 -0.4, 0.6 0.6

Model 3*** 0 -0.2, 0.1 0.5 -0.2 -0.1, 1.1 0.6 0.1 -1.7,1.6 0.9 0 -1.4, 1.4 0.9 0 -0.4, 0.6 0.6

Maternal iron intake < 14.8 mg/d

Unadjusted -0.1 -0.2, 0 0.06 -0.2 -0.6, 0.2 0.1 0.6 -0.4, 1.6 0.1 0 -0.9, 0.9 0.9 0.3 0.1, 0.6 0.002

Model 1* -0.1 -0.2, 0.1 0.3 -0.4 -0.8, 0.1 0.03 0 -1.3, 1.3 0.9 -0.3 -1.3, 0.7 0.5 -0.2 -0.5, 0.1 0.06

Model 2** -0.1 -0.2, 0.1 0.2 -0.4 -0.8, 0.1 0.03 -0.1 -1.3, 1.2 0.9 -0.4 -1.4, 0.6 0.3 -0.2 -0.5, 0.1 0.08

Model 3*** -0.1 -0.2, 0.1 0.2 -0.4 -0.8, 0.1 0.02 -0.1 -1.3, 1.2 0.9 -0.4 -1.4, 0.6 0.3 -0.2 -0.5, 0.1 0.08

Maternal pregnancy iron supplement use

Unadjusted 0.1 0, 0.1 0.2 0.1 -0.1, 0.4 0.2 -0.8 -1.4, -0.2 0.001 -0.3 -0.8, 0.2 0.2 -0.2 -0.4, 0 0.002

Model 1* 0 -0.1, 0.1 0.3 0.1 -0.1, 0.4 0.1 -0.7 -1.3, 0 0.008 -0.2 -0.7, 0.4 0.4 0 -0.2, 0.2 0.9

Model 2** 0 -0.1, 0.1 0.2 0.2 -0.1, 0.4 0.08 -0.6 -1.2, 0 0.01 -0.1 -0.7, 0.4 0.5 -0.1 -0.2, 0.1 0.5

Model 3*** 0 0, 0.1 0.2 0.2 -0.1, 0.4 0.08 -0.6 -1.3, 0 0.01 -0.2 -0.7, 0.4 0.4 0 -0.2, 0.1 0.5

# Change per 1 outcome unit
* Adjusting for confounders: maternal age, pre-pregnancy body mass index, smoking in pregnancy, educational qualification (as a proxy for socioeconomic status), parity
(and maternal total energy intake in the models with dietary iron intake as exposure)
** Adjusting for confounders and three mediators: birth weight, gestational age, offspring dietary iron intake
***Adjusting for confounders and four mediators: birth weight, gestational age, offspring dietary iron intake, cord ferritin

Table 25: Linear regression estimates for associations of maternal iron intake in pregnancy with offspring vascular indicators and adiposity

using multiple imputation dataset based on the sample with dietary iron intake data (n=12116)
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2
)

Β
#

99% CI P Β 99% CI P Β 99% CI P Β 99% CI P Β 99% CI P

Maternal early pregnancy haemoglobin (g/dl)

Unadjusted 0 -0.1, 0 0.1 0 -0.1, 0.1 0.8 0.3 -0.1, 0.7 0.05 0.1 -0.3, 0.4 0.6 0.1 0, 0.3 0.02

Model 1* 0 -0.1, 0 0.3 0 -0.1, 0.1 0.9 0.2 -0.2, 0.5 0.3 0 -0.3, 0.3 0.8 -0.1 -0.2, 0.1 0.2

Model 2** 0 -0.1, 0 0.3 0 -0.1, 0.1 0.9 0.1 -0.2, 0.5 0.3 0 -0.4, 0.3 0.8 0 -0.2, 0.1 0.3

Model 3*** 0 -0.1, 0 0.3 0 -0.1, 0.1 0.9 0.1 -0.2, 0.5 0.3 0 -0.3, 0.3 0.8 -0.1 -0.2, 0.1 0.3

Maternal early pregnancy anaemia (<11 g/dl)

Unadjusted 0 -0.3, 0.2 0.6 0 -0.6, 0.6 0.9 -0.1 -1.5, 1.2 0.8 0 -1.4, 1.2 0.9 0.1 -0.5, 0.6 0.8

Model 1* -0.1 -0.3, 0.2 0.6 0 -0.6, 0.6 0.9 0.1 -1.2, 1.5 0.8 0.2 -1.2, 1.6 0.8 0.4 -0.2, 0.9 0.07

Model 2** -0.1 -0.3, 0.2 0.5 0 -0.6, 0.6 0.9 0.1 -1.2, 1.5 0.8 0.1 -1.3, 1.5 0.8 0.4 -0.2, 0.9 0.08

Model 3*** -0.1 -0.3, 0.2 0.5 0 -0.6, 0.6 0.9 0.1 -1.2, 1.5 0.8 0.2 -1.2, 1.6 0.7 0.4 -0.2, 0.9 0.07

# Change per 1 outcome unit
* Adjusting for confounders: maternal age, pre-pregnancy body mass index, smoking in pregnancy, educational qualification (as a proxy for socioeconomic status),
parity (and maternal total energy intake in the models with dietary iron intake as exposure)
** Adjusting for confounders and three mediators: birth weight, gestational age, offspring dietary iron intake
***Adjusting for confounders and four mediators: birth weight, gestational age, offspring dietary iron intake, cord ferritin

Table 26: Linear regression estimates for associations of maternal haemoglobin and anaemia in pregnancy with offspring vascular

indicators and adiposity using multiple imputation dataset based on the sample with dietary iron intake data (n=12116)
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2)

Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P*

Maternal pregnancy dietary iron intake (continuous) (per 10mg/d)

In participants
with vitamin C

intake> 50
mg/day

0 -0.3, 0.3 0.5
0.6

-0.2, 1.5 0.5 -0.3 -2.4, 1.9 0.7 0.8 -1.1, 2.7 0.8 0 -.0.7, 0.6 0.3

In participants
with vitamin C

intake≤ 50 
mg/day

0.2 -0.7, 1.1 -0.3 -2.7, 2.1 -1.8 -7.3, 3.7 1.2 -4.0, 6.4 1.2 -1.1, 3.5

Maternal pregnancy iron supplement use

In participants
with vitamin C

intake> 50
mg/day

0 -0.1, 0.2 0.2 0.3 0, 0.7 0.1 -0.8 -1.7, 0.1 0.9 -0.4 -1.2, 0.5 0.9 0.1 -0.2, 0.3 0.9

In participants
with vitamin C

intake≤ 50 
mg/day

0.2 -0.1, 0.5 -0.3 -1.1, 0.6 -0.8 -2.7, 1.2 -0.1 -2.0, 1.8 0 -0.8, 0.8

#Change per 1 unit in outcome adjusting for potential confounding characteristics: maternal age, pre-pregnancy BMI, smoking in pregnancy, educational qualification (as a proxy for
socioeconomic status), parity, and maternal total energy intake in the models with dietary iron intake as exposure)
*Interaction P value, testing the null hypotheses that associations do not differ by maternal vitamin C level

Table 27: Multivariable linear regression estimates from stratified analyses for associations between maternal iron intake in pregnancy with

offspring vascular indicators and body mass index with testing for effect modification by maternal vitamin C intake during pregnancy

(n=2958)
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Offspring pulse wave
velocity (m/s)

Offspring flow mediated
dilatation (%)

Offspring systolic blood
pressure (mmHg)

Offspring diastolic blood
pressure (mmHg)

Offspring body mass index
(kg/m

2
)

Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P* Β
#

99% CI P*

Maternal pregnancy dietary iron intake (continuous) (per 10mg/d)

Males 0.2 -0.2, 0.6 0.4 0.6 -0.4, 1.6 0.2 0.4 -2.3, 3.1 0.9 0.9 -1.5, 3.2 0.7 0.2 -0.7, 1.0 0.4

Females 0 -0.4, 0.4 0.5 -0.7, 1.6 -0.9 -3.8, 2.0 0.7 -1.9, 3.3 0.1 -0.9, 1.0

Maternal pregnancy iron supplement use

Males 0.1 -0.1, 0.2 0.8 0.2 -0.2, 0.6 0.9 -0.9 -2.1, 0.3 0.7 -0.9 -1.9, 0.1 0.06 -0.1 -0.4, 0.3 0.5

Females 0.1 -0.1, 0.2 0.3 -0.3, 0.7 -0.7 -1.9, 0.5 0.2 -0.8, 1.3 0.1 -0.3, 0.5

Maternal early pregnancy anaemia (<11 g/dl)

Males 0 -0.4, 0.4 0.9 0.2 -0.9, 1.2 0.3 -1.3 -4.1, 1.4 0.8 0.3 -2.1, 2.6 0.4 0.4 -0.5, 1.2 0.2

Females -0.1 -0.5, 0.4 -0.5 -1.7, 0.7 -1.0 -4.1, 2.1 -0.9 -3.7, 1.8 -0.2 -1.2, 0.8

#Change per 1 unit in outcome adjusting for potential confounding characteristics: maternal age, pre-pregnancy BMI, smoking in pregnancy, educational qualification (as a proxy for
socioeconomic status), parity, and maternal total energy intake in the models with dietary iron intake as exposure)
*Interaction P value, testing the null hypotheses that associations do not differ by offspring sex

Table 28: Multivariable linear regression estimates from stratified analyses for associations between maternal iron intake and haemoglobin

in pregnancy with offspring vascular indicators and body mass index with testing for effect modification by child sex (n=2958)



194

5.6 Discussion

In this study, associations of maternal pregnancy iron intake and early-pregnancy Hb

with several markers of offspring cardiovascular health at 10 years were examined. Of

the 25 main associations examined, only one was observed that was statistically

significant, that of an inverse association of maternal report of taking a supplement

that contained iron before 32 weeks gestation with offspring systolic BP at 10 years of

age. However, although the direction of the latter association is consistent with results

from previous animal studies that support a causal relationship between maternal ID

in pregnancy and raised offspring BP (Gambling et al., 2003b, Gambling et al., 2003a,

Crowe et al., 1995, Gambling et al., 2004b), its magnitude was modest (1 mmHg lower

offspring systolic BP on average in children whose mothers reported taking

supplements compared to those who did not).

To take some account of multiple testing, a p-value threshold of 0.01 was used as a

statistical significance level in this analysis, giving the association observed between

maternal iron supplement intake and offspring BP only marginal statistical significance

in the main complete dataset. Therefore, this result should be treated with caution as

a potential chance finding.

5.6.1 Residual confounding

The association between maternal iron supplement intake and offspring BP could be

heavily confounded by the detection of anaemia or ID in the mother. Mothers who are

aware or suspect that they are anaemic are more likely to consume iron supplements

during their pregnancy. The potential confounding of maternal Hb was taken into
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account in a sensitivity analysis which did not change this result much. However, the

detection of ID without anaemia during antenatal care through measuring sF

concentrations could still constitute unmeasured confounding, as mothers may opt to

take iron supplements if they become aware that they are iron deficient. There is also

the possibility that these mothers may change their diet to contain more iron towards

the end of their pregnancies.

5.6.2 Comparison with previous ALSPAC findings

The previous analysis in ALSPAC by Brion et al. reported an association between

maternal anaemia and offspring BP at 7 years only in women who did not take iron

supplements during pregnancy. The total sample size with data on maternal Hb

(before stratification by supplement intake) was considerably smaller (n=1255) than

this analysis (n=2958) (Brion et al., 2008). Also the definition of early anaemia differed

in that analysis in that it included both the first and second trimester, while here Hb

concentrations before 18 weeks gestation were used to define early pregnancy Hb. In

this analysis, using a bigger sample, stratification by intake of iron supplements did not

change the null result of the association between maternal anaemia with offspring BP.

