

Food applications of Irvingia gabonensis (Aubry-Lecomte ex. O'Rorke) Baill., the "wild mango": a review

Journal:	Critical Reviews in Food Science and Nutrition
Manuscript ID	Draft
Manuscript Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Reguengo, Livia; Univ Turin, Agriculture, Forest and Food Sciences Barbosa Pereira, Letricia; Univ Turin, Agriculture, Forest and Food Sciences Wilfried Rembangouet, Wilfried; Universita degli Studi di Scienze Gastronomiche Bertolino, Marta; Univ Turin, Agriculture, Forest and Food Sciences Giordano, Manuela; Univ Turin, Agriculture, Forest and Food Sciences Rojo Poveda, Olga Paloma; Univ Turin, Agriculture, Forest and Food Sciences Zeppa, Giuseppe; Univ Turin, Agriculture, Forest and Food Sciences; Università di Torino
Keywords:	Bush mango, Ogbono soup, Dika nut, Polyphenols, Carotenoids

1 2 3	1	Food applications of Irvingia gabonensis (Aubry-Lecomte ex. O'Rorke) Baill., the "wild						
4 5	2	mango": a review						
6 7	3							
8 9 10	4	Reguengo L.M. ¹ , Barbosa Pereira L. ¹ , Rembangouet W. ² , Bertolino M. ¹ , Giordano M. ¹ , Rojo-Poveda						
11 12	5	O.P. ¹ , Zeppa G. ^{1*}						
13 14	6							
15 16 17	7	¹ Department of Agriculture, Forest, and Food Sciences (DISAFA), University of Turin, L.go P.						
17 18 19	8	Braccini, 2, 10095, Grugliasco (TO), Italy						
20 21	9	² University of Gastronomic Sciences, P.zza Vittorio Emanuele II, 9, 12042, Pollenzo, Bra (CN), Italy						
22 23	10							
24 25	11	*corresponding author: giuseppe.zeppa@unito.it						
26 27 28	12							
20 29 30	13	Abstract						
32 33	14	Irvingia gabonensis, also known as 'wild mango' is a multipurpose fruit tree that is native to tropical						
34 35	15	Africa. It is recognized as a priority indigenous fruit tree in western and central Africa since its wood						
36 37	16	is used for making utensils and fruits are mostly used as food and medicinal. The fruit mesocarp						
38 39 40	17	contains various phytochemicals and a concentration of ascorbic acid higher than some vitamin C						
41 42	18	rich fruits then it is consumed fresh or dried or is used for the production of juice and wine or as a						
43 44	19	flavourant. The I. gabonensis fruit kernel is rich in oil (63%-69% crude fat), which is mainly						
45 46 47	20	composed of myristic and lauric acids. Moreover, the content of carbohydrates and protein is very						
47 48 49	21	high. Seeds can be dried and milled, and the cake obtained can be used directly or after degreasing as						
50 51	22	a thickener in 'ogbono soup'. The kernel fats are instead used as a pharmaceutical excipient as well						
52 53	23	as for margarine production. The objective of this work is to provide an update review of the available						
54 55 56	24	knowledge about the characteristics of the I. gabonensis fruit in order to evaluate its potential use in						
57 58 59	25	the food industry.						

Keywords: bush mango, ogbono soup, dika nut, polyphenols, carotenoids

1. Introduction

Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as 'African mango tree', 'bush mango', 'sweet bush mango', 'wild mango', 'dika nut', 'rainy season bush mango', 'dika bread tree', 'odika', 'manguier sauvage', 'chocolatier', or 'ogbono', is a multipurpose fruit tree native to tropical Africa, and more specifically to Angola, Cameroon, Central African Republic, Congo, Cote d'Ivore, Democratic Republic of Congo, Equatorial Guinea, Gabon, Ghana, Guinea-Bissau, Liberia, Nigeria, Senegal, Sierra Leone, Sudan, and Uganda (National Research Council 2006; Singh 2007). This traditional tree is common in dense evergreen rain forests but is also found near riverbanks (Atangana et al. 2001); it has been reported to be used as a source of timber and to make utensils, and also as 30 39 food and medicine (Okoronkwo et al. 2014; Fungo et al. 2016; Ofundem et al. 2017).

The fruits are available from May to September with the peak harvesting period being June/July (Onimawo et al. 2003). The fruit is a broad, ellipsoid drupe with a thin epicarp, an edible fleshy mesocarp (pulp) (when ripe) and a hard, stony, nut encasing a soft, oil rich, dicotyledonous kernel wrapped inside a brown seed-coat (Ogunsina, Koya and Adeosun 2008^a; Ogunsina, Koya and Adeosun 2008^b; Ogunsina et al. 2012; Ogunsina, Olatunde and Adeleye 2014). This kernel, which is also referred to as seed, is widely used as food (Omoniyi et al. 2017). Thus, I. gabonensis is included in the FAO/INFOODS biodiversity list and is recognized by the International Centre for Research in Agroforestry as a priority indigenous fruit tree for West and Central Africa (Franzel, Jaenicke and Janssen 1996; Leakey et al. 2005; National Research Council 2006; Ruth Charrondière et al. 2013; Stadlmavr et al. 2013; Vihotogbe', van der Berg and Sosef 2013; Bvenura and Sivakumar 2017; Shaheen, Ahmad and Haroon 2017). Due to this, ethnobotanical and economical researches focussed on *I. gabonensis*, have emerged in recent years (Ladipo, Fondoun and Ganga 1996; Ayuk et al. 1999; 60 52 Leakey et al. 2000; Atangana et al. 2001; Leakey and Page 2006; Singh 2007; Vihotogbé, van der

Berg and Sosef 2013); however, up until now, a comprehensive review summarising its applications and the functional properties of *I. gabonensis* products in the food industry is lacking. The aim of this review is thus to deepen the existing knowledge about the physico-chemical characteristics of *I. gabonensis* pulp and kernels in order to verify their potential use in the food industry, especially in functional products.

