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Abstract

An atomistic pseudopotential method is used to investigate the electronic and opti-

cal properties of spherical InAs nanocrystals. Our calculated interband (valence-to-

conduction) absorption spectra reproduce the features observed experimentally both

qualitatively and quantitatively. The results relative to intraband (valence-to-valence

and conduction-to-conduction) absorption successfully reproduce the recently measured

photoinduced absorption spectra, which had so far been addressed only qualitatively.

They exclude the hypothesis of a thermal activation process between dot-interior de-

localised hole states to explain the temperature dependence observed experimentally.

Furthermore, based on the agreement of our data with the experimental valence inter-

sublevel transitions and the almost complete overlap of the latter with STM measure-

ments, we question the simplistic attribution of the observed STM peaks obtained for

negative bias.

Motivated by the excellent agreement of our calculated results with the STM, PLE and

PIA spectra, we therefore extend our knowledge to a detailed theoretical investigation

of the electronic structure and optical properties of InAs nanocrystals at the transition

from spheres to rods. We predict that despite the qualitative similarity of both intra- and

inter-band optical spectra, for NCs with R > 15 Å even slight elongations should result

in shifts of the order of hundreds of meV in the spacings between STM peaks measured
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in the positive bias regime, in the position of the intra-band absorption peaks associated

with transitions in the conduction band and in the separation between the first and the

fifth peak in PLE experiments. Our results suggest that, based on the spectroscopic

data, it should be possible to discriminate between spherical and elongated NCs with

aspect ratios of length over diameter as small as 1.2. Indeed our results suggest that

many nominally spherical experimental samples contained a large fraction of slightly

elongated structures.

Additionally, the atomistic pseudopotential approach is also applied to a study of the

electronic and optical properties of InAs quantum rods as a function of increasing length-

to-diameter ratio. We show that, as the aspect ratio increases, energy levels cross in both

conduction and valence bands, reflecting their different dependence on confinement along

a specific direction. Unlike in CdSe and InP quantum rods, however, the position of the

crossover between highest occupied molecular orbitals with different symmetries is found

to be size-dependent and the value of the aspect ratio at the crossing to increase with the

rod diameter. We find that the level crossings at the top of the valence band are crucial

to explain the evolution with elongation of all optical properties in these systems. Their

transformation from 0- to quasi-1-dimensional structures is characterised by a common

monotonic behaviour of band gap, Stokes shift, degree of linear polarisation and radiative

lifetime, closely linked to the variation with aspect ratio of the electronic structure of the

nanocrystal valence band edge. This characteristic feature was not observed in elongated

CdSe structures, whose optical properties exhibited instead a distinctive non-monotonic

evolution with length, with a turning point associated with a crossover at the top of the

valence band, similar to that found here between states with σ and π symmetries.
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Chapter 1

Introduction

1.1 Semiconductor quantum dots

In the last decades, it has already been shown that the reduction in dimensionality pro-

duced by confining electrons (or holes) to a thin semiconductor layer (quantum wells)

leads to a dramatic change in their behaviour. This principle can be developed by fur-

ther reducing the dimensionality of the electron’s environment from a two-dimensional

quantum well to a one-dimensional quantum wire and eventually to a zero-dimensional

quantum dot. In quantum dots, the electron is confined in all three-dimensions, thus

reducing the degrees of freedom to zero. With the remarkable progress in nanotechnol-

ogy, this structure has been made in the nanometer scale where the laws of quantum

mechanics rule and a range of new physical effect are manifested. On the one hand,

fundamental laws of quantum mechanics can be tested. On the other hand, a large

volume of possible applications are rapidly emerging.

QDs have been produced in several different ways in a broad range of semiconductor

material systems. Their properties and possible applications are largely dependent on

the method they have been obtained, which can therefore be used as a criterion for

classification of different types of quantum dots, as illustrated in Fig. 1.1:

1
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• Electrostatic quantum dots

The electrostatic quantum dots can be produced by restricting the two dimensional

electron gas in a semiconductor heterostructure laterally by electrostatic gates, or

vertically by etching techniques. The confining potential of electrons is generated

by the electrostatic field and their properties can be controlled by changing the

applied potential at gates, the choice of the geometry of gates or by external mag-

netic field. They have been suggested as implementations of qubits for quantum

information processing.

• Self-assembled quantum dots

They nucleate spontaneously under certain conditions during molecular beam epi-

taxy (MBE) and metalorganic vapour phase epitaxy (MOVPE). Due to the mis-

match of the lattice constant of different materials during the growth process, the

resulting strain produces strained islands on top of a two-dimensional wetting-

layer. The islands can be subsequently buried to form the quantum dot. This

growth mode is known as Stranski-Krastanov growth. On the one hand, there are

several limitations of this method including the cost of fabrication and the lack

of control over positioning of individual dots. On the other hand, this fabrica-

tion method has potential for applications in quantum cryptography and quantum

computation.

• Colloidal nanocrystals

Like traditional chemical processes, colloidal semiconductor nanocrystals are syn-

thesised from precursor compounds dissolved in solutions. The synthesis of col-

loidal quantum dots is based on a three-component system composed of: precur-

sors, organic surfactants, and solvents. When heating a reaction medium to a

sufficiently high temperature, the precursors chemically transform into monomers.

Once the monomers reach a high enough supersaturation level, the nanocrystal



Chapter 1. Introduction 3

growth starts with a nucleation process. Their size and shape can be controlled

by the duration, temperature and ligand molecules used in the synthesis. These

quantum dots can contain as few as 100 to 100,000 atoms. Due to their scalabil-

ity and the low-cost fabrication, colloidal quantum dots are promising for a large

volume of commercial applications.
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Figure 1.1: Different types of quantum dots. Colloidal nanocrystals are solution-
grown, nanometre-sized, inorganic particles that are stabilized by a layer of surfactants
attached to their surface. Self-assembled quantum dots are typically between 5 and 50
nm in size. They nucleate spontaneously when a material is grown on a substrate to
which it is not lattice matched. The resulting strain produces coherently strained islands
on top of a two-dimensional wetting-layer. Electrostatic quantum dots can be fabricated
by restricting the two dimensional electron gas in a semiconductor heterostructure

laterally by electrostatic gates, or vertically by etching techniques.

1.2 Colloidal semiconductor nanocrystals

Among the variations in the fabrication processes [10], colloidal semiconductor NCs,

sometimes referred to as “artificial atoms”, represent a very promising system as their

popularity deriving from their size tunable optical properties that enable their applica-

tions in very different fields [11] such as optoelectronics, as well as biology (as organic

molecule markers), and also from the possibility of achieving a very high degree of size

monodispersity (less than 5%) in their synthesis [12–14]. Additionally, due to their
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chemical flexibility, they can easily be ordered in 3D superlattices, linked to form quan-

tum dot molecules, prepared as closed-packed films or incorporated with high densities

into sol gel, glass or polymers.

Nowadays, intense efforts are made in growing colloidal NCs with engineered shapes,

for instance, nearly spherical dots [12, 13], elongated nanorods [14], tetrapods [15],

semiconductor heteroparticles [16–19]. This is due to the fact that the combination of

shape- and size-dependent physical properties and ease of fabrication and processing

makes colloidal NCs promising building blocks for materials with designed functions

[10]. To implement these shape-selected nanocrystals for the future applications, it is

crucial to obtain the exact knowledge of wave functions of excitons, the excitonic fine

structure, the radiative lifetime, the density of states as well as interactions with other

elementary excitations. In the following section, we will give an overview about physics

of semiconductor NCs so as to make the contents of the thesis as self-contained as

possible. The inclusion of a simple view of the physics and the associated terminologies

is given below so that when the specific calculations or applications are discussed, the

basic ideas will be in context.

1.3 Brief review of physics of semiconductor NCs

1.3.1 Quantum size effect

As the size of solids decreases many physical phenomena become more pronounced [20].

One of the key phenomena is quantum mechanical effects, where the electronic and

optical properties of solids are altered with great reductions in particle size. Such a

quantum effect does not come into play by substantial reduction from macro to micro

dimensions. Quantum effects, however, become prominent once the dimensions of solids
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Bulk semiconductor Semiconductor NC (R1) Semiconductor NC (R2) Semiconductor NC (R3) 
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Figure 1.2: A schematic illustrating quantum size effect. In a bulk semiconductor,
both conduction and valence energy bands are continuous and they are separated by
a fixed energy gap, Eg, while discrete atomic-like states are found in low-dimensional
confinement NCs and the energy gap is size-dependent (increase with decreasing di-

mensions).

reach nanometre scale. It is typically at distances of 100 nanometers or less. Generally,

in bulk semiconductors a natural length scale of electronic excitations is considered by

the Bohr exciton radius, ax, defined by the strength of the electron-hole (e−h) Coulomb

interaction. In semiconductor NCs whose sizes are comparable to or smaller than the

Bohr exciton radius (ax) the spatial extent of the e − h pair state is defined by the

dimensions of the nanoparticle, i.e., the size of the NC exciton. As a result, electronic

energies are directly dependent on degree of spatial confinement of NC sizes. This is

known as “quantum size effect” [20–25]. As a result of this effect, one can continuously

tune the NC energy gap (Eg) by more than 1 eV [4, 9] with a reduction of NC sizes, as

illustrated in Fig. 1.2.
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1.3.2 Quantisation and energy level spacing

As the dimensions in NCs are reduced, another pronounced feature is the development

of discrete, well-separate energy states [26–28], replacing the continuous energy bands of

a bulk material, as schematically shown in Fig. 1.2. Both conduction and valence band

give rise to an independent series of quantised states in the absence of band mixing effect.

To illustrate, in spherically quantum dots, we can classify these states in accordance to

the angular momentum (l) of the envelope wave functions, describing carrier motion

in the low-dimensional confinement potential [29]. Typically, the three lowest energy

states in semiconductor nanostructures are labelled as 1S, 1P, and 1D, according to

the hierarchy of states in the series of states of the same symmetry and the angular

momentum (S for l = 0, P for l = 1, and D for l = 2). The lowest state in either

conduction or valence bands, however, is not necessary to be 1S. It has been recently

reported that there are level crossings at the top of the valence band due to the change

of aspect ratio in InAs elongated structures [30, 31] and the valence band maximum is

found to be p− like symmetry. These energy level crossings are very crucial to explain

the optical properties in these semiconductor nanostructures.

1.3.3 Coulomb and exchange interaction

A consequential effect of the confinement of carriers in very small length scales is a

strong enhancement of Coulomb interactions [32, 33]. The Coulomb interaction energy

between two electrons confined in a semiconductor nanocrystal can be smaller than the

quantisation energy, meaning that a quantum mechanical description of the Coulomb

effects is important. Two characteristic Coulomb energies are the biexciton binding

energy (εxx), which provides a measure of the strength of exciton-exciton interaction,

and the exciton binding energy (εx), which is a measure of e− h interaction strength.
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It is found in bulk materials that these energies are inversely proportional to the nat-

ural exciton and biexciton radii [22]. In II-VI semiconductors the exciton and biexci-

ton binding energies are on the order of tens of meVs and a few meVs, respectively.

For instance, in bulk CdSe, εx=16meV [34], while εxx=4.5meV [35]. In semiconductor

nanocrystals, Coulomb interaction energies rapidly increase with decreasing NC dimen-

sions. For spherical quantum dot the Coulomb energies scale approximately as R−1

where R is the NC radius [36, 37]. Additionally, due to the reduced dielectric screening

the interaction energies are greatly enhanced with decreasing NC sizes. As a result of

these factors, the Coulomb interaction energy in semiconductor nanostructures can be

enhanced as large as 100 meV while the biexciton binding energy can be up to more

than tens of meV [38–40].

In addition to the confinement-enhanced Coulomb interaction, the physics of excitons in

NCs is also governed by the electron-hole exchange interaction. This effect leads to a size-

dependent splitting between the absorbing and emitting states [41, 42]. As the exchange

interaction is proportional to the electron-hole charge density overlap this splitting is

predicted to scale inversely with the radius of NCs. In InP and CdSe quantum dots, the

electron-hole exchange interaction is proportional to R−2 [43]. The same scaling law is

also predicted in InAs semiconductor NCs [6].

1.3.4 Direct carrier multiplication

Carrier multiplication (also called direct carrier multiplication : DCM) was first observed

in bulk semiconductors in the 1950s. It is the direct photogeneration of multiexcitons

by single photons [44–49]. The mechanism of carrier multiplication is schematically

illustrated in Fig. 1.3. It is an Auger-like process whereby a high-energy carrier with

excess energy ∆≥Eg relaxes to its band edge by energy transfer to a valence electron
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Electron-hole pair multiplication in quantum dots 5 1 Preamble

phonon scattering. It has been shown that the rate of impact ionization becomes

competitive with phonon scattering rates only when the kinetic energy of the

electron is many times the band gap energy (Eg) [16]. Therefore, in Si the im-

pact ionization efficiency was found to be only 5% at a photon energy hν ≈ 4 eV

(3.6Eg), and 25% at hν ≈ 4.8 eV. This large blueshift of the threshold photon

energy for impact ionization in semiconductors prevents materials such as bulk

Si and GaAs from yielding improved solar conversion efficiency [17].

In contrast to bulk semiconductors, in semiconductor nanocrystals, the rate

of Auger process of exciton multiplication is greatly enhanced. This is due to

carrier confinement and the increased electron-hole Coulomb interaction. In ad-

dition, crystal momentum needs not be conserved because momentum is not a

good quantum number for three-dimensionally-confined carriers. The mechanism

of carrier multiplication is illustrated in Figure 1.2. It is an Auger-like process

whereby a high-energy carrier with excess energy ∆ ≥ Eg relaxes to its band edge

by energy transfer to a valence electron which is excited across the gap. If the

first carrier is generated by the absorption of a photon with energy ∆ ≥ 2Eg, the

result of this process is the creation of two electron-hole pairs (excitons) from a

single absorbed photon.

Figure 1.2: Enhanced electron-hole pair (exciton) multiplication in quantum

dots that could lead to enhanced solar photon conversion efficiency in quantum

dot solar cells.

Direct carrier  
multiplication (DCM) 

Figure 1.3: A schematic of direct carrier multiplication (DCM) in neutral quantum
dot that could lead to enhanced solar photon conversion efficiency in quantum dot
photovoltaic cells. It involves the generation of multiple electron-hole pairs from the

absorption of a single photon.

which is excited across the gap. If the first carrier is generated by the absorption of a

photon with energy ∆≥2Eg, the result of this process is the creation of two electron-hole

pairs (excitons) from a single absorbed photon. In fact, it is plausible to create more

than two electron-hole pair. It has been recently found that a single absorbed photon

can create as many as seven excitons in PbSe semiconductor nanocrystals [47, 48].

Compared with the DCM in bulk semiconductors, the rate of exciton multiplication

in semiconductor nanocrystals is greatly enhanced. This is due to carrier confinement

and the increased electron-hole Coulomb interaction. In addition, crystal momentum

needs not be conserved because momentum is not a good quantum number for three-

dimensionally-confined carriers [41, 50]. With the highly multiexciton generation, the

NCs are expected to provide increased power conversion efficiency in the form of in-

creased solar cell photocurrent, which is subsequently discussed in the following section.
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1.4 Applications of semiconductor NCs

The size-controlled tunability of NC optical properties combined with chemical flexibility

provided by colloidal methods make colloidal NCs promising materials for a wide variety

of applications [11] in various optical technologies and electronic devices. To build

a picture of their practical realisation, in the following we will give a practical point

of view of semiconductor colloidal nanocrystals as active optical materials in photonic

structures and electronic devices.

1.4.1 Photovoltaic cells

Colloidal NCs are promising candidate for high efficiency photovoltaic cells. Recently,

A. Nozik [51] was the first to propose that in semiconductor NCs, direct carrier multipli-

cation (DCM) effects could be greatly enhanced [46] compared to bulk materials. More

specifically, due to the large confinement, the Coulomb interaction between electron and

hole is stronger in NCs compared to bulk materials and has indeed been proved to en-

hance DCM. Furthermore, as in quantum dots there is no momentum conservation, i.e.,

the wave vector momentum is not a good quantum number in 0-D system. As a result,

the DCM threshold energy, the minimum excess energy an electron must have to initiate

DCM, Eth is equal to Eg. In bulk solids, instead, due to both energy and momentum

conservation constraints, Eth = Eg + δE where δE varies from ∼0.1eV for InAs, ∼0.2eV

or ∼0.3eV for GaAs, to ∼1eV for InP.

Recently, semiempirical pseudopotential method [52, 53] was applied to investigate the

energy dependence of DCM rates and of the rates of selected competing process in

neutral and negatively charged CdSe NCs. For excess energy just a few meV above the

energy gap Eg (the DCM threshold), it was found that DCM is much more efficient in
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quantum dots than in bulk materials, with rates of the order of 1010s−1. In conventional

bulk solids, comparable rates are obtained only for excess energies about 1eV above

Eg. The only problem with the use of CdSe NCs in photovoltaic devices is their wide

band gap, that makes them not ideal for use invisible part of the solar spectrum. Better

suited candidates for that energy range would be materials with smaller band gap such

as InAs, InP or PbSe. Bulk PbSe has a narrow direct band gap of 0.28eV at room

temperature and size quantisation effects are strongly pronounced in PbSe NCs. Recent

experimental studies showed band-edge excitonic transitions with energies between 0.5

and 1.1eV, suggesting that PbSe NCs can also be used for optoelectronic devices in the

IR spectral regime and in telecommunication applications.

Indeed high DCM efficiency was recently found experimentally in spherical PbSe NCs

[47, 48] by Klimov’s group in Los Alamos, USA. For photovoltaic cells based on PbSe

NC of a single size they estimate a 10% increase in conversion efficiency compared to the

maximum theoretical conversion limit. In PbSe [46], electron and holes have very similar

effective masses; therefore, the energy of the incident photon is equally divided between

the photogenrated carriers. It follows that the onset of DCM is at a photon energy three

times the NC band gap Eg, as the carriers need to have an excess energy of at least Eg to

initiate DCM, and an energy of at least Eg is needed to generate and electron-hole pair

in the ground state. However, in NCs made of materials that have substantially different

carrier effective masses and where therefore the photon energy would be distribute less

“democratically” between them. This threshold could be minimise to 2Eg. Schaller and

Klimov speculated the possibility to achieve a further 27% [46] increase in relative power

conversion efficiency (that would bring its absolute value to 60.3% ) via this minimisation

of the (photon) DCM threshold.
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1.4.2 Quantum dot lasers

Semiconductor lasers [54–57] have become prevalent and widely used in many fields

ranging from medical diagnosis, information storage and processing to telecommunica-

tions. The use of semiconductor NCs in quantum dot lasers has a number of advantages

over the conventional quantum well lasers. The lasing threshold is, in principle, dra-

matically reduced due to the enhancement in the density of states in the structure

where the quantum confinement is in three dimensions. Additionally, the well-separated

atomic-like states in the semiconductor NCs are size-dependent; therefore, for NCs in

the strong confinement regime the electronic states are much greater than the available

thermal energy. This leads to a reduction of thermal population of the lowest electronic

states, resulting a lasing threshold that is temperature-insensitive. Besides, an emission

wavelength of very small semiconductor NCs is a pronounced function of size leading to

the advantage of wavelength tunability over a wide energy range simply by changing the

size of the NCs. Consequently, the output colours of the lasers can be easily controlled

by manipulation of NC size.

1.4.3 Light-emitting diodes

Colloidal nanocrystal is a promising candidate and uniquely suited for light-emitting

devices due to their tunable luminescence properties. Compared with epitaxially grown

quantum dots, colloidal can be synthesised as highly monodisperse colloids and solution

deposited over large areas into densely packed, solid-state multilayers, which have shown

promise as efficient optical gain media. It has been recently demonstrated [58] that

colloidal NCs can be integrated to bright, monochrome LEDs with uniform pixel emission

of saturated colour and high peak luminance. The nanocrystal-based LEDs show the

brightness that is comparable with the best-organic-based LEDs. Besides, they also
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improve the environmental stability of metal-oxide charge transport layers [58]. The

stable operation under a high carrier-injection rate enable evolution of the QD-LEDs

to device designs that will be needed to demonstrate electrically pumped colloidal QD

lasers. Such devices would be able to take full advantages of the tunability and the ease

of fabrication and processing of colloidal QDs to provide simple, tunable, coherent light

sources.

1.4.4 Fluorescent biological imaging probes

Colloidal NCs also have the high potential to become a new class of fluorescent probes for

biological and biomedical applications [59–69], especially cellular imaging [60, 61, 67, 68].

Semiconductor NCs, as fluorescent probe, have a number of advantages over conventional

organic dyes. They exhibit excellent photostability leading to continuous illumination of

the samples. In addition, due to quantum size effect, their emission spectra are narrow

and symmetrical. This allows closer spacing of different probes without the substantial

spectral overlap. Besides NCs can display broad absorption spectra; consequently, using

NCs as fluorescence probe is capable of exciting all colours of NCs simultaneously with

an appropriate single excitation light source.

Nonetheless, the feasibility of using NCs as fluorescence probes in biological preparations

has been questioned. NCs should not be toxic or interfere with cellular function provided

that they are used in vivo. It is also vital to establish ways for using NCs to specifically

interact with the target biomolecule and to reduce nonspecific binding. Furthermore,

the fluorescent signal is quenched if the semiconductor NCs are not perfectly coated

leading to inappropriate coats for NCs.