Analysis presented in chapter 4 found no evidence of association between intake of

iron supplements in pregnancy and infant PWV, however adjusting for iron

supplement intake strengthened the association observed between early pregnancy

maternal anaemia and infant PWV (section 4.5.2.1).
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5.6.3 Comparison with Baby VIP findings (chapter 4)

In contrast to the association between maternal anaemia in early pregnancy and

increase infant PWV observed in Baby VIP, this study found no such association with

PWV measured 10 years later in life. One possible explanation for this difference in

findings is that PWV in the first few weeks of life may not reflect later cardiovascular

risk and may not correlate strongly with PWV later in life. Also, central PWV was

assessed in ALSPAC (carotid-radial) in comparison with peripheral PWV in Baby VIP

(brachio-femoral), which may explain the difference in findings. Another possibility is a

true effect of IDA on offspring cardiovascular profile as reflected by PWV in the short

term, which is potentially modifiable by other environmental factors during the first

years of life, leading to attenuating this relationship later in life.

5.6.4 Strengths & limitations of the study

5.6.4.1 Study sample

This is a relatively large study and the first to examine the association of maternal iron

intake and maternal Hb in pregnancy with measures of offspring arterial stiffness,

endothelial function and adiposity, as well as with BP. This sample size allowed the

assessment of mediation and effect modification based on existing evidence to explain

the mechanisms underlying any observed associations. However, the study sample

analysed to test mediation by cord ferritin was considerably smaller. Therefore, when

examining the association between maternal iron supplement intake and offspring

systolic BP, lack of statistical power may explain the difference in the results between

the complete data and multiple imputation models (Table 25 & Table 26).
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5.6.4.2 Exposure measures

Maternal Hb in early pregnancy was objectively measured as part of routine antenatal

care, and extracted for cohort participants from medical records, making bias due to

selection and measurement unlikely. Although anaemia does not represent a specific

or sensitive measure of body iron stores, it is likely to reflect ID when it is pronounced,

particularly in the first trimester (Milman, 2006a).

An important limitation of this study is that a biomarker of maternal iron status during

pregnancy, such as sF, or sTfR was not available in this study. Although there are

reservations about the use of sF as a sole measure of iron status as it is an acute

inflammatory marker (Zimmermann, 2008), it remains a better indicator compared to

self-reported iron intake or Hb concentration (Zimmermann, 2008). Dietary iron was

assessed by self-report, using a FFQ, which may provide less accuracy than more

detailed methods of dietary assessment such as weighed food diaries. Furthermore,

the long term outcomes of interest are cardiovascular events, which we are unable to

assess in this cohort due to their young age.

It is also known that haem iron is absorbed better than non-haem iron. Although

vegetarians often take iron supplements, these may not be as effective as the haem

iron that is missing from their diets, and this may have a bearing on the interpretation

of our results. However, results based on Hb concentrations in the blood were broadly

consistent with those based on dietary intake, suggesting that the source of the iron

was not relevant here.

Iron supplement intake was self-reported and the nature of the questions used in this

study mean that we do not know the amount of supplementation or whether the iron
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supplementation was in the form of iron only or as part of a multivitamin preparation.

Therefore the association we observed between maternal reported iron

supplementation and offspring systolic BP could be attributable to other micronutrient

supplements that the mother was taking as well or our null associations may be

masked since iron taken as part of a multivitamin preparation may be less readily

absorbed compared to when taken on its own (Gambling et al., 2008, Gambling et al.,

2003a, Kelleher and Lönnerdal, 2006).

It is difficult to conduct analyses in a British cohort study of iron-only supplements as

the exposure. Firstly because, in the UK, these are not recommended routinely in

pregnancy, therefore a small proportion of pregnant women would be expected to use

them. Secondly, those who take iron-only supplements are likely to be taking the

prescribed high-dose as opposed to the low-dose recommended routinely during

pregnancy in other countries.

5.6.4.3 Outcome measures

Offspring cardiovascular and adiposity indicators (PWV, FMD, BP and BMI) were

measured by trained skilled staff using standardised methods in this study. However,

definite correlation between cardiovascular measures during childhood and

cardiovascular end-points in adulthood, which are the main interest in the hypothesis

underlying these investigations, is yet to be established. Therefore, re-testing of these

associations using adult indicators of cardiovascular risk remains desired.
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5.6.5 Implications for research and practice

There is a need to examine the main relationship of interest in this study utilising valid

biomarkers of iron status in the mother such as R/F ratio. However, the results of this

analysis are still relevant to the current debate regarding the long-term benefit of

routine iron supplementation in pregnancy (Alwan and Cade, 2011). Some

international and national guidelines recommend routine iron supplements during

pregnancy including the World Health Organization and the US Centers for Disease

Control and Prevention (CDC) (CDC, 1998, WHO, 2006). However, iron supplements

can be associated with side-effects such as nausea, vomiting and constipation (British

Medical Association and Royal Pharmaceutical Society of Great Britain, 2010). In the

UK, routine iron supplementation during pregnancy is not recommended (National

Institute for Clinical Excellence (NICE), 2008), although there is no recommendation for

detection/intervention in pregnant women who are iron-deficient but not anaemic.
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5.7 Conclusion

The findings in this chapter suggest that maternal dietary iron intake and Hb

concentrations during pregnancy are unlikely to be related to childhood indicators of

cardiovascular health at 10 years. However, they do not exclude a relationship

between maternal iron status in pregnancy and cardiovascular indicators that could

become apparent later in the offspring’s lives.

In conclusion, this study suggests that maternal anaemia during early pregnancy is not

an important determinant of future offspring cardiovascular health, using childhood

vascular and adiposity indicators at 10 years. No associations were observed between

maternal iron intake in pregnancy with offspring’s vascular markers and adiposity

except for a modest inverse association between self-reported maternal iron

supplement intake during pregnancy and offspring systolic BP.

In the next chapter, offspring cardiovascular indicators are assessed in adulthood and

their association with maternal iron status is examined using a Mendelian

randomisation study design utilising IV techniques.
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6 Exploring the association of maternal iron

status with adult offspring’s blood

pressure and adiposity using Mendelian

randomization: the UKWCS-IBPS

In the previous chapters, I have investigated the association between indicators of

maternal iron status in pregnancy and offspring cardiovascular risk indicators in infancy

and childhood. This chapter explores the relationship of maternal iron status with

adult offspring health indicators including BP and adiposity, which are known to be

strong predictors of CVD morbidity and mortality.

Work from this chapter has formed the basis of one peer-reviewed paper (Alwan et al.,

2012b), and one conference presentation with a published peer-reviewed abstract

(Alwan et al., 2012a).
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6.1 Chapter summary

An IV analysis, using maternal C282Y as an instrument for mother’s iron status, was

undertaken to examine its association with offspring BP, WC and BMI, and the results

were compared to that of ordinary least squares (OLS) regression. Offspring of a sub-

cohort of mothers from the UK Women Cohort Study were recruited in 2009-10

(n=348, mean age=41 years). Their BP, height and weight were measured at their local

general medical practice, and they were asked to self-measure their WC. About half

were offspring of C282Y carriers. Maternal ferritin was used as a biomarker of

maternal iron status.

Maternal C282Y was strongly associated with maternal ferritin (mean difference per

allele=84 ug/l, 95% CI 31, 137, P=0.002). Using IV analyses, maternal ferritin was not

linked to offspring’s BP, BMI or WC. The first stage F statistic for the strength of the

instrument was 10 (Kleibergen-Paap rk LM P-value=0.009). Maternal ferritin was linked

to offspring diastolic BP, WC and BMI in univariable, but not in multivariable OLS

analysis. There was no difference between the OLS and the IV models coefficients for

any of the outcomes considered.

There was no evidence of association between maternal iron status and adult

offspring’s BP and adiposity using both multivariable OLS and IV modelling. This is the

first study examining this relationship using offspring outcomes in adulthood. Further

exploration in larger studies that have genetic variation assessed in both mother and

offspring should be considered.
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6.2 Background

6.2.1 Mendelian randomization

Association studies of specific nutrient effects with health outcomes in humans are

difficult because of the likelihood of important confounding by other nutrients or

dietary characteristics, as well as other lifestyle factors such as smoking and alcohol

consumption, and socioeconomic factors potentially affecting these associations. Most

of these studies are observational, as randomised controlled trials are often not

feasible or ethical to study such relationships. One way to try and tackle this limitation

is the use of the random assortment of genes from parents to offspring which provides

one method for assessing the causal nature of some environmental exposures (Lawlor

et al., 2004). This approach, known as Mendelian randomization (MR), uses genetic

variants as instrumental variables for the environmental exposures of interest (Davey

Smith, 2003).

Genetic variants are randomised at birth and are not influenced by the many lifestyle

and environmental characteristics with which risk factors, such as ID, are associated.

Since these genetic variants are allocated at conception, they cannot be influenced by

either the later occurrence of disease processes or treatment (Davey Smith et al.,

2007). Therefore associations derived from MR analysis are less likely to be affected by

confounding and reverse causality that can bias established multivariable approaches

to epidemiological association studies (Lawlor et al., 2008a).

In the context of CVD research, MR can be used to investigate causation of risk factors

such as obesity. MR can also provide a valuable tool in the study of the developmental
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origins of obesity by using paternal/maternal genes to control for the effect of

offspring genes, and hence to separate ‘developmental’ effects during fetal life and

early childhood from genetic inherited effects. For example, Lawlor et al. examined the

effect of maternal adiposity measured by BMI on offspring fat mass. Using maternal

FTO genotype as an IV in the analysis, and hence controlling for the offspring's FTO

genotype, which would directly affect their fat mass, there was no evidence of

association between maternal BMI and offspring fat mass (Lawlor et al., 2008b).

It is important to note that MR has important caveats. These include confounding by

polymorphisms in linkage disequilibrium with the genetic variant under study, the fact

that variants may have several phenotypic effects associated with the outcome of

interest, canalisation which is the buffering of genetic effects during development, and

the absence of a suitable polymorphism for studying the exposure of interest (Davey

Smith, 2003).

6.2.1.1 Instrumental variable analysis

IV methods are commonly used for statistical analysis in econometrics. This approach

is generally recommended for data analysis in MR studies (Lawlor et al., 2008a). An IV

is a variable associated with the outcome only through its robust association with an

intermediary variable, which is the exposure of interest in the case of MR (Figure 11).
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Figure 11: Illustration of IV analysis

There are conditions for IV analysis (Lawlor et al., 2008a). These are:

1. Z is robustly associated with X

2. Z is not associated with U (this can be tested in the study data)

3. Z is related to Y only through X

4. All associations are linear and unaffected by statistical interaction

In this study IV analysis uses the proportion of the variation in maternal iron status

that is explained by the C282Y mutation in the HFE gene to provide an un-confounded

estimate of the relationship with adult offspring’s BP and obesity.

6.2.2 Genetic susceptibility to iron overload

Women who carry a C282Y mutation in the HFE gene are more likely, in the

homozygous state, to suffer from haemochromatosis, a condition which is

characterised by iron overload in the liver (Rhodes et al., 1997, Willis et al., 1999).