2. Fruits

The fresh fruits, that are similar to small mangoes, have a green-yellow colour and since their taste varies between sweet and bitter they are divided into two groups, the "eating type" and the "cooking type. The "eating type" comprises of the species *Irvingia gabonensis* which is fibrous, has a mesocarp characterized by a sweet taste and is a yellow to orange colour while the "cooking type" is the *Irvingia wombolu* species whose seeds are widely processed across West Africa but the mesocarp is bitter and non-edible (Harris 1996).

The pulp of *I. gabonensis* has an elevated moisture content (Table 1), from 78.8% to 90.47%, and a soluble solid content of around 10%, which indicates that this fruit is suitable for juice production. The pH varies between 4.7 to 5.8 and acidity may be the reason behind the bitter taste of the pulp (Onimawo et al. 2003). The ash content is low (0.8 - 1.8 %) but potassium (1114 mg/100 g dry weight) and calcium (118 mg/100 g dry weight) contents are high in contrast to low sodium content (12 mg/100 g dry weight) (Olayiwola et al. 2013). The high variability on reported fat content of this fruit is due to the differences in sample extraction amongst different studies.

I. gabonensis fruits are well cited as antisickling products (Amujoyegbe et al. 2016). Etebu (2012)
compared the phytochemicals in *I. gabonensis* and *I. wombolu* documenting the presence of five
groups of phytochemicals (alkaloids, flavonoids, saponins, tannins and glucosides) in mesocarp from
both varieties. This finding is supported by other studies which investigated these components (Table
2). The fruit of *I. gabonensis* can be considered vitamin C rich (51-76 mg/100g) when compared with

other fruits like orange (about 50 mg/100g), and common mango (about 40 mg/100g) (USDA 2018).

Also, the carotenoid and the phenolic content of *I. gabonensis* fruits are very high (Table 2).

Emejulo et al. (2014) studied the effect of I. gabonensis fruit juice on serum lipid profile of sodium fluoride-intoxicated rats by comparing with positive and negative control groups. They concluded that the level of HDL-cholesterol was higher in the *I. gabonensis* group than in the positive control group (20 mg/kg body weight of quercertin + 100 mg/kg body weight of alfa-tocopherol) and the fruit juice of *I. gabonensis* was reported to have a lowering effect on LDL-cholesterol as compared to the other groups tested. The author attributed this action to the presence of alkaloids, saponins, flavonoids and polyphenols commonly known to reduce serum lipids in animals (Ezekwe and Obioha 2001). An ameliorative effect was observed in NaF-induced lipidemia in rats when fed with I. gabonensis fruit juice, which may be due to its reportedly rich vitamin C content and plant polyphenols. *I. gabonensis* pulp is also used for diabetes treatment when coupled with *Ouratea turnarea* (Kuete and Efferth 2011).

As I. gabonensis kernels are more economically resourceful, the traditional post-harvesting operations aim to remove the kernel in its optimum conditions. In most cases, the interest in the seed results in the neglect of the potential of other parts of the fruit, including the pulp.

Fruit harvesting must be undertaken at an appropriate time, preventing the harvest of immature fruits, but also ensuring a good shelf life (Ladipo 1999). Besides harvesting, the gathering of fallen ripe fruits by women, children and young adults in many of the cultivated areas has also been reported (Elah 2010; Nkwatoh et al. 2010). The fresh fruits of *I. gabonensis* have a shelf life of less than 2 days if picked when ripe and not more than 10 days if harvested at the mature green stage, due to high 48 98 respiration rate, moisture loss and microbial attack (Aina 1990; Joseph and Aworh 1991; Joseph and 53 100 Aworh 1992; Etebu 2013). Etebu (2013) isolated four genera of fungi (Aspergillus, Penicillium, *Rhizopus* and *Mucor*) from postharvest fruits of *I. gabonensis* and *I. wombolu*, concluding that ⁵⁷102 Rhizopus and Mucor species were the most predominant genera of fungi associated with postharvest ⁵⁹₆₀103 Irvingia fruits.

Page 5 of 40

Aina (1990) described the physicochemical changes in *I. gabonensis* fruits during normal storage 105 ripening and revealed that, with the ripening process, the fruit peel gets yellow and the sweetness of 106 the pulp increases due to starch degradation. The sourcess and the acidity decreases, the fruit turns softer, mainly due to pectin degradation, and, finally, the vitamin C content decreases as ascorbic acid is very susceptible to oxidative degradation. In order to extend the shelf-life of *I. gabonensis* fruits during storage, Joseph and Aworh (1991; 1992) studied the influence of some post-harvest treatments. Firstly, while comparing ripening at room temperature and refrigerated storage of the fruits, it was noticed that low temperatures induced cold injuries in *I. gabonensis* and that room-ripened fruits had better flesh colour and texture, although, they also had a higher moisture loss (Joseph and Aworh 1991). After these primary results, the authors conducted other experiments in order to determine the effects of dipping fruits in hot water and in different concentrations of benomyl, DHA-S, and Na₂S₂O₅ at different temperatures, on the shelf life and quality. While untreated fruits had become brownish black and unmarketable by day 12, the fruits treated with hot 0.1% benomyl or 0.5% Na₂S₂0₅ followed by waxing had an attractive appearance and good quality until day 14. Dipping fruits in hot water (55 °C) or chemical solutions (0.1% benomyl, 0.5% DHA-S or 0-5% Na₂S₂0₅) followed by waxing or packaging in boxes overwrapped with stretch PVC film, delayed ripening, controlled decay, minimised weight loss and extended the shelf life of the fruits under tropical ambient conditions, without adverse effects on visual and chemical qualities (Joseph and Aworh 1992).