Recently, Wu et al. [1] have shown that they are able to use nanoparticles to label

surface, cytoskeletal and nuclear proteins in fixed cells and tissue sections. Labelling was
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H I G H L I G H T S
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Quantum dots (QDs) are nanoparticles of one
semiconductor surrounded by a second semi-
conductor. There has been considerable interest
in their use as inorganic fluorophores, owing to
the fact that they offer significant advantages
over conventionally used fluorescent markers.
For example,QDs have fairly broad excitation
spectra — from ultraviolet to red — that can be
tuned depending on their size and composition.
At the same time, QDs have narrow emission
spectra, making it possible to resolve the emis-
sions of different nanoparticles simultaneously
and with minimal overlap. Last,QDs are highly
resistant to degradation, and their fluorescence
is remarkably stable.

But despite their promise, the feasibility of
using QDs in biological preparations has been
questioned. If the semiconductors are not 
perfectly coated, the fluorescent signal is
quenched, making it imperative to develop
appropriate coats for QDs. It is also necessary
to establish ways for QDs to interact specifically
with the biomolecule of interest and to reduce
nonspecific binding. Last, to be used in vivo,
QDs should not be toxic or interfere with 
cellular function. Two recent papers in Nature
Biotechnology give a strong push to the use of

QDs as tools for cellular imaging by reporting
ways to circumvent these problems.

In the first paper, Wu et al. coated QDs with
a polyacrylate cap and covalently linked them
to antibodies or to streptavidin. They then used
these nanoparticles to label surface, cytoskeletal
and nuclear proteins in fixed cells and tissue
sections. Labelling was highly specific, and was
brighter and more stable than that of other 
fluorescent markers.Moreover, they simultane-
ously used two QDs of different emission spec-
tra and managed to detect two different targets
with a single excitation wavelength.

Wu et al. also succeeded in labelling live cells
with their QDs,but in the second paper, Jaiswal
et al.provide compelling evidence for the use of
QDs in vivo. They coated the nanoparticles
with dihydrolipoic acid, and electrostatically
conjugated them to avidin or to antibodies
through an intermediate, positively charged
protein. The authors allowed cells to incorpo-
rate the QDs by endocytosis and followed their

fate for more than a week. The cells continued
to grow, differentiate and respond to cellular
signals in a normal way. Similarly, the label was
stable throughout the experiment and there was
minimal nonspecific binding. Last, Jaiswal et al.
also used QDs with different emission proper-
ties to show the feasibility of simultaneously
detecting more than one fluorophore.

As the use of quantum dots is still in its
early days, these two papers and their demon-
stration that QDs are viable imaging tools
should stimulate their use in neurobiology, a
field in which their potential has not begun to
be explored yet.

Juan Carlos López
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According to work by Flanagan et al.,
described in Current Biology, we learn to
predict the consequences of our actions
before we learn to control them — under
certain circumstances, at least. These
experimental results were predicted by several
recent theoretical models of motor learning,
and should help us to understand more about
motor learning and motor control.

Motor control can be considered in two
parts: control, or the process of generating
motor commands to produce a desired
outcome; and prediction, which is the
internal generation of expected sensory
consequences from a set of motor
commands. Flanagan and colleagues used 
a task in which subjects had to manipulate 
an object along a straight line, while the load
on the object was varied during the trial.

Over repeated trials, the subjects learned to
compensate for the load so that they could
produce a straight trajectory.

To compare prediction with control, the
authors looked at two measures of
performance. The hand trajectory was used
to measure how quickly subjects learned to
control the movement, whereas prediction
was measured by looking at changes in grip
force. In early trials, grip force was changed
reflexively as the hand path (and therefore
the load force) was perturbed,but subjects
quickly learned to alter their grip force
predictively. By contrast, it took many trials
for them to learn to control the load.

Recent theoretical models of motor control
have included separate components for
prediction and control, and some have
proposed that the ‘predictor’ is used to train
the ‘controller’. The experimental finding that
subjects learn to predict the behaviour of a
manipulated object before they learn to
control it is consistent with this idea.

Rachel Jones
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Predict and control

M OTO R  S Y S T E M S

Quantum leap for
quantum dots

N E U R OT E C H N I Q U E S

In the top row, nuclear antigens and microtubules were labelled with QDs and the fluorescent dye Alexa 488, respectively. The bottom
row shows the reverse combination. Continuous illumination for three minutes caused the Alexa signal to fade completely, whereas
QDs remained stable. Reproduced, with permission, from Wu et al., Nature Biotechnology © (2003) Macmillan Magazines Ltd.Figure 1.4: The top row shows microtubules and nuclear antigens labelled with the
conventional fluorescent dye Alexa 488 (bright green) and QDs (red), respectively. The
bottom row illustrates the reverse combination (red for QDs and green for the fluores-
cent dye Alexa 488). To illustrate the stability of QD labelling, continuous illumination
for three minutes caused QDs remained stable whereas the Alexa signal fades com-

pletely. (digitally copied from [1])

highly specific, and was brighter and more stable than using other fluorescent markers.

Moreover, they can simultaneously use two NCs of different emission spectra and manage

to detect two different targets with a single excitation wavelength. A concrete example of

the use of NCs in biological imaging is illustrated in Fig.1.4, showing the more stability

of QD labelling.

1.4.5 Quantum information processing

Quantum information is physical information in quantum mechanics that is held in

the “state” of a quantum system. Entanglement together with quantum coherence have

played as physical bases for quantum information processing. This scheme uses quantum

bits or qubits (two-states quantum system) to provide secure communication and more

efficient computation [70]. Currently, its extension to solid-state systems remains a

demanding experimental goal even though quantum control of entanglement has been

realised in isolated atomic systems. Quantum information processing based on solid-

state system can provide the stronger coupling of solid-state qubits to their environment.

In addition, it also leads to the prospect of scalable fabrication. Therefore, learning how
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to control quantum systems in the strong-coupling system is a key challenge of quantum

information processing.

Semiconductor quantum dot is one of the most attractive candidates for a solid-state

qubit. By using switchable voltages that are applied to electrostatic gates, they allow

controlled coupling of one or more electrons. Recently it has been found that spin in

semiconductor quantum dots is probably a promising holder of quantum information

[70] due to the long spin relaxation in the order of tens of milliseconds. Additionally,

the two-electron spin qubit in semiconductor NC also provides the implementation of

quantum computation schemes with a number of practical advantages. The local elec-

trostatic gate control can lead to all operations for protecting, measuring and preparing

entangled electron spins. Considerable techniques has been developed, leading to fas-

cinating prospects for practical realisations of a wide variety of ideas from quantum

information science in low-dimensional structures.

Aside from aforementioned applications, there are wide varieties of practical realisations

[11] of semiconductor NCs in photonic and electric devices, including spintronic [71–

82], quantum emitter antennas [83] as well as thermopower devices [84]. Despite the

extensive investigations conducted over the past decades, the theoretical investigation at

determining the ideal characteristic of a NC for such applications, especially in quantum-

dot based photovoltaic cells, has not been fully exploited. The goal of this thesis is to

provide an accurate description of the electronic and optical properties in InAs colloidal

NCs of selected shapes so as to be a driving force for the state-of-the-art applications

discussed in this section. The outline of the thesis is provided in the following section.
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1.5 Thesis outline

In Chapter 2 the theoretical framework used in this thesis will be presented. An atom-

istic pseudopotential method is used to investigate electronic and optical properties of

InAs semiconductor nanostructures. In Chapter 3, starting from a simple system of

spherical quantum dot, our calculated interband absorption spectra reproduce the fea-

tures observed experimentally both qualitatively and quantitatively. The results relative

to intraband valence-to- valence and conduction-to-conduction absorption successfully

reproduce the recently measured photoinduced absorption spectra, which had so far

been addressed only qualitatively. They exclude the hypothesis of a thermal activation

process between dot-interior-delocalized hole states to explain the temperature depen-

dence observed experimentally. Furthermore, our study shows the excellent agreement

of our data with the experimental valence intersublevel transitions and the almost com-

plete overlap of the latter with scanning tunneling microscopic STM measurements. In

Chapter 4, we move to a study of slightly elongated dots to provide an unambiguity

on both the size and shape of the NCs in the experimental samples. We predict that

despite the qualitative similarity of both intra- and inter- band optical spectra, for NCs

with R≥15 Å even slight elongations should result in shifts of the order of hundreds of

meV in the spacings between STM peaks measured in the positive bias regime. Our

results suggest that many nominally spherical experimental samples contained a large

fraction of slightly elongated structures. In Chapter 5, we study a more complicated

structure, nanorod. We show that, as the aspect ratio increases, energy levels cross in

both conduction and valence bands, reflecting their different dependence on confinement

along a specific direction. Unlike in CdSe and InP quantum rods, however, the position

of the crossover between highest occupied molecular orbitals with different symmetries

is found to be size-dependent and the value of the aspect ratio at the crossing to increase
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with the rod diameter. We find that the level crossings at the top of the valence band

are crucial to explain the evolution with elongation of all optical properties in these

systems. Their transformation from zero- to quasi-one-dimensional structures is char-

acterised by a common monotonic behaviour of band gap, Stokes shift, degree of linear

polarisation, and radiative lifetime, closely linked to the variation with aspect ratio of

the electronic structure of the nanocrystal valence band edge. Finally, a summary of the

work presented, along with the conclusion and suggestions for possible future direction

of the research in this exciting area are given in Chapter 6.



Chapter 2

Theoretical Framework

The theoretical framework used in the thesis will be presented in this Chapter. Our

present calculation for the electronic and optical properties in nanocrystal structures is

based on the atomistic pseudopotential method. Initially the discussion will start with

an overview of this approach. Then the construction of semiconductor nanocrystals with

different shapes and sizes will be presented. The following section will focus on the details

of surface passivation followed by a section of pseudopotentials and their construction.

A method used to solve the single-particle problem will subsequently be explained, along

with the way to take into account the many-body effects. Last but not least, we will

describe the calculation of the optical properties and their importance including the

absorption and emission spectrum, Stokes shift, degree of linear polarisation and the

radiative lifetime.

2.1 Approximate methods

Currently, optical properties of nanostructures containing a few hundreds of atoms can

be calculated from atomistic first principles such as time-dependent density functional

theory, quantum Monte Carlo, etc. Extensions of these methodologies to the many-body

17
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problem, however, are unlikely to be able to address the aforementioned size regime. To

obtain many insights of strong confinement system, first-principles ab initio methods

have been steadily developed.

The k·p model [85–87] has become one of the most widely used bandstructure mod-

els for describing not only 3-dimensional semiconductors, but also lower dimensional

systems such as quantum wells, wires, and dots. This method gives a more accurate

description of the electronic structure near the top of the valence band and the bottom

of the conduction band without having to resort to numerical methods. Basically, in

the k·p method one can start with the known form of the bandstructure problem at the

bandedges and the perturbation theory is used to describe the bands away from the high

symmetry points. Since for the central cell functions, we only expand around the high

symmetry points in terms of known functions, the problem is considerably simplified,

often leading to analytical results.

To explain in more details of the k·p method, the Bloach’s theorem [85, 87] has been

recalled. The wave function in a periodic material can be written as the product

ψnk(R) = unk(R)eik·R, where unk(R) is a periodic function, k is called the wave vector

and n is a discrete index. It is a good approximation to assume that unk is constant

over a small region of k-space. The description of electrons in a crystal has to be via

Schrödinger equation

(
p̂2

2m0
+ Vper(R)

)
ψnk(R) = εn(k)ψnk(R) (2.1)

where m0 is the mass of free electrons and p̂ = −i~∇ is the momentum operator. After

substituting ψnk(R) = unk(R)eik·R into Eq. 2.1, the derivatives of p̂ acting on the

plane wave simply give ~k and the wave then cancel out. This leaves an equation for
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the periodic part unk(R) alone :

{(
p̂2

2m0
+ Vper(R)

)
+

(
~
m0

k · p̂ +
~2k2

2m0

)}
unk(R) = εn(k)unk(R). (2.2)

Having solved Eq. 2.2 at k = 0, one knows the set of wave functions un0(R) and the

energy εn(0). Quantum theory tells us that these form a complete set of functions.

These functions can therefore be used as a basis explaining the solution of some other

values of k. Alternatively, we can use perturbation theory, as we are mainly concerned

with small values of |k|. The terms that depend on k in Eq. 2.2 are therefore viewed

as a perturbation away from from the solution at k = 0. In Eq. 2.2 one is simply the

change in energy of a free electron, while the other contains the operator k·p, which

gives the name of the method. It has been found that the k·p method is simpler and

considerably more accurate if one is interested only in phenomena near the bandedges.

It is also capable of handling macroscopic system; nonetheless, this approach fails to deal

with nanostructures [88, 89], where atomistic effect become more and more important.

Another widely used theoretical method is the tight binding method (TBM) [5, 85–

87, 90]. It is an empirical technique in which experimental inputs are used to fit the

bandstructure. TBM uses atomic functions as a basis set for the Bloch functions. The

periodic part of the Bloch function is represented by some combination of the atomic

orbitals centred at the lattice points. If φn(r−R) represents such an orbital centred at

R, we could write a Bloch function of the form:

ψk(r) =
∑
Rn

φn(r−R)eik·R (2.3)

In Eq. 2.3 the periodic part of the Bloch function is expanded in terms of the atomic-

like orbitals of the atoms of the unit cell (index n in the summation). The elements

making up all the semiconductors of interest have the valence electrons described by
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s- or p-type atomic orbitals. The core electrons are usually not of interest. As the

atoms of the elements making up the semiconductors are brought together to form the

crystal, the electronic states are perturbed by the presence of neighbouring atoms and

discrete states broaden to form bands. While the original atomic functions describing

the valence electrons are, of course, no longer eigenstates of the problem, they can be

used as a good approximate set of basis states to describe the crystalline electrons. This

is the motivation for the tight binding method.

In semiconductors there are two atoms per basis and for each atom we need to include

at least the outer shell s, px, py, pz functions. It is possible to improve the technique by

adding additional atomic levels. Since there are two atoms per basis in a semiconductor,

we require eight functions to describe the central cell part of the Bloch functions. We

choose a state of the form

Ψk,r(r) =
∑
Ri

4∑
m=1

2∑
j=1

Cmj(k)φmj(r− rj −Ri)e
ik·Ri (2.4)

where the sum Ri is over unit cells, m are the different atomic functions φmj being used

in the basis, and j are the atoms in each unit cell.

In zinc blende crystals the sp3 basis is used and there will be eight basis functions, i.e.,

an s and three p orbitals, px, py and pz for each of the two atoms within the Wigner-Seitz

cell. This approximation assumes that there is spin degeneracy in the bandstructure of

the crystal. If the effects of the breaking of spin degeneracy are being considered, one

would need a basis which includes the spin-up and spin-down variants of each orbital.

This results in a requirement of a sixteen function basis for zinc blende semiconductors.

Then the Schrödinger equation is solved in the form of a secular determinant [86]. It has

been found that empirical tight binding models can currently address millions of atoms;
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however, they lack detailed information about atomistic feature of the wave functions

[88, 89], which constitute the essence of the many-body problem.

With the recent development of the semiempirical pseudopotential method (SEPM)

[43, 88], a detailed description of the carrier wave functions on the atomic scale can

be addressed and this approach can also be used in conjunction with configuration in-

teraction to obtain excitations in semiconductor nanostructures. The brief details of

this method will be discussed in the following section.

2.2 Overview of atomistic pseudopotential method

The semiempirical pseudopotential calculation of semiconductor nanostructures is com-

posed of a series of different steps as illustrated in Fig. 2.1. There are three main

Calculate Coulomb

        Integrals

Calculate Exchange

        Integrals

Calculate Potential

 Configuration

Interaction (CI)

Solve Schrodinger

       Equation

Absorption Spectra

PL Spectra

Stokes Shift

Radiative Lifetime

Input Geometry

ObservablesExcitations(2) (3)Ground states(1)

Semiempirical Pseudopotential Method (SEPM)

Figure 2.1: Flowchart of the semiempirical pseudopotential method (SEPM) used to
calculate the electronic structure of nanostructures and their optical properties, i.e.,

absorption and emission spectra, radiative lifetime and Stokes shift.
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steps in our calculation of the optical properties of semiconductor nanocrystals: (i) the

solution of the single-particle Schrödinger equation; (ii) the calculation of many-body

effects; (iii) the calculations of the optical properties. First, the input geometries are

determined from geometrical considerations and experimental data. The potential of

the system is then calculated using a superposition of screened atomic potentials which

are fitted to the experimental band structure and local density approximation (LDA)

wave functions. After pseudopotentials are constructed, a basis set for the single-particle

Schrödinger equation is defined and solved using the folded spectrum method (FSM).

Based on this approach we are able to calculate eigenstates near the bandedges (CBM or

VBM). After we obtain the single-particle energies and wave functions we then calculate

the electronic excitations of the quantum dots. To accomplish this task we first calculate

the Coulomb and exchange integrals and follow with the configuration interaction (CI)

method. Finally we calculate optical properties of the system, for example, the absorp-

tion and emission spectra. In what follows, we will describe in more details behind each

step of the atomistic pseudopotential approach.

2.3 Construction of semiconductor nanocrystals

The first step in the calculation of the optical properties of semiconductor nanocrystals

is the construction of the atomistic structure of the NC. Here, we consider As-centred

InAs spherical (quantum dots, QDs) and elongated (quantum rods, QRs) NCs with the

zinc-blende structure (lattice constant a=6.0584 Å), constructed by adding successive

atomic layers up to a specific cutoff radius rcut (and cutoff length lcut along the z (001)

direction for elongated structures).

To change the aspect ratio of the rod, we start from a spherical dot with the desired

diameter and insert a cylindrical segment along the (001) direction. This procedure
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leaves some of the atoms on the NC surface with unsatisfied (dangling) bonds. Surface

atoms with only one bond are systematically removed and the dangling bond at the

surface of the quantum dots are passivated by pseudo-hydrogen atoms so as to get rid

of the surface states. The details of passivation process will be explained in Sec. 2.4.

Fig. 2.2 illustrates unpassivated nanostructures whose surface atoms with only one bond

(i.e., three dangling bonds) are systematically removed. The effective radius of a dot

(R) is defined in terms of the total number of In and As atoms in the dot (Ndot) as

R = a(γNdot)
1
3 , where γ = 3/(32π) for the zinc-blende crystal structure. The effective

radius of a rod is assumed to be equal to that of the dot with the same value of rcut

and the aspect ratio (ρ) is defined in term of the ratio of length to diameter (L/D).

Because the number of atoms increases quickly with increasing diameter and aspect

ratio, as shown in Table 2.1, our calculation for rods with the aspect ratio more than

4.0 is highly impractical due to the prohibitively large number of atoms involved. In the

following chapters we will consider the quantum dots and nanorods with 15Å ≤ R ≤ 30Å

and 1.0 ≤ ρ ≤ 4.0.

InAs quantum dot InAs nanorod

Figure 2.2: Unpassivated InAs quantum dot and quantum rod with R = 20 Å and the
aspect ratio=1.0 and 4.0, respectively. Yellow (green) atoms represent In (As) atoms.
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Table 2.1: Total number of In and As atoms vs the size of quantum dots and quantum
rods. The largest structure calculated here is the quantum rod with the aspect ratio=4.0

and R = 20 Å.

radius (Å) length (Å) ratio (ρ) atom number (Ndot)

20 40 1.0 1,207

24 48 1.0 2,115

30 60 1.0 4,073

20 60 1.5 2,137

20 92 2.3 3,543

20 160 4.0 6,747

2.4 Surface passivation

After the surface atoms with only one bond are systematically removed, the atoms at the

surface are not fully bound, i.e., some of whose coordinating atoms have been removed.

These are the surface atoms we must passivate. For each such atom, we count how

many dangling bond it has. If an atom has more than two dangling bonds, we remove it

to prevent overly rough surface. Removal of an atom can result in a neighbour of that

atom having more than two dangling bonds, so we repeat the process until there are

no such atoms left. If an atom has one or two dangling bonds, we add the appropriate

passivant atom c1, c2, a1 and a2. Note that c1 and c2 (a1 and a2) are passivants for

cations (anions) with one and two dangling bonds, respectively. Therefore, for example,

as shown in Fig. 2.3 the In-centred dot requires passivants c1, c2 and a1 because the

atoms that lie on the surface are cations with either one and two dangling bonds, and

anions with one dangling bond. The same passivation process can be applied to the

As-centred dot shown in Fig. 2.3
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Figure 2.3: The surface passivation of zinc-blende InAs quantum dot with D =12 Å
(In≡yellow, As≡green, c1 ≡purple, c2 ≡blue, a1 ≡red and a2 ≡pink). Left : dot 1 is
cation centred dot and requires passivants c1, c2 and a1. Right : Dot 2 is anion centred

dot and requires passivants c1, a1 and a2.

