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Abstract We present an approach for modelling multivariate dependent functional
data. To account for the dominant structural features of the data, we rely on the
theory of Gaussian Processes and extend hierarchical dynamic linear models for
multivariate time series to the functional data setting. We illustrate the proposed
methodology within the framework of bivariate functional data and discuss prob-
lems referring to detection of spatial patterns and curve prediction.
Abstract In questo lavoro, viene presentato un approccio idoneo alla modellazione
di dati funzionali multivariati che presentano dipendenza. Per considerare le carat-
teristiche strutturali dominanti dei dati, ci si avvale della teoria dei processi gaus-
siani e si considera l’estensione dei modelli lineari dinamici gerarchici per serie
storiche nell’ambito dei dati funzionali. La metodologia proposta viene illustrata
con riferimento a dati funzionali bivariati. Inoltre, vengono esaminati i problemi
connessi all’individuazione di patterns spaziali e previsioni funzionali.
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1 Introduction

Effective statistical modelling under complex designs for functional data is still un-
der development and requires innovative theories. In the following we focus on
multivariate dependent functional data where the dependence can arise via multi-
ple responses, temporal or spatial effects. In particular, we consider two different
problems for bivariate functional data and illustrate the proposed methodology in
the frameworks of detection of spatial patterns and curve prediction. Specific ap-
plications within these frameworks will be discussed in an extended version of the
present article.

2 Detection of spatial patterns using coupled GPs

We focus on the identification of patterns of oscillations considering the simultane-
ous orthogonal expansions of Gaussian Processes (GPs). Orthogonal expansion of
GPs has been extensively used for both theoretically investigation and applications.
In the case of univariate processes, the theory is based on the probabilistic corol-
lary of Mercer’s theorem which is known as Karhunen-Loève expansion. Following
Root [2], we consider an extension of this expansion to the case of two kernels that
allows the simultaneous orthogonal expansion of two Gaussian processes.
Specifically, we consider the functional data Y (s,τ), where s ∈ S ⊆ R2 is a con-
tinuous spatial index and τ ∈ T ⊆ Z is an index of time, as a sample function of
either one of two zero-mean Gaussian processes, with spatial covariances Q1(s,s′)
and Q2(s,s′). Then, it can be shown [2] that the observed process can be expanded
in terms of a series of spatial patterns, wk(s) = (Q1/2

1 uk)(s) as

Y (s,τ) =
∞

∑
k=1

αy,k(τ) wk(s) (1)

where αy,k(τ) is a sequence of independent Gaussian variables and uk are orthonor-
malized eigenfunctions in the domain of Q− 1/2

1 .
If only a limited number, K, of patterns are considered, we have a truncated

expansion of equation (1), which leads to the following measurement equation

Y (s,τ) =
K

∑
k=1

αy,k(τ) wk(s)+
∞

∑
k=K+1

αy,k(τ) wk(s)

= Y (K)(s,τ)+ e(s,τ). (2)

Equation (2) allows for extending hierarchical dynamic linear models for mul-
tivariate time series to the functional data setting. Moreover, it can be shown that
the proposed framework also allows to leverage knowledge from one process when
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solving an inferential task for another and, accordingly, it forms the motivation for
transfer learning and prediction of functional data at new sites.

3 Interpolation using derivatives

For the sake of simplicity, consider the problem of representing a one-dimensional
real function Y (τ), τ ∈ T ⊆ R, or estimating its derivative, X(τ), using only a
limited amount of data at points, τ1,τ2, . . . ,τn. This is useful in many applications,
including shape analysis, Bayesian optimization and reconstruction of surfaces and
signals.

Suppose that all the known values y and derivatives xare collected into a vector
z. Let κ be a vector of corresponding indices to show the order of the derivative.
For each site τ j there may be several choices of κi if the value of the function and
of some of its derivatives are all known at that site. For a bivariate process, κi = 0 if
z(τi) = y(τi) is a data value, and κi = 1 if z(τi) = x(τi) is a first derivative.

Denote with U = {uim} the (n,r) matrix of drift terms

uim =
∂ |κi|

∂τκi
i
(τm

i ), 1 ≤ i ≤ n, |m| ≤ r,

where r is the order of the polynomial drift, and with u0 the vector of drift terms at
a new site τ0. Assume also that Σ = {σi j} is a non-singular block covariance matrix
where each block has entries given by

σi j = (− 1)|κj |σ (κi+κj)(τi − τ j), 1 ≤ i, j ≤ n

and where σ (κi) denotes the partial derivative of σ(τi − τ j) of order κi.
It can be shown that the problem of predicting Y (t0) at some new points τ0 ∈ R,

reduces to find a predictor of the form

Ŷ (τ0) =
M

∑
k=1

a ju j0 +
n

∑
i=1

b jσ(τ0,τi). (3)

where ak and bi are appropriate parameters to be estimated.
Note that this framework allows to use derivative data to predict derivatives [1].

Estimating derivatives and representing the dynamics for functional data is often
crucial as they can reveal patterns in a (functional) dataset that address important
research questions. The proposed framework also leads to the notion of derivative
principal component analysis, which complements functional principal component
analysis, one of the most popular tools of functional data analysis.
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