I. gabonensis pulp is consumed to a considerable extent, normally eaten raw as a dessert or snack; however, large quantities are usually wasted (Akubor 1996). Juice, beverage, and jam manufacturing requires little processing and addresses the need to use the raw pulp, injured or not. Various authors cited bush mango as being more suitable for juice, wine, and jam production, compared to other 51 ⁵² 53</sub>126 known tropical fruits (Ejiofor 1994; Okolo 1994; Agbor 1994; Okafor, Okolo and Ejiofor 1996; 54 55**127** Akubor 1996; Ainge and Brown 2001; Aworh 2015). 56

⁵⁷128 Laboratory trials have shown that jam can be produced from lesser known Nigerian fruits including 58 ⁵⁹60 I. gabonensis (Aina and Adesina 1991; Ainge and Brown 2001; Aworh 2014; Aworh 2015). Aworh

2 130 (2014) produced jams from three indigenous fruits containing 50% of pulp. For the I. gabonensis jam 131 recipe, 500 g of pulp was mashed and boiled with 638 g of sugar, 100 g of water, 6 g of citric acid 132 and 5 g of calcium chloride in a steam-jacketed kettle. In a sensory evaluation of the wild fruit jams, 9 133 I. gabonensis jam was the less preferred, especially in terms of flavour and consistency. The author 10 ¹¹134 concluded that although I. gabonensis jam is manufacturable, it may not be marketable for its low 12 ¹³135 acceptance.

16136 Akubor (1996) studied the suitability of *I. gabonensis* fruits for juice and wine production. The pulp 17 ¹⁸137 was blended with water in a 1:5 proportion, then filtered in cheesecloth and cane sugar added in order 19 ²⁰138 to obtain 23 °Brix. A yield of 75% was achieved and the obtained juice was compared to other tropical ²² 23139 fruit juices obtained from banana, orange and cashew. No differences were observed among these 24 25140 juices and the *I. gabonensis* juice showed only a lower protein content and a higher ascorbic acid 26 ²⁷141 28 content compared to the other tropical fruit juices.

²⁹ 30</sub>142 For wine production, the I. gabonensis juice was fermented with Saccharomyces cerevisiae at 30 °C 31 32143 for 28 days. The wine produced had 8.12% (v/v) alcohol, 0.78% protein, 6.5 °Brix SS, and a pH 3.10. 33 ³⁴144 Consumer test showed that the obtained product was generally accepted and had no significant 35 ³⁶ 37</sub>145 differences in colour, sweetness, mouthfeel, and general acceptability as compared to a German 38 39146 reference wine. 40

41**147** Besides beverage production, osmotic dehydration has also been cited as an excellent application of 42 ⁴³148 I. gabonensis fruits (Falade and Aworh 2004; Falade and Aworh 2005; Aworh 2015). With this 44 ⁴⁵ 46**149** process, a variety of new shelf-stable food products can be developed with few modifications in the 47 fruits' colour, flavour, and texture characteristics. Osmose-dried products could reduce perishable 48150 49 ⁵⁰151 fruit losses postharvest and ensure that seasonal fruit products are available throughout the year. The 51 ⁵² 53</sub>152 osmotic process is very suitable as a pre-treatment prior to air-drying of fruits, resulting in a fruit 54 55**153** product with an intermediate moisture content (Falade and Aworh 2004; Falade and Aworh 2005; 56 ⁵⁷154 Aworh 2015). 58

59 60

1

3 4

5 6

7 8

3

Falade and Aworh (2004) studied the influence of osmotic pre-treatment on the adsorption isotherms

2 155 of osmo-air dried *I. gabonensis* fruits. The treatments were performed at 27 °C and 40 °C, with sugar 156 157 concentrations of 52 °Brix, 60 °Brix and 68 °Brix, maintaining a fruit:syrup ratio of 1:4 w/w for 10 h. Afterwards the fruit slices were oven air-dried at 60 °C for 72 h. The authors concluded that the adsorption isotherms of osmo-oven dried fruits followed a type III isotherm, which characterizes high sugar products like many other fruits. In the experiments, *I. gabonensis* isotherm was affected by fruit ripeness degree. In fact, the equilibrium moisture content of the fruit increased with higher degree of ripeness at the same water activity (a_w), concentration of the sucrose solution used for pre-treatment (the higher the sugar concentration, less water was absorbed at low and intermediate a_w ranges), and equilibrium temperature (equilibrium moisture content decreased with increasing temperature, when $a_w < 0.8$).

Dried fruits of *I. gabonensis* can also be used as a flavouring agent in other food products in order to diversify its usage. Mbaeyi and Anyanwu (2010) evaluated the use of these products as a yogurt flavourant. The dried and pliable fruits were milled, sieved through a 0.59 mm sieve, and added at 0.8%, 1.6%, 2.4%, 3.2%, 4.0%, and 4.8% in commercial full-fat cow yogurt. The best sensory results were obtained in the yogurt containing 0.8% of dried fruit with an overall acceptability statistically not different from commercial yogurt.