C282Y homozygotes (aa) have significantly higher sF, TS and serum iron levels

compared to wild type individuals (gg) (Cade et al., 2005).
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About 12-20% of Northern Europeans are heterozygotes for this mutation (ag) (Rhodes

et al., 1997). These HFE gene mutation carriers are usually asymptomatic, however

there is evidence that C282Y heterozygotes have higher total body iron stores

reflected by higher TS levels (Chan et al., 2005, Cade et al., 2005, Beutler et al., 2002,

Jackson et al., 2001), and reflected by lower R/F ratio (Chan et al., 2005). In a survey in

Denmark, Pedersen and Milman found that, among C282Y homozygotes, 89% had

elevated TS (>=50%) and 94% had elevated sF (>300 mcg/L). Among C282/wild type

(ag) heterozygotes, 9% had elevated TS, 9% had elevated sF, and 1.2% had elevated

both markers (n=2550) (Pedersen and Milman, 2009) compared to wild type.

6.3 Hypothesis and aim

It is hypothesised that women who carry the C282Y mutation in the HFE gene are at

lower risk of ID during pregnancy, and therefore their adult offspring will have on

average lower BP and less adiposity, as indicated by BMI and WC, than the offspring of

wild-type mothers.

The aim of this study is to use the concept of Mendelian randomisation study design to

examine the relationship between maternal iron status, using maternal sF as the

environmental measure of exposure (modifiable risk factor) and maternal C282Y

genotype as the IV, with offspring BP and adiposity measures (BMI and WC) in

adulthood, utilising both ordinary multivariable regression and IV regression methods

and comparing between their results.
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6.4 Methods

6.4.1 The cohort: the UK Women’s Cohort Study

The UK Women’s Cohort Study (UKWCS), which includes 35,372 women aged 35-69 at

recruitment across England, Wales, and Scotland, was established in 1994 to examine

the association of diet with cancer. Subjects in the cohort were selected to ensure that

there was a wide range of dietary patterns represented. The cohort was constructed to

have similar, large numbers of subjects in three main groups: vegetarian, fish-eaters

and meat-eaters.

The cohort was taken from responders to the World Cancer Research Fund’s (WCRF)

direct mail survey. This included people living in England, Wales and Scotland and used

direct mail lists, targeted towards females, with an overall response rate of 17%. Using

this approach, about 16 000 self-reported vegetarians and a similar number of other

non red-meat-eaters aged 35–69 years were identified, out of a total of 500 000

responders. Eighty-five per cent of the responders were women, and 75% indicated 

that they would be willing to participate in a more detailed survey. These women

formed the population to be contacted to become part of the UK Women’s Cohort. All

of the vegetarians and the non red-meat-eaters were invited to take part in the study.

A comparison group was selected from the remaining eligible women by selecting, for

each vegetarian, the next non-vegetarian in the list aged within 10 years of the

vegetarian. Further women were recruited from responders to the baseline data

collection, who were asked to identify friends and relatives of a similar age group who

were vegetarians and meat-eaters.
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One hundred and seventy-four local research ethic committees were contacted and

permission to carry out the study was obtained. Baseline data were collected between

1995 and 1998 via a postal questionnaire to each subject (Cade et al., 2004).

6.4.2 Exposure assessment in the second phase of UKWCS

Approximately 15,000 women from UKWCS were contacted for a second time between

1999 and 2002 to acquire more detail on diet. They were sent 2 cytology brushes and

asked to provide cheek cell samples for DNA extraction (phase II data collection). These

samples were returned by mail and refrigerated until DNA extraction could be

undertaken.

A protocol for high throughput screening was developed for the HFE mutations

associated with haemochromatosis. This involved a simple DNA extraction method

that uses sodium hydroxide cell lysis for cheek cells, adapted from the method of

Rudbeck and Dissing (Rudbeck and Dissing, 1998). This was followed by a highly

sensitive fluorescent Amplification Refractory Mutation System (ARMS) technique.

DNA from the buccal cells was of insufficient quality to use a traditional restriction

digest for detection of the 2 mutations, C282Y and H63D (Worwood et al., 1997). The

ARMS technique is a sensitive analysis that can be used for any point mutation

(Newton et al., 1989, Baty et al., 1998).

All subjects who were found to be homozygous or heterozygous for the C282Y gene

mutation were also asked to provide a blood sample, to confirm the result from the

cheek cell DNA and to measure markers of iron status including sF. This was measured

with a 2-site chemiluminometric (sandwich) immunoassay (Bayer, Newbury, United
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Kingdom) performed in the Department of Clinical Biochemistry and Immunology.

Methods were validated by participation in recognized quality-assurance schemes. In

addition, 3000 women were randomly selected and asked to provide a blood sample

for both measurement of iron storage markers and DNA to act as a control group (Cade

et al., 2005).

C282Y homozygotes were found to have significantly higher sF, transferring saturation

and serum iron levels compared to wild type women. C282Y heterozygotes had

significantly higher TS levels compared to wild type women. Cade et al. describe the

full results of this analysis (Cade et al., 2005) . The genotype assessed in this study was

used as a proxy (IV) for maternal iron status in our sub-cohort as described below.

6.4.3 The sub-cohort: the UK Women’s Cohort Study - Iron and

Blood Pressure sub-cohort

For this analysis, 1416 mothers, identified as reporting having at least one live child in

the first UKWCS questionnaire, were contacted between 2008 and 2010, of whom 716

were C282Y allele carriers (aa or ag), and 700 were wild type HFE genotype (gg). H63D

carriers were not included in the sampling as this mutation on its own is not clinically-

important unless it occurs in combination with the C282Y mutation (compound

heterozygotes) (Waheed et al., 1997). The non-exposed in this sample were randomly

selected from the pool of women with one or more children who were tested and

found to have a wild type genotype. The total number of offspring for women

contacted in this study was 3376, of whom 1686 were children to C282Y carrier

mothers and 1690 to wild type mothers (Figure 12)
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.

Figure 12: UKWCS- IBPS participant flowchart

6.4.3.1 Recruitment stages

Recruitment started in December 2008 and finished in October 2010.

Stage 1 – Study sample was identified as a sub-cohort of the UKWCS (as described

above) and mailed in batches

Stage 2 –A study pack was sent to the mothers, containing a study invitation, a study

information sheet, a pack for them to pass on to each of their offspring over the age of

18 with a stamped envelope for each of these packs. The offspring pack contained the

offspring’s study invitation letter, an offspring’s information sheet, a study consent

form to fill in, sign and send back to the study team with their contact details and a

stamped, addressed envelope for the consent forms.
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Stage 3 – Offspring who have replied wanting to take part in the study were sent a

study pack including a tape measure with instructions on how to measure waist and

hip circumference, a form to write down them down, a lifestyle and diet questionnaire

to complete, a GP/practice nurse pack and an addressed freepost envelope for the

participant to return the two measurement forms and the completed lifestyle

questionnaire to the study team. The GP pack contained a GP/practice nurse

information letter, BP, height and weight standard operating procedure (SOP), a

measurement form, and a stamped envelope for the practice to claim any charges for

the measurements (up to £15 per participant). Participants were asked to make an

appointment with their practice requesting to have the measurements done as part of

the study and to take the measurement form with them for the GP/nurse to fill-in and

return to the study team.

Stage 4 – Reminder letters were sent to the mothers whose children had not replied.

Also letters were sent to these mothers’ alternative contacts to find out if the mothers’

addresses were valid and obtain new addresses if appropriate.

Stage 5 – Second reminders were sent to the mothers with prepaid reply slips to let

the study team know if they have passed the study packs to their children or if they do

not wish to be contacted further in relation to this specific study.

Stage 6 – Reminders were sent to the children who have consented but not completed

the study.
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Stage 7 – Second reminders to the children who have consented but not completed

the study were sent by e-mail. A telephone contact was made for participants who

have not supplied a valid e-mail address.

All the study documents described above are included in appendix 10.5.

6.4.4 Outcome measurement

6.4.4.1 Blood pressure, height and weight

Height, weight and BP were measured at each participant’s general practice. A

standard operating procedure for the measurement of height, weight and BP sheet

was attached to the GP/practice nurse’s letter, and practice staff were asked to follow

it when taking the measurements. We asked for two BP measurements at least 1

minute apart. If the first and second measurement differed by more than 5 mmHg for

either the systolic BP or diastolic BP, a third measurement was requested at least 1

minute after the second measurement. The mean of the 2 or 3 readings was used in all

analyses. The type of the BP machine, brand name if automatic, position

(sitting/standing), left or right arm, and cuff size were asked to be recorded on the

measurement form.

6.4.4.2 Waist circumference

The offspring who consented to take part in the study were asked to self-measure

their WC following specific instructions using a tape measure supplied in the study

pack. Two measurements were requested (in inches or centimetres), and their mean

used in all analyses.
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6.4.5 Covariable measurement

Each participant was asked to fill in a diet and lifestyle questionnaire. This included

information on birth weight, siblings, educational attainment, employment, ethnic

background, marital status, smoking, alcohol and caffeinated drinks use, physical

activity, medical conditions, and medications consumed. The questionnaire included a

123-item FFQ as well as questions about other dietary habits including vegetarian

status and salt intake.

6.4.6 The causal model

Figure 13 demonstrates the hypothesised causal relationships underlying the models

tested in this study.

6.4.7 Sample size calculation

The SD for diastolic BP from the Health Survey for England 2003 is 11.6 mmHg for men

aged 35-44 years and 11.0 mmHg for women of the same age group (Craig and

Mindell, 2003). Using a SD of 11.3 mmHg (average), the sample size required to

achieve adequate power for a range of effect sizes for a two-sample t-test at the 5%

significance level to detect a difference in diastolic BP between offspring of women

with the C282Y allele and offspring of women with the wild type allele was calculated

using different levels of response rate (Table 29).
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* The minus sign indicate a hypothesised inverse relationship

Figure 13: Causal diagram for the relationship between maternal iron status in

pregnancy and BP/obesity in the offspring using IV analysis in the UKWCS – IBPS

Response rate Number per
group (n)

Minimum difference
in diastolic BP in
mmHg to detect at
80% power

Minimum difference in
diastolic BP in mmHg to
detect at 90% power

100% 1675 1.1 1.3

50% 840 1.6 1.8

30% 500 2.0 2.3

10% 160 3.6 4.1

Table 29: Sample size calculations for the UKWCS-IBPS
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6.4.8 Statistical analysis

Analysis was performed using Stata, version 11 (Stata Corporation, College Station, TX).

The relationship of interest was examined using both OLS regression and IV regression

modelling using the ‘ivreg2’ command in Stata. The two modelling methods used (OLS

and IV regression) are examining the same association of maternal iron status and

offspring adiposity and BP outcomes, using the difference in offspring systolic BP,

diastolic BP, WC and BMI per 10 ug/l greater maternal sF. Neither is testing the direct

link between the maternal C282Y genotype and offspring outcomes.

Clustering of siblings (where there was more than one sibling per mum included in the

study) was adjusted for using the ‘robust cluster’ command in Stata which computes a

cluster-robust standard error of the difference in both the OLS and the IV analyses.

6.4.8.1 IV regression

We used two-stage least square (2SLS) as a method of estimation for IV regression,

with maternal C282Y genotype (aa, ag or gg) as the instrument, under an additive

model, and maternal ferritin as the modifiable risk factor of interest. We included

systolic BP, diastolic BP, WC, and BMI, as outcomes. In the first stage of the 2SLS

model, the regression of maternal ferritin on C282Y (instrument) is fitted. In the

second stage, the outcome is regressed on the predicted values of maternal ferritin,

the coefficient of which is the estimate of the causal effect. The standard errors of the

second stage parameters are appropriately corrected to account for the uncertainty in

the predicted values of the exposure from the first stage.
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The first stage F-statistic is reported to provide an indicator of the instrument strength.

Values of 10 and over are taken to be sufficient to exclude weak identification using

the specified instrument (maternal C282Y) (Staiger and Stock, 1997). The weak

identification F statistic we used for the IV regression in the case of specification of

‘robust cluster’ in the model is based on the Kleibergen–Paap rk statistic, the null

hypothesis being that the estimator is weakly identified by the instrument (Baum et

al., 2007). Rejecting the null hypothesis indicates the instrument has sufficient

strength (Baum et al., 2007).