In our calculation, the dangling bonds at the NC surface (maximum two per atom) are

passivated by pseudo-hydrogen atoms, located at a distance ηd0 (0 < η < 1) from the

centre of the passivated atom along the direction of the ideal bulk In-As bond of length

d0. The ligand potentials have a Gaussian form

v(r) = αe−(|r−Rp|/σ)2 , (2.5)

where Rp = Rp(η) is the location of the passivants, α and σ represent, respectively, the

amplitude and width of the Gaussian potential. As our electronic structure calculations

are performed in reciprocal space, we use the Fourier transform of Eq. (2.5):

v(q) = aeiq·Rpe−(b|q|)
2

(2.6)

where a ≡ απ1.5σ3 and b ≡ σ/2. This 12-parameter set (represented by a, b and η for

anions and cations with one and two dangling bonds) is optimised on flat (001- 110-

111-oriented slabs) and curved (dots) test structures, using an automated method [91],

based on the global optimisation algorithm DIRECT [92]. The quality of a passivation



Chapter 2. Theoretical Framework 26

Table 2.2: Four sets of InAs passivant parameters used in this calculation. a is the
weight (amplitudes), b is the width of the Gaussian potential, and η is the distance
along the ideal bond (the values are in atomic units). ci and ai refer, respectively,
to cations and anions with i = 1, 2 dangling bonds. ξ is the quality of a passivation.
Some regularities can be concluded from this table: (i) the optimal anion passivants
are typically closer to the atoms they passivate than are the cation passivants, (ii) the
amplitudes of anions with two dangling bonds (aai) are typically low. This means that
they are especially close to the anions they passivate. Both conclusions for InAs quan-
tum dots are similar to the optimal passivants for CdSe [93] and InP [94]. Nonetheless,
depending on the material properties and the bulk pseudopotentials that describes the

material, this regularity is not expected a priority.

Passivant parameters set 1 set 2 set 3 set 4

ac1 1.68 1.97 1.89 1.05

ac2 1.68 1.97 1.89 1.05

aa1 -1.05 -1.44 -1.05 -1.05

aa2 -1.05 -1.05 -1.05 -1.05

bc1 0.18 0.18 0.18 0.80

bc2 0.80 0.59 0.80 0.80

ba1 0.80 0.58 0.64 0.80

ba2 0.80 0.78 0.80 0.80

ηc1 0.55 0.57 0.55 0.55

ηc2 0.85 0.71 0.85 0.55

ηa1 0.25 0.25 0.25 0.55

ηa2 0.25 0.25 0.25 0.55

ξ 60% 64% 63% 54%



Chapter 2. Theoretical Framework 27

(ξ) is determined by the extent to which the lowermost n states in the conduction band

and uppermost m states in the valence band are not on the NC surface. A measure of

this could be the position of the energy levels with respect to the band gap. However a

more stringent test yielding a more quantitative estimate is obtained by integrating the

wave functions squared across the interior of each test structure.

We selected the four sets yielding the best passivation according to this criterion and

calculated the single-particle gap. The plot of energy gap as a function of effective radius

for a series of InAs spherical quantum dots is shown in Fig. 2.4. It can be seen that the

band gaps of all sets decrease with increasing radius. This is due to quantum size effect.

From the Fig. 2.4, the passivants parameter set 1, 2 and 3 give a very small difference in

bandgap for all the sizes considered. This is due to the fact that the first three sets have

the same distance for anions (ηa1 and ηa2). On the top of that, the amplitudes of the

Gaussian potential (w) are not significantly different. In contrast, the parameter set 4

gives a different trend of band gap. Its band gap is fluctuant and it is likely to convert to
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Passivant set 2 (ξ=64%)

Passivant set 3 (ξ=63%)

Passivant set 4 (ξ=54%)

Figure 2.4: Bandgap versus effective radius of InAs quantum dot with different sets
of passivant parameters. The quality factor (ξ) represents the average percentage of

the VBM and CBM wave functions contained in the core of the five test structures.
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the bandgaps obtained from set 1, 2 and 3. According to Fig. 2.4, the difference in the

results between set 1, 2 and 3 was found to be negligible, showing the independence of the

calculated values on the choice of the passivation parameters. We therefore selected the

passivant parameters set 2 which gives highest quality factor (ξ = 64%) (see Table 2.2).

Having constructed the surface-passivated nanocrystal structures, the following step as

schematically shown in Fig. 2.1 is to calculate the crystal potential.

2.5 Pseudopotentials and their construction

The prevailing continuous models such as effective-mass approximation and its k·p gen-

eralization, which are mentioned earlier in Sec. 2.2, are very successful models which

have allowed many fundamental physics to be explained. Nonetheless, these available

methods are either insufficient or impossibly complicated as they miss the atomistic

nature of semiconductor nanostructures. It is therefore worthwhile considering a more

complex model to see if they can offer more insights. Particularly, given the approxi-

mations that the single band effective mass and envelope function models made to the

crystal potential, an obvious improvement would be to consider the potentials of the

atoms individually.

The ensuing complexity of such a methodology is illustrated by the form of the complete

Hamiltonian (Ĥ):

Ĥ = Ĥelectrons + Ĥnuclei + Ĥelectrons−nuclei (2.7)

where

Ĥelectrons =
∑
µ

− ~2

2m0
52
µ +

∑
λ<µ

e2

|rλ − rµ|

 . (2.8)
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Note that rµ and m0 are, respectively, the positions of the electrons and the electron

mass. Additionally,

Ĥnuclei =
∑
ν

(
− ~2

2Mν
52
ν +

∑
λ<ν

ZλZνe
2

|Rλ −Rν |

)
(2.9)

where Rν are the positions, Zµ the atomic numbers and Mν the masses of the nuclei.

Lastly :

Ĥelectrons−nuclei =
∑
µ,ν

Zνe
2

|Rν − rµ|
(2.10)

However, as a typical macroscopic sample of semiconducting crystal composes of a large

number of electrons, the aforementioned problem is therefore insolvable.

To simplify Eq. 2.7 to be a more manageable problem, the frozen core approximation has

been introduced. It is assumed that the electrons are split into core and valence electrons.

The inner-shell localised core electrons are tightly bound to the nucleus and assumed

to be unperturbed by their environment. For the non-localised valence electrons, they

occupy the outer shells and interact with the potentials of neighbouring atoms. They

are responsible for the interatomic binding. Based on this approximation, the number

of particles that have to be solved with the Schrödinger equation is therefore reduced

as we only need to deal with the valence electrons. On the top of that, the localised

core electrons screen the outer valence electrons from the central of the nuclear charge

resulting smoothed potentials. Thinking ahead slightly, the smoother the potential then

the less terms may be required to construct the wave functions from Fourier series. The

frozen core approximation is thus the founding of pseudopotential theory.

Next, we will consider the formal justification of pseudopotentials. Following the Pauli

principle the valence wave functions need to be orthogonal to the core wave functions.

This makes the valence wave functions to be fast oscillating in the core region with
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high kinetic energy. Here, |ψ〉 represents the valence wave functions. |χn〉 and {En}

are, respectively, the core wave functions and their eigenvalues. In order to construct a

node-free pseudo-wavefunction |φ〉, we assume that

|ψ〉 = |φ〉+
∑
n

cn|χn〉. (2.11)

Due to the orthogonality relation we obtain

〈χn|ψ〉 = 0 = 〈χn|φ〉+ cn → cn = −〈χn|φ〉 (2.12)

and

|ψ〉 = |φ〉 −
∑
n

|χn〉〈χn|φ〉. (2.13)

Thus the Schrödinger equation for the valence wave functions is Ĥ|ψ〉 = E|ψ〉,

Ĥ|ψ〉 = Ĥ|φ〉 −
∑
n

Ĥ|χn〉〈χn|φ〉 (2.14)

= Ĥ|φ〉 −
∑
n

En|χn〉〈χn|φ〉 = E|ψ〉 (2.15)

= E|φ〉 −
∑
n

E|χn〉〈χn|φ〉 (2.16)

and the terms are rearranged :

Ĥ|φ〉+
∑
n

(E − En)|χn〉〈χn|φ〉 = E|φ〉 (2.17)

At this point, Ĥ has been split into kinetic T̂ and potential V̂ terms. With an additional
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energy-dependent non-local pseudopotential V̂nl, we then obtain the node-free pseudo-

wavefunctions that fulfil a Schrödinger equation :

T̂ |φ〉+
{
V̂ +

∑
n

(E − En)|χn〉〈χn|︸ ︷︷ ︸
non-local pseudopotential

}
|φ〉 = E|φ〉. (2.18)

The terms in curly brackets are the pseudopotentials, composed of a positive attractive

part V̂ and a negative repulsive part V̂nl. These terms represent the crystal potentials

that are not only the interaction between the electrons and nuclei of atoms constituting

the lattice, but also the interaction between electrons themselves. The Schrödinger

equation for the Eq. 2.17 can be rewritten as

〈ψ|Ĥ|φ〉+
∑
n

(E − En)〈ψ|χn〉〈χn|φ〉 = E〈ψ|φ〉. (2.19)

It is noticed that the eigenvalues of the real and the pseudopotential are identical as

〈ψ|χn〉 = 0 due to the orthogonality of the core and valence states as mentioned in the

Pauli principle. At this point, we have given a formal derivation of pseudopotentials. We

next explain the construction of empirical pseudopotentials and follow by semiempirical

pseudopotentials which are mainly used in the thesis.

The empirical pseudopotential method (EPM) has been developed since 1960s to de-

scribe the bulk band structure of semiconductors. In this methodology, a superposition

of non-self-consistent screened pseudopotentials is used to represent the total potential

of the system. It involves a fit of the reciprocal space pseudopotential V (G) to experi-

mentally known quantities such as certain points of band structure, experimental band

gap and effective masses of bulk semiconductor, etc. In this approach, it is assumed that

the total screened pseudopotential of the crystal V (r) can be written as a superposition
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of atomically screened potentials vα(r) at sites Rn for atom type α :

V (r) =
∑
α,j,n

vα(r−Rn − rα,j), (2.20)

where n is the index for the primitive unit cells and rα,j is the basis vector for atom j

in unit cell n. The potential of a crystal with only one type of atoms, for example, in

reciprocal space can be written as

V (r) =
∑
G

v(G)S(G)eiGr, (2.21)

where

S(G) =
1

n

∑
j

e−iGrj , (2.22)

and n is the number of basis atoms. S(G) is called the structure factor which only

depends on the geometry. The reciprocal space functional form of the pseudopotential

v(G) can be represented by a function [122]

vα(q) = a1α
(q2 − a1α)

a3αea4αq
2 − 1

, (2.23)

where a1α, a2α, a3α, a4α are adjustable parameters. At this point, the parameters from

Eq. 2.23 are fitted to reproduce known experimental quantities such as the bulk band

structure at the high symmetry points, the effective masses for different bands at different

k-points and along different reciprocal space directions, the deformation potentials, and

the surface work function. Early applications for this procedure were applied for Si and

Ge [95, 96], and then were successfully extended to 14 different semiconductors [97] with

surprisingly accurate results.

The semiempirical pseudopotential method or SEPM, basically used in this thesis, was
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in recent developed in 1995 by Lin-Wang Wang and Alex Zunger [98]. They improved

the conventional EPM by a two-step process. First, a set of self-consistently screened

local-density-approximation (LDA) potentials is inverted for a range of bulk crystal

structures and unit cell volumes. Therefore, spherically-symmetric and structurally av-

eraged atomic potentials (SLDA) were determined. It was found that these potentials

can be used to reproduce the LDA band energies and wave functions extremely well for

most common structure of that material. Second, small adjustments to the potentials

are made so as to fit the bulk band structure to the experimentally measured excitation

energies. The adjustment represents a reasonably small perturbation over the SLDA

potential, while the ensuing wave function preserves a large overlap with the original

LDA values. These semiempirical pseudopotentials therefore combine LDA quality wave

functions with experimentally consistent excitation energies, effective masses, and de-

formation potentials.

It is worth comparing the SEPM with the well-known empirical pseudopotential method

(EPM). Without check, the conventional EPM sometimes gives inaccurate wave func-

tions. On the one hand, the SEPM can produce a large overlap with the LDA wave

functions and also reproduce experimental excitation energies. On the other hand, in

the traditional EPM, v(α)(r) was adjusted to fit the single-particle excitation spectra

regardless of the quality of the associated wave functions and charge densities. More-

over, while the EPM is suitable for a particular crystal structure and lattice constant,

the state-of-art SEPM can be used for different structures and volumes with good trans-

ferability. Taking into account of all these factors, this SEPM can provide a systematic

procedure and information on the transferability of the effective potentials.
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2.6 Solution of the single particle problem

2.6.1 Single particle Schrödinger equation

Having constructed the crystal potential, the next step in the calculation of the ex-

citonic structure of a nanocrystal is the solution of the single-particle problem. In the

semiempirical pseudopotential approach the single-particle Schrödinger equation is given

by (
− ~2

2m0
∇2 + V SEPM

ps (r) + V̂nl

)
ψi(r) = εiψi(r), (2.24)

where V SEPM
ps (r) is the microscopic pseudopotential of the system (dot plus surrounding

material), and V̂nl is a short-range operator that accounts for the nonlocal part of the

potential (including spin-orbit coupling). V SEPM
ps (r) is calculated from the superposition

of the screened atomic potentials in Eq. 2.20. Our primary goal is to achieve interior

eigenvalues on either side of the bandgap, which determines most of the properties

related to excitations.

2.6.2 Folded spectrum method (FSM)

The conventional variational method to solve Hamiltonian in Eq. 2.24 is to minimise

the energy 〈ψ|Ĥ|ψ〉 by varying the expansion coefficients of ψ. Once the first ψ with

the lowest energy of Ĥ is obtained, one needs to orthogonalize ψ to all energy below it

in order to calculate higher states. To accomplish this orthogonalization the calculation

scales as N3 where N is the number of atoms in the system. Consequently, this conven-

tional methodology can only deal with a small system (N ≤ 1, 000 atoms) in spite of the

fact that parallel in computing has increased the size of systems amenable to treatment

via Eq. 2.24.



Chapter 2. Theoretical Framework 35

Due to the aforementioned problem, folded spectrum method (FSM) was therefore intro-

duced in 1983 by L. W. Wang and A. Zunger. After that, this approach has been serving

as the main engine for large scale non-selfconsistent calculations. In this methodology,

we calculate eigen-solutions around an interesting energy without having to calculate

any of the wave functions below it. The calculation scales linearly with the system’s

size; hence, we are able to calculate the eigen-solutions around the band-edge and the

properties in microscopic systems could be addressed. The basic idea of this method is

that the solutions are identical to those of Eq. 2.24 and also satisfy

(
− ~2

2m0
∇2 + V SEPM

ps (r) + V̂nl − εref
)2

ψi(r) = (εi − εref)2ψi(r), (2.25)

where εref is an arbitrary reference energy. In order to obtain the identical solution,

the spectrum of εi of Ĥ has been folded at the reference point of εref into spectrum

NC

spectrum folding

CBM

i

Folded Spectrum Method (FSM)

ref

E

VBM

E

ref
EE

i
(    −       )

2

Figure 2.5: The schematic view of the folded spectrum method (FSM). The spectrum
at the left is the original spectrum of Ĥ. The spectrum at the right is the folded
spectrum of (Ĥ − εref)2. Notice that, the CBM or VBM state is the lowest energy in

the folded spectrum.
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(εi − εref)2 of (Ĥ − εref)2. As illustrated in Fig. 2.5, the lowest solution of Eq. 2.25 is

the eigenstate with εi closest to εref. Hence, by placing εref in the interesting range, such

as in the bandgap, one transforms an arbitrarily high eigen-solution into the lowest one,

regardless of the orthogonalisation of the function A[ψ] = 〈ψ|(Ĥ − εref)2|ψ〉. This will

enable us to find either the CBM or VBM, depending on which is closer to εref. Changing

εref within the gap region then assures that both the CBM and VBM are found.

2.7 The calculation of many-body effects

Once the single-particle problem has been calculated, the next step for the calculation

of an an optical absorption spectrum requires a solution for the two-body electron-hole

problem. Formally, the correlated exciton wavefunctions can be constructed from a set of

single-substitution Slater determinant Φv,c by promoting an electron from the occupied

valence state ψv of energy εv to the unoccupied conduction state ψc of the energy εc :

Φ0(r1, σ1, ..., rN, σN) = ξ[ψ1(r1, σ1) · · ·ψv(rv, σv) · · ·ψN(rN, σN)] (2.26)

Φv,c(r1, σ1, ..., rN, σN) = ξ[ψ1(r1, σ1) · · ·ψc(rv, σv) · · ·ψN(rN, σN)] (2.27)

where the spin variables are represented by σ =↑, ↓, N is the total number of electrons

in the system, and ξ is the antisymmetrizing operator. It is worth noticing that the

single-particle valence state ψv1 and ψv2 , as well as the single-particle conduction states

ψc1 and ψc2 are degenerate if two Slater determinants Φv1,c1 and Φv2,c2 belong to the

same configuration. That is, εv1 = εv2 and εc1 = εc2 . In other words, each exciton

configuration has a minimum dimension of four. Thus the exciton wave function Ψα can
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be expanded in term of the basis set,

Ψα =

Nv∑
v=1

Nc∑
c=1

CNc
v,cΦv,c, (2.28)

where Nv and Nc denote the number of valence and conduction states included in the

expansion of the exciton wave functions. Inclusion of multi-substitution Slater determi-

nants will introduce additional multi-exciton levels at higher energy.

The Slater rule allows us to express the matrix elements between Slater determinants in

term of

Ĥvc,v′c′ = 〈Φv,c|Ĥ|Φv′,c′〉 = (εc − εv)δv,v′δc,c′ − Jvc,v′c′ +Kvc,v′c′ , (2.29)

where J and K are the Coulomb and exchange integrals, respectively.

When electrons are introduced in the conduction band (or holes in the valence band),

the electrons which are fermions interact strongly with each other. Electron-electron

interaction results on a downward shift in the conduction band edge. This shift is

caused by electron exchange energy which evolves from the Pauli exclusion principle.

When the electron concentration in the semiconductor becomes sufficiently large, their

wavefunctions begin to overlap. Consequently, the Pauli exclusion principle becomes

operative, and the electrons spread in their momenta in such a way that the overlapping

of the individual electron wavefunctions is avoided. The Bloch states are thus modified

by the presence of the other electrons. In general, the electron-electron interaction can

be represented by the usual Coulombic interaction and the exchange interaction. The

latter comes about due to the constraint of the Pauli exclusion principle which forces

any multiparticle electronic wavefunction to be antisymmetric in the exchange of two

electrons. The exchange term, which keeps the electrons away from each other, then

lowers the energy of the system.
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Here the electron-hole Coulomb energy, Jvc,v′c′ , between each of the possible electron-

hole pairs can be calculated by direct integral of the single -particle wavefunctions as

Jvc,v′c′ = e2
∑
σ1,σ2

∫ ∫
ψ∗v′(r1, σ1)ψ

∗
c (r2, σ2)ψv(r1, σ1)ψc′(r2, σ2)dr1dr2

ε̄(r1, r2)|r1 − r2|
(2.30)

and the exchange integral, Kvc,v′c′ , is calculated by

Kvc,v′c′ = e2
∑
σ1,σ2

∫ ∫
ψ∗v′(r1, σ1)ψ

∗
c (r2, σ2)ψc′(r1, σ1)ψv(r2, σ2)dr1dr2

ε̄(r1, r2)|r1 − r2|
. (2.31)

Next we will perform configuration interaction (CI). The calculation of configuration

interaction in quantum chemistry is often treated at the level of triples, quadruplets,

which exactly solves the electronic Schrödinger equation based on the one-particle basis

set. In such a calculation, the Coulomb integrals are computationally unscreened. In

contrast, for excitations in a nanostructure, such a procedure is not possible and it has

to limit itself in the one-particle basis set to the investigation of only a few states close

to the bandgap and to single excitation only. In order to study the electronic excitations

in nanostructures, ignoring of the coupling of singles to higher excitations is a poor

approximation. However, it has been found that the effect of higher-order excitations

can be folded back onto the considered subspace of single excitations [99]. The effect

of this procedure is to screen (renormalize) the Coulomb and exchange interactions, as

shown earlier in Eq. 2.30 and 2.31. Here, a position-dependent dielectric constant is

used to screen the Coulomb and exchange interaction in quantum dots according to the

electron-hole separation. The screened Coulomb potential of Eq. 2.30 and 2.31 can be

generally written as

g(re, rh) = e2
∫
ε−1(re, r)|r− rh|−1dr (2.32)
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with the inverse dielectric function ε−1. Assuming that ε−1(r1, r2) ≈ ε−1(r1 − r), the

Fourier transform of the screened Coulomb potential is

g(k) = ε−1(k)
4πe2

k2
(2.33)

where ε−1(k) is the Fourier transform of ε−1(r1 − r). For the electronic screening of the

exciton we used the model proposed by Haken in which the inverse dielectric constant

constant ε−1 = ε−1el +ε−1ion consists of an electric (high-frequency) contribution ε−1el and an

ionic (low-frequency) contribution ε−1ion. The approximation of both the electronic and

iconic parts are based on the Thomas-Fermi model. Both terms are generally defined as

ε−1el =
k2 + q2sin(kρ∞)/(εdot∞ kρ∞)

k2 + q2
(2.34)

ε−1ion(k) =

(
1

εdot0

− 1

εdot∞

)(
1/2

1 + ρ2hk
2

+
1/2

1 + ρ2ek
2

)
(2.35)

where q is the Thomas-Fermi wavevector and it is defined as q = 2π−
1
2 (3π2n0)

1
3 , n0

is the electron density and ρ∞ is the solution of sinh(qρ∞)/(qρ∞) = εdot∞ . Here ρh,e =

(~/2m∗h,eωLO)
1
2 , with m∗h,e are the electron and hole effective mass and ωLO is the bulk

LO-phonon frequency.