3. Seeds

The kernels are the main products of *I. gabonensis* and constitute an important part of West and Central Africa diet, mainly in rural communities, providing carbohydrate and protein. The seed consists of a hard shell, an outer brown testa (hull) and inside, the kernel, composed of two white cotyledons. The seeds of the fruits of *I. gabonensis*, can be eaten raw or roasted and are used in food preparations (National Research Council, 2006).

2 180 The summary of the proximate composition of *I. gabonensis* kernels is provided in Table 3. According to literature, I. gabonensis seed has a high energetic value (595 - 729 kcal), due to high 181 182 percentages of fat (10 - 72%), carbohydrates (3 - 52%) and protein (7-22%). With crude protein 9 183 content ranging from 7 to 22%, I. gabonensis seeds have comparable or higher protein levels than the ¹¹184 majority of the cereals comprising our daily diet (corn, sorghum, rice, etc), which generally does not ¹³185 exceed 13%. Fibre content was generally low in the studies reported, except by Onimawo et al. 16**186** (2003), who observed an outlying value of 10.23%. This may be due to sample preparation and/or ¹⁸187 plant origin.

1

3 4

5 6

7 8

10

12

15

17

19

24

26

31

33

35

²⁰188 The analysis revealed that *I. gabonensis* is essentially a rich source of edible fat, with a mean ²² 23189 percentage of 61.56%. Some oil-bearing products with such high percentage of oil are coconut, 25190 almond, pistachio, sunflower, walnut, and watermelon seeds which contain 62.3, 58.9, 53.5, 52.1, ²⁷191 ₂₈ 64.5 and 52.6% of oil, respectively (Gopalan, Rama Sari and Balasubramanian 2014).

²⁹ 30</sub>192 This oilseed is a good source of minerals, especially phosphate and chloride, and is therefore 32193 recommended for use in the diets of individuals with low levels of these cations and anions.

³⁴194 Acid value is used as an indicator for edibility of oil and suitability for use in the paint industry (Etong ³⁶ 37</sub>195 et al., 2014). The acid value for samples of I. gabonensis oil found in literature (3.18 - 24.7 mg 38 39196 KOH/g) were considerably diverse, and most of them did not fall within the allowable limits for 40 41197 edible oils, 4.0 mg KOH/g fat for oil (Codex Alimentarius 2015). The free fatty acid values ranged 42 ⁴³198 44 from 0.30 to 4.70%, which can be considered low if compared with other vegetable oils (Omoniyi et 45 46**199** al. 2017). Etong, Mustapha and Taleat (2014) reported that a low acid value with a correspondingly 47 48200 low level of free fatty acid, suggests the low level of hydrolytic and lipolytic activities in the oil, thus 49 ⁵⁰201 the seed oil studied could be a good source of raw materials for industries. The peroxide value (0.04 ⁵² 53**202** $-3.33 \text{ meq } O_2/kg$ fat) was incredibly low, characterizing *I. gabonensis* fat as a fresh oil as it has a 54 55203 peroxide value lower than 10 meg/kg (Codex Alimentarius 2015). Low peroxide values indicate a 56 ⁵⁷204 low level of oxidative rancidity and also suggests a high antioxidant level in the oil (Etong, Mustapha 58 ⁵⁹60205 and Taleat 2014). Etong, Mustapha and Taleat (2014) also stated that the relative low iodine number Page 9 of 40

1

of the seed oil may be indicative of the presence of few unsaturated bonds and low susceptibility to oxidative rancidity. High saponification value (187.90 - 701.00 mg KOH/g) also indicates it has potential for industrial use (Omoniyi et al. 2017). Low unsaponifiable matter (0.12 - 1.70%) indicates that the oil is pure (Etong, Mustapha and Taleat 2014).

I. gabonensis seed kernel oil (Table 6) is mostly cited as a mystiric-lauric oil, with mystiric acid being
 the most abundant followed by lauric acid (Matos et al. 2009; Silou et al. 2011; Yamoneka et al. 2015;
 Lieb et al. 2018). Nine free fatty acids were described in literature, only three of which are
 unsaturated.

Amongst triacylglicerols the most abundant are LaMM (31.1%), CMM/LaLaM (25.6%) and MMM/LaMP (12.9%) (Lieb et al. 2018). Similar results were reported by Silou et al. (2011) and Yamoneka et al. (2015).

According to Matos et al. (2009), *I. gabonensis* kernel oil is a technical fat because it resists thermo oxidative, hydrolytic, and enzymatic activities due to its fatty acid profile.

In-vivo and *in-vitro* assays have already been developed to functionally characterize the seed. Data comprising of the antioxidant activity, total phenol (TPC), total flavonoid (TFC), total anthocyanin (TAC) and total tannin (TTC) contents, as well as total carotenoid (TCC) and ascorbic acid contents, are described in Table 7.

The presence of steroids, flavonoids, alkaloids, cardiac glycosides, volatile oils, terpenoids, tannins and saponins in *I. gabonensis* kernel extract has been revealed on phytochemical screening by Obianime and Uche (2010).

⁸²²⁶ Giami, Okonkwo and Akusu (1994) studied the influence of heat treatment in the composition of *I*.
 ⁹ *gabonensis* seed flour and stated that increase in temperature occasioned an undesired loss in ascorbic
 ² acid, total carotenoid and total polyphenol contents.

I. gabonensis seed phytochemical constituents were also compared with mango (*Mangifera indica*)
 kernels and with a mix of both species (Arogba and Omede 2012; Arogba 2014). According to DPPH,
 lipid peroxidation and FRAP assays, mango kernels had a higher antioxidant activity than *I*.