6.4.8.2 OLS regression

The exposure in these analyses was maternal sF and the main outcomes were offspring

BP, MI and WC. Child age, maternal age (at phase II of the UKWCS) and child gender

were considered confounders and adjusted for in the multivariable OLS models. In

addition, maternal BMI (at phase II) and maternal social class (as classified according to

the three category National Statistics Socio-economic Classification) were considered

confounders and adjusted for in the multivariable OLS models with offspring BMI and

WC as outcomes. Other potential confounding factors were tested for association with

the exposure and offspring’s BP and adiposity, and were included in the multivariable

OLS model if they showed a statistically significant relationship with both.

6.4.8.3 The difference between the IV and the OLS estimates

The standard errors of the differences between the IV and the multivariable OLS

estimates were estimated using 10,000 bootstrapped replications (Schluchter, 2008).

P-values were then calculated from these standard errors based on a normal
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approximation for the sampling distribution of the mean differences. The Stata code

for this analysis is attached in appendix 10.5.3.

6.4.9 Ethical approval

This study was conducted according to the guidelines laid down in the Declaration of

Helsinki and all procedures involving human subjects were approved by the NHS North

West Research Ethical Committee (REC reference number 07/H1010/68). Written

informed consent was obtained from all participants.

6.4.10 Funding

The work included in this chapter was supported by the Wellcome Trust [Grant

number WT87789 to N.A.A.] The mailing and GP reimbursement costs were covered by

grants from the Rural Environmental Scientific and Analytical Service (RESAS) of the

Scottish Government and the European Union (EARNEST) to Professor Harry J McArdle

at the Rowett Institute of Nutrition and Health, University of Aberdeen.
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6.5 Results

6.5.1 Response rate

Of the original 3376 offspring, 517 (17%) consented to take part, and 348 offspring of

277 mothers completed the study (10% of the invited sample, 61% of those who

consented). 170 (49%) were children of C282Y mutation genotype mothers, of whom

12 were children of 11 homozygotes mothers (aa), and 158 were children of

heterozygous mothers (ag).

6.5.2 Sample characteristics

Of those 348 who completed the study, 247 (71%) were females and 101 (29%) were

males. The mean age was 41 years for women (95% CI 40, 41) and 40 years (95% CI 38,

42) for men. All participants who reported ethnicity information (n=335) described

their ethnic group as white. 212 offspring had no other siblings, 117 had one sibling

included in the study, 15 had 2 siblings and 4 had 3 siblings included. Four percent

(n=13) had systolic, and 2% (n=7) had diastolic hypertension, according to the WHO

cut-off points of 140/90 mmHg (Whitworth, 2003). Around 10% of participants had

BMI equal to or more than 30 kg/m2. This is lower than the Health Survey for obesity

estimate of 25% (Health Survey for England (HSE), 2010). Fifty eight percent of

participants reported having professional or senior management jobs. The mean BMI

was 24, and the mean BP was 117/73 mmHg.

The characteristics and measurements of the study participants are described in table

30 and table 31.
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Number Percentage 95% CI

Body mass index (kg/m
2
) (n=335)

<25

25-29

≥30

214

88

33

63.9

26.3

9.9

58.5, 69.0

21.6, 31.3

6.9, 13.6

Smoking (n=340)

Current smoker

Ex-smoker

Never smoked

33

106

201

9.7

31.2

59.1

6.8, 1.3

26.3, 36.4

53.7, 64.4

Alcohol intake (n=339)

Regular

Once/week

Occasional / never

207

46

86

61.1

13.6

25.4

55.6, 66.3

10.1, 17.7

20.8, 30.4

Marital status (n=333)

Married

Single

Divorced/separated/widowed

105

115

33

55.6

34.5

9.9

50.0, 60.9

29.4, 39.9

6.9, 13.6

Vegetarian (self-reported) (n=332)
44 13.3 10.0, 17.4

Hypertension (self-reported, n=340)
21 6.2 3.9, 9.3

Systolic blood pressure >140 mmHg
(n=336)

13 3.9 2.1, 6.5

Diastolic blood pressure >90 mmHg
(n=336)

7 2.1 0.8, 4.2

Any exercise during the week

Vigorous (n=332)

Moderate (n=337)

Light (n=339)

197

259

315

59.5

76.6

92.9

53.8, 64.7

72.0, 81.3

89.6, 95.4

Self-reported occupation (n=286)

Professional/senior managers

Intermediate/technical

Routine/semi-routine manual

Self-employed

Student

Unemployed

165

54

15

41

9

2

57.7

18.9

5.2

14.3

3.2

0.7

51.7, 63.5

14.5, 24.1

3.0, 8.5

10.5, 18.9

1.4, 5.9

0.08, 2.5

Self-reported low birth weight (<2500g)
(n=230)

15 6.5 3.7, 10.5

Table 30: UKWCS-IBPS offspring’s characteristics by sex



220

Mean SD 95% CI Median

Height (cm) (n=335)

F

M

169

165

180

9.8

7.0

8.1

168, 170

164, 166

178, 181

168

165

179

Weight (kg) (n=338)

F

M

70

66

81

14.3

12.1

13.3

69, 72

78, 84

64, 67

67

64

80

BMI (kg/m
2)

(n=335)

F

M

24.3

24.0

25.0

4.2

4.3

3.9

23.9, 24.8

23.5, 24.6

24.2, 25.8

23.6

23.3

24.6

Systolic BP (mmHg) (n=336)

F

M

117

114

124

13.6

12.6

13.5

115, 118

112, 115

121, 126

116

113

123

Diastolic BP (mmHg) (n=336)

F

M

73

71

76

9.2

8.7

9.7

72, 74

70, 73

74, 78

72

71

76

Waist circumference (cm) (n=341)

F

M

83

81

90

12.4

11.3

12.7

82, 85

79, 82

87, 92

81

78

90

Hip circumference (cm) (n=342)

F

M

99

99

99

10.1

10.1

10.1

98, 100

98, 100

97, 101

99

98

100

Waist/hip ratio (n=341)

F

M

0.84

0.81

0.91

0.09

0.07

0.11

0.83, 0.85

0.81, 0.82

0.89, 0.93

0.83

0.81

0.91

Table 31: UKWCS-IBPS offspring’s measurements
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6.5.3 Differences between genotype groups

There were no statistically significant differences between offspring of C282Y mutation

mothers (aa & ag) and those of wild-type (gg) mothers in age, gender, smoking, marital

status, reported LBW, vegetarian status, frequency of takeaway foods, frequency of

exercise, occupational classification (as a measure of socioeconomic status), systolic

and diastolic hypertension, systolic BP, BMI category, BMI, and WC (adjusting for

clustering of siblings within families). Figure 14 shows the average offspring BP, WC

and BMI per each maternal genotype. There was a positive relationship between

diastolic BP in females and maternal C282Y genotype (change 2.5 mmHg, 95% CI 0.3,

4.8, P=0.03). There was a statistically significant interaction between gender and

maternal genotype on offspring’s diastolic BP (P=0.05).
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Figure 14: Mean offspring systolic and diastolic blood pressure (SBP & DBP), body

mass index (BMI) and waist circumference (WC) per maternal genotype

6.5.4 Associations of the modifiable risk factor (maternal ferritin)

versus the IV (maternal C282Y) with potential confounders

Maternal sF was associated with maternal age, offspring age, maternal and offspring

vegetarian status, whereas there was no statistical evidence that maternal C282Y

genotype was associated with any of these factors (Table 32). Maternal vegetarian

status was significantly linked to both maternal ferritin and offspring DBP, and

therefore was additionally entered in the multivariable OLS model with DBP as the

outcome.
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Maternal Ferritin Maternal C282Y

Maternal age <0.0001 0.9

Offspring age <0.0001 0.9

Offspring gender 0.3 0.4

Maternal vegetarian status <0.0001 0.8

Offspring vegetarian status 0.003 0.9

Maternal smoking 0.1 0.1

Maternal social class 0.5 0.9

Maternal body mass index 0.2 0.8

Table 32: Univariable P values of the association between maternal serum ferritin

and maternal C282Y with potential confounders in the relationship between

maternal iron status and offspring outcomes
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6.5.5 Associations of the modifiable risk factor (maternal ferritin)

with the IV (maternal C282Y) and study outcomes

Maternal C282Y was strongly associated with maternal sF, with a mean difference per

each additional allele of 84 ug/l (95% CI 31,137, P=0.002).

In univariable analysis, maternal ferritin was linked to offspring’s diastolic BP

(0.1mmHg for every 10 ug/l increase in maternal sF, 95% C 0-.03, 0.3, P=0.02),

offspring WC (0.2 cm for every 10 ug/l increase in maternal sF, 95% CI 0.06, 0.3,

P=0.006), and offspring’s BMI (0.05 kg/m2 for every 10 ug/l increase in maternal sF,

95% CI 0.002, 0.1, P=0.04). However, these associations did not persist in the

multivariable OLS model. Table 33 shows the results of associations of maternal sF

with each offspring outcome from both the confounder-adjusted multivariable

analyses and the IV analyses using maternal C282Y as the instrument. The first stage F

statistic for the strength of the instrument in the IV analysis was 10, and the

Kleibergen-Paap rk LM P-value = 0.009 for all outcomes considered. There was no

relationship between maternal sF and offspring BP, WC or BMI using both regression

methods. There was also no significant difference between the OLS and the IV analyses

regression coefficients for any of the outcomes considered.
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Outcome OLS* mean difference

in outcome per 10 ug/l

greater maternal

ferritin (95% CI)

IV** regression mean

difference in outcome

per 10 ug/l greater

maternal ferritin (95%

CI)

P value***

For the

difference in

regression

coefficients

Systolic BP

(mmHg)

0.03 (-0.1, 0.1) 0.2 (-0.2, 0.6) 0.5

Diastolic BP

(mmHg)

0.04 (-0.07, 0.2) 0.2 (-0.07, 0.5) 0.6

Body mass

index (kg/m2)

0.02 (-0.02, 0.07) 0.1 (-0.03, 0.2) 0.5

Waist

circumference

(cm)

0.1 (0, 0.2) 0.07 (-0.3, 0.5) 0.9

*Multivariable ordinary least squares models adjusted for maternal age, child age and gender in all

models, and additionally for maternal vegetarian status in the diastolic BP model, and maternal BMI and

social class (NS-SEC) in the BMI and WC models.

**Instrumental variable two stage least squares (2SLS), first stage F-statistic =10

*** Derived using 10,000 bootstrapped replications to estimate the standard errors of the differences

between the IV and multivariable OLS regression estimates

Table 33: Association of maternal iron status with offspring blood pressure and

adiposity measures using maternal C282Y status as an instrumental variable
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6.6 Discussion

In this analysis, the association of maternal iron status with adult offspring’s BP, BMI

and WC was examined. Two methods were compared; confounder-adjusted

multivariable analyses, and analyses where a genetic mutation (C282Y) in the HFE gene

was used as an IV for maternal iron status. The study shows that maternal iron status

was not associated with the three offspring outcomes considered in this study using

either method. There was also no statistical evidence that the associations differed

between these two statistical approaches. In this sample, maternal C282Y genotype

was associated with ferritin level. This supports the apriori hypothesis that HFE C282Y

could be used as an IV for iron status.

