
Generating randomised virtualised scenarios for
ethical hacking and computer security education

SecGen implementation and deployment

Z. Cliffe Schreuders and Lewis Ardern
School of Computing, Creative Technologies and Engineering

Leeds Beckett University
Leeds, UK

Abstract— Computer security students benefit from having
hands-on experience with hacking tools and with access to vulnerable
systems that they can attack and defend. However, vulnerable VMs
are static; once they have been exploited by a student there is no
repeatable challenge as the vulnerable boxes never change. A new
novel solution, SecGen, has been created and deployed. SecGen
solves the issue by creating vulnerable machines with randomised
vulnerabilities and services, with constraints that ensure each
scenario is catered to specific skills or concepts. SecGen was
successfully deployed to generate VMs for a second year
undergraduate team module. Future plans are discussed.

Keywords—visualization; exploitation; vulnerabilities; learning
environment

I. INTRODUCTION

Computer security students benefit from having hands-on
experience with hacking tools and with access to vulnerable
systems that they can attack and defend. Virtualisation
provides a means for legal application of ethical hacking, and
the use of virtual machines (VMs) for security education within
academia and industry has become widespread [1-3]. For
instance, Armitage et al. [1] highlight that learning is best
achieved when users have privileged access to operating
systems with the ability to set-up complex networks using
virtual machines.

VMs provide a means for delivering vulnerable targets for
ethical hacking, and various VMs can act as targets when
learning ethical hacking skills. Metasploitable2 is a popular
vulnerable Linux VM, which has many vulnerabilities [4].
Sources such as VulHub provide various vulnerable VMs with
different aims and challenges [5].

However, existing vulnerable VMs are static; that is, they
do not change and once they have been exploited there is no
remaining challenge. This also poses an issue when providing
challenges to students, as they are all typically faced with
identical scenarios.

This paper presents a unique solution to this problem, by
generating VMs of randomised security scenarios.

II. AIMS

The aim of this work was to create and deploy a free and
open source software (FOSS) method for providing

randomised scenarios that contain variations in available
services, configuration, and vulnerabilities, while providing
control over constraints for the scenarios that are generated.

III. SECURITY SCENARIO GENERATOR (SECGEN)

Security Scenario Generator (SecGen) is a FOSS Ruby
application that generates a network of intentionally vulnerable
virtual machines (VMs) with randomly chosen vulnerabilities
for practising penetration testing techniques.

SecGen has an XML based configuration, which is used to
specify constraints for generated scenarios. As illustrated in
Figure 1, scenario configurations can specify systems with
vulnerabilities, services, and networks. Where details are not
provided in the specifications – for example, if the CVE is not
specified – these are randomly selected from the available
vulnerabilities, services, or networks.

This approach provides a large degree of flexibility in
specifying scenarios, while enabling constraints to be used to
ensure each scenario is catered to specific skills or concepts.
The example SecGen configuration in Figure 1 generates two
VMs:

• A remote storage system with random vulnerabilities,
while guaranteeing that there will be file storage
services, and that there will be a remotely exploitable
vulnerability that will result in user-level access that
can then be further attacked to gain root access via a
privilege escalation attack;

• A VM with a vulnerable webserver that can result in
root access.

SecGen processes the configuration files, then uses Vagrant
and Puppet to generate and manage the VMs. Vagrant is a
system for creating VMs, primarily used by software
developers to create and share reproducible and portable
development environments [6]. Puppet is a system for remotely
managing the configuration of Unix-like and Windows systems
[7]. SecGen generates a Vagrant file based on its configuration
and uses Puppet manifests to define the services and
vulnerabilities to include. SecGen also writes to a report with
details of the VMs that have been created.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/30267209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

<systems>
 <!-- an example remote storage system, with a remotely exploitable
 vulnerability that can then be escalated to root -->
 <system id="storage-server" os="linux" basebox="puppettest" url=""
 <vulnerabilities>
 <vulnerability privilege="user" access="remote"
 type="ftp" cve=""></vulnerability>
 <vulnerability privilege="user" access="remote"
 type="" cve=""></vulnerability>
 <vulnerability privilege="root" access="local"
 type="" cve=""></vulnerability>
 </vulnerabilities>
 <!-- secure services will be provided, if matching insecure
 ones have not been selected -->
 <services>
 <service type="ftp"></service>
 <service type="smb"></service>
 <service type="nfs"></service>
 </services>
 <networks>
 <network name="homeonly"></network>
 </networks>
 </system>

 <!-- an example remote web server, with a remotely exploitable root
 vulnerability -->
 <system id="web-server" os="linux" basebox="puppettest" url="" >
 <vulnerabilities>
 <vulnerability privilege="root" access="remote"
 type="www" cve=""></vulnerability>
 </vulnerabilities>
 <networks>
 <network name="homeonly"></network>
 </networks>
 </system>
</systems>

Fig. 1. Example scenario configuration file.