1 2 232 gabonensis kernels, contrary to nitric oxide assay results. However, I. gabonensis kernel results were 3 4 233 similar or higher than mango kernel for ascorbic acid content. Total phenol, flavonoid and tannin 5 6 234 contents were also higher in Mangifera indica samples, whereas, I. gabonensis kernels presented a 7 8 9 235 much higher anthocyanin content. The mix of kernels presented higher total phenol and tannin 10 ¹¹236 contents than individual samples of mango and *I. gabonensis*. The author showed in these studies that 12 ¹³₁₄237 processed kernels of mango (Mangifera indica) and I. gabonensis contain significant amounts of 15 16238 gallotannins with high antioxidant capacity even with statistically (p < 0.05) higher activity than some 17 18239 other known naturally-occurring phenolic antioxidants (Arogba and Omede 2012; Arogba 2014). 19 ²⁰240 I. gabonensis kernel was also compared to 13 Cameroonian herbs/spices. It presented the highest ²² 23**241** FRAP-free antioxidant capacity followed by Thymus vulgaris and ranked third in FRAP total 24 25**242** antioxidant but had one of the lowest results in Folin total antioxidant assay (Agbor et al. 2005). 26 ²⁷243 Objanime and Uche (2010) studied the effects of *I. gabonensis* seed phytoconstituents in an *in vivo* ²⁹ 30</sub>244 study, which described the influence of aqueous extract of *I. gabonensis* kernels on biochemical 31 32**245** parameters of adult male guinea pigs. The animals were divided into groups in order to perform time-33 ³⁴246 35 dependent and dose-dependent studies. Groups 1-5 were administered a fixed dose of I. gabonensis ³⁶₃₇247 extract (400 mg/kg/day) over a period of 7, 14, 21, 28 days, respectively. Groups 6-10 were ³⁸ 39**248** administered different doses of the extract (50-400 mg/kg/day) for 96 hours. Results showed that the 40 41249 aqueous extract of *I. gabonensis* kernels caused a dose and time-dependent decrease in urea, uric acid, 42 ⁴³250 creatine, total cholesterol, protein, alkaline acid, and prostatic phosphatases. Pre-treatment with I. 45 46**251** gabonensis was also able to inhibit the increase in most biochemical parameter levels caused by 47 48252 cadmium administration. The highest reduction effect was obtained with uric acid at 400 mg/kg of I. 49 ⁵⁰253 gabonensis extract while the least effect was observed in total cholesterol (Obianime and Uche, ⁵² 53**254** 2010). 54

I. gabonensis seed extracts were also evaluated for obesity management (Ngondi, Oben and Minka 260)
 2005). The subjects ingested three capsules, three times daily, each containing 350 mg of *I. gabonensis* seed extract (active formulation) or oat bran (placebo), for one month. After 4 weeks, the

mean body weight of the *I. gabonensis* group had decreased by 5.26% and that of the placebo group
by 1.32%. By the second week, the systolic blood pressure was significantly reduced by the active
extract. Obese patients under *I. gabonensis* treatment also had a reduction of 39.21% in total
cholesterol, 44.9% in triglycerides, 45.58% in LDL and 32.36% in blood glucose level, as well as an
increase of 46.85% in HDL-cholesterol.

Dosumu et al. (2012) studied more specifically the antimicrobial effect of three Nigerian condiments, including *I. gabonensis* dried seed extracts. Clinical isolates of bacteria strains (*Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumonae, Salmonella typhi*) and fungi (*Candida albicans, Aspergillus niger, Rhizopus stolon, Penicillum notatum, Tricophyton rubrum, Epidermophyton floccosum*) were used in the study. All extracts had higher anti-fungal but lower antibacterial activities. *I. gabonensis* seed extracts obtained with ethyl acetate (200 mg/ml) and methanol (200 mg/ml) presented considerable fungal inhibition when compared to the positive control (Tioconazole,10 µg/ml).

The first step in processing *I. gabonensis* kernels is separating the seeds from the mesocarp, using three principal methods for this operation: "Fresh Cracking"; "Wet Cracking" and "Dry Cracking". The "Fresh Cracking" method was reported by Ayuk et al. (1999) and Nkwatoh et al. (2010), in which the whole ripe fruit (pulp and seed) is split in half, through its natural longitudinal line of weakness, with a cutlass or sharp knife. On the other hand, for the other methods, *I. gabonensis* fruits are piled up in heaps and left to fermentate before seed extraction, which facilitates this operation. After fermentation, the seeds can be sun-dried ("Dry Cracking") or directly split ("Wet Cracking"), using truncheons or hard stones as helping tools (Ejiofor, Onwubuke and Okafor 1987; Ladipo, Fondoun and Ganga 1996; Ladipo 1999; Ogunsina, Koya and Adeosun 2008^a). As soon as the seeds are cracked, the kernels wrapped in a dark brown testa are exposed and extracted with a knife (Ladipo 1999). The nut cracking process is, therefore, complicated and the dried kernel-in-shell is brittle, resulting in a large percentage of cotyledons being crushed during the process, thereby reducing the 2 283 market value of the kernels (Ogunsina, Koya and Adeosun 2008^a; Ogunsina, Koya and Adeosun 284 2008^b).