6.6.1 Previous studies

There are no previous studies examining the relationship of maternal iron status with

adult offspring BP and adiposity using either approach (OLS or MR). Previous studies

have examined the relationship of maternal iron intake and Hb levels in pregnancy

with children’s BP (Brion et al., 2008, Belfort et al., 2008). Belfort et al. reported a

positive, rather than an inverse, association between maternal iron intake in

pregnancy and child systolic BP at 3 years (Belfort et al., 2008), while Brion et al. found

no association (Brion et al., 2008). The findings of these studies are discussed in more

detail earlier in this thesis in section 2.3.3.

6.6.2 Study strengths

A key strength of this study is that it is the first to examine the association of maternal

iron status with adult offspring BP and adiposity in a human population. Thus, the
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observations from previous animal work (Gambling et al., 2003b, Gambling et al.,

2003a, Crowe et al., 1995, Gambling et al., 2004b) were tested in a human population.

Maternal genotype was robustly measured and ascertained, and the main outcomes

measures of offspring BP and BMI were objectively measured by the general

practitioner or the practice nurse following a standard operating procedure.

Maternal sF was used as a measure of iron status, as there is evidence that ferritin

alone provides a good approximation of total body iron reserves, as validated by R/F

ratio in people with un-elevated C-reactive protein (Yang et al., 2008). Although there

is a possibility this approximation may vary in pregnant women.

I have tried to examine the association using two statistical approaches with different

underlying assumptions for assessing causality that complement each other. The

multivariable approach assumes that potential confounding factors are accounted for,

correctly measured and modelled and that there is no possibility of reverse causality.

In this case, reverse causality is unlikely (i.e. we cannot see how offspring outcomes

could influence the mothers iron status). However, residual confounding is still

possible with this approach.

6.6.3 Study limitations

6.6.3.1 Measurement of maternal iron status

This study did not have information on maternal iron intake during pregnancy. We

have also used maternal sF concentrations assessed many years after they were

pregnant with the offspring, and are therefore assuming in these analyses that this is a

reasonable proxy for maternal iron status in pregnancy. Any potential measurement
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error because of this is likely to be non-differential with respect to the offspring

outcomes that we have assessed here, and therefore the expectation would be that

results would be biased towards the null. Thus, this measurement error might explain

the null multivariable observations.

For the IV analyses, using maternal iron concentrations outside of pregnancy is not a

major limitation as the genetic variant will have resulted in subtle differences in iron

status throughout the woman's lifecourse including during pregnancy. This approach is

also less influenced by residual confounding. However, the IV analysis assumes that

the instrument is associated with the risk factor of interest, which we know is the case

from previous studies and which we have demonstrated here, though the first stage F-

statistic of 10, suggests that the instrument’s strength to identify the estimator

(maternal ferritin) is borderline (Staiger and Stock, 1997). This would potentially bias

the IV analysis towards the null results seen in the multivariable analysis. Using

another measure of iron stores during pregnancy which is not affected by

inflammation, such as R/F ratio, could result in strengthening the genetic instrument.

6.6.3.2 Violation of IV analysis assumptions

It is further assumed that the IV (here C282Y mutation in the HFE gene) is not

associated with any measured or unmeasured confounding i.e. is naturally randomised

in the population. This is confirmed by testing the association between maternal C282Y

and selected measured factors in our data as shown in table 32. However, one of the

conditions of IV analysis is that the instrument should not be related to the outcome

except through the exposure of interest (Z related to Y only through X). The fact that

maternal genotype is linked to offspring genotype may constitute a violation to this
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assumption. Figure 15 shows the causal diagram for the relationships in this study with

this possibility taken into account. Such violation would be the case in all trans-

generational studies that attempt to use a MR design. Statistical simulation work may

be needed to simulate the genotype possibilities for the offspring and take them into

account in the analysis. The ideal way to tackle this problem would be to measure

offspring genotype and adjust for it. Hence, one of the main limitations in this study is

that offspring genotype was not measured.

There is some evidence linking C282Y heterozygotes with an increased risk of CVD

(Tuomainen et al., 1999, Rasmussen et al., 2001). . However, other studies show no

association (Gunn et al., 2004, Ellervik et al., 2005). If there is a true positive

relationship between offspring genotype and their BP, this may counteract an inverse

relationship between maternal genotype (used as a proxy for maternal iron status

here) and offspring’s BP, potentially leading to a spurious non-association in the

relationship of interest. However, it could be argued that it is the iron status at the

time of gestation that is the contributing factor to cardiovascular risk, and not the

phenotype of the fetus.
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The minus sign indicate a hypothesised inverse relationship, and the plus sign indicate a hypothesised
positive relationship

Figure 15: Causal diagram with the role of offspring genotype and iron status

included - the UKWCS - IBPS

6.6.3.3 Response rate

The study’s response rate of 10% meant that the study had a smaller sample size than

initially planned. MR studies require sample sizes larger than classical epidemiological

studies due to reduced precision of the estimates as genotype usually only explains a

proportion of the variation in the environmental exposure of interest. Also over half of

the offspring sample reported having professional/senior manager occupations,

suggesting potential selection bias with responders being more likely to be health

conscious with a lower prevalence of cardiovascular risk compared to the general



231

population. This is supported by the low prevalence of obesity in the study sample.

Therefore, the results may not be generalisable to the general UK population.

The relatively poor response rate may be due to the indirect recruitment method

used, as mothers were asked to pass on the study information to their children in

paper format, which potentially involved posting it to them. Therefore, loss to follow

up occurred at two levels in this study: mother and child. Some of the mothers were

not contactable through their postal address, and the UKWCS database did not include

a comprehensive list of participants’ electronic contact addresses. However, every

effort was made to achieve a good response rate by sending reminder letters to

mothers whose children have not replied, as well as attempting to obtain the most

recent addresses by sending letters to mothers’ alternative contacts. Reminders were

also sent to the children who have consented but not completed the study by post, e-

mail or telephone contact.

Future MR studies should consider recruitment methods where the offspring are

directly contacted and invited to take part. However, careful consideration to ethical

issues implied in potentially sharing confidential maternal information (genotype)

should be given. Also consent must be sought from both mother and child regarding

mothers passing on contact information for their children to the research team.

The task of visiting the GP for the offspring which was involved in the study is likely to

have also played a part in reducing the study’s response rate, as over one third of the

offspring who consented to take part, did not send their measurements. Some of these

participants contacted the study team and apologised for not completing the study
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due to being too busy to obtain a suitable time and date for a GP appointment due to

work commitments.

6.7 Conclusion

In this chapter, there was no evidence of association between maternal iron status and

adult offspring’s BP and adiposity using both multivariable OLS regression and IV

modelling with maternal C282Y mutation in the HFE gene as the instrument. However,

the relatively small study sample for a MR design and the lack of measurement of the

offspring C282Y genotype in order to adjust for any possible effect on the relationship

of interest are likely to push the study results towards accepting the null hypothesis.

Therefore, replication of findings in MR studies that avoid these limitations should be

considered.
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7 General discussion

7.1 Chapter summary

Chapters 3, 4, 5 and 6 contain discussion sections for the individual studies included in

this thesis which include strengths, weaknesses and implications of findings for each

study. However, in this chapter I attempt to pull all the previous chapters’ findings

together and further discuss their implications. I start with summarising the results

across the four studies by type of exposure and exposure-outcome associations. This is

followed by reviewing the main strengths and limitations of this thesis as a whole. I

then discuss how the results from this thesis compare with findings of experimental

animal studies described earlier in section 2.3.1. The findings relating to maternal Hb

and iron intake from diet and supplements during pregnancy are further commented

on in this chapter in relation to possible underlying mechanisms and relevance to

practice. This leads to the general conclusion of this thesis and recommendations for

further research and practice.
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7.2 Summary of thesis findings

7.2.1 Maternal iron status indicators in pregnancy

I have shown in section 5.5.1, with data in the 1990s from ALSPAC based in the South

West of England, that 90% of women had dietary iron intake below the UK RNI (14.8

mg/day) and a quarter below the UK LRNI (8 mg/day). A decade later in the CARE study

in Leeds (section 3.5.3.1), this was much the same despite using different dietary

assessment methods in the two studies, with 80% of women having daily intakes in

early pregnancy below the UK RNI for iron, and nearly a quarter below the UK LRNI.

A considerable proportion of pregnant women reported taking iron supplements

during pregnancy despite the lack of a national recommendation for routine iron

supplements in the UK. In ALSPAC, 45% of women reported taking iron supplements

before 32 weeks gestation. In the CARE study, 24% of women reported taking iron-

containing supplements in the first trimester, 15% in the second trimester and 8% in

the third trimester. In Baby VIP, conducted 10 years after CARE and 20 years after

ALSPAC with supplement data extracted from the medical notes rather than self-

reported, only 2% of women took iron supplements in the first trimester, 19% in the

second trimester, and 13% in the third trimester. Out of those with iron depletion in

the first trimester, only 58% took iron supplements at any stage in their pregnancy.

In the Baby VIP study, 23% of women had iron depletion in the first trimester as

defined by WHO cut-off (sF <15 ug/l), and 80% had a sF of less than 70 ug/l, which is

considered by some experts as the threshold above which there is no benefit of

recommending iron supplements (Milman, 2006b). In this study, 5% of women were
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anaemic (Hb <11 g/dl) in the first half of pregnancy, while 14% were anaemic (Hb <10.5

g/l) in the second half. In the CARE study, 3% of women were anaemic at 12 weeks,

compared to 23% at 28 weeks gestation. In ALSPAC, 4% were anaemic by 18 weeks

gestation.

7.2.2 Exposure-outcome associations

It is important to note that all the research studies included in this thesis are of

observational study design, therefore causality cannot be inferred from any of the

associations observed. However, this type of study design may be the best available for

most associations examined in this thesis. Conducting RCTs to test the hypothesis of

interest can be considered unethical particularly concerning the exposures of maternal

dietary iron intake and ID in pregnancy.

In the CARE study, total iron intake from diet and supplements in early pregnancy was

positively associated with birth weight centile, though the intake of the well-absorbed

form of dietary iron, haem iron, was not. The potential explanation for this lack of

association was discussed in sections 3.6.1.1 and 3.6.3.3. In this study, maternal

dietary supplement intake at any stage in pregnancy was not associated with birth

weight centile/SGA. However, MVM supplements intake in the third trimester of

pregnancy, most of which contained iron, was associated with around a 3-fold increase

in the risk of preterm birth. This finding can be due to residual confounding as

discussed in section 3.6.2.1. Residual confounding may have also played a part in the

observed association between maternal iron supplement intake before 32 weeks

gestation and lower offspring systolic BP at 10 years in ALSPAC, as discussed in section

5.6.1. 1. In this study, maternal dietary iron intake assessed at 32 weeks gestation was
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not associated with offspring cardiovascular indicators at 10 years (PWV, FMD. BP and

BMI).

In the Baby VIP study, maternal anaemia in the first half of pregnancy was associated

with increased infant bfPWV at 2-6 weeks. However, no association was observed

between infant arterial stiffness and maternal iron depletion in early pregnancy. The

implications of these findings were further discussed in section 4.6.2.1. Maternal ID

was associated with increased risk of having a SGA baby, so was maternal anaemia (Hb

<11 g/dl) in the first half of pregnancy. In contrast, Hb at 28 weeks gestation was

positively associated with increased risk of SGA in the CARE study. However,

associations between maternal Hb/anaemia during pregnancy were not observed later

in life with offspring cardiovascular indicators at 10 years (PWV, FMD, BP and BMI).

There was no evidence of association in this thesis between maternal iron

status/depletion in early pregnancy (measured by sF and sTfR) and preterm

birth/gestational age/birth weight centile. However, there are other studies which

have found such associations as discussed earlier in section 2.2.5.