For small colloidal nanocrystals, it is not appropriate to use the approximation of bulk

screening due to an increasing role of the interface effect. We used a modified screening

function where the radius of colloidal quantum dots is taken into account. In this

approximation we replace the high-frequency bulk dielectric constant ε∞ in Eq. 2.32

with a constant εdot∞ obtained from a modified Penn model. The size dependence is

introduced to the equation through the value of the optical bandgap of the dot. The

low frequency dielectric constant of the dot εdot0 was obtained by assuming that the dot
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interior is bulk-like so εdot0 − εdot∞ can be approximated from the bulk,

εdot0 − εdot∞ = εbulk0 − εbulk∞ = ∆εbulkion . (2.36)

In this approximation, the dielectric function remains dependent on the distance |r− r
′ |

but is independent of the position of r. As a result, screening is typically reduced

throughout the nanostructures. εdot∞ is obtained from the Penn model and it is generally

defined as

εdot∞ = 1 + (εbulk∞ − 1)
(Ebulk

gap + ∆)2

(Edot
gap(R) + ∆)2

(2.37)

where ∆ = E2 − Ebulk
gap . E2 is the second strong peak from the experimental emission

spectra. Unlike the dielectric constants in the effective mass and tight-binding calcula-

tions, the dielectric function used in our framework depends both on the electron-hole

separation and the quantum dot size. Besides, in the effective mass and tight-binding

calculations the electron-hole exchange interaction was either unscreened or screened by

the bulk distance-dependent dielectric constant.

In the case of a spherical NC, for example, we use the uppermost 60 states in the valence

band and lowermost 8 states in the conduction band for this expansion, yielding a total

of 480 excitonic configurations. The exciton states of the quantum dot are obtained by

solving the secular equation

Nv∑
v′=1

Nc∑
c′=1

Hvc,v′c′C
(α)
v′,c′

= E(α)C(α)
v,c . (2.38)

The single-particle and excitonic pictures are shown in Fig. 2.6. The single-particle

levels are labelled as pn, where p = e, h is the charge carrier and n is the order of

the level (increasing from 1 starting from the CBM upwards for e and from the VBM
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downwards for h). ×d indicates the degeneracy (including spin). The zero of the energy

is set arbitrarily at the position of the VBM. Single-exciton levels |1h, 1e〉 are labelled

according to the SP states from which they originate as (hn, em). The zero of the energy

is at the ground state |0h, 0e〉 (i.e, the state with 0 electrons and 0 holes). In the case

of InAs spherical NCs, the lowermost exciton manifold (h1,2, e1) originates from the SP

states h1,2 (VBM) and e1 (CBM) and has therefore a total degeneracy of 4 × 2 = 8.

However exchange interaction splits it into a lower 3-fold degenerate multiplet, a middle

2-fold and a higher 3-fold degenerate multiplets, separated by energy gaps of the order

of hundreds of µeV (not shown). We find very little configuration mixing in our InAs

spherical NCs, with most excitons receiving a contribution ≥ 99% from a single electron-

hole pair (hn, em).

The configuration-interaction (CI) spectrum is obtained by diagonalizing of the Hamil-

tonian matrix in Eq. 2.38. Fig. 2.7 illustrates the convergence of the configuration-

interaction expansion in term of the size of the determinantal basis set. This figure

E
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g

y

CBM

VBM

Single−particle picture Excitonic picture

Figure 2.6: Schematics of energy levels and degeneracies in the single-particle (left-
hand side) and excitonic (right-hand side) pictures. The arrows indicate intra-band

(blue and cyan) and inter-band (red) absorption processes.
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Figure 2.7: Convergence of the lowest exciton energy in InAs NC (R=20 Å) with the
number of valence-band states (Nv) and conduction-band states (Nc) included in the

expansion of Eq. 2.38.

shows a 2-D plot of the lowest exciton energy of an InAs NC (R=20 Å) as a function of

the number of valence states (Nv) and conduction states (Nc) included in the many-body

expansion of Eq. 2.38. As we can see from Fig. 2.7, the convergence of the exciton en-

ergy levels is relatively fast. The difference in the single-particle energy between e4 and

e5 is about 300meV. Therefore, expanding the exciton states using 30 valence states and

4 conduction states, corresponding to a CI basis set of 480 configurations, is sufficient

for the investigation in the bandage optical properties.

Once the exciton wave functions have been obtained by diagonalizing the CI Hamil-

tonian, the dipole matrix elements for the optical interband absorption are calculated

as:

M (a) =
∑
v,c

A(a)
v,c〈ψv|r|ψc〉 (2.39)

where the coefficients A
(a)
v,c are the eigenstates of the CI Hamiltonian. Having calculated
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the dipole matrix elements, next we will be able to calculate observables through the

use of post-processor tools as illustrated in the final step of the flowchart in Fig. 2.1

2.8 Optical properties

2.8.1 Absorption and emission spectrum

The optical absorption spectrum is calculated by

I(E) =
1

V

∑
a

|M (a)|2 e
−

E − E(a)

Γ

2

(2.40)

where E(a) is the exciton energy and Γ represents an experimental line broadening. All

absorption spectra (i.e., those relative to both intra- and inter-band transitions) in this

work are calculated using excitonic states. However, as the single-particle picture is often

more intuitive, and given that the exciton states are found to be contributed to almost

exclusively (≥99%) by a single configuration, all absorption spectra presented in the

following Chapters are accompanied by the relevant calculated SP spectra illustrating the

transitions between the single-particle states from which the different excitons involved

originate. Intra- and inter-band transitions are represented schematically by colored

arrows in Fig. 2.6.

2.8.2 Stokes shift

When a semiconductor nanocrystal absorbs a photon, it gains energy and enters an

excited state. The nanostructure can then relax via two possible mechanisms. One way

for the system to relax would be the loss of heat energy, and another feasible relaxation

process is to emit a photon. In the emission process if the emitted photon has less
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Figure 2.8: Schematic illustration of the “resonant” and “nonresonant” Stokes shift
from both theoretical and experimental point of view. (a) (Left) The absorption and
emission are represented by black and red dashed arrows, respectively. The transition
from ground state to Eslow state is forbidden, indicating by the broken solid arrow. (a)
(Right) The excited energy levels of the dots present in a given sample form groups. In
each group, there are many states reflecting the variation of dot sizes. (b) The black
solid line indicates “photoluminescence excitation” (PLE) spectroscopy showing the
absorption spectra of all optically allowed states. The green solid line represents the
“global excitation spectroscopy” in which all sizes in the sample are excited and the
emission is monitored at all energy. The blue solid line indicates “selective excitation
spectroscopy” or “fluorescence line narrowing” (FLN) in which the larger dots are
selectively excited. The emission is therefore narrowed and reflect an intrinsic redshift

of a given dot size.

energy than the absorbed photon, the difference in energy is the so-called Stokes shift.

In general, Stokes shift is typically defined as the energy difference (either in wavelength

or frequency units) between positions of the absorption and emission spectra of the same

electronic transition.

Stokes shift is one of the almost universal features in semiconductor nanostructures. It

has been seen in quantum dots of Si [100–102], CdSe [41, 42, 103–108], InP [109], CdS
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[110] and InGaAs [111]. There are various causes for the Stokes shift. One obvious

reason for the redshift is the existence of large size variation in experimental samples.

Due to the size-dependent confinement effect, the larger dots in a sample have lower

bandege energies, as illustrated in horizontal lines in Fig. 2.8. Thus, if one excites a

sample with sufficiently-high-energy photons above the band edge of the smallest dot,

the emission will be redshifted because it results from the de-excitation of band edges

of all the dots in the sample. The difference between the lowest-energy peak in the

emission peak and absorption spectra is called “nonresonant Stokes shift” (Enonres)

Though it is possible to eliminate the effect of size distribution by exciting selectively

only the largest dots in a sample by using the fluorescence line narrowing (FLN), it still

gives the difference between excitation line and the FLN emission peak (the “resonant

Stokes shift” Eres), reflecting an intrinsic redshift of a given dot. It has been found

that the larger the size of the dot, the smaller the resonant Stokes shift. These findings

can be explained in term of a schematic energy-level diagram shown in Fig. 2.8, where

Efast and Eslow denote, respectively, the fast, high-energy, allowed state and the slow,

redshifted forbidden state. A large volume of studies have aimed at identifying the origin

and nature of the excited states Efast and Eslow. One possible reason is the intrinsic,

spin-forbidden state. In this model, it is assumed that in the small nanostructures the

electron-hole exchange interaction is sufficiently enhanced so as to split the electron-hole

state into a lower energy, spin-forbidden component Eslow and a higher energy, spin-

allowed component Efast. Therefore, the observed emission versus absorption redshift

is the exchange splitting. In addition, the observed long lifetime of the emission from

Eslow to the ground state is due to the spin-forbidden character of Eslow with respect to

the ground state. Another possibility consists of the electron and hole having different

spatial envelope function symmetries. When the highest hole state (VBM) and the lowest

electron state (CBM) have different envelope function symmetry, the dipole transition
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element between both states is zero. The transition from Eslow to ground state will be

both red shifted and slow.

2.8.3 Degree of linear polarisation

Due to the geometrical anisotropy and the resulting deconfinement along one direction,

in NRs the absorption/emission intensity I‖ of light polarised parallel to the long axis

can be different from that (I⊥) of light polarised perpendicular to it. The ensuing

polarization anisotropy is typically defined in terms of the polarisation ratio [112] (also

called the degree of linear polarisation)

β =
I‖ − I⊥
I‖ + I⊥

. (2.41)

2.8.4 Radiative lifetime

The thermally averaged lifetime τR(T ) is calculated in the framework of time-dependent

perturbation theory [113–115] as:

1

τR(T )
=

∑
γ

(1/τγ)e−(Eγ−E0)/kBT

∑
γ

e−(Eγ−E0)/kBT
(2.42)

where the intrinsic lifetime τγ is defined as

1

τγ
=

4nF 2αω3
γ

3c2
|Mi→j |2. (2.43)

Here α is the fine structure constant, ~ωγ is the transition energy, c is the speed of

light in vacuum, Mi→j is the CI dipole matrix element [88], n is the refractive index of
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the medium surrounding the NC, F = 3ε/(εdot + 2ε) is the screening factor (ε = n2),

and εdot is the dielectric constant of the NC calculated by a modified Penn model

[43]. For the dielectric constant of the surrounding matrix three different values were

chosen, representative of different NC environments: (i) εout = 2.5 consistent with the

presence of a common solvent (such as toluene) around the NCs; (ii) εout = 4.5 an

estimate obtained in Ref. [5] as the best fit of their theoretical data to the experimental

results (this effective dielectric constant was used here in an attempt to account for the

presence of organic ligands on the NC surface as well); and (iii) εout=6.0 consistent with

the presence of a CdSe shell around the NC (in InAs/CdSe core/shell structures).

In the following Chapters, the atomistic pseudopotential method discussed in this Chap-

ter will be used to investigate the electronic and optical properties in InAs nanostruc-

tures with different shapes, starting from spherical quantum dots in Chapter 3, slightly

elongated dots in Chapter 4, and nanorods in Chapter 5.



Chapter 3

Spherical InAs Nanocrystals

In this chapter the atomistic pseudopotential approach discussed in the previous chapter

is used to investigate the electronic and optical properties of spherical InAs nanocrystals

(NCs). Starting from the review of the recent theoretical and experimental investiga-

tions, we found that the complex structure of valence and conduction band in this

quantum-confined structure is still a controversial issue leading to disparate interpreta-

tions of the experimentally observed features. Here we present our accurate pseudopo-

tential calculation of interband and intraband transitions in InAs nanocrystal quantum

dots. We start our calculation from the single-particle picture before the excitonic pic-

ture is subsequently considered. Throughout this chapter, our methodology can present

itself as a suitable tool to reproduce a large volume of experimental results and this is

a promising start for the study in a wide variety of quantum-confined structures in the

following chapters.

3.1 Recent investigations of spherical InAs NCs

The evolution of the electronic structure of semiconductor nanocrystals as a function of

size manifests itself as the transition from the molecular to the solid state regime. To

48
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date, a number of observations of atomic-like electronic states in semiconductor NCs

have been reported [2, 59]. In particular, InAs quantum dots have been the subject of a

large volume of experimental [2, 4, 116, 116] and theoretical [5, 90, 117–122] work, as they

provide a typical example of quantum confined systems in the technologically important

group of narrow-gap materials, and exhibit a spectrum of interesting properties that can

find a wide range of applications.

Experimentally it is possible to resolve up to about 9 peaks in the interband absorption

spectra of colloidal InAs dots [4]. However, despite the extensive investigations con-

ducted over the past decade, the origin of some of the optical transitions is still unclear.

There is therefore scope for the application of a more accurate theoretical treatment to

try to improve our understanding of such features.

One of the most widely used theoretical approaches is the continuum-like k·p method

[117]. Banin et al. [4] used an eight-band k·p approach to study the size dependence of

the optical transitions in InAs nanocrystals. As illustrated in Fig. 3.1 (a) , they found

that the energy of the observed ground state transition, identified as the optically al-

lowed transition between the valence band maximum (VBM, 1S3/2) and the conduction

band minimum (CBM, 1S1/2), deviated substantially from the prediction of their model

when the radius of the NCs was less than 20 Å. Furthermore the multi-band effective

mass model used in Ref.[4] entirely missed the second optical transition and achieved a

good agreement with experiment only for the observed strong transitions, whereas the

agreement for the weaker peaks was less satisfactory. The authors speculated that the

discrepancy found for the ground state energy could have been due to an underesti-

mate of the electron wave function penetration into the barrier or to the over simplified

calculation of electron-hole Coulomb interaction in the smallest crystals, in which the

dielectric constant was taken as the static dielectric constant of bulk.
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Using a different parametrization for the eight-band effective mass Hamiltonian, Zhu

and co-workers [118] found instead that the envelope function of the ground hole state

(VBM) in InAs spherical dots has p symmetry and that therefore the transition from this

level to the CBM (1S1/2) is optically forbidden. Their calculated absorption spectrum,

however, misses completely the sixth experimental peak and adds one extra unseen

transition between the observed fourth and fifth peaks.

Another broadly used method is the atomistic tight-binding model (TB) [5, 90, 119, 120].

The advantage of this method is that it allows to study large systems easily as the

atomistic detail is limited to a small basis set. Furthermore, the TB model provides a

1P1/2

1S1/2

1S3/2

1P3/2

S1/2

P3/2

S3/2

P5/2

Semiconductor NC

s−like

s−like

p−like

p−like

(a) k.p

(b) TB

(c) EPM

Figure 3.1: InAs semiconductor nanocrystal provides a typical example of quantum-
confined systems having discrete atomic-like states and NC dependent energy gap.
Many accurate theoretical treatments have been used to investigate the electronic and
optical properties of spherical InAs quantum dots. (a) Based on the continuum-like
k·p method, it was found that the observed ground state transition is identified as the
optically allowed transition between VBM and CBM. (b) Instead, the TB model has
proved that the transition from VBM to CBM is optically forbidden due to the different
symmetry of the wave function. (c) EPM was previously applied by Williamson and
Zunger [122] and they found an inversion of the order of the upper-most valence band

states compared with the present study.
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simple physical picture in terms of the atomic orbitals and it has proved to be highly

successful. However, the correct fitting of the band structure sometimes proved difficult

in the past for the TB approach [123], which also lacks detailed information about

the atomic features of the wave functions. Niquet et al. [119] applied this model to

study single-particle tunnelling in InAs NCs. Their calculated band-gap energy and

the splitting between the two lowermost conduction band states were in good agreement

with the scanning tunnelling microscopy (STM) data of Ref.[2]. However, the calculated

splittings between the two uppermost valence band levels were much lower than the

experimental values obtained for negative bias and assigned [2] to the transition between

VBM and VBM-1. The authors [119] attributed this disagreement to the complexity

of the structure of the STM charging peaks and questioned the simple interpretation

given in Ref.[2] in terms of pure single-hole tunnelling, pointing out that the model used

by Banin and co-workers [2] could not account for the multiplicity and splitting of the

negative bias peaks.

By using a different TB parametrisation Lee et al. [5] found a better agreement between

their calculated hole addition energy spacings and the STM measurements. However the

agreement between their calculated position for the three strongest absorption peaks as a

function of NC size and the experimental data was less than ideal, especially for R < 20

Å.

No theoretical work has so far been published on the analysis and interpretation of the

recent photoinduced absorption (PIA) measurements carried out by Krapf et al. [116].

In this chapter we apply the semiempirical pseudopotential method (EPM) [98], to study

intra- and inter-band optical transitions in InAs NCs with radii ranging from 15 to 30

Å. This approach, which uses a superposition of non-self-consistent screened atomic
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pseudopotentials to represent the total potential of a system, is ideally suited for a com-

prehensive microscopic description of a nanostructure. It provides a detailed description

of the carrier wave functions on the atomic scale, but may require a larger set of basis

states compared to the TB method. This method was previously applied by Williamson

and Zunger [122] to investigate the electron-hole excitations in InAs NCs. However,

unlike in the present chapter where pseudo-hydrogen atoms [93] (ligand potentials) are

used to saturate the dangling bonds on the NC surface with an “atom by atom” pas-

sivation procedure as discussed earlier in chapter 2, in Ref.[122] an “effective medium”

passivation was used, where the NCs were embedded in two different artificial barrier

materials, one for valence band calculations and one for the conduction band. This

choice resulted in an inversion of the order of the uppermost valence band states com-

pared with the present study and in overestimates of the strength of some high-energy

transitions, compared with experiment. Furthermore the calculations of Ref.[122] found

no counterpart for the weakly observed fourth peak and their agreement with experiment

was generally not as good as it is found here. Compared to Ref.[122] , moreover, we

use a slightly improved InAs pseudopotential [124]. We obtain a good agreement with

the observed absorption spectra in both inter- and intra-band transitions. Our results

confirm the suitability of our method for describing the origin of the optical transitions

in a wide range of nanocrystal sizes, from very small NCs, where k·p and TB methods

break down, to large systems.

This chapter is organised as follows. In Sec. 3.1, we give a brief review of the experimen-

tal and theoretical investigations of electronic and optical features in InAs NCs. In Sec.

3.2, the single-particle states are presented. In Sec. 3.3, the interpretation of the opti-

cal transitions in InAs nanocrystals is discussed. Our calculated results are compared

with three complementary experiments : (i) scanning tunnelling microscopic (STM); (ii)
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photoinduced absorption (PIA), and (iii) photoluminescence excitation (PLE). Sec. 3.4

contains a summary of this chapter.

3.2 Electronic structure

3.2.1 Single-particle states

Using the Hamiltonian described in the previous chapter, the electron and hole energy

levels and wavefunctions were calculated for InAs spherical dots with the effective radii

R = 14.6, 20, 21.7, 24.1, 25.8, 27.7 and 30 Å. In Fig. 3.2 we show the density of states

(DOS) for the uppermost 40 states in the valence band and lowermost 10 states in the

conduction band calculated for 3 representative NC sizes (the energies are relative to

the VBM). The single-particle band gap exhibits the expected confinement-induced size

dependence. Figure 3.3 shows the cross-sectional contour plots of the wave functions

squared of the four uppermost (lowermost) valence (conduction) states on a (001) cut-

plane across the centre of the spherical quantum dot with R =14.6 Å together with

those relative to an elongated dot (rod) with the same small radius and an aspect ratio

of length over diameter L/D =1.4. The single particle levels in the conduction and

valence bands are labelled as pn, where p = e, h is the charge carrier and n is the order

of the level (increasing from 1 starting from CBM upwards for e and from the VBM

downwards for h). We find that for spherical quantum dots, the envelope functions

of the first four electron states e1-e4 have mostly s, p, p and p angular momentum

component, respectively, whereas the first two degenerate hole states h1 and h2, which

have previously been identified as having prevalently s-symmetry on the basis of k·p

calculations [2] , have mostly p-like character and the next two degenerate states h3 and

h4 s-like character, in agreement with TB results [5]. In Ref. [2] the lowest CB level
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Figure 3.2: Density of states (DOS) calculated for three InAs NCs with R =14.6, 20
and 24.1 Å using a broadening of 30 meV. The 40 (10) uppermost (lowermost) states
in the valence (conduction) band are included. The arrows indicate the positions of the
DOS peaks which could correspond to the state assignment made in Ref. [2] (labels on

the peaks).

1Se was found to be twofold degenerate and the next CB level 1Pe sixfold degenerate.

According to our calculations, spin-orbit coupling splits the sixfold degenerate p-like

state into one twofold (e2) and one fourfold (e3 and e4) degenerate states (and the same

is true for the higher Np states). Indeed, by setting VSO = 0, we recover the sixfold

degeneracy for all the p states. In the valence band, the two highest levels 1VB (h1, h2)

and 2VB (h3, h4) are fourfold degenerate.