1

3 4

5 6

7 8

Ogunsina, Koya and Adeosun (2008^a and 2008^b) investigated fracture behaviour of *I. gabonensis* seed 285 9 286 in order to provide baseline data for designing an appropriate nutcracker. The physical analysis 10 ¹¹287 revealed that minimum toughness was required for nutshell fracture with the small size nuts loaded 12 ¹³₁₄288 along the transverse axis. Furthermore, a machine, whose fracture mechanism was based on the 15 16289 deformation characteristics of dried I. gabonensis seeds under uni-axial compression, was fabricated. 17 18290 The experimental machine gave 100% cracking efficiency but with 24% kernel breakage in cracking 19 ²⁰291 sun-dried I. gabonensis seeds with 6.6% moisture content (w.b.). The machine provides a viable and ²² 23**292** effective technique for safe I. gabonensis kernel extraction. Orhevba et al. (2013) also studied 24 25**293** physical and mechanical parameters of I. gabonensis seed cracking and the influence of moisture 26 ²⁷294 content (13.75% and 8.74%). The two moisture content levels were observed to be the range between ²⁹ 30</sub>295 which I. gabonensis kernels can be extracted with least percentage of crushing. Further decrease in 31 32**296** the moisture content will make the kernel brittle, while a higher moisture level will make the kernel 33 ³⁴297 to stick to the shell, therefore, resulting in crushing during cracking. A motorized machine that is 35 ³⁶ 37</sub>298 capable of multiple cracking of dika nuts was designed, fabricated and tested by Ogundahunsi, 38 39**299** Ogunsina and Ibrahim (2016). The device utilizes the impact of a sliding hammer block falling from 40 41300 a height to crack a tray of 20 nuts; cracking and splitting them, liberating the embedded kernels as 42 ⁴³301 split cotyledons. The highest cracking efficiency and throughput values (72% and 12.86 kg/h, 45 46**302** respectively) were obtained for big roasted nuts. The method of pre-treatment and dika nut sizes were 47 48303 found to affect the cracking efficiency and throughput of the motorized dika nut cracking machine. 49 ⁵⁰304 After being removed, the kernels are dried for 2 to 7 days, in the sun or on bamboo drying racks over 51 ⁵² 53</sub>305 the fireplace (Tchoundjeu, Atangana and Degrande 2005), in order to remove all moisture (Onimawo 54 55**306** et al. 2003; Nkwatoh et al. 2010). This procedure guarantees the quality of the product during storage, 56 ⁵⁷307 by preventing it from discolouring and from fungal degradation (Ladipo 1999; Ainge and Brown 58 ⁵⁹308 2001).

309 Fermentation helps to increase the protein and nitrogen-free extractives of the seeds, as well as to 310 reduce the fat content, which is an advantage if the kernels are consumed integrally (Ekpe, Umoh and 311 Eka 2007; Ekundayo, Oladipupo and Ekundayo 2013). Otherwise, if seeds proceed to further 312 processing, the fat loss may be undesired.

At this point, the kernels can be marketed or subjected to further processing. The cotyledons, without the hull, are pounded with a mortar and pestle (Ekpe, Umoh and Eka 2007). The kernels can also be milled with a grinding machine (Onimawo et al. 2003), which is a more industrial option (Festus and Ibor 2014). The mash, called 'cake', is then moulded manually into convenient sizes and shapes, placed in bags or leaves and smoke dried for a few days over a fireplace (Ekpe, Umoh and Eka 2007; Caspa et al. 2015).

I. gabonensis cake can become too slimy over time because of its high fat content; therefore, for an extended shelf-life, deffating is needed (Ainge and Brown 2001; Festus and Ibor 2014). This operation yields, besides crude fat, defatted cake as a product, which, according to Ejiofor, Onwubuke and Okafor (1987), is still acceptable in terms of its colour, taste, texture, and drawability after 9 months of storage under ambient conditions, and is more viscous, with greater emulsifying properties than regular flour. The normal flour and defatted flour from I. gabonensis kernels are used as ingredients for the popular Ogbono or draw soup which imparts unique flavour, drawability, and thickening properties to the stew (Agbor 1994; Leakey and Newton 1994, Vivien and Faure 1996), and also as 'dika bread' after being baked (Leakey et al. 2005). Ogbono soup is one of the cheapest, easiest, and fastest Nigerian soups to prepare (Oktay and Sadikoglu 2018). Onabanjo and Oguntona (2003) described the following recipe as the most representative of this dish: I. gabonensis nuts, bitter (Vernonia amygdalina) leaves and okro (Hibiscus esculentus) cooked with dried fish, crayfish, ground pepper, pepper, palm oil, bouillon cubes, salt, and water. The influence of *I. gabonensis* seed flour fat content and time of storage on the sensory characteristics of the Ogbono soup was evaluated. Sensory parameters of sliminess (viscosity), taste, aroma, colour, and overall acceptability showed that soups prepared from partially defatted *I. gabonensis* seed flour samples (especially the samples 2 335 with 9% and 12% fat) were more acceptable to the panellists than soups prepared from full-fat I. 336 gabonensis seed flour (Idowu et al. 2013). The preference test carried out by Idowu et al. (2013) 337 during the 12-week period of storage also showed that sliminess, colour, taste, aroma, and overall 9 338 acceptability of Ogbono soups prepared from defatted I. gabonensis seed flour (12% and 9% fat) 10 11339 samples packaged in low- and high-density polyethylene films were all acceptable to the panellists. 12 ¹³₁₄340 However, the full-fat flour had its sensory parameters significantly decreased in a period of 4 weeks 15 16341 (Akusu and Kiin-Kabari 2013; Idowu et al. 2013).