The association between maternal iron status and CVD risk indicators in the offspring

was investigated in the UKWCS-IBPS element of this thesis. There was no evidence of

association between Maternal sF and adult offspring BP/BMI/WC both using OLS and

IV modelling with C282Y genotype. This genotype was shown to be associated with

maternal sF in this dataset, justifying its utilisation as an IV. This was the first study to

my knowledge examining the association of maternal iron status with adult offspring

BP and adiposity in a human population using a MR design. The design of this study is

innovative and the offspring outcomes are measured in adulthood, however
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awareness of its limitations is essential before making solid conclusions about the lack

of association between the exposure and outcomes of interest. These limitations with

suggestions to improve the design in future studies were discussed in detail in section

6.6.3.

7.3 General strengths and limitations

7.3.1 Study design

All the four studies included in this thesis are of observational cohort study design. All

the exposures were assessed before the occurrence of outcomes, therefore minimising

the risk of bias incurred when the exposures are assessed after the assessment of

outcomes. Three of the studies were of prospective cohort design (ALSPAC, CARE and

UKWCS), while the Baby VIP study was of historical cohort design, where maternal iron

status was assessed from samples collected in the first trimester of pregnancy and

retrieved after recruitment at birth.

It is unethical to deprive participants of iron to induce ID before or during pregnancy. It

can also be considered difficult to randomise them not to have supplements if they are

routinely recommended in pregnancy as is the case in most countries, and following

international guidelines such as the WHO’s. However, in the UK routine iron

supplementation in pregnancy is not recommended, therefore the potential is there

for a RCT and a follow-up of a RCT to examine the effect of iron supplements on long

term offspring cardiovascular risk indicators. Also RCT design could be implemented to

compare the benefit of supplements versus dietary interventions in maximising iron

intake and absorption during pregnancy.
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7.3.2 Study sample

The collective sample size for all the studies investigated in this thesis was 4942

participants (CARE=1274, Baby VIP=362, ALSPAC=2958, UKWCS=348). Statistical power

calculations were performed based on clinically-important associations as reported in

the chapters’ methods sections. However, for novel outcome measures such as infant

PWV used in the Baby VIP study, a clinically or epidemiologically important effect size

is still unknown. Therefore, if smaller differences are clinically important, in terms of

predicting long-term health outcomes, then the current study will be underpowered to

detect such associations and a larger study could be justified. Also, the response rate

to recruitment and rate of study completion was relatively poor in some of the studies

e.g. 20% in the CARE study and 10% in the UKWCS-IBPS. This limitation and its

potential reasons is discussed further in section 6.6.3.3.

7.3.3 Exposure measures

In the UKWCS-IBPS, maternal genotype was robustly measured and ascertained.

Maternal iron status in pregnancy was also assessed objectively using biomarkers

including sF, sTfR and Hb. The best measure of body iron, R/F ratio, was used to assess

maternal iron status in the Baby VIP study (Zimmermann, 2008). However, this was not

feasible in all of the included studies. Although data on Hb levels was available in CARE,

ALSPAC and Baby VIP, the limitations of using Hb as a marker of iron status were

discussed earlier in section 2.4.1.

Supplement intake was assessed via ascertainment from the medical notes in Baby

VIP, a researcher-administered interview in CARE and a self-reported questionnaire in

ALSPAC, raising the possibility of misreporting bias. The limitations of the methods of
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assessment of supplement intake are discussed further in sections 3.6.3.3 and 5.6.4.2.

Dietary iron intake was reported using commonly-used dietary assessment methods

including FFQ and 24-hour dietary recall. These have their own limitations as discussed

in the corresponding chapters (sections 3.6.3.3 and 5.6.4.2), mainly the potential for

considerable measurement bias. This point is also discussed further below in section

7.6.

7.3.4 Outcome measures

One of the main strengths of this thesis is the inclusion of objectively-assessed

outcome measures including birth weight, gestational age, PWV, FMD, BP and BMI.

None of the outcomes were self-reported apart from WC in the UKWCS-IBPS, and

attempts were made to minimise the chance of bias in assessing them. These included

rigorously training the researchers performing the measurements and carefully

following standard operating procedures if measurements were made by people

outside the research team, such as GPs and practice nurses. In case of vascular and

adiposity outcomes in infanthood and childhood explored in Baby VIP and ALSPAC,

there is no solid evidence that these measures predict cardiovascular end-points in

adulthood. Therefore, examining these associations using adult indicators of

cardiovascular risk is required.

7.3.5 Using multiple epidemiological studies at different time

points in the lifecourse to address the hypothesis of interest

The hypothesis of interest addressed in this thesis would ideally be addressed with one

longitudinal study that spans from pregnancy to offspring’s old age, with valid and
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reliable exposure and outcome assessment. Such data are unavailable at present.

Therefore, a pragmatic approach was adopted here to examine different aspects of the

hypothesis using multiple studies which assessed the outcomes at different time

points in the offspring’s lifecourse. This approach has its limitations as the studies are

different in their design, exposure and outcome assessment methods, study

population and size. All these factors play a big role in formulating the findings and

influence the generalizability of the results. Synthesising the results together, as I

attempt to do in this chapter, is difficult because of the significant heterogeneity

between the studies. Therefore, each chapter has been written with a stand-alone

specific hypothesis which it proceeds to test. Recommendations for future research

studies that would potentially advance the science relating to the topic in this thesis

are presented in the next chapter (section 8.3).

7.4 How do the findings compare with the evidence from

experimental animal studies?

In this thesis, the clear-cut relationship generated by animal research between

maternal iron status in pregnancy and offspring cardiovascular outcomes was not

established. Neither has it been established in other research investigating this

relationship in population studies (Brion et al., 2008, Belfort et al., 2008), which was

reviewed in sections 2.3.3 and 5.6.2. Although there was an association in the

expected direction between maternal anaemia in early pregnancy and infant PWV in

the Baby VIP study, only half of the anaemic women in this sample were iron deficient.

This raises the possibility that maternal anaemia is potentially related to infant

outcomes through pathways other than ID such as chronic tissue hypoxia and
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heightened maternal and fetal stress responses (Allen, 2001). Although infant PWV

was unexpectedly inversely associated with SGA, but not very SGA (<3rd birth weight

centile), the results of chapter 4 back Koudsi et al. finding of a positive association

between infant aortic PWV and birth weight (Koudsi et al., 2007).

The other significant relationship observed in this thesis is from the ALSPAC analysis

where there was a modest inverse association between the mother taking iron

supplements in pregnancy any time before 32 weeks gestation and child systolic BP at

10 years. However, the possibility of residual confounding is high in this relationship,

as intake of iron supplements may not be directly dependent on iron status, as shown

in findings from the Baby VIP study (section 4.5.1.4). Rather it may be an indication of

health beliefs in the mothers, which are usually reflected in other lifestyle factors

(Conner et al., 2001).

There are some questions generated by comparing the findings in this thesis which

were derived from population studies, to those shown in experimental animal studies.

These are discussed with potential explanations below.

7.4.1 Is maternal iron more important to short term compared to

long term offspring outcomes?

The findings of this thesis suggest that maternal iron intake and status has a strong

association with immediate offspring birth outcomes such as size at birth. Other

evidence also suggest an association with other outcomes in the first few months in

life such as infant ID as discussed in section 2.2.6. However, such an association may

start to attenuate the further the outcomes are assessed down the offspring’s
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lifecourse. Therefore, the effect of ID could be real but potentially modifiable by later

diet and environment exposures throughout childhood and adolescence. This is hard

to examine with the available data. In ALSPAC although maternal iron intake in

pregnancy was associated with child offspring dietary iron intake in childhood, testing

for mediation by child dietary iron intake did not make a difference in the exposure-

outcome relationships. A long term follow up of a birth cohort with detailed dietary

and biomarker assessment of iron status during, and preferably before pregnancy, and

measurement of a combination of offspring cardiovascular markers from birth to later

in life could potentially answer this question. A long-term follow up of a RCT of iron

supplements during pregnancy might also shed light on these relationships.

7.4.2 Is the range of variation in iron status/intake too narrow in

humans to show an association?

Extreme ID in animals cannot be replicated in observational studies in high income

countries where most participants are nutrient-replete. This can only be explored

further in low income countries where pregnant populations have more severe ID

spanning a long period of time before conception, or in natural human experiments

such as the Dutch hunger winter (Lumey et al., 2007) and the siege of Leningrad

(Stanner and Yudkin, 2001).

The offspring adverse changes observed in animal studies could be due to severe ID in

the mother rather than moderate or mild. Therefore, generalizability of study results

should be carefully considered when considering evidence from different parts of the

world, particularly concerning the effect of iron supplements. Most supplement trials

are conducted in low or middle income countries (section 2.2.8.2), while most
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observational studies that assess dietary intake in detail are conducted in high income

countries.

7.4.3 Are the findings masked by measurement bias in population

studies?

Animal studies usually involve accurate exposure assessment as they are usually

controlled intervention studies. This compares to the big potential measurement bias

involved in observational population studies, particularly when it comes to dietary

assessment methods from which iron intake is derived. Measurement error is

profoundly associated with all of the commonly-used dietary assessment methods in

population health research such as FFQs, food diaries, and interviewer-administered

dietary recalls. Innovative population-level dietary assessment methods such as

methods based on information and communication technology are urgently needed

that combine accuracy and reliability with feasibility, acceptability and low cost to

assess nutritional exposures and deliver dietary interventions on a large population

scale (Alwan and Cade, 2013). Such tools are starting to be developed and tested for

effectiveness both as a method of dietary exposure assessment and as a dietary

intervention (Carter et al., 2012, Carter et al.,2013a, Carter et al., 2013b). These could

be implemented to assess dietary intake including iron at multiple stages during

pregnancy in a birth cohort.
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7.5 Maternal haemoglobin in pregnancy and birth

outcomes

In this thesis, low Hb in early pregnancy was associated with adverse birth outcomes,

including SGA and increased infant PWV. In contrast, low Hb in the second half of

pregnancy was associated with favourable SGA risk. These findings go in line with the

U-shaped relationship between maternal Hb and birth outcomes reported in other

studies. This relationship was further discussed earlier in sections 2.2.4 and 4.6.2.2.1

of this thesis. In a recent meta-analysis of 12 observational studies, SGA was associated

with moderate to severe (<9 g/dl), but not mild anaemia during pregnancy (<11 g/dl or

<10 g/dl) (Kozuki et al., 2012).

A major problem in interpreting Hb values and how they relate to maternal iron status

is the physiological process of plasma volume expansion in pregnancy. This leads to a

fall in Hb level which obscures the typical relationship between ID and Hb. Not only

that, it also makes it difficult to interpret plasma-based indicators of ID including sF

due to plasma dilution. Also, the point at which Hb is assessed is of utmost importance

as plasma volume and cell mass change in the different stages of pregnancy

(Rasmussen, 2001). Assessing Hb in early pregnancy, before the materialisation of

plasma expansion, reflects iron status better than later in pregnancy. However, many

studies did not take account of these important physiological changes and used ‘lowest

Hb in pregnancy as a main exposure in relation to birth outcomes, without indicating

when it was obtained, or adjusting for gestational age (section 2.3.3).
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Although in the Baby VIP study, it appeared that the association between maternal ID

and SGA was mediated by maternal Hb level, there could be another pathway of

association between anaemia in pregnancy and adverse offspring outcomes other than

ID, such as other nutrient deficiencies. Also, low Hb levels restrict oxygen circulation in

the body, creating an environment of oxidative stress or chronic hypoxia, which could

then cause fetal growth restriction (Kozuki et al., 2012).