In contrast to the order of the envelope functions of the spherical dot just described, we

find a switching of levels in the valence band of elongated dots, where the first two hole

states h1 and h2 have mostly s-like character whereas both h3 and h4 have prevalently

p-like character. This effect can be explained in terms of reduced confinement. The bulk

exciton Bohr radius (a0) is a useful ruler for distinguishing between different quantum

confinement regimes [125, 126]. A strong confinement occurs once a critical dimension
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Figure 3.3: Comparison between the charge densities of the four uppermost (lower-
most) states in the valence (conduction) band in InAs NCs with small radii of 14.6 Å
and aspect ratio L/D =1 (Dot) and 1.4 (Rod).The cross-section contours are plotted
on the (001) atomic plane with their intensity increasing from blue to red. The NC

boundaries are represented by dashed lines.

(d) of a semiconductor nanostructure is smaller than a0, whereas a weak confinement is

defined for cases where d� a0. Significant length dependent effects in slightly elongated

dots are to be expected due to the large exciton Bohr radius in InAs nanocrystals (35

nm). We find [30] that the switching of the hole levels is both shape and size dependent,

due to the interplay between quantum confinement and spin orbit coupling, as previously

observed [5, 126, 127] : the value of the aspect ratio at which s- and p-like hole levels

cross increases fast with NC size from 1.4 for R =14.6 Å almost doubling to about 2.6

for the next size considered, R =20 Å. Therefore, the size and shape distribution should

be carefully considered in the interpretation of experimental data.

The first detailed investigation on the electronic states in InAs nanocrystals was per-

formed by Banin et al. [2]. They used a colloidal technique to prepare InAs QDs that
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were nearly spherically shaped with radii ranging from 10 to 40 Å and performed scan-

ning tunnelling spectroscopy to identify the electronic states. Based on the correlation

between the results of the latter and optical data [4], they concluded that: (i) the dif-

ference between the first two groups of STM peaks measured in the negative (positive)

bias regime corresponded to the energy spacing between VBM and VBM-1 (CBM and

CBM+1); (ii) the top-most valence band (1VB) had mixed s and p character, with preva-

lent s symmetry. It was not clear at that time whether there was an intrinsic mixing

or degeneracy between different states having s and p character [2] . Our results show

that the mixing (ii) is intrinsic (also see below) and that the hole states with (prevalent)

s-like symmetry (the degenerate h3, h4 levels) are well separated in energy from those

with (prevalent) p symmetry (the degenerate h1, h2 levels). In principle, the different

ordering of the hole levels assumed in Ref.[2] could, however, have been due to the shape

distribution in the experiment. It is plausible that the shape of the actual synthesised

samples might not have been an ideal sphere. As discussed earlier, a slight elongation

would have resulted in the switching of hole energy levels near the valence band max-

imum for small NC sizes. The asymmetry associated with the underlying local Bloch

states plays a significant role especially in small InAs structures, where it could yield

a different type of energy sublevel hierarchy, particularly in the valence band, as previ-

ously found also in the k·p calculations of Efros and Rosen [117]. However our results

show [30] that the absorption spectrum of a rod with R > 14.6 Å and with an aspect

ratio large enough to exhibit an s-like VBM is substantially different from that of a dot

and, most importantly, from the spectra measured experimentally in Ref. [4]. We can

therefore reject the hypothesis of an elongation in the experimental sample of such an

extent as to cause the assumed inversion of symmetry in the uppermost valence band

states.

Previous pseudopotential calculations by Williamson and Zunger [122] also found a
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strongly mixed character, in terms of the angular momentum components of the envelope

functions, for the uppermost valence band states in spherical NCs, but with a different

proportion of s and p contributions compared to our results, yielding a prevalently s-

like VBM in the size range considered (12 . R . 21 Å). In what follows we discuss

the possible reasons for this disagreement. The ordering of electron and hole levels in

spherical NCs is affected by different factors: (a) the dot size, (b) the strength of the

spin-orbit (and both inter- and intra-band) coupling, (c) the nature of the barrier that

confines the carriers within the NC. In InAs NCs the level hierarchy has been shown

[5, 122] to depend on the dot size (a), due to the interplay between spin-orbit coupling

(b) and quantum confinement, and to the different size scaling of the latter for different

states. Strong couplings between heavy-hole, light-hole and split-off bands, as well as

between conduction and valence bands, have also been reported [5, 122] to contribute

to the complexity of the single-particle level structure, particularly in the valence band,

in InAs NCs. The effect of different choices for the value of the confining potentials

(infinite vs finite band offsets) has been well investigated in the literature [128] and has

been shown to result, among other consequences, in large energy shifts and level crossings

between single-particle states with different symmetries. As discussed by Reboredo and

Zunger [129] however, the physical nature of the barrier can influence the symmetry

of the dot levels as well, without appreciably altering the excitonic transition energy.

Furthermore, Singh and Kumar [130] recently showed that the mismatch of the value

of the effective masses between barrier and dot material can have large effects on the

NC energy levels, as a consequence of the BenDaniel-Duke boundary conditions [131].

The main difference between the calculations of Ref.[122] and the present chapter is

precisely in the nature of the potential barrier (c). To simulate the effect of the organic

ligands employed in experimental samples, here we use an “atom-by-atom” passivation,

achieved with hydrogenic-like potentials. In contrast, in Ref.[122] the same effect was
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obtained by passivating the NC surface using an “effective medium”, i.e., an artificial

barrier material represented by an atomic pseudopotential fitted to have (1) a larger

band gap than InAs and (2) which produced a type I band alignment between dot and

barrier. Such a barrier material however had also a set of effective masses associated

with it, which was different from that of the dot. We believe that the value of this

mass mismatch and the choice of the potential offset, combined with the small energy

separation between the p and s hole states (of the order of few tens of meV), played the

main role in determining the different valence band level hierarchy found in Ref.[122]. It

is important to stress that the two approaches model different physical barrier materials:

for a realistic choice of the effective masses in the artificial barrier the approach used in

Ref.[122] is perhaps better suited for core/shell structures (where the dot is surrounded

by a another semiconductor material), whereas the method used here is also applicable

to organic-ligands-terminated NCs.

As mentioned above, the simple interpretation (i) of Ref.[2], in terms of pure single-hole

tunnelling in the attribution of the STM peaks for negative bias, has been previously

questioned by Niquet et al. [119] , who found a significative disagreement between their

calculated energy spacing between the topmost two VB levels and the experimental data,

and at the same time a good agreement for the same quantities in the CB (for R > 20 Å).

A similar disagreement is found here, with the VBM-(VBM-1) spacing ranging from 20

to 40 meV for the NC sizes considered here. However, if we assume that quasi-particle

polarisation self-energies are similar for different electron states [132] , we can compare

the STM data with the spacings between our calculated DOS peaks. As it can be seen

from Fig. 3.2, such spacings do not correspond to those between the two uppermost VB

states but involve deeper hole levels. Our calculated DOS peak spacings are compared

with those measured by STM in Fig. 3.4. From the fairly good agreement between

theory and experiment, we conclude that (i) considering level-independent polarisation
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Figure 3.4: Comparison of the energy spacings between our calculated DOS peaks
(blue solid symbols - for labelling see Fig. 4.2) and the measured STM (groups of)
peaks (empty symbols, digitally extracted from Fig. 3b in Ref.[2]), as a function of the

single-particle energy gap.

self-energies is a reasonable approximation in InAs NCs, and (ii) the STM data relative to

negative bias measurements cannot be simply explained in terms of the energy separation

between the two uppermost VB levels.

Motivated by the close agreement between STM, PLE and PIA experimental data found

in Ref.[3] we therefore carried out a study of inter- and intra-band optical transitions in

InAs NCs.

3.3 Optical properties

3.3.1 Intraband transitions

Figures 3.5 (a) and (c) show, respectively, our calculated conduction and valence band

(single-particle) energy levels for a 24.12-Å-radius dot. The corresponding (excitonic)
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intraband absorption spectrum at room temperature, broadened with a Gaussian of

widths Γ = 5 and 50 meV, is shown in Fig. 3.5 (b).

The small broadening allows all the transitions to be resolved, however, as such a res-

olution is not yet accessible experimentally, we also use a larger value for Γ (estimated

from the spectra reported in Ref.[3] for the same dot size), for a direct comparison with

the observed features in the PIA spectra. The spectrum calculated with the largest

broadening displays two well-defined absorption peaks: β (at 0.12 eV) and α (at 0.42

eV), each of which contains a group of smaller peaks that represent its “fine struc-

ture”. These high-resolution peaks provide useful information for the interpretation of

the observed temperature behaviour. We have identified one group (β) to be related to
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Figure 3.5: Calculated intraband transitions for InAs NCs with R =24.1 Å. (a)
and (c) illustrate the intraband conduction-to-conduction (C-C) and valence-to-valence
(V-V) single-particle transitions, respectively; (b) the calculated intraband (excitonic)
absorption spectrum at room temperature with two different broadening lines (Γ=5
and 50 meV). For Γ=5 meV, the group of peaks β is decomposed into the different
contributions from the two uppermost valence band states: the features relative to
transitions originating from the VBM (VBM-1) are marked with a blue (magenta) line

in (b), according to the colour code of the corresponding arrows in panel (c).
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inter-valence transitions while the other (α) is related to inter-conduction transitions.

This feature agrees very well with the experimental results from photoinduced absorp-

tion spectroscopy [3] . However, although we agree with the assignment of the high

energy feature proposed by Krapf et al. [3], our interpretation of the origins of the

intra-valence transitions differs from that suggested in Ref.[3].

The PIA measurements performed by Krapf et al. [3] have evidenced two groups of inter-

sublevel (ISL) transitions in colloidal InAs QDs. The first group, relative to conduction

ISL (CISL) transitions, persists at all temperatures while the second group, relative to

valence ISL (VISL) transitions, is thermally activated and appears at temperature above

100 K. The CISL feature was assigned to the 1Se1/2 → 1Pe3/2 ISL transition, between

the ground sublevel for the conduction electron, and the first electron excited state.

Our results confirm this level assignment, with the difference that, as mentioned before,

in our calculations the 1p electron level is not sixfold degenerate but split by spin-orbit

coupling into a lowermost 2-fold degenerate state e2 and an uppermost 4-fold degenerate

state e3, both of which contribute to the ISL absorption from the electron ground state.

Krapf et al. [3] interpreted the observed VISL peak using a simple three-level system

model with |1h〉, |2h〉 and |3h〉 denoting the ground, first and second excited hole states,

respectively. They concluded that the observed VISL transition was related to the

|2h〉 → |3h〉 transition, corresponding to 1Ph3/2 → 2Sh3/2, in k·p language. The transition

|1h〉 → |2h〉 was explained in terms of thermal population, whereas the direct |1h〉 → |3h〉

transition was considered to be optically forbidden, corresponding to 1Sh3/2 → 2Sh3/2.

In contrast to this simple picture, we find that the first feature (β) is composed of two

overlapping groups of intraband absorption peaks (marked with blue and magenta lines

in Fig. 3.5(b)), each arising from transitions originating from one of the two topmost

4-fold degenerate levels in the VB (VBM and VBM-1). Most importantly, both groups
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Figure 3.6: Comparison of our calculated intraband transition energies (red solid
symbols) and interband E5-E1 and E3-E1 energy spacings (blue solid symbols) with
the valence and conduction inter-sublevel transition energies measured by PIA (empty
diamonds and triangles, digitally extracted from Fig. 2 in Ref.[3]) and PLE (empty
circles and squares, digitally extracted from Fig. 3b in Ref.[2]) , see text, plotted as a
function of the single-particle energy gap Eg (the same as in Fig. 3.4). The energies
E1, E3 and E5 refer to the positions of the strongest peaks measured in absorption and

are defined in Fig. 3.7 (and relative text) in the next section.

of peaks would be visible at low temperature, albeit with different intensities. (As a

matter of fact, as shown in Fig. 3.5 (c), the spectral features relative to transitions from

the VBM are stronger than those arising from transitions originating from the VBM-1

state). Furthermore, as illustrated by the arrows in Fig. 3.5 (c), the VISL transitions do

not simply connect these two states to a single higher-energy hole state (|3h〉 in Ref.[3]),

but involve multiple higher excited hole levels. The fact that we predict transitions that

originate from levels with different prevalent character (p and s for VBM and VBM-1

respectively) and end on the same final state (VBM-2, for example) is due to the intrinsic

mixing of the envelope functions in terms of their angular momentum components: as

it can be clearly seen from Fig. 3.5 (c), the transition VBM → VBM-2 is much stronger

than VBM-1 → VBM-2, due to the similarity of the symmetry between the VBM and

VBM-2 states.
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Our calculated VISL transition energies are compared with PIA (and PLE) data in Fig.

3.6. From the excellent agreement obtained we draw the following conclusions: (i) the

three-levels model used in Ref.[3] , is inadequate to capture the complexity of intra-

band absorption in InAs NCs; (ii) the thermal activation effect observed experimentally,

where the lowest energy PIA feature (attributed to VISL transitions) appeared above

a temperature of 100K, cannot be explained in terms of the thermal population of the

VBM-1 (|2h〉) from a VBM state (|1h〉) optically inaccessible from the VBM-2 (|3h〉)

level.

(i) Our model provides a more satisfactory interpretation of the PIA data because it is

able to accurately describe the complex structure of the valence band of bulk InAs [124]

, including the highly anisotropic heavy-hole effective masses and the strong spin-orbit

coupling. In the light of our results, the alternative hypothesis of a thermally-activated

VISL transition due to the presence of a shallow surface-localised state (as opposed to

a thermal population process between dot-interior states), advanced in Ref.[3], seems a

more likely explanation of the temperature dependence (ii) observed in the PIA experi-

ments.

To obtain further confirmation of our interpretation of the observed optical features we

next calculated the interband absorption spectra.

3.3.2 Interband transitions

Figure 3.7 displays our calculated interband V-C absorption spectrum relative to a 24

Å-radius NC and the corresponding transitions between single-particle energy levels,

which represent the main contribution (≥ 99%) to the different excitonic peaks. Using a

line broadening of Γ =10 meV, we resolve several peaks each of which is associated with

transitions having large oscillator strengths. To compare with PLE experiments [4] , we
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employ a line broadening of Γ=30 meV, whose effect is to wash out some of the weaker

peaks, such as the β peak (peak E2 in the PLE experiment) and to merge other peaks,

such as κ and λ into one single, broader feature (peak E4 in the PLE experiment). We

therefore resolve three strong peaks α, γ and π (corresponding to E1, E3, E5 in Ref.[4]),

with weaker features in between, in agreement with what observed experimentally [4].
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Figure 3.7: (a) Interband valence-to-conduction (V-C) absorption spectrum for an
InAs nanocrystal with R =24.1 Å calculated with linewidths Γ=0 (red line), 10 (black
line) and 30 meV (green line). The corresponding transitions between single-particle
energy levels are shown in (b), with arrows. The lowest allowed transition (α) is the

transition from VBM-1 to CBM.

A careful analysis of our results shows that :

(a) Peak E1 corresponds to a transition with a strong intensity. In our calculation, the

initial valence state associated with this transition is the second hole state (h2 =VBM-

1) with mostly s-like character and the final conduction state is the electron ground

state which has s-like character (see also Table 3.1). It is interesting to note that our

calculated transition between the ground hole state (h1 =VBM) and the ground electron

state (h1 → e1) has an oscillator strength which is typically about 2 orders of magnitude
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smaller than that between h2 and e1 and therefore cannot be observed. This finding is

in accordance with the results of tight-binding calculations [5, 90] but not with the k·p

approach of Ref.[4].

(b) Peak E2 relates to a transition with such a weak intensity that it cannot be observed

for all dot sizes in the PLE experiment. In our calculation this peak corresponds to the

transition h4 → e1 (a weak peak β in Figure 3.7). Interestingly this feature was not

predicted in the k·p approach of Ref.[4].

(c) Peak E3 has a strong intensity. The initial valence state associated with this

peak is a 4-fold degenerate hole state (h7) and the final conduction state is the doubly

degenerate, lowest energy electron state (e1). In the k·p calculation, this is the 2S3/2 →

1S1/2 transition and the h5 → e1 (B2) transition in the tight-binding method.

(d) Peak E4 results from the merging of peak κ and λ in Figure 3.7 and has a weak

intensity in good agreement with the weakly observed E4 in the PLE measurement. The

initial single-particle states of these transitions are in the deeper levels in the valence

band and the final state is the ground electron state (e1). This corresponds to the

h16 → e1 and h19 → e1 transitions in our calculation. This peak found no counterpart

in either the k·p calculation of Ref.[4] or the EPM method of Ref.[122].

(e) Peak E5 is a very intense peak that is observed in all dot sizes. It relates to

the transitions µ and π corresponding to h1 → e2 and h1 → e3. The initial state is

the same for both transitions and has prevalently p-like character and both final states

have mostly p-like character. In the k·p approach, these transitions are closest to the

transitions 1P3/2 → 1P3/2 and 1P3/2 → 1P1/2. In the tight-binding method, this peak

is assigned to the h1 → e2 (B3) transition, where e2 is sixfold degenerate.
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Table 3.1: Comparison of the assignment of the first 5 peaks in the PLE measurement
[4] according to the current empirical pseudopotential method (EPM), the tight-binding
and the k·p approaches. For the EPM calculation, the subscripts denote the order of
different single particle electron and hole energy levels (excluding degeneracy), whereas
the numbers in the upper parenthesis denote the order of single-particle energy states

including degeneracy (i.e., the first 2-fold degenerate hole level is h
(1,2)
1 , the next h

(3,4)
2 ,

and so on). In the tight-binding method, the level e1 and e2 are the first (twofold)
and the second (sixfold) lowest electron levels, whereas the level h1 and h2 are the first
(fourfold) and the second (fourfold) lowest hole levels. The degeneracy mentioned in
the T-B approach includes spin as well. The first three strongest bright excitons in the
tight-binding method are labelled as B1, B2 and B3. However, although other weaker
peaks have been predicted to occur in Ref.[5] , they have not been assigned to specific
transitions. The notation for the electron and hole states in k·p method is nQF , where
n is the main quantum number, Q=S,P,D, ..., denotes the lowest angular momentum
(L) in the envelope function and F is its total angular momentum. The second and

fourth peak have not been predicted in the approach of Ref [4].

Peak EPM Tight-binding k·p

E1 h
(3,4)
2 → e

(1)
1 h2 → e1 (B1) 1S3/2 → 1S1/2

E2 h
(7,8)
4 → e

(1)
1 Not assigned Not predicted

E3 h
(11,12)
7 → e

(1)
1 h5 → e1 (B2) 2S3/2 → 1S1/2

E4 h
(25,26)
16 → e

(1)
1 , h

(30)
19 → e

(1)
1 Not assigned Not predicted

E5 h
(1,2)
1 → e

(2)
2 , h

(1,2)
1 → e

(3,4)
3 h1 → e2 (B3) 1P3/2 → 1P3/2, 1P3/2 → 1P1/2

By using 80 states in the valence band and 8 in the conduction band, we calculate more

than 7 absorption peaks. However, as it can be seen from the multiple features below

peak E6 in Fig. 3.7, the assignment of the highest of them in terms of single particle

transitions becomes increasingly complicated due to the large number of states involved.

We compare our results with the experimental data [4] in Fig. 3.8.

Due to the fact that precise experimental size determinations are relatively difficult, a

more compelling comparison with the PLE data emerges when the energies of higher

transitions are plotted relative to the first bright-exciton energy (E1). However, as often

the determination of the position of a peak and/or its experimental “visibility” are not
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Figure 3.8: Calculated positions of the optical absorption features, relative to the
first strong absorption peak (E1), in InAs NCs with radii ranging from 14.6 to 30 Å.
Panels (a) and (c) display the absorption spectra relative to E1 for the largest and
smallest NCs, respectively, with linewidths Γ of 10 (ideal, coloured line) and 30 meV
(experimental-like, blue line): peaks with Γ=10 meV contributing to the same broad
peak with Γ=30 meV have the same colour. (b) Positions of all the absorption peaks
calculated with Γ=10 meV (squares) relative to the first bright exciton (E1) versus E1
for InAs quantum dots with effective radii of 14.6, 20, 21.7, 24.1, 25.8, 27.7 and 30 Å,
compared with PLE data (black symbols, digitally extracted from Fig. 4 in Ref.[4]).

The colour coding corresponds to that used in panels (a) and (c).

trivial, we decided to show in Fig. 3.8 (b) all peaks resolved using the smaller line

broadening (Γ=10 meV), colour coded corresponding to the broader peaks (Γ=30 meV)

they contribute to. As a guide to the reader, the absorption peaks corresponding to the

largest and smallest NC size studied in this chapter (using both a large, experimental-

like broadening and a small, ideal broadening) are also illustrated in Fig. 3.8 (a) and

(c), and colour coded to identify the corresponding features in (b).

We find very good agreement with experiment for the spacings between the first four

peaks and the band edge exciton (E2-E1, E3-E1 and E4-E1) down to the smallest NC

size (14.6 Å radius). This result is especially remarkable considering that some of these
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transitions are either not predicted at all [4, 122] or have not been assigned [5] in pre-

vious theoretical studies. Since, as described above (see also Fig. 3.7), peaks 1 to 4

originate from transitions between different hole states and the electron ground state e1,

these results, together with the good agreement already found with the observed VISL

transitions [3], confirm the suitability of our model for the description of the valence

band structure and the band gap energy in InAs NCs within a wide size range. The

agreement obtained with the position of the fifth and sixth peaks is less ideal and reflects

the slight overestimate of the level spacing in the conduction band we found for CISL

transitions. The position of peak 7 is again in good agreement with observation.