1

3 4

5 6

7 8

17

18342 The defatted cake can also be extruded and moulded into Ogbono cubes, which are sold as a 19 ²⁰343 convenient cooking ingredient, used as thickeners in Ogbono soup (Okafor, Okolo and Ejiofor 1996; ²² 23**344** Ejiofor and Okafor 1997). Bamidele, Ojedokun and Fasogbon (2015) and Kiin-Kabari and Akusu 24 25345 (2017) developed and analysed a "ready-to-cook" powder mix (I. gabonensis seed powder, crayfish, 26 ²⁷346 stock fish, Ugwu, mixture of locust bean, onion mix, seasoning, and Cameroon powder) for Ogbono ²⁹ 30</sub>347 soup. Five formulations of instant Ogbono premix were evaluated by Bamidele, Ojedokun and 31 32348 Fasogbon (2015) (proximate composition, functional properties, micronutrients and sensory 33 ³⁴349 analysis). Moisture, protein and carbohydrate contents increased as I. gabonensis seed powder 35 ³⁶ 37</sub>350 percentage decreased in formulations, inversely to fat content. Sensory evaluation showed that the ³⁸ 39**351** samples with higher percentage of I. gabonensis seed powder rated the highest on overall 40 41352 acceptability based on the fact that they showed the real attribute of Ogbono soup that people like 42 ⁴³353 which is attributed to the quantity of *I. gabonensis* kernel powder added to the sample (Bamidele, 45 46**354** Ojedokun and Fasogbon 2015). These results are similar to that obtained by Kiin-Kabari and Akusu 47 48355 (2017), which tested formulations of I. gabonensis seed (Ogbono) and melon (Egusi) seeds soup 49 ⁵⁰356 premix. They concluded that consumers who do not like very thick soups and low drawability would 51 ⁵² 53**357** prefer the formulation with 40:60 Ogbono/Egusi ratio, while consumers who prefer thick soups but 54 55**358** low drawability will go for the formulation of 100% "Egusi". 56

⁵⁷359 Although oil is the major constituent of the seed, according to Nwokocha and Williams (2014), the 58 ⁵⁹360 defatted seed flour essentially consists of polysaccharides with lower than 5% of non-polysaccharide

2 361 constituents. Nwokocha and Williams (2014) extracted *I. gabonensis* seed gum from its defatted flour 3 4 362 by removing soluble sugars and organic pigments with 95% ethanol, followed by dispersion in 5 6 363 distilled water (2% w/w), stirring (6 h), and double centrifugation (2500 rpm for 2h) at 25 °C. On the 7 8 9 364 other hand, Ndjouenkelu et al. (1996) heated the diluted flour (10 g/250 mL) under reflux and then 10 $^{11}_{12}$ 365 centrifuged the mixture (2000×g for 30 min), repeating the process with the supernatant (2 times), ¹³ 14**366** then precipitated the crude polysaccharide with 85% ethanol and purified the extract by protein 15 16367 removal. Both studies concluded that *I. gabonensis* seed gum has polyelectrolyte properties, as it is 17 ¹⁸368 19 an arabinogalactan but also contains a small proportion of neutral sugars and uronic acids ²⁰21369 (Ndjouenkelu et al. 1996; Nwokocha and Williams 2014). It showed non-Newtonian behaviour at 22 concentrations from 0.2 to 3.0%, having mostly viscous response at concentrations less than 1.0% 23370 24 ²⁵371 and elastic response at higher concentrations (Nwokocha and Williams, 2014). 26 ²⁷₂₈372 Ogaji, Nan and Hoag (2012) developed a largely physical method for simultaneous extraction of the

²⁸ Ogaji, Nan and Hoag (2012) developed a largely physical method for simultaneous extraction of the ²⁹ lipid and polymeric portions of *I. gabonensis*, which was simple, safer, and less expensive than the ³¹ traditional use of *n*-hexane to extract the lipids. This method was also able to efficiently remove ³⁴ impurities from the gum fraction. The physicochemical properties of the extractives were evaluated, ³⁶ and the results showed similarities in the extractives obtained by this method and those obtained by ³⁸ conventional methods.

⁴¹378 ₄₂ Uzomah and Ahiligwo (1999) studied the rheological properties of achi (*Brachystegea eurycoma*) ⁴³ 44</sub>379 and Ogbono (I. gabonensis) seed gums and their potential use as stabilizers in ice cream production. 45 46380 Ogbono seed gum (OSG) cream obtained similar results for quality parameters (maximum overrun, 47 ⁴⁸381 viscosity, shape factor, and meltdown) as the control sample. However, OSG imparted some viscosity 49 ⁵⁰382 to the mixture which resulted in a poor ability to trap and hold air and a poor tendency to resist ⁵² 53**383** melting, all of which are characteristics of a satisfactory ice cream. That being said, I. gabonensis 54 55**384** seed gum was found to be unsuitable as an ice cream stabilizer (Uzomah and Ahiligwo 1999). 56

⁵⁷385 It was found that the fat extracted from the kernels can be used for food applications, such as food ⁵⁹60386 additive, flavour ingredient, coating fresh citrus fruits and in the manufacture of margarine, oil creams, cooking oil, and defoaming agent. It is also suitable for soap, cosmetics, pharmaceutical

1

products and lather shaving cream (Ejiofor, Onwubuke and Okafor 1987; Ogunsina et al. 2012; Zouè et al. 2013; Okoronkwo et al. 2014; Etong, Mustapha and Taleat 2014; Omoniyi et al. 2017). Matos et al. (2009) characterized margarine made from *I. gabonensis* kernels from two different origins, with and without lecithin. The major fatty acids found in these margarines were oleic acid (35.5%-37%), palmitic acid (18.5%-19.5%) and lauric acid (13.1%-15.1%). The margarines were more unsaturated than the original oil and could be regarded as an oleic acid source. The ratio between linoleic acid (7.07%) and linolenic acid (0.63%) was lower than 2%, showing it can be used for frying food.