IV. DEPLOYMENT

SecGen was used to generate virtualised scenarios for a
second year undergraduate Team Project module. Students
worked in teams to conduct security assessments. Teams were
provided with a detailed scenario including organisation details
and aims, security policy documents, physical locations of
premisses, and VMs representing their computer systems.
Three SecGen scenario definitions were used as a base to
generate VMs for the eight teams, additionally a Website
theme was created for each team to further customise each
scenario, and these were used to generate five to six VMs per
team. Deployment was successful, and indiscernible to
students.

V. DISCUSSION

SecGen is capable of overcoming the issue of static security
scenarios, and can generate systems which contain random
vulnerabilities, while still having meaningful constraints for
learning or testing specific skills. This makes it suited to
generating scenarios for students, to mitigate the chances of
collusion or plagiarism, and also to increase the challenge on
repeat tasks. The scenarios can be regenerated to continue to
challenge the user since they won’t know what vulnerabilities
are on the system, allowing them to further progress their
penetration-testing skills.

The main limitation of the current implementation is the
number of different vulnerabilities the system currently has to

choose from. Due to the time-frame to develop the project,
only a limited number of vulnerabilities were created. This
limits the system since in it’s current state students would not
be challenged after attempting a few scenarios because they
would eventually run out of unique vulnerabilities to attack
(especially given the number of VMs involved in each scenario
for the Team Project module).

SecGen is released as free and open source software;
although some vulnerability definitions have been kept
unreleased, until the bank of vulnerabilities is larger, at which
point these will also be released publicly.

VI. FUTURE WORK

Further vulnerability definitions will be developed. Also,
more operating systems will be added to the OS selection such
as Windows, Mac, and other distributions of Linux, which will
help to employ a wider range of exploitation techniques. There
are also plans to develop the capability for SecGen to generate
Websites that contain randomly injected Web vulnerabilities;
such as XSS and SQLi flaws. More “loot” content and
themeing will also be added to create more complete and
convincing scenarios. Finally, it would be desirable to develop
a scoring system: for example, marks for submitting flags, loot,
or CVEs, which would make SecGen particularly well suited
for automated assessment marking and capture the flag (CTF)
competitions.

VII. CONCULSION

In summary, a new system for generating VMs for security
education has been implemented and deployed. A unique
feature of this system is the ability to generate meaningful
scenarios for learning security and ethical hacking concepts,
which are randomised, meaning that separate students or users
get appropriate learning experiences, but with separate
challenges. SecGen has successfully been used to generate
VMs for team project security assessments. There are plans to
continue development, and seek development collaborations.

REFERENCES

[1] Armitage, W.D., Gaspar, A. & Rideout, M. (2007) Remotely Accessible
Sandboxed Environment with Application to a Laboratory Course in
Networking. In: Proceedings of the 8th ACM SIGITE Conference on
Information Technology Education. SIGITE ’07. New York, NY, USA,
ACM, pp.83–90.

[2] Hu, D., & Wang, Y. Y. (2008, April). Teaching computer security using
Xen in a virtual environment. In Information Security and Assurance,
2008. ISA 2008. International Conference on (pp. 389-392). IEEE.

[3] Hu, J., Meinel, C., & Schmitt, M. (2004,). Tele-lab IT security: an
architecture for interactive lessons for security education. In ACM
SIGCSE Bulletin (Vol. 36, No. 1, pp. 412-416). ACM.

[4] Moore, H.D., Metasploitable 2 Exploitability Guide,
http://r-7.co/Metasploitable2

[5] VulnHub: Vulnerable by Design, https://www.vulnhub.com/

[6] Hashimoto, M. (2013). Vagrant: Up and Running. O'Reilly Media, Inc.

[7] Walberg, S. (2008). Automate system administration tasks with Puppet.
Linux Journal, 2008(176), 5.

http://r-7.co/Metasploitable2
https://www.vulnhub.com/

	I. Introduction
	II. Aims
	III. Security Scenario Generator (SecGen)
	IV. Deployment
	V. Discussion
	VI. Future work
	VII. Conculsion