Figure 3.9 shows the comparison of the exciton energies of the first three strongest

absorption peaks, relative to the energy of the band edge exciton, between the present
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Figure 3.9: First three strong-exciton energies relative to the lowest bright-exciton
energy plotted with respect to the lowest bright exciton position. In addition to the
comparison with PLE data (digitally extracted from Fig. 4 in Ref.[4]) , our results
are compared with the results of the tight-binding method [5] as well as the multiband

effective mass model [4].
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model and the other theoretical frameworks (k·p calculations [4] and the tight-binding

method [5]). A comparison of their assignment in terms of single-particle transitions

according to our empirical pseudopotential calculation and the other theoretical methods

is shown in Table 3.1.

The energy spacing E3-E1 calculated with our approach shows a better agreement with

experiment than the results of both k·p [4] and tight-binding [5] calculations. This

supports our claim that our model provides an accurate description of the complex

structure of the valence band, correctly accounting for the anisotropy of the heavy-hole

effective masses [124] and the strong coupling among heavy-hole, light-hole and spin-

split bands, which play an important role in determining the overall single-particle level

spectrum. Surprisingly, however, the k·p and tight-binding methods provide a better

description of the electron levels in the less complex conduction band, as illustrated by

the comparison with the PLE data for the energy spacing E5-E1 reported in Fig. 3.9.

A possible reason for this can be found in the “fine structure” of our calculated peaks:

as shown in Fig. 3.7 our fifth peak is actually composed of two peaks µ and π, relative

to transitions from the VBM to the two spin-orbit split p-like electronic states e2 and

e3, respectively. In our calculations the second of those peaks (π) is the strongest and

therefore the position of E5 is blue-shifted towards it. If peak µ were the strongest,

the position of E5 could shift to the red by as much as the e2-e3 splitting, which is of

the order of a few meV for the smallest NC considered here, increasing to a few tens of

meV depending on the NC size. This would bring our results in closer agreement with

experiment, as it is the case for the 14.6 Å-radius NC, where such splitting is small. A

similar argument applies to our calculated PIA spectra. In contrast, in neither k·p nor

tight-binding approaches the p-like electron state is split and therefore their calculated

E5-E1 energy separation is not affected by the magnitude of this splitting.
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Another explanation could be provided by the shape of the experimental samples: elon-

gated NCs exhibit substantially smaller spacings between s and p levels in the conduction

band without showing significant decreases in the separation between the same states in

the valence band, compared to spherical structures [30]. We previously excluded elon-

gation as an explanation for the different level ordering at the top of the valence band

assumed in Ref. [2], on the basis that the crossover between s and p states would require

too large values of the aspect ratio, which would result in large morphological changes

in the absorption spectra, incompatible with observation. However, slight elongations in

the NCs resulting in aspect ratios small enough not to change appreciably the shape of

the absorption spectra (nor the level hierarchy in the valence band) could account for the

deviation from experiment of all our results involving the spacing between conduction

band states.

3.4 Conclusions

We applied the pseudopotential method to investigate the optical properties of InAs

NCs with 14.6 < R < 30 Å. Our accurate description of the complex structure of the

valence band allows us to successfully explain the low energy features observed in recent

PIA measurements. Based on this result we rejected the simplistic interpretation of

such features in terms of a 3-level model and the hypothesis of a thermal population

process between hole states delocalized in the dot-interior advanced in Ref.[3] to explain

the experimentally observed temperature dependence of the low-energy PIA feature.

We also questioned, as previously done by Niquet et al. based on the results of TB

calculations, the explanation of the results of STM experiments in the negative bias

regime in terms of the energy separation between the two uppermost valence band levels
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VBM and VBM-1, suggesting instead an interpretation based on the separation between

the peaks in our calculated density of states.

Our calculated interband absorption spectral features reproduce those observed experi-

mentally, showing three strong peaks (labelled as E1, E3 and E5) separated by weaker

features. We achieve a good agreement for the energy position of the first 4 peaks and

the seventh, down to NCs with R =14.6 Å. This result is especially remarkable consider-

ing that: (i) some of these transitions were either not predicted at all [4, 122] or were not

assigned [5] in previous theoretical studies; (ii) the size range considered here includes

very small NCs, i.e., a confinement regime where all other theoretical approaches break

down. The agreement with the position of peaks 5 and 6 (and the, closely related, po-

sition of our calculated CISL peaks) is less ideal but still reasonable. We attribute this

result either to a “fine structure” effect in the conduction band, where strong spin-orbit

coupling induces a sizeable splitting in the otherwise 6-fold degenerate first excited state

or to a slight elongation in the experimental samples, which would result in a decreased

spacing between conduction band energy levels.

In summary, the pseudopotential method provides an accurate description of the complex

energy level structure (especially in the valence band) of InAs NCs and presents itself as

a suitable approach to explain many experimental features observed in both intra- and

inter-band optical absorption spectra.

Motivated by the discovery of energy level crossing in the slightly elongated dot to-

gether with the precise description in the spherical structure, we next applied the same

methodology to investigate the optical signature in a quasi-two-dimensional confinement

structure, i.e., a slightly elongated structure, in the next chapter.



Chapter 4

Slightly Elongated Dots

In the preceding chapter, we applied the atomistic pseudopotential method to investi-

gate the electronic and optical properties of spherical InAs nanocrystals. Our accurate

description of the complex structure of the valence band successfully explains the optical

feature observed in the recent PIA measurement [3] leading to a more satisfactory in-

terpretation of the temperature dependence observed experimentally. Despite a precise

description of the complex structure of the valence band, the description of the energy

levels in the less complex conduction band is less satisfactory. A plausible explanation

for this could be provided by the shape distribution of the experimental samples. We

previously suggested in the chapter 3 that the slight elongations in the NCs with a small

aspect ratio could account for the deviation from the experiment of all our calculated

results involving the spacing between conduction-band states. In light of this suggestion,

we will therefore extend our knowledge to investigate the effect of small elongations on

the electronic and optical signatures in InAs nanocrystal quantum dots [30]. The evolu-

tion of intra- and inter-band optical absorption spectra as the NC becomes progressively

elongated will also be discussed in this chapter.

72
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4.1 Introduction

The identification of the rich absorption features observed in optical spectroscopy on

nanocrystal (NC) ensembles, in terms of specific excitonic state components, is a com-

plex issue. Many different factors contribute to the uncertainty of their assignment, size

and shape distributions being the most significative. In fact, although experimentalists

nowadays have always access to microscopic information (usually in the form of trans-

mission electron microscopy (TEM) or its high-resolution version), often complemented

by X-ray scattering, these methods are not completely reliable and may underestimate

the actual dimensions, being insensitive to non-periodic layers at the NC surface [133].

Furthermore the TEM images only show cross sections on a specific plane, from which

little information can be extracted on the perpendicular direction, as shown in Fig. 4.1.

There is therefore always some degree of ambiguity on both size and shape of the NCs

even when micrographs are supplied.

The empirical pseudopotential method (EPM) has proved highly successful in the past

in interpreting the optical properties of spherical nanostructures made of different ma-

terials such as CdSe [43, 93, 114, 115], InP [43, 128, 134], PbSe [113, 135], and InAs

[88, 122]. However, so far it had been applied to the investigation of elongated NCs

made of CdSe [136–139] and InP [140] only. Here we investigate the effects of small

elongations on the spectroscopic features in InAs NCs. These particles have attracted

great interest as their optical properties can be tuned with size to cover the technologi-

cally important energy window between the visible and the near infrared [141], making

them potentially ideally suited for applications in biology [142], electro-optics [143] and

telecommunications [144]. Furthermore due to the large difference between the electron

and hole effective masses in InAs, they are expected to exhibit highly efficient carrier

multiplication. This process, where multiple excitons are generated upon absorption of
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(c)

(a) (b)

Figure 4.1: (a)-(b) High resolution transmission electron microscope (HRTEM) im-
ages of the “nominally” spherical InAs nanocrystals in a specific plane which are dig-
itally copied from Ref. [6] : (a) 22 and (b) 50 Å in diameter. (c) Lower resolution of

InAs nanocrystals.

a single photon [46], has important implications for the application of NCs in photo-

voltaics [51], as it can greatly increase the photocurrent output of the device. From

this point of view, the knowledge of the NC shape is very important, as it may affect

the efficiency of both carrier multiplication and carrier collection (i.e. how efficiently

electrons and holes travel to the electrodes after they have been separated to generate

a photocurrent).

In this chapter we show that the intra- and inter-band optical absorption spectra cal-

culated for spherical NCs, although qualitatively similar to those relative to slightly

elongated structures either with the same radius, or containing the same total number

of constituent atoms, exhibit specific quantitative signatures which allow one to dis-

tinguish between the two shapes. Elongated structures are found to exhibit large red
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shifts in the position of the peak associated with the intra-band transition between the

two lowermost levels in the conduction band and in the energy separation between the

first and the fifth peak in inter-band absorption spectra. Shifts of the same order of

magnitude (hundreds of meV) are also predicted in the spacings between STM peaks

measured in the positive bias regime. This information can be valuable in determining

the substantial presence of even slightly elongated structures in experimental samples of

nominally spherical NCs.

In the next section we will discuss the evolution of the electronic signatures from

nanocrystal quantum dots to slightly elongated dots starting from the single particle

density of states.

4.2 Single-particle density of states

Using the Hamiltonian described in the chapter 3, we calculated the electronic structure

of InAs QDs with effective radii RQD = 14.6, 20 (1207), 21.7 (1547) and 24.1 (2115) and

25.8 (2590) Å (where the quantities in brackets are the number of constituent atoms Na

for each NC) and QRs with radii RQR = 14.6 and 20 Å and aspect ratios σ = L/2RQR

ranging from 1 to 1.5 (with corresponding values of 1207 < Na < 2200 for the 20 Å

rod). In Fig. 4.2 we show the density of states (DOS) for the uppermost 40 states in the

valence band and lowermost 10 states in the conduction band calculated for four NCs

with R =20 Å and σ =1, 1.1, 1.2 and 1.5 (the energies are relative to the valence band

maximum, VBM). We see that the elongation has two main effects: (i) as σ increases,

the density of states in both conduction and valence bands increases and (ii) the single-

particle band gap Eg shifts to the red.
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Figure 4.2: Calculated single particle density of states (DOS) for four InAs nanocrys-
tals with R =20 Å and σ =1 (a), 1.1 (b), 1.2 (c) and 1.5 (d) using a broadening line
allowing the comparison with the state assignment made in the STM spectra of Ref. [2]
(Γ = 30 meV) . Red vertical lines represent the 40 uppermost and 10 lowermost states

in the valence and conduction band, respectively.

We have questioned in the past [88] the simple interpretation of the STM peaks measured

by Banin et al. [2] for negative bias, in terms of tunnelling between single hole states.

We found, as in the case of previous tight binding calculations [119], that the spacing

between the two uppermost valence band states (ranging from 20 to 40 meV for the NC

sizes considered here) was too small compared to the experimental data. Based on the

assumption of state-independent quasi-particle polarisation self-energies, we proposed an

alternative interpretation of the STM results in terms of the spacing between the DOS

peaks we calculated for InAs dots [88]. In this approximation, therefore, the calculated

DOS for elongated structures shown in Fig. 4.2 could provide some insight into the

nature of the experimental samples. From Fig. 4.2 we see that the spacing ∆CB between

the peaks labeled 1Se and 1Pe decreases significantly with increasing σ, implying smaller

values for the STM peak separations measured on elongated samples. The shift in the

position of the VB peaks 1V B and 2V B is less dramatic (with magnitudes of the order
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of 10% or less of the calculated peak spacing for a spherical NC), and is non-monotonic,

their separation ∆VB decreasing for 1 < σ ≤ 1.2 and then increasing again for more

elongated structures. The expected energy shifts are 74, 114 and 216 meV (11, 15

and 11 meV) for the spacings obtained in the positive (negative) bias range with NC

with σ =1.1, 1.2 and 1.5, respectively, when compared with those relative to spherical

structures (σ = 1) for NCs with R =20 Å. We find a similar qualitative behaviour in

the case of smaller NCs (R =14.6 Å). However in this case ∆CB is almost constant up

to σ = 1.2 and decreases by 120 meV for σ = 1.5, whereas the decrease of ∆VB is larger

( 50 meV) for σ = 1.2. Our calculated values for ∆VB and ∆CB are compared with the

STM data in Fig. 4.3. Although the agreement with the experimental data obtained in

the negative bias regime (low energy curve) is good for all values of 1 ≤ σ ≤ 1.5, the
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Figure 4.3: Comparison of the spacings between DOS peaks (green symbols), intra-
band transition energies (red solid symbols) and inter-band E5-E1 and E3-E1 energy
spacings (blue solid symbols) calculated with the EPM approach and the experimental
STM peak separations (black crosses and stars, digitally extracted from Fig. 3b in
Ref. [2]), the valence and conduction inter-sublevel transition energies measured by
PIA (empty diamonds and triangles, digitally extracted from Fig. 2 in Ref. [3]) and
the E5-E1 and E3-E1 separations between the measured PLE peaks (empty circles and

squares, digitally extracted from Fig. 3b in Ref. [2]), see text.
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comparison with the peaks spacings in the CB seems to suggest a slight elongation (with

σ ≤ 1.2) in the experimental samples.

4.3 Optical bandgap for quantum dots and slightly elon-

gated dots

To further investigate this hypothesis we calculated the evolution of the energy gap from

a spherical dot with R =20 Å and σ = 1 (total number of In and As atoms Na =1207), to

NC structures with Na ∼2200, obtained by increasing either R up to 24 Å and keeping

σ fixed (dots) or by increasing σ up to 1.5 and keeping R constant (rods). The results

are shown in Fig. 4.4. We choose to plot Eg as a function of the total number of atoms

in the NC since this quantity can often be controlled in the experiment, based on the

chemistry of the synthetic process, although, as discussed above, the information on how

the atoms are distributed in the NC may be more difficult to obtain. We find that rods

exhibit a stronger confinement-induced effect compared with dots with the same value of

Na, as expected. This shows that the confinement in the direction perpendicular to the

long axis (i.e., the smaller dimension) provides the dominant contribution to the energy

shift, as it is the case in epitaxially-grown InAs islands. The value of Eg for QRs with

such small aspect ratios is, however, very close to that calculated for spherical NCs with

the same number of atoms, their difference remaining ≤ 20 meV for σ ≤ 1.5. For small

values of σ, therefore, the knowledge of Eg alone would be insufficient to determine

the NC shape, even in the presence of microscopic information. With the resolution

available with TEM, in fact, dots would probably be indistinguishable from rods with

small aspect ratios, (especially if the latter were visualized perpendicularly to the long

axis), and the radii of the dots with similar Eg (20 < RQD . 23 Å) would be within 15%
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Figure 4.4: Comparison between the room temperature optical energy gaps calculated
for spherical (black symbols) and elongated structures (red symbols) as a function of

the number of atoms in the NC.

or less of those of the rods (RQR =20 Å), the standard size distribution in experiments

being of about 13%.

4.4 Intraband transitions

The increase in the single-particle DOS with elongation as discussed in Sec. 4.2 is

also expected to affect the position of the peaks associated with inter-sublevel (ISL)

transitions in the NCs. The two well separated features found by Krapf et al. [3] in

their photoinduced absorption (PIA) spectra of InAs colloidal QDs have in fact been

associated with ISL transitions between the two lowermost states in the conduction band

(CISL, the high energy peak), and between the two uppermost valence states (VISL, the

low energy peak). We therefore predict a similar red shift for these two PIA peaks in

elongated NCs, as expected for the STM peak spacings discussed above. Our calculated

intra-band absorption spectra relative to NCs with R = 20 Å and 1 ≤ σ ≤ 1.5 are shown

in Fig. 4.5. As σ increases both peaks exhibit progressive red shifts, as expected.
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It is particularly interesting to note the shape evolution of the high energy peak where,

for σ = 1.2, a broad shoulder appears on the low energy side. This feature further

develops into a separate peak for larger elongations. Careful examination of the data

reported in Ref.[3] reveals the presence of this shoulder also in the experimental spectra

obtained for NCs with R ≤ 24 Å. As no shoulder is found in our spectra for spherical

NCs of any size, its presence could be interpreted as an indication of the substantial

presence of slightly elongated structures (with σ ≤ 1.2) in the experimental samples,

in agreement with our earlier conclusion based on the comparison with STM data.

That this might indeed be the case is also suggested by the results of the comparison

between the calculated and the observed [3] position of the two intra-band absorption

features, shown in Fig. 4.3. The values calculated for slightly elongated structures with

1 < σ ≤ 1.2 show a better agreement with experiment than those obtained for spherical

NCs (σ = 1), in the case of CISL transitions. The presence of elongated NCs would

therefore explain the poorer agreement with experiment found in the pseudopotential

calculations for spherical NCs of Ref.[88] for all quantities related to transitions involving

the first excited electron state 1Pe (such as the position of the CISL transition peak

and the energy separation between the first and fifth peak in the interband absorption

spectra), if compared to the very good agreement achieved for intra- and inter-band

transitions involving all VB states up to the 1S state in the CB, whereas it would not

provide more insight into the observed [3] temperature dependence of the VISL peak,

as the contributions from both VBM (thin blue line in Fig.) and VBM-1 (red dashed

line) would still be present at low temperature for all values of σ considered.
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Figure 4.5: Optical intra-band absorption spectra calculated for InAs NCs withR =20
Å and σ =1.0 (a), 1.1 (b), 1.2 (c) and 1.5 (d) using a broadening of 75 meV (black line)

and 10 meV.

4.5 Interband transitions

As shown in Sec.4.4 the specific intra-band absorption spectra might be used as an

indication of the substantial presence of slightly elongated structures in the experimental

samples. We therefore calculated the full inter-band absorption spectrum, looking for

shape-specific signatures. Figure 4.6 shows the evolution of the optical features as the

NC becomes either progressively elongated (as σ increases), keeping R constant(=20

Å), or progressively larger (as R increases), keeping σ constant (=1). We see that in all

the spectra for σ < 1.5 three strong peaks can be distinguished, separated by weaker

peaks, in qualitative agreement with the experimental findings of Ref. [4], whereas the

spectrum calculated for a rod with σ = 1.5 presents substantial differences from that of

less elongated structures. We compare the energy separation between the peaks labeled

E5 and E1 and E3 and E1 in the absorption spectra of Fig. 4.6 with the corresponding

quantities obtained from the experimental size selected PLE spectra measured by Banin

et al. [4] in Fig. 4.3. Once more, in the case of transitions involving the first excited
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Figure 4.6: Optical absorption spectra calculated for InAs NCs with R =20 Å and
σ =1.5 (a), 1.2 (b), 1.1 (c) and 1.0 (d) and dots (σ =1) with R =21.7 (e) and 24.1
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state in the conduction band, a better agreement with experiment is achieved with data

calculated for elongated NCs. Taking into account of all the results presented here we

can therefore draw a conclusion that the experimental samples in Ref.[2] contained a

majority of slightly elongated particles, with σ ≤ 1.2.

4.6 Conclusions

Using a semiempirical pseudopotential approach, we have calculated the effect of small

elongations on the electronic and optical features of InAs colloidal dots. We found

that although NCs with aspect ratios of length over diameter ≤ 1.2 show qualitatively

similar optical spectra, spherical structures can be distinguished from elongated ones

based on spectral features related to the energy separation between 1S and 1P levels in

the CB, such as the shape and position of the high energy peak in PIA experiments,



Chapter 4. Slightly Elongated Dots 83

the spacing between the first and the fifth peak observed in PLE measurements or

the spacing between STM peaks measured in the positive bias regime. Based on the

comparison of our results with STM, PIA and PLE data we concluded that the nominally

spherical samples used in many experiments contained a significant fraction of slightly

elongated particles. The substantial presence of the latter explains the poor agreement

with experiment found in previous pseudopotential calculations, for the position of the

peaks relative to CISL transitions in PIA spectra and for the magnitude of the E5-E1

separation in PLE spectra.

In this chapter we found that the small elongations play an important role in the evolu-

tion of optical signatures in InAs nanocrystal quantum dots. In the following chapter,

we will use the same approach to further investigate the evolution of the optical proper-

ties, such as optical bandgap, Stoke shift, degree of linear polarisation and the radiative

lifetime, in the transition from three- to quasi-two dimensional quantum confinement in

InAs nanorods.



Chapter 5

InAs Nanorods

In Chapter 4 the effect of small elongation on the electronic and optical signatures

was described. Here we consider those of InAs quantum rods (QRs) as a function of

increasing length-to-diameter ratio. We show that, as the aspect ratio increases, energy

levels cross in both conduction and valence bands. It is also found that the crossover

between highest occupied molecular orbitals is found to be size-dependent and the level

crossings at the top of the valence band are essential to explain the evolution with

elongation of all optical properties in these systems. Their transformation from zero- to

quasi-one-dimensional structures is characterised by a common monotonic behaviour of

band gap, Stokes shift, degree of linear polarisation, and the radiative lifetime, closely

linked to the variation with aspect ratio of the electronic structure of nanocrystal band

edge.