7.6 Dietary iron intake during pregnancy

It has been shown in this thesis, including relatively large samples of British women

from Leeds and Bristol, that iron intake in pregnancy in the UK is considerably lower

than recommended. 80-90% of women had intakes less than the UK RNI and 25% less

than the UK LRNI based on the CARE and the ALSPAC study samples. Vegetarians were

less likely to report inadequate intakes of iron in their diet, but their net iron

absorption could be less than meat eaters as discussed earlier in section 2.2.7.1. There

is no focus in current UK antenatal care on providing specific dietary advice to

maximize iron intake from food during pregnancy. Research into providing antenatal

advice of how to ensure adequate iron intake during pregnancy using a public health

approach is needed.

7.6.1 The meat paradox

There is some evidence that high red meat intake in relation to carbohydrate intake

during late pregnancy has a possible negative influence from the developmental

origins of disease angle, including higher offspring BP and cortisol levels (Herrick et al.,

2003, Shiell et al., 2001, Godfrey et al., 1994). However, red meat also provides in
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abundance the well-absorbed type of iron, haem iron. Therefore, advice to pregnant

women about consumption needs to be tailored to this specific group of population

according to a risk assessment based on the available evidence. Although the UK

Scientific Advisory Committee on Nutrition (SACN) advise limiting red meat intake in

adults in general to reduce the risk of colorectal cancer (Scientific Advisory Committee

on Nutrition, 2010), recommending meat as the source of haem iron during the limited

span of pregnancy is unlikely to have adverse effects in relation to lifetime risk of

colorectal cancer given the available research evidence. Since iron intake seems to be

of most importance in early pregnancy, meat intake can specifically be encouraged in

moderate amounts during that period. Alternatively, small amounts of meat can be

recommended to consume with sources of non-haem iron to aid its absorption (Skikne

and Baynes, 1994).

7.7 Supplement intake during pregnancy

7.7.1 Multivitamin-mineral supplements

Analysis included in this thesis in chapter 3 demonstrates no evidence of association

between taking daily MVM supplements during any stage in pregnancy and birth

weight, SGA, or large for gestational age at any stage in pregnancy. However, taking

MVM supplements in the third trimester was associated with an increased risk of

preterm birth, with this effect being more pronounced in primiparous women.

Interactions between micronutrients in the same supplement or in different

supplements may provide a possible explanation to any adverse associations such as

the one observed in the CARE study in relation to preterm birth. Significant interaction
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may decrease the bioavailability of micronutrients and their transfer across the

placenta. For example, copper overload induces iron overload, by interfering with the

iron regulatory mechanism, and iron interacts with zinc affecting absorption (Fosset et

al., 2009, Gambling et al., 2008, Kelleher and Lönnerdal, 2006). A reduction in

availability of micronutrients to the fetus, by interactions between the nutrients at

maternal gut, liver or in the placenta itself, may result in adverse outcomes for the

baby, or ineffective interventions at best. There is very limited evidence regarding the

ideal doses of the micronutrients in the supplements that would prevent such

undesirable effects. Preparations used in different studies are heterogeneous in type,

ingredients and dosage. Another possible explanation for the conflicting evidence is

the heterogeneity in the period of administration of MVM during pregnancy, as need

and utilization of MVM may be substantially different in late compared to early

pregnancy.

Clinicians and midwives in countries where gross multiple micronutrient deficiencies

are not common should be cautious when recommending over-the-counter MVM

supplements to nutrient-replete women. As in any clinical situation, they should weigh

the potential risks and benefits when considering prescribing such supplements. It may

be more effective for the type of supplement recommended/prescribed to be more

focused on the specific vitamin/mineral deficiency the woman has. However, this

raises the question whether screening for micronutrient deficiencies during pregnancy

is a feasible and cost-effective option and there is little research examining this

question.
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Rigorous research is still needed to assess if routine MVM supplementation during

pregnancy is required. There is no solid evidence that MVM supplementations have

additional benefits over iron and folate alone in relation to the risk of infant mortality,

though there is evidence of reducing the risk of LBW/SGA (Haider et al., 2011). There is

no solid evidence to support the routine use of MVM supplements in developed

country settings to improve infant outcomes. The WHO recommends further studies

evaluating the effect of different combinations and dosages of the different

micronutrients in the supplements (Lumbiganon, 2007).

7.7.2 Iron supplements

In the Baby VIP study, out of those with iron depletion in the first trimester (sF <15

ug/l), only 58% had iron supplements during their pregnancy, compared to 81% of

anaemic women in the first half of pregnancy, and 83% of anaemic women in the

second half of pregnancy. Data from relatively big national samples of pregnant

women in the UK are needed to confirm these findings and provide national estimates

of the prevalence of ID in pregnancy. If they are confirmed then selective iron

supplementation during early pregnancy based on sF levels could be an option to

consider for routine UK antenatal policy. However, this would be considered as an

antenatal screening programme for ID and will need to be assessed for clinical and cost

effectiveness as well as meeting the criteria of the UK National Screening Committee

(www.screening.nhs.uk/criteria).
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7.7.2.1 Why are some iron depleted women not receiving iron

supplements?

In the UK, all pregnant women are screened for anaemia at their antenatal booking

appointment at the end of the first trimester. However unless the woman is anaemic

or the community midwife decides to test for ID by measuring sF, ID is not detected in

routine antenatal check-up at this stage in pregnancy. Some practices with high

proportion of registered population from ethnic minorities screen for ID at this stage,

however this is not routine practice, and the evidence shows that ID is still commonly

prevalent in women of Caucasian origin (Pavord et al., 2011). Pregnant women may

benefit from screening for ID earlier in their pregnancy at around 8-10 weeks

gestation, as the critical window of intervention to reverse adverse offspring effects

has been identified in the first trimester by animal studies (McArdle et al., 2006).

The other possible explanation for the fact that ID women are not replenished with

supplements is that iron supplements could be recommended and started in these

women but not tolerated, especially in high doses, due to side effects. Constipation,

nausea, vomiting and diarrhoea are commonly experienced side effects of iron

supplements. Some have suggested that intermittent rather than daily

supplementation may tackle this problem (Beaton and McCabe, 1999). Another option

is trying a tailored dietary intervention to increase iron intake and absorption from the

diet which could potentially help increase iron intake and absorption on its own, or in

addition to tolerable doses of supplements. This needs to be tested using a RCT study

design.
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8 Conclusion

8.1 What is new?

This thesis is very relevant to the hypothesis of the developmental origins of health

and disease, particularly the role of maternal diet and nutritional status during

pregnancy in influencing CVD risk in the offspring later in life. Although, the

importance of fetal nutrition on lifelong health was clearly emphasised in a British

Medical Association report published in 2009, the gap in the current evidence around

the effect of specific nutritional deficiencies on long term health outcomes was

pointed out (Hanson et al., 2009). This thesis specifically attempts to address this gap

in relation to maternal iron. Promoting a healthy diet during pregnancy to optimise

short and long term birth outcomes is essential to good antenatal care, and this can

only be achieved by conducting well designed investigations which would inform

clinical and public health guidance in this field.

The novelty of the epidemiological research methodology used in this thesis is

considered in detail earlier in section 2.6.1 of the background chapter. Each of the

four studies included in this thesis stand-alone independently, as well as collectively

addressing a common hypothesis generated from experimental animal studies which is

very relevant to clinical and public health care globally. In relation to other population

studies in the field of the developmental origins of health and disease, this thesis takes

an innovative angle of looking at a single micronutrient level during pregnancy at a

population level to assess its association with long-term offspring indicators, as well as

the conventional measures of immediate birth outcomes such as birth weight. The
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measurement of arterial stiffness in infancy and childhood using the non-invasive

technique of PWV used in chapters 4 and 5 of this thesis could potentially be a

promising new advancement in measuring predictors of CVD risk early in life in relation

to prenatal exposures.

In terms of research findings, this thesis is the first to link infant arterial stiffness with

maternal anaemia in early pregnancy. Only some of these anaemic mothers were iron

deficient. This required further investigation to understand the potential biological

mechanisms involved. This thesis is also the first to investigate and show no evidence

of association between maternal iron status and offspring CVD indicators in adulthood

in a population sample using Mendelian randomisation study design.

8.2 Implications for practice

This thesis falls in the realm of aetiological epidemiology research. Therefore, no direct

recommendations for practice can be drawn from it without taking the findings further

and using them to inform the design and testing of a healthcare and/or public health

intervention using RCT study design. However, a couple of discussion points relevant

to clinical and public health practice are considered below.

Currently in the UK, routine iron supplementation in pregnancy is not recommended.

Pregnant woman are only screened for anaemia which is at the extreme end of the ID

spectrum. Some argue for testing sF levels in the first trimester of pregnancy,

preferably at the first antenatal booking visit (Milman, 2006b). If sF is low at that point

in pregnancy indicating ID based on international cut-off values, then iron

supplementation may be recommended plus dietary advice to optimise intake from
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diet and maximise absorption of both non-haem iron and supplements. However, a

screening approach of routine testing and selective supplementation requires solid

evidence of clinical and cost effectiveness on a population level, taking into account

country-specific prevalence rates of SGA and ID in women of childbearing age before it

can be implemented. .

It is also important to address the issue of iron supplements’ side effects and

optimisation of their absorption in women who are deemed in need of them,

particularly those who are anaemic in early pregnancy. Delayed-release iron

preparations and intermittent oral iron supplementation are likely to lead to better

overall compliance and reduction in side effects (Beard, 2000). Administering iron to

the body through alternative routes such as the intravenous route has also been

assessed and found to be more effective in treating maternal anaemia than the oral

route (Al et al., 2005).

8.3 Implications for further research

There is much further epidemiological and interventional research needed to follow on

from this thesis, based on the findings as well as evidence gaps identified in the

process of designing and conducting the included studies.

Recommendations for further research studies include:

1. A systematic review and meta-analysis of observational studies to investigate

the association of maternal dietary iron intake in pregnancy with birth

outcomes
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2. A systematic review and meta-analysis of observational studies to investigate

the association between arterial stiffness at different points in the lifecourse

with size at birth and preterm birth

3. A systematic review and meta-analysis of trials of dietary interventions

(excluding trials of supplements alone) during pregnancy to improve birth

outcomes

4. A birth cohort with valid and reliable dietary assessment at multiple points in

pregnancy, preferably using easy to use and accessible innovative methods

utilising information and communication technology which generate individual

nutrient data in addition to dietary patterns, measuring offspring

cardiovascular indicators including arterial stiffness and adiposity measures

among other conventionally measured birth outcomes

5. A study aimed at standardising the different sTfR laboratory assays and

providing a reliable and transferrable method to derive total body iron in

pregnancy

6. A RCT to compare the effects of iron supplements alone against a dietary

intervention aimed at optimisation of iron intake and absorption from the diet,

with and without low dose supplements, measuring birth outcomes with

follow up to assess CVD risk factors in the offspring. The intervention can be

delivered using information and communication technology tools such as

online websites and smartphone apps.
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8.4 Summary

There are several important findings emerging from this thesis which examined the

role of maternal iron in the developmental origins of CVD in the offspring. Total

maternal iron intake in early, but not late, pregnancy was positively associated with

birth weight centile. There was no evidence of association between taking iron-

containing supplements in pregnancy with size at birth. However taking MVM

supplements, which usually contain iron, in late pregnancy was associated with an

increased risk of preterm birth. Also taking iron supplements up to 32 weeks gestation

was associated with an average of 1 mmHg lower offspring systolic BP at 10 years.