5.1 The importance of nanorods

Semiconductor nanocrystals (NCs) have been the subject of intensive experimental

and theoretical studies during the past decade because of the variety of quantum-

confinement-induced effects they exhibit [145]. The development of cheap and accurate

84
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synthetic methods for their production [2] have made spherical quantum dots (QDs) in

particular an ideal system for the study of size-related properties [2, 145]. The effect

of shape, on the other hand, has only just started to be addressed because of the tech-

nological challenges presented by the controllable and reproducible variation of the NC

shape during growth which were overcome only recently [8, 14, 125, 145]. As a result,

theoretical and experimental investigations of nanorods are still in their early stages

[7, 125, 126, 138, 140, 146].

In terms of applications, semiconductor NRs have already demonstrated considerable

advantages over their spherical counterparts in various fields. Compared to QDs, CdSe

NRs show improved performance in photovoltaic cells due to better charge transport

properties [147, 148]. Furthermore, it was observed that the use of elongated NCs allows

a reduction of non-radiative carrier losses arising from Auger recombination compared

to spherical NC emitting at the same wavelength [127, 149]. This reduction leads to

an increased optical-gain lifetime and an extended gain spectral range. Also, linearly

polarised emission from elongated CdSe [136, 150] and InP [140] NCs has been reported.

The latter discovery predicts a very promising future for colloidal NRs because linearly

polarised emission has a wide range of applications, ranging from biological labelling

[60, 61] to optoelectronic devices [44].

The unique properties of CdSe quantum rods, such as a non-monotonic change of the

global Stokes shift [136, 150], the polarisation ratio [136, 150] and the radiative lifetime

[150] with increasing aspect ratio are just beginning to show the important role of

shape in these systems. Detailed theoretical studies of InAs NRs are, however, still

not available despite extensive experimental investigations conducted recently [7, 125].

After the success of our pseudopotential study on the optical properties of spherical [88]

and slightly elongated [30] InAs nanocrystals discussed in Chapter 3 and 4, respectively,
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we will therefore extend here our investigation to the transformation of the electronic

and optical structure from three- to quasi two-dimensional quantum confinement.

This chapter is organised as follows. In Sec. 5.2 we discuss the evolution with elongation

of the electronic structure of InAs nanostructures with particular emphasis on the enve-

lope functions of the single particle states in both valence and conduction bands. In Sec.

5.3 we present our calculated optical spectra for structures with different aspect ratios

of long to short axis, which we use as a starting point to discuss the shape dependence of

(i) the optical band gap, (ii) the global Stokes shift, (iii) the polarisation anisotropy and

(iv) the radiative lifetime in these systems. Good agreement is found with the available

experimental data. Section 5.4 summarises our results.

5.2 Electronic structure

We investigate the evolution of the electronic structure in InAs nanocrystals with a

diameter of 4.0 nm and different aspect ratios (ρ), covering the length regime at the

transition from spherical to wire-like structures. The single-particle levels in both con-

duction (CB) and valence (VB) bands are calculated for structures with aspect ratios

ranging from 1.0 (spherical dots) to 4.0, containing ∼1200 to ∼7000 atoms, respectively.

Figure 5.1 shows the evolution of the carrier density distribution in both conduction

and valence bands, where the single particle energy levels are labelled as ei and hi,

respectively, with i=1, 2,..., n increasing from the VBM (h1) to lower energy levels and

from the CBM (e1) to higher energy levels. The cross-section contours are plotted on

the (001) and (010) atomic planes with their intensity increasing from blue to red.

From Fig. 5.1 it is evident that, unlike in spherical structures, in NRs there are two

types of envelope functions (π-like and σ-like), depending on the symmetry of the wave
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Figure 5.1: Envelope functions for the four uppermost (seven lowermost) states in
the valence (conduction) band in InAs NCs with aspect ratios L/D=1, 2.3 and 3.1, and
a diameter D = 4.0 nm. The cross-section contours are plotted on the (001) atomic
plane (and also on the (010) plane for ρ=2.3 and 3.1) with the intensity increasing from
blue to red. For the nanorods with the aspect ratio 2.3, the envelope functions of e1-e3
and e7 are σ-type in the xy-plane and contain 0-3 nodes along the z -axis, while the
envelope functions of e4-e6 are π-type with 0-1 node. The envelope functions in the
valence band h1-h3 are σ-type containing 1, 2 and 0 nodes, respectively, whereas h4 is
π-type. When the nanorod length is increased and the ratio changes from 2.3 to 3.1,

energy crossings occur in both conduction and valence bands. (see text)

functions in the xy-plane. A π-like wave function is symmetrical with respect to rotations

about the elongated direction whereas a σ-like envelope function is symmetrical on a

plane perpendicular to the rod length. Figure 5.1 shows, however, that, as in the case

of spherical NCs, the character of the VB states in elongated structures displays some

degree of mixing (especially evident when compared to the purer nature of the states

in the CB), due to the close proximity in energy of the different levels and the large

spin-orbit coupling. States with the same symmetry are further characterised according

to the number of nodes along a given direction (see also Fig. 5.2). In NRs with ratio 2.3,
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Figure 5.2: The evolution of the energy levels of the highest occupied molecular
orbitals versus aspect ratio for 4.0-nm-diameter quantum rods. The solid lines are a
guide to the eye. Black empty symbols indicate the energies of the p- (square) and
s-like (circle) uppermost VB states in a spherical dot. Red squares denote π-type
levels whereas levels with σ(i)-type envelope function in the xy-plane are denoted by
solid blue circles, green diamonds, orange triangles, purple crosses and cyan triangles
for i = 0, . . . , 4 respectively. The subscript i denotes the number of nodes along the
growth direction. The inset shows σ-type and π-type envelope functions along the xy
and xz planes with the white dashed line marking the boundary of the quantum rod.

The VBM energy levels cross at a ratio 1.5 < ρ < 2.3.

for example, the envelope functions of e1-e3 and e7 are of type σ in the (001) plane and

contain 0-3 nodes along the [001] direction, whereas the envelope functions of e4-e6 have

π symmetry and contain 0 and 1 node along the [001] direction. The envelope functions

in the valence band h1-h3 are σ-type containing 1, 2 and 0 nodes, respectively, whereas

h4 is π-type. As the aspect ratio increases, crossings of π and σ states occur in both

the valence and conduction bands. In particular, the VBM symmetry changes from π

to σ at a ratio 1.5 < ρ < 2.3, as shown in more detail in Fig. 5.2. It is also important to

notice that the VBM is σ-type with 1 node for ρ = 2.3, and σ-type with 0 nodes at a

ratio of 3.1 (see also Fig. 5.2). These features will have important consequences for the

optical properties of NRs discussed in the following sections.

Figure 5.2 illustrates in greater detail the evolution of the energy levels in the VB as
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a function of the aspect ratio (levels with the same symmetry are connected with solid

lines). The energies of the electronic states decrease with increasing length due to the

quantum confinement effect. As elongation only reduces confinement along one direction

(the z -axis), it has a greater effect on those levels more sensitive to confinement in that

direction. This leads to level crossings as some energy levels depend on length much

more than others.

The level crossing between the two highest VB levels is particularly important because

generally it is the relaxation of the electron from the CBM to the VBM that is associated

with photoluminescence (PL). This level crossing is therefore also closely related to the

mechanism behind the evolution of the Stokes shift (i.e., the energy separation between

emission and absorption), which is commonly observed in semiconductor quantum dots

and is one of the most important quantities that determine the optical properties of

NCs. Figure 5.2 clearly shows that this crossing occurs between the aspect ratios of 1.5

and 2.3 for 4.0 nm wide quantum rods. For rods with ρ ≥ 2.3, the highest molecular

orbital has σ symmetry and for ρ > 2.5 the wave function has zero nodes along the [001]

direction; therefore, it is expected that the lowest emission transition and the optical

properties in general will change once the value of the rod aspect ratio exceeds that at

the crossing point (this aspect will be discussed further in Sec. 5.3). This level crossing

is found to occur for aspect ratios in the range 1.2 ≤ ρc ≤ 1.5 in rods with a diameter

of 2.8 nm (not shown). We therefore conclude that in InAs the value of the aspect

ratio ρc at which the VBM level crossing occurs is size-dependent. This is in sharp

contrast with the cases of both InP and CdSe, where, respectively, no crossing [140] and

a (quasi-)size-independent ρc [136, 151] were found.
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5.3 Optical properties

5.3.1 Optical gap

Figure 5.3 shows the effect of elongation on the optical gap: the positions of the first

absorption peak calculated as a function of length for NCs with D = 4.0 nm (red

triangles) are compared with the experimental data by Steiner et al. [7] (dark blue

triangles), and Kan et al. [8] (orange triangles), measured at 300K in structures with

diameters ranging between 3.5 and 4.1 nm and lengths up to 23 nm. The agreement

between predicted and observed increase of the peak red-shift with NR length is excellent.

We should mention, however, that, due to the large memory required for the calculation

of the Coulomb integrals for the larger ratios, only 10 states in the valence band and

4 in the conduction band were included in our many-body calculations (note that the

pseudopotential calculations reported in ref. [136, 152] only included a total of 8 states

from the conduction and 4 from the valence band for structures with D ≥ 3.0 nm). The

inaccuracy introduced by the use of such a reduced set of VB states was estimated to be

less than 3.4% for the case of a spherical NC by comparing the value reported in Fig. 5.3

with that calculated using 40 holes and 4 electrons [88]. This decrease of the band gap

with increasing rod length is a signature of the gradual decrease of confinement along the

long NC axis. Such a strong dependence on length was, however, not observed in CdSe

NRs [153]. In fact, the Bohr radius of InAs (34 nm), is much larger than the longest

quantum rod considered here (16 nm), which was not the case for CdSe [153], where the

Bohr radius is only 5.6 nm. As a consequence strong quantum confinement should hold

in all three dimensions for the quantum rods displayed in Fig. 5.3, whereas in the case

of CdSe [153] the rod lengths were in the medium to weak confinement regime. It is

worth noticing that strong confinement governs the physical properties associated with

the radial dimension in both InAs and CdSe quantum rods.
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Figure 5.3: Optical band gap (first absorption peak) of InAs NRs as a function of the
rod length: the gaps calculated for rods with D = 4.0 nm (red triangles) are compared
with the experimental data from Steiner et al. [7] (blue triangles) and Kan et al. [8]

(orange triangles), relative to rods with diameters between 3.5 and 4.1 nm.

Figure 5.4 shows the dependence on the length of the effective bandgap, defined as the

increase in the energy of the first excitonic transition in a NC compared to the bulk

bandgap (∆Eg = E
QD/QR/QWR
g −Ebulk

g , where Ebulk
g =0.354eV [155]), in InAs quantum

dots, rods and wires. The upper (Dots) and lower (Wires) solid curves are least-squares

fits to experimental [2, 9] and theoretical [154] values, respectively, relative to 0- and 1-

dimensional structures. They mark the boundaries of the QR zone (gray area) allowing

a theoretical determination of the transition length at which QRs are expected to exhibit

the confinement behaviour of quantum wires. Our calculated values (red triangles) fall

within the QR zone, extending from the upper boundary, for the shorter QRs, to the

lower limits, where the ∆Eg values relative to our longer rods are very close to both the

QWR curve and the experimental data of Kan et al. [8].

This demonstrates a gradual evolution from three-dimensional (3D) confinement (QDs)

to a weaker two-dimensional (2D) confinement (QWRs) and seems to suggest that the

longest QRs considered in this study are close to achieve the 2D-like confinement typical

of QWRs. Surprisingly their length (∼16 nm) is considerably shorter than expected
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Figure 5.4: Effective bandgap ∆Eg versus the inverse diameter D−1 plotted for dif-
ferent InAs low dimensional structures: spherical quantum dots (dark green [9] and
purple [2] circles display experimental data), NRs (orange [8] and blue [7] triangles are
relative to experiment, whereas red triangles display the results of the present work),
and quantum wires (black [154] and light cyan [8] squares represent theoretical results
whereas yellow squares [155] display experimental data). The upper (lower) solid curve
is a least-squares fit to the experimental (theoretical) values relative to quantum dots
[2, 9] (quantum wires [154]). The fitting curves are digitally extracted from Ref. [155]
and the fitting equations for quantum dots (red curve) and quantum wires (blue curve)
are respectively ∆Eg=3.23D−0.88 and ∆Eg=2.38D−1.02. Although the lower curve was
fitted with four theoretical data in the original work [154], only one point appears in
the present diameter range. The ∼4 nm diameter QRs (orange triangles) and 3.7 nm
diameter QRs (blue triangles) were taken from Ref. [8] and Ref. [7], respectively (see
also Fig. 5.3). The red triangles reflect the evolution of the confinement from quantum

dots to quantum wires according to our results.

by comparison to the bulk exciton Bohr radius for InAs (34 nm). Unfortunately cal-

culating the energy gap for rods with lengths comparable with the bulk Bohr radius

(corresponding to ρ=8.5 for structures with D = 4.0 nm) is highly impractical due to

the prohibitively large number of atoms involved. To gain further insight into this aspect,

and try to define more clearly the QR-QWR transition length in InAs, we calculated

instead the evolution of other optical properties with increasing length for the same rod

sizes shown in Fig. 5.4.
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5.3.2 Stokes shift

The effect of elongation on the optical properties of InAs NCs is further illustrated

in Fig. 5.5, where we compare the optical absorption and emission spectra calculated

for NCs of different aspect ratios with experiment [8]. Despite a slight shift, that we

attribute to the 15% and 20% size-distribution reported [8], respectively, for diameters

and lengths in the experimental samples, there is good agreement between theory and

experiment.

From Fig. 5.5 we can see that one effect of deconfinement is to bring the emission of long

QRs into the technologically relevant telecommunication range (1.2-1.5µm). Another
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Figure 5.5: Absorption (red lines) and emission (blue lines) spectra of InAs NC with
different aspect ratios: comparison between our theoretical results calculated for NCs
with D = 4.0 nm (solid lines) and the experimental spectra (dashed lines) relative
to samples with D ' 4.0 nm (digitally extracted from Ref. [8]). The theoretical PL
intensities were normalised for clarity of presentation. A linewidth Γ=80 meV is used

in all our spectra. The Stokes shift ∆E calculated for each structure is also shown.
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consequence of elongation is the progressive reduction of the red-shift between absorption

and emission (Stokes shift), which in Fig. 5.5 decreases from values of 43− 50 meV for

spherical structures (ρ = 1.0) with D=4.0 nm, to about 15 meV for ρ = 3.7. A large

Stokes shift of ∼50 meV was also recently observed by Schaller et al. [49] in 4.3-nm-

diameter InAs core-only and InAs/CdSe core/shell spherical NCs.

According to our calculations, however, in elongated structures the position of the ab-

sorption peaks and therefore the size of the red shifts displayed in Fig. 5.5 is considerably

affected by the magnitude of the experimental broadening (∼ 80 meV in Fig. 5.5). In-

deed the Stokes shifts we obtain for the larger aspect ratios using a linewidth of 10

meV are one to two orders of magnitude smaller, reducing to ∼ 0 for the longest struc-

ture considered. The proximity of the two lowest-energy transitions, whose separation

decreases with increasing rod length, due to the increase in the VB density of states

[88], causes the absorption maximum to blue-shift for broadenings larger than the peak

separation (thin solid lines). This leads to apparent Stokes shifts that are much larger

than the separation between the lowermost excitonic states responsible for absorption

and emission, which we call the real Stokes shift (henceforth referred to simply as Stokes

shift, black line in Fig. 5.6).

A more detailed account of the length-dependent splitting between the band edge ab-

sorption and emission in InAs nanostructures calculated using broadenings of 80, 10 and

0 meV is presented in Fig. 5.6, where the upper x axis displays the number of atoms

corresponding to the different aspect ratios, and the geometries relative to the NCs con-

sidered in Fig. 5.5 are also illustrated. The longest rod that we consider (ρ=4.0) has a

long axis length L = 16 nm and contains ∼7000 atoms. As one can see from Fig. 5.6,

the shifts calculated with Γ = 80 and 10 meV are close for small elongations, but deviate
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Figure 5.6: Calculated real (black solid line) and apparent (red and green solid lines)
Stokes shift as a function of elongation in InAs nanocrystals with D = 4.0 nm, compared
with experimental data from Kan et al. [8] (also shown in Fig. 5.5). The Stokes shift
is defined as the difference in energy between the positions of the first absorption and
emission peaks coming from the red. The nanocrystal atomistic geometries shown
correspond to ρ=1.0, 2.3 and 4.0. The upper x-axis displays the number of atoms

relative to each value of ρ.

substantially from each other as soon as the density of excitonic states near the absorp-

tion transition increases (at ρ = 1.5), with the shift for Γ = 80 meV converging to larger

values. Similarly to the Γ = 10-meV-shift, the (real) Stokes shift (Γ = 0) decreases

rapidly when the aspect ratio increases from 1.0 to 2.3, reaching a plateau where the

shift reduces to ∼ 500 µeV for ρ = 4.0. This is in sharp contrast with the case of CdSe

quantum rods where the Stokes shift was found to exhibit a non-monotonic behaviour

[136].

Although several investigations of the underlying mechanisms have been reported in

the literature [42, 134, 156], the origin of the Stokes shift in InAs nanostructures is

still unclear. Here, we suggest that its possible origins include (i) excitonic exchange
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splitting and (ii) orbitally forbidden valence states. Our previous pseudopotential cal-

culations [88] showed that in spherical NCs the lowest exciton manifold originates from

the single particle states h1,2 (VBM) and e1 (CBM) (with a total degeneracy of 4×2=8,

see Fig. 5.7d). We previously found that in spherical NCs the envelope function of the

lowest electron state has s-like symmetry, while that of the highest hole state (VBM)

has prevalently p-like symmetry (see Fig. 5.7g and Fig. 5.2). Therefore, the oscillator

strength of the absorption from the ground state to (h1,2, e1) is very small and the tran-

sition is formally optically forbidden. The next eightfold degenerate excitonic state is

(h3,4, e1). The exchange interaction splits it into a higher three-fold degenerate optically

allowed “bright” multiplet, a middle threefold-, and a lower twofold-degenerate “dark”

multiplets, as shown in Fig. 5.7 (d). We found [88] that the lowest absorption peak cor-

responds therefore to the first fully optically allowed transition from the exciton ground

state to (h3,4, e1) (red solid arrow in Fig. 5.7d), whereas the emission occurs from the

lower (partially optically forbidden) dark exciton state (blue solid arrow in Fig. 5.7d)

and is both red shifted and slow. The Stokes shift is thus given by the difference between

the energies of these two transitions (blue and red arrows), which we calculate to be 41

meV in InAs spherical NCs with 4.0 nm in diameter. This value is almost unaffected

even for a line broadening as large as 80 meV (typical in experiments [8]), because of

the large separation between the lowest energy allowed transitions, for which we obtain

an apparent Stokes shift of 43 meV (see Fig. 5.6).

Due to the lifting of the degeneracies and the crossings of the levels taking place in

the valence band, however, this picture becomes more complex in elongated structures.

Figures 5.7e and 5.7f show schematically the absorption and emission transitions at low

temperature in InAs NRs with the same diameter (4.0 nm) but different aspect ratios

(ρ=2.3 and 3.7). Our calculations show that the lowermost exciton manifold (h1, e1)

originates from the single-particle states h1 (VBM) and e1 (CBM) which, including
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Figure 5.7: Effect of the line broadening on the Stokes shift: the left panels display
our theoretical absorption (red lines) and emission (blue lines) spectra of InAs NC with
D = 4.0 nm and different aspect ratios (1, panel (a); 2.3 panel (b) and 3.7, panel (c) ).
The absorption spectra displayed are calculated using two values (10 meV, thin lines;
and 80 meV, thick lines) for the line broadening, whereas red vertical lines display the
relative transition probabilities and are labelled according to the index i of the hole
levels hi involved in the transitions [marked in red in panels (e) and (f)]. The notation
(hi, em) indicates that a specific exciton is derived mainly from the single-particle
levels hi and em. The degeneracy of the different states in a manifold is indicated
by “(xn)”. Solid (dashed) horizontal lines indicate bright (dark) excitons (i.e., states
optically accessible from the ground state), whereas vertical arrows indicates transitions
between levels. Red (blue) arrows indicate absorption (emission), whereas thick (thin)
arrows indicate strong (weak) transitions. The right panels (g, h and i) are snapshots
of Fig. 5.2 taken at ρ = 1.0, 2.3 and 3.7, and indicate the symmetry of the 4 topmost
energy levels in the VB in these structures to aid the interpretation of the character

(allowed/forbidden or strong/weak) of the transitions shown in the middle panels.

spin, yield 2×2 = 4 levels. This 4-fold degenerate exciton multiplet is split by exchange

interaction into a higher singly-degenerate, a middle twofold-degenerate, and a lower

singly-degenerate level, respectively. Above these lowest exciton states are three exciton

manifolds derived from e1 and h2, h3 and h4. Due to the energy crossing in the valence

band discussed in Sec. 5.2 (see Fig. 5.2), the symmetry of the different exciton states
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varies, depending on elongation, and so does therefore also the character (allowed or for-

bidden) of the different transitions in which they are involved, as illustrated in Fig. 5.7e

and 5.7f. In a NR with ρ = 2.3 for example, the strongest absorption transition, indi-

cated by a thick solid red arrow in Fig. 5.7e, is from the exciton ground state to (h3, e1).

This is due to the fact that, although h1, h2 and h3 have all the same (σ-type) symmetry

as e1, h3 has also the same number of nodes as e1 (see Fig. 5.7h, Fig. 5.1, and Fig. 5.2).

In contrast, the transitions from the ground state to (h1, e1) and (h2, e1) are weak on

account of the different number of nodes along the growth direction between h1, h2 and

e1. It is interesting to note that for a quantum rod with aspect ratio of 3.7 and 4.0,

the exciton manifold involved in both absorption and emission is the same (h1, e1). The

Stokes shift in that case is thus the value of the exchange splitting between bright and

dark states (0.506 meV and 0.494 meV for ρ=3.7 and 4.0, respectively, black symbols

in Fig. 5.6). Due to the small exchange splitting, at room temperature a thermal popu-

lation of the bright state occurs resulting in vanishingly small Stokes shifts. An allowed

transition (weaker than the band edge one but stronger than those immediately above

it) is found to take place, for all ratios, between the ground state and (h5, e1). The

presence of this transition is responsible for the blue shift of the absorption for large

inhomogeneous broadenings, which leads, in elongated structures, to large values of the

apparent Stokes shift.

5.3.3 Degree of linear polarisation

Another key property that exhibits a distinct signature of the change in the optical

properties with decreasing confinement along one direction is the PL polarisation. Figure

5.8 displays the calculated degree of polarisation as a function of NC elongation, for

structures with D = 4.0 nm. It clearly shows that while the PL of a spherical dot is

completely unpolarised, due to the symmetry of the structure, even slightly elongated
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Figure 5.8: Degree of linear polarisation (β) as a function of NC aspect ratio, calcu-
lated at room temperature.

NCs exhibit some degree of PL polarisation along the long axis. The polarisation factor

closely reproduces the behaviour of the Stokes shift (see also Fig. 5.6), exhibiting a

steep change for small elongations (1 < ρ < 2.3), where it increases rapidly from zero to

∼ 80%, followed by a plateau where it remains approximately constant, converging to

85% for ρ = 4.0. This value is consistent with the linear polarisation predicted for an

infinite InAs wire with the same diameter [112], and with the polarization anisotropy

calculated [152] for and observed [136, 150] in elongated CdSe NCs. Elongated InAs

nanostructures are therefore ideally suited for orientation-sensitive applications in the

telecommunication range.

5.3.4 Radiative lifetime

The magnitude of the Stokes shift discussed in Sec. 5.3.2 represents a key parameter to

understand another property of these structures: the lifetime of their emission.
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Table 5.1: Comparison between experimental and theoretical radiative lifetime for
InAs NCs. Our results are presented for three different values of the effective dielectric
constant of the medium surrounding the NC (εout = 2.5a, 4.5b and 6.0c) to account
for the different materials (solvents, surfactants and semiconductor shells) used in the

experiments.

D (nm) Lifetime (ns)

Current calculation

spherical dot 4.0 543.4a 206.0b 136.4c

slightly elongated dot (ρ=1.2) 4.0 404.0a 152.1b 100.4c

Experiments

InAs/CdSe core/shell [49] 4.3 205

InAs/CdSe/ZnSe core/shell/shell [157] 4.4 ∼170-300

InAs/CdSe/ZnSe core/shell/shell [158] 4.9 150

In Table 5.1 we compare our results for spherical (ρ = 1.0) NCs with D = 4.0 nm with

the available experimental data for spherical dots (unfortunately no lifetime data have

been published so far for InAs rods). Results for slightly elongated NCs (with ρ = 1.2)

were also included as our previous calculations [88] suggested that many “nominally”

spherical experimental samples contained a large fraction of slightly elongated structures.

Given that the experimental data are all relative to core/(multi-)shell structures it is

perhaps not surprising that the lifetimes calculated using large values for the matrix

dielectric constant (4.5 ≤ εout ≤ 6.0) give the best agreement with experiment. That

this is the case for both values of the aspect ratio (ρ = 1.0 and ρ = 1.2) indicates once

again the difficulty to distinguish between spherical and slightly elongated structures

based on spectroscopic data.

Figure 5.9 illustrates the evolution of the radiative lifetime (τR) calculated as a function
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Figure 5.9: Thermally averaged radiative lifetime τR, calculated at room temperature
as a function of the aspect ratio (ρ) for NCs with D = 4.0 nm. As in Table 5.1, the
results are presented for different NC environments (i.e., different values of the effective
dielectric constant εout). Inset: comparison between the curves in the main panel (left
y-axis) and the energy shift from Fig. 5.6 calculated with a broadening of 10 meV (right
y-axis); the lifetimes are normalised to their value in a spherical structure (τ(ρ = 1)).

of NC elongation. The longer lifetime observed at room temperature in spherical struc-

tures compared to more elongated NCs is due to the larger Stokes shift between bright

and dark states, in the former (see Fig. 5.6 and Fig. 5.7). After light absorption, de-

excitation occurs and the exciton relaxes to its lowest energy state. Owing to the large

Stokes shift, in spherical structures thermal population of the bright state is negligibly

low and emission therefore takes place from the dark state with a relatively long lifetime.

In the case of NRs, the energy gap between the dark and bright states decreases with

length leading to an increased thermal population of the bright state, which results in

faster decays. The close relationship between Stokes shift and NC lifetimes is illustrated

in the inset of Fig. 5.9, where the evolution with elongation of the normalised lifetimes

closely follows the energy shift curve.

A similar dependence on the aspect ratio of the thermally averaged radiative lifetime

at room temperature was observed experimentally in CdSe nanorods [150]. However,
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whilst in that case the radiative lifetime first decreased and subsequently increased with

increasing aspect ratio with a turning point at about 10-12 nm (i.e., approximately twice

the bulk Bohr radius in CdSe), our calculated results exhibit a monotonic behaviour,

without a turning point. The increase in the radiative lifetime of CdSe rods was ex-

plained [150] as a property of a 1D quantum structure occurring when the rod length

exceeded the Bohr exciton diameter. We propose here a different interpretation of our

results, which is totally independent of the size of the Bohr radius. Wang et al. [150]

have shown that the Stokes shifts, polarisation ratios and radiative lifetimes observed in

CdSe rods as a function of the aspect ratio exhibit a common non-monotonic behaviour,

with the same turning point. Such a similarity of behaviour among the different optical

properties is consistent with the analysis presented above, linking the shape-dependence

of these properties to that of the Stokes shift. The pseudopotential calculations per-

formed in ref. [136] unequivocally associate the turning point of the Stokes shift with

the level crossing occurring at the top of the VB in elongated structures which was

found to take place essentially at the same value of the aspect ratio for all rod sizes.

This size-independence of the crossing point excludes therefore any possible size depen-

dence for the turning point of the Stokes shift (and therefore any link to the size of

the Bohr radius). In our study the crossover at the top of the VB occurs for values

of the aspect ratio in the lower end of the range considered, and is not accompanied

by any increase in the Stokes shift. We therefore conclude that there is no reason to

expect any non-monotonicity in the optical properties of InAs nanostructures even for

large aspect ratios exceeding the Bohr exciton radius. The behaviour as a function of

elongation of the optical properties presented in this chapter can therefore be considered

as an indication that our longest rods may be close to the confinement regime of a 1D

structure.
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5.4 In summary

The semiempirical pseudopotential method was used to investigate the evolution with

elongation of the electronic structure and optical properties of 4-nm-diameter InAs NCs

with aspect ratios ranging between 1 and 4, corresponding to lateral size dimensions of

up to 16 nm and containing up to ∼7000 atoms. Our results, summarised in Fig. 5.10,

clearly show a common behaviour for the shape-dependence of all optical properties

considered in this chapter (band gap, Stokes shift, degree of linear polarisation and

radiative lifetimes) which can be traced back to the variation with aspect ratio of the

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Aspect ratio ρ

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Aspect ratio ρ

-5.88

-5.85

-5.82

-5.79

-5.76

V
B

 e
n

e
rg

y
 l

e
v

e
ls

 (
e
V

)

π
σ

(0)

σ
(1)

σ
(2)

σ
(3)

σ
(4)s

p

τ(2.5)

τ(6.0)

τ(4.5)

β

E∆

O
p
ti

ca
l 

p
ro

p
er

ti
es

Figure 5.10: Summary of our results: the curves from Figs. 5.8 (with inverted y axis),
5.6 (Γ = 10 meV) and 5.9 (inset) are plotted in one graph (upper panel) directly above
Fig. 5.2 (lower panel). We conclude that the evolution with elongation of all optical
properties considered in this work can be traced back to the variation with aspect ratio
of the electronic structure of the NC valence band. There are no labels or units on
the y-axis in the upper panel as all data sets have different units and are plotted on

different scales.
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electronic structure of the NC valence band: a fast initial variation with increasing ρ,

reflecting the crossover between π- and σ-like states at the top of the VB, is followed

by a slower change accompanying a further smoother crossover between σ-like states

with different (1, 2 and 0) numbers of nodes along the z direction. All curves then

reach a plateau once the VBM becomes a σ(0) state, with the same symmetry as the

CBM. Based on this analysis we conclude that, in contrast with the case of CdSe rods,

these optical properties are not expected to show any non-monotonicity even once the

excitonic Bohr radius is exceeded.

To a certain extent, our pseudopotential approach demonstrates that it can provide an

accurate description of the electronic and optical properties of InAs NCs with distinct

confinement systems, from three-dimensional confinement in quantum dots to quasi-

two dimensional confinement in nanorods. It presents itself, in general, as a promising

tool to deal with different semiconductor nanostructures. In the next chapter, we will

summarise a series of our successful calculations and propose possible developments.



Chapter 6

Summary and Outlook

6.1 Concluding remarks

This thesis started out with introducing an overview of semiconductor nanocrystals. The

objective of this introduction was to build a picture from their sizes to their practical

realisations. In what followed, we gave an overview about physics of semiconductor NCs

so as to make the contents of the thesis as self-contained as possible. The inclusion of

a simple view of the physics and the associated terminologies, including quantum size

effect, quantised energy spectrum, Coulomb interaction and direct carrier multiplication,

was also given so that when the specific calculations or applications were discussed, the

basic ideas was in context. We then gave concrete examples of the applications of

semiconductor nanocrystals and the outline of this thesis in the subsequent section.

In Chapter 2, the conceptual steps required to describe the exciton states and optical

properties of semiconductor NCs were explained. Basically, there were three main steps

in the calculation of the optical properties in semiconductor NCs. First, three differ-

ent geometries, including spherical quantum dots, slightly elongated dots and nanorods,

were constructed. We then calculated the potential of the system using a superpo-

sition of screened atomic potentials. The next step was to solve the solution of the

105
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single-particle Hamiltonian using the folded spectrum method (FSM) in which we were

capable of calculating only a few eigenstates near the band gap. The final step was the

calculation of the many-body effects. This task was accomplished by using the config-

uration interaction (CI) method. We eventually calculated many optical properties of

the system.

Based on our atomistic pseudopotential approach presented in Chapter 2, we had ob-

tained a series of success of the accurate pseudopotential study on the electronic and

optical properties of spherical, slightly elongated and elongated InAs NCs. Many of the

results presented in this thesis were of more general interest than the reproducibility

of our calculation with the experimental features only. In what followed, additional

emphasis will therefore be put into underlying the broader nature of the achievements

presented.

In Chapter 3, we applied the pseudopotential method to investigate the optical prop-

erties of InAs NCs with 14.6 < R < 30 Å. Our accurate description of the complex

structure of the valence band allows us to successfully explain the low energy features

observed in recent PIA measurements. Based on this result we rejected the simplis-

tic interpretation of such features in terms of a 3-level model and suggested that the

alternative hypothesis of a thermally activated surface state (as opposed to a thermal

activation from a state delocalised in the dot-interior), advanced in Ref.[3], would pro-

vide a more likely explanation for the experimentally observed temperature dependence

of the low-energy PIA feature. We also questioned, as previously done by Niquet et al.

based on the results of TB calculations, the explanation of the results of STM exper-

iments in the negative bias regime in terms of the energy separation between the two

uppermost valence band levels VBM and VBM-1, suggesting instead an interpretation

based on the separation between the peaks in our calculated density of states.
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Our calculated interband absorption spectral features reproduced those observed exper-

imentally, showing three strong peaks (1, 3 and 5) separated by weaker features. We

achieved a good agreement for the energy position of the first 4 peaks and the seventh,

down to NCs with R =14.6 Å. This result was especially remarkable considering that:

(i) some of these transitions were either not predicted at all [4, 122] or were not assigned

[5] in previous theoretical studies; (ii) the size range considered here includes very small

NCs, i.e., a confinement regime where all other theoretical approaches break down. The

agreement with the position of peaks 5 and 6 was less ideal but still reasonable. We

attributed this result to a “fine structure” effect in the conduction band, where strong

spin-orbit coupling induces a sizeable splitting in the otherwise 6-fold degenerate first

excited state.

In Chapter 4, we calculated the effect of small elongations on the electronic and optical

features of InAs colloidal dots. We found that although NCs with aspect ratios of length

over diameter ≤ 1.2 showed qualitatively similar optical spectra, spherical structures can

be distinguished from elongated ones based on spectral features related to the energy

separation between 1S and 1P levels in the CB, such as the shape and position of the high

energy peak in PIA experiments, the spacing between the first and the fifth peak observed

in PLE measurements or the spacing between STM peaks measured in the positive bias

regime. Based on the comparison of our results with STM, PIA and PLE data we

concluded that the nominally spherical samples used in many experiments contained

a significant fraction of slightly elongated particles. The substantial presence of the

latter explained the poor agreement with experiment found in previous pseudopotential

calculations, for the position of the peaks relative to CISL transitions in PIA spectra

and for the magnitude of the E5-E1 separation in PLE spectra.

In Chapter 5, the semiempirical pseudopotential method was used to investigate the
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evolution with elongation of the electronic structure and optical properties of 4-nm-

diameter InAs NCs with aspect ratios ranging between 1 and 4, corresponding to lateral

size dimensions of up to 16 nm and containing up to ∼7000 atoms. Our results clearly

showed a common behaviour for the shape-dependence of all optical properties consid-

ered in this thesis (band gap, Stokes shift, degree of linear polarisation and radiative

lifetimes) which can be traced back to the variation with aspect ratio of the electronic

structure of the NC valence band: a fast initial variation with increasing ρ, reflecting

the crossover between π- and σ-like states at the top of the VB, was followed by a slower

change accompanying a further smoother crossover between σ-like states with different

(1, 2 and 0) numbers of nodes along the z direction. All curves then reached a plateau

once the VBM became a σ(0) state, with the same symmetry as the CBM. Based on this

analysis we concluded that, in contrast with the case of CdSe rods, these optical prop-

erties were not expected to show any non-monotonicity even once the excitonic Bohr

radius is exceeded.

In summary, our pseudopotential method provides an accurate description of the com-

plex energy-level structure of InAs NCs and presents itself as a suitable approach to

explain many experimental features and their optical properties.

6.2 Possible developments

The work presented in this thesis not only give a comprehensive theory of the electronic

and optical properties of InAs semiconductor nanostructures, but also pave the way for

further research directions in the view of applying it to the study of nanocrystals of

selected shapes as well as different applications. Further research areas include :
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• The study of core/shell structure Novel core/shell structures for colloidal

semiconductor are made of two different semiconductor materials with different

confining potentials. The concrete examples for this typical heterostructure are

CdTe/CdSe, InAs/InP, CdSe/ZnSe, InAs/CdSe. The difference of confining po-

tentials at the interface between core and shell material creates a step potential for

confined carriers (electron and hole). Considering the alignment of a step potential,

there are, in general, two typical topologies for the conduction- and valence-band

confinement-potential alignments, as illustrated in Fig. 6.1, each of which follows

by many intriguing physical properties.

Type I Type II

Conduction Band

Valence Band

Figure 6.1: Cross section of core-shell nanostructures and two typical topologies for
the conduction- and valence-band confinement potential alignments.

In type I core/shell structure, the extrema of both the conduction and valence

band lie in the core; thus, we can achieve the localisation of the carriers in the

narrow band-gap material. This, from a practical point of view, leads to the

localisation of the carriers within the core region and the effect of surface traps can

be therefore reduced. This is beneficial for photo-emitting and laser applications

due to the enhancing of the emission efficiency. In contrast to type I, the electron

and hole in type II core/shell structure are separated as a consequence of the
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alignment of the conduction and valence bands extrema in the different region of

the core/shell structure. The exciton lifetime of the well-separated carriers can

be substantially increased because the non-radiative electron-hole recombination

process is prohibited. Possible applications, from this theoretical point of view,

can be developed for a building block of biological labelling, tunable lasers and

photovoltaic cells. To provide guidelines for the experimental study and design of

the core-shell heterostructures with desirable electronic and optical properties, a

reliable tool for computing the carrier interaction needs to be developed.

• The investigation of the potential use of single NCs and dots arrays

for applications in photovoltaics When semiconductor NCs are formed into

an ordered 3-D array, minibands are formed owing to strong electronic coupling.

This is a 3-D analog to a 1-D superlattice and it allows long-range electron trans-

port. The minibands formed in an ordered array could be expected to slow the

carrier cooling. Besides, they allow the transport and collection of hot carriers,

thus enhancing photopotential in photovoltaic cells. In addition, the enhancement

of impact ionisation is probably expected in the NC arrays leading to increased

photocurrent. Nonetheless, it is emphasis that the practical realisation of this con-

figuration is speculative and the theoretical and experimental study demonstrating

actual enhanced conversion efficiencies of this system has not been fully exploited.

• High performance single-absorbers The engineering of high performance single-

absorbers, with potential for photovoltaic application as solar cells, is another

further research area. Solving the inverse problem of designing a material that

optimises DCM and absorption rates in a specific energy ranges therefore yields

high thermodynamic efficiency.



Appendix A

Atomic Generation

A.1 Crystal structure

The geometrical description of a crystal requires the specification of the primitive lattice

vector (a1, a2, a3) of the underlying Bravias lattice, as well as the specification of the

atoms in the primitive cell. The content of a unit cell is described by means of an

appropriate set of lattice vectors (R), which individuates the equilibrium position of

the nuclei of all the atoms in the unit cell. The aforementioned considerations can be

summarised as follows :

crystal structure =


t1, t2, t3, ... (primitive translation vector)

d1, d2, d3, ... (basis of different atoms)

The geometrical description of the crystal structure is therefore specified by the primitive

vectors of the Bravias lattice and the vector forming the basis. A crystal with n atoms in

the primitive unit cell is called a composite crystal. It can be described by the following
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vectors :

R1 = d1 + n1t1 + n2t2 + n3t3 + ... (A.1)

R2 = d2 + n1t1 + n2t2 + n3t3 + ... (A.2)

R3 = d3 + n1t1 + n2t2 + n3t3 + ... (A.3)

Rn = dn + n1t1 + n2t2 + n3t3 + ... (A.4)

A.2 InAs zinc-blende structure

InAs semiconductor has zinc-blende structure, as illustrated in Fig. A.1. It can be

described as two interpenetrating face centred cubic (FCC) lattice displaced by a
4 (1, 1, 1)

along the body of diagonal of the conventional cube. The underlying Bravias lattice is

FCC having the coordination number four, i.e., each atom is surrounded by four atoms

at distance a
4

√
3. a is the lattice constant (a=6.0584Å) of the material. Positions of

each atom can be explained by the primitive translation vectors and the basis vectors :

t1 =
a

2
(1, 1, 0) (A.5)

t2 =
a

2
(0, 1, 1) (A.6)

t3 =
a

2
(1, 0, 1) (A.7)

d1 = (0, 0, 0) (A.8)

d2 =
a

4
(1, 1, 1) (A.9)

To generate or span the lattice of InAs nanocrystal, one needs to change a set of the

integers n1, n2, n3 in Eq. A.1 and A.2 (n=2 atoms in the primitive unit cell) until a

specific radius or length is reached. To illustrate, spherical NCs can be constructed by
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d1 

In 

As 

a 

t3 
t2 

t1 

d2 

Figure A.1: Zinc-blende structure of InAs. The red and light blue circle represent,
respectively, In and As atoms. a is the lattice constant for a material. The primitive
translation vectors (t1, t2, t3) are also presented with the blue arrows while d1 and d2

are the basis vectors of the structure.

moving n1, n2 and n3 through all integral values1 to add successive atomic layer until a

specific cutoff radius rcut are achieved. Similarly, elongated structures can be obtained

by starting from a spherical dot with a desired diameter and subsequently insert a

cylindrical segment along the growth direction. After we obtain the atomistic structure

with a selected shape, some of the atoms on the NC surface need to be passivated in

order to remove the surface effect. More details of surface passivation are previously

given in Sec. 2.4.

1In the atomistic generation code, we continue with the convention that integer means a positive
integer or zero, as well as a negative integer. When n is negative, n steps in a direction means n steps
in the opposite direction. The point reached does not, of course, depend on the order in which the
n1 + n2 + n3 steps are taken.
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