Maternal anaemia and ID, defined as sF<15 ug/l, in early pregnancy was associated

with an increased risk of giving birth to a SGA baby. Infant bfPWV measured at 2-6

weeks of age was found to be higher in babies of women who were anaemic in early

pregnancy, but not in those who were only iron deficient without anaemia. Finally,

using a Mendelian randomisation design, maternal iron status measured by sF with

C282Y mutation as an IV was not found to be associated with adult offspring BP and

adiposity.
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10 Appendices

10.1 Electronic search strategy for section 2.2.7.4

Ovid MEDLINE(R) (1950 to February Week 1 2013), EMBASE Classic + EMBASE (1947 to

2010 February 10), and Maternity and Infant Care (1971 to December 2009) databases

were searched using the following terms:

#1 pregnan*

#2 gestation*

#3 iron

#4 iron intake

#5 diet

#6 birth weight

#7 birth weight

#8 preterm

#9 small for gestation*

#10 an?emia

#11 birth outcome*

#12 postnatal

#13 1 or 2

#14 3 or 4

#15 6 or 7 or 8 or 9 or 10 or 11 or 12

#19 13 and 14 and 15 and 5

10.2 CARE study Dietary recall form
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10.3 Baby VIP study documents

10.3.1 Consent forms

10.3.2 Participant information sheet

10.3.3 Standard Operating Procedure for PWV measurement

10.3.4 Medical information sheet

10.3.5 Lifestyle questionnaire
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10.4 Stata code for multiple imputation analysis in

ALSPAC

misstable patterns, frequency
mi set mlong
mi register imputed pwv fmdp dp sp DVoffspringbmi
mi register regular DVcironRNI
mi set M = 20
mi impute mvn pwv fmdp dp DVoffspringbmi = ciron DVcironRNI, force
replace
mi describe

set level 99
**MI UV analysis**
mi estimate: regress pwv ciron
mi estimate: regress fmdp ciron
mi estimate: regress sp ciron
mi estimate: regress dp ciron
mi estimate: regress DVoffspringbmi ciron
mi estimate: regress cordferr ciron
mi estimate: regress kz030 ciron
mi estimate: regress GA ciron
mi estimate: regress DVavchildiron ciron

mi estimate: regress pwv DVcironRNI
mi estimate: regress fmdp DVcironRNI
mi estimate: regress sp DVcironRNI
mi estimate: regress dp DVcironRNI
mi estimate: regress DVoffspringbmi DVcironRNI
mi estimate: regress cordferr DVcironRNI
mi estimate: regress kz030 DVcironRNI
mi estimate: regress GA DVcironRNI
mi estimate: regress DVavchildiron DVcironRNI

mi estimate: regress DVavchildiron DVironsupppreg
mi estimate: regress GA DVironsupppreg
mi estimate: regress kz030 DVironsupppreg
mi estimate: regress cordferr DVironsupppreg
mi estimate: regress DVoffspringbmi DVironsupppreg
mi estimate: regress sp DVironsupppreg
mi estimate: regress dp DVironsupppreg
mi estimate: regress fmdp DVironsupppreg
mi estimate: regress pwv DVironsupppreg

mi estimate: regress pwv firsthaem
mi estimate: regress fmdp firsthaem
mi estimate: regress sp firsthaem
mi estimate: regress dp firsthaem
mi estimate: regress DVoffspringbmi firsthaem
mi estimate: regress cordferr firsthaem
mi estimate:regress kz030 firsthaem
mi estimate: regress GA firsthaem
mi estimate: regress DVavchildiron firsthaem

mi estimate: regress pwv DVmat_anaemia
mi estimate: regress fmdp DVmat_anaemia
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mi estimate: regress sp DVmat_anaemia
mi estimate: regress dp DVmat_anaemia
mi estimate: regress DVoffspringbmi DVmat_anaemia
mi estimate: regress cordferr DVmat_anaemia
mi estimate: regress kz030 DVmat_anaemia
mi estimate: regress GA DVmat_anaemia
mi estimate: regress DVavchildiron DVmat_anaemia

mi estimate: regress pwv cordferr
mi estimate: regress fmdp cordferr
mi estimate: regress sp cordferr
mi estimate: regress dp cordferr
mi estimate: regress DVoffspringbmi cordferr

mi estimate: regress pwv kz030
mi estimate: regress fmdp kz030
mi estimate: regress sp kz030
mi estimate: regress dp kz030
mi estimate: regress DVoffspringbmi kz030

mi estimate: regress pwv GA
mi estimate: regress fmdp GA
mi estimate: regress sp GA
mi estimate: regress dp GA
mi estimate: regress DVoffspringbmi GA

mi estimate: regress pwv DVavchildiron
mi estimate: regress fmdp DVavchildiron
mi estimate: regress sp DVavchildiron
mi estimate: regress dp DVavchildiron
mi estimate: regress DVoffspringbmi DVavchildiron

**MI MV analysis**
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy ciron
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy ciron
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy ciron
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy ciron
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy ciron

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy DVcironRNI
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy DVcironRNI
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy DVcironRNI
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy DVcironRNI
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy DVcironRNI

****add firsthaem as sensitivity analyses****
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVironsupppreg
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVironsupppreg
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mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVironsupppreg
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVironsupppreg
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 DVironsupppreg

mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem DVironsupppreg
********
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 firsthaem

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVmat_anaemia
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVmat_anaemia
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVmat_anaemia
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
DVmat_anaemia
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 DVmat_anaemia

**with 3 mediators**
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron ciron
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron ciron
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron ciron
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron ciron
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy kz030 GA DVavchildiron ciron

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron DVcironRNI
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron DVcironRNI
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron DVcironRNI
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron DVcironRNI
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy kz030 GA DVavchildiron DVcironRNI

****add firsthaem as sensitivity analyses****
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVironsupppreg
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mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVironsupppreg
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVironsupppreg
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVironsupppreg
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron DVironsupppreg

mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem kz030 GA DVavchildiron DVironsupppreg
********
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron firsthaem
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron firsthaem
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron firsthaem
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron firsthaem
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron firsthaem

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVmat_anaemia
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVmat_anaemia
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVmat_anaemia
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron DVmat_anaemia
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron DVmat_anaemia

**with 4 mediators**
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr ciron
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr ciron
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr ciron
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr ciron
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy kz030 GA DVavchildiron cordferr ciron

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr DVcironRNI
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr DVcironRNI
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr DVcironRNI
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
cenergy kz030 GA DVavchildiron cordferr DVcironRNI
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 cenergy kz030 GA DVavchildiron cordferr DVcironRNI

****add firsthaem as sensitivity analyses****
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mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVironsupppreg
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVironsupppreg
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVironsupppreg
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVironsupppreg
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron cordferr DVironsupppreg

mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
firsthaem kz030 GA DVavchildiron cordferr DVironsupppreg
********
mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr firsthaem
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr firsthaem
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr firsthaem
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr firsthaem
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron cordferr firsthaem

mi estimate: regress pwv e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVmat_anaemia
mi estimate: regress fmdp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVmat_anaemia
mi estimate: regress sp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVmat_anaemia
mi estimate: regress dp e695 DVppbmi DVmatsmoke DVmatcatqual b032
kz030 GA DVavchildiron cordferr DVmat_anaemia
mi estimate: regress DVoffspringbmi e695 DVppbmi DVmatsmoke
DVmatcatqual b032 kz030 GA DVavchildiron cordferr DVmat_anaemia
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10.5 UKWCS-IBPS documents

10.5.1 Letters

10.5.1.1 Letter to mother

10.5.1.2 Letters to participant

10.5.1.3 Participant measurement instructions

10.5.1.4 Letter to GP/practice nurse

10.5.1.5 Standard operating procedure for GP

10.5.2 Measurement forms

10.5.2.1 GP measurement form

10.5.2.2 Self-measurement form
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10.5.3 Stata code for the differences between the

instrumental variable (IV) and the ordinary least square

(OLS) estimates

capture program drop comparison
program define comparison, eclass

ivreg2 av_sbp (ferritin = matgeno), robust cluster(Motherid)
local iv_ferritin=_b[ferritin]

xi:regress av_sbp age childage i.childgender ferritin, robust
cluster(Motherid)
local ols_ferritin=_b[ferritin]
ereturn scalar iv_ferritin=`iv_ferritin'
ereturn scalar ols_ferritin=`ols_ferritin'
end

use "C:\Nisreen Laptop\c drive\mednal\My Documents\HH
Study\databases\HHstudy_Sept2011.dta" , clear

bootstrap diff=(e(ols_ferritin)-e(iv_ferritin)) e(ols_ferritin)
e(iv_ferritin), reps(10000) cluster(Motherid) saving("C:\Nisreen
Laptop\c drive\mednal\My Documents\HH Study\databases\ols versus iv
comparison_final.dta", replace every (10)):comparison

ivreg2 av_sbp (ferritin = matgeno), first robust cluster(Motherid)

*************

capture program drop comparison
program define comparison, eclass

ivreg2 av_dbp (ferritin = matgeno), robust cluster(Motherid)
local iv_ferritin=_b[ferritin]

xi:regress av_dbp age childage i.vege i.childgender ferritin, robust
cluster(Motherid)
local ols_ferritin=_b[ferritin]
ereturn scalar iv_ferritin=`iv_ferritin'
ereturn scalar ols_ferritin=`ols_ferritin'
end

use "C:\Nisreen Laptop\c drive\mednal\My Documents\HH
Study\databases\HHstudy_Sept2011.dta" , clear

bootstrap diff=(e(ols_ferritin)-e(iv_ferritin)) e(ols_ferritin)
e(iv_ferritin), reps(10000) cluster(Motherid) saving("C:\Nisreen
Laptop\c drive\mednal\My Documents\HH Study\databases\ols versus iv
comparison_final.dta", replace every (10)):comparison

ivreg2 av_dbp (ferritin = matgeno), first robust cluster(Motherid)

*************
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capture program drop comparison
program define comparison, eclass

ivreg2 av_waist_all (ferritin = matgeno), robust cluster(Motherid)
local iv_ferritin=_b[ferritin]

xi:regress av_waist_all age childage p2bmi i.newclass i.childgender
ferritin, robust cluster(Motherid)
local ols_ferritin=_b[ferritin]
ereturn scalar iv_ferritin=`iv_ferritin'
ereturn scalar ols_ferritin=`ols_ferritin'
end

use "C:\Nisreen Laptop\c drive\mednal\My Documents\HH
Study\databases\HHstudy_Sept2011.dta" , clear

bootstrap diff=(e(ols_ferritin)-e(iv_ferritin)) e(ols_ferritin)
e(iv_ferritin), reps(10000) cluster(Motherid) saving("C:\Nisreen
Laptop\c drive\mednal\My Documents\HH Study\databases\ols versus iv
comparison_final.dta", replace every (10)):comparison

ivreg2 av_waist_all (ferritin = matgeno), first robust
cluster(Motherid)

*************

capture program drop comparison
program define comparison, eclass

ivreg2 bmi (ferritin = matgeno), robust cluster(Motherid)
local iv_ferritin=_b[ferritin]

xi:regress bmi age childage p2bmi i.newclass i.childgender ferritin,
robust cluster(Motherid)
local ols_ferritin=_b[ferritin]
ereturn scalar iv_ferritin=`iv_ferritin'
ereturn scalar ols_ferritin=`ols_ferritin'
end

use "C:\Nisreen Laptop\c drive\mednal\My Documents\HH
Study\databases\HHstudy_Sept2011.dta" , clear

bootstrap diff=(e(ols_ferritin)-e(iv_ferritin)) e(ols_ferritin)
e(iv_ferritin), reps(10000) cluster(Motherid) saving("C:\Nisreen
Laptop\c drive\mednal\My Documents\HH Study\databases\ols versus iv
comparison_final.dta", replace every (10)):comparison

ivreg2 bmi (ferritin = matgeno), first robust cluster(Motherid)