I. gabonenis seed oil has also been studied as a possible biodiesel source (Bello et al. 2011; Adekunle et al. 2016). It was observed that the kernel fat has similar properties to diesel fuel and superior cold flow properties and flash point, which makes it a suitable alternative fuel for diesel engines (Bello et al. 2011). Adekunle et al. (2016) also concluded that the degumming process improves the physicochemical and biodiesel properties of *I. gabonensis* seed fat, as well as other vegetable oils.

4. Other parts

Bark and leaves from *I. gabonensis* have already been traditionally used in Nigeria, Cameroon, and other countries where the fruit is available. Proximate composition of stem bark, leaf, and root bark from *I. gabonensis* reveals them to be nutritionally rich (Table 8).

I. gabonensis leaves have been reported to be used as a self-care plant for icterus treatment, by Benin
 habitants (Allabi et al. 2011). The appropriation of *I. gabonensis* leaves may be associated with high
 levels of phytochemicals. Ezeabara and Ezeani (2016) reported that *I. gabonensis* leaves contained
 2.44% alkaloids, 1.07% flavonoids, and 2.37% anthraquinone, which can be considered high
 compared to other parts from the same plant. Awah et al. (2012) compared the free radical scavenging
 activity and phenolic contents from Nigerian medicinal plants and revealed that *I. gabonensis* had

3 4

5 6

7 8

2 413 high results when compared to the other samples. However, I. gabonensis extract presented relative toxicity to humans in the WST-1-based cytotoxicity and cell viability assays (Awah et al. 2012). This 414 415 toxicity might be related to the high hydrogen cyanide content of 3.45% (Ezeabara and Ezeani 2016). 9 416 I. gabonensis stem and root barks, instead, do not present relevant levels of hydrogen cyanide, 1.87% 10 ¹¹417 and 1.66%, respectively (Ezeabara and Ezeani 2016). Two research studies involving farmers and 12 ¹³₁₄418 collectors in Cameroon revealed that I. gabonensis stem bark is popular as a traditional medicine. It 15 16**419** is reported to treat hernia, yellow fever, dysentery, diarrhoea, malaria, to relieve abdominal pain in 17 18420 women, and as antidote for poisons (Ayuk et al. 1999; Zihiri et al. 2005; Caspa et al. 2015). 19

²⁰421 These effects must be associated with the phytochemicals present in the stem bark. Ezeabara and 22 23**422** Ezeani (2016) noted that *I. gabonensis* bark was the most valuable part of the plant, in terms of 24 functional constituents. It consists of the highest percentages of alkaloids (2.78%), flavonoids 25423 26 ²⁷424 ²⁸ (1.17%), tanning (1.05%), saponing (0.91%), sterols (0.25%), phenols (0.18%) and anthraguinones ²⁹ 30</sub>425 (3.17%), compared to the leaf, root bark and raw seed from the same species (Ezeabara and Ezeani 31 32**426** 2016). 33

³⁴427 Zihiri et al. (2005) tested the antiplasmodial activity of ethanol extracts of West African plants, 35 ³⁶ 37</sub>428 including I. gabonensis, and concluded that stem bark extract (10 mg/ml) had a weak antiplasmodial 38 activity against Plasmodium falciparum with IC50 value of 21.6 µg/ml. However, in a study 39429 40 41430 investigating the analgesic effect, the water extract of the stem bark of *I. gabonensis*, when 42 ⁴³431 administered to male mice, was found to protect the mice from pain stimuli (Okolo et al. 1995). 45 46**432** Another in vivo assay evaluated long-term effects of I. gabonensis and other two plants, also known 47 48433 to be hypoglycaemic, on the oxidative status of normal rabbits (Omonkhua and Onoagbe 2012). 49 ⁵⁰434 Oxidative status was determined by measuring activities of superoxide dismutase (SOD) and catalase 51 ⁵² 53</sub>435 (CAT), and the concentration of malondialdehyde (MDA). I. gabonensis extract had positive effects 54 55**436** on increasing serum and tissue antioxidant enzymes, particularly in the pancreas, and on decreasing 56 ⁵⁷437 liver MDA levels (Omonkhua and Onoagbe 2012). 58

⁵⁹60438

5. Conclusion

1 ² 439

3 4

5 6

8

10

13

As shown in this work, *I. gabonensis* is a good source of nutrients and phytochemicals and its seeds 440 7 441 are already widely consumed and processed traditionally. This review enhances our knowledge about ⁹ 442 the use of other parts of the fruit, especially the pulp, and about improving the existing methods for a ¹¹ 12</sub>443 safer and more efficient production of value-added products.

14**444** I. gabonensis pulp is suitable for juice and wine production, can be also consumed osmose-dried or 15 ¹⁶445 raw and used as flavourant in the development of other products. It is a vitamin C rich fruit (51-76 17 ¹⁸ 19</sub>446 mg/100g) having higher ascorbic acid content than mango or orange. Carotenoids, phenolic 20 ₂₁447 compounds, and other phytochemical constituents have also been determined, as well as the 22 23448 hypolipidemic effect of *I. gabonensis* juice administration in vivo. 24

²⁵449 I. gabonensis kernel proximate composition revealed its high fat content, as well as a relevant ²⁷ 28**450** carbohydrate content. I. gabonensis kernel oil is considered a "technical" fat because it resists thermo 29 30451 oxidative, hydrolytic, and enzymatic activities due to its fatty acid profile. The presence of steroids, 31 ³²452 flavonoids, alkaloids, cardiac glycosides, volatile oils, terpenoids, tannins and saponins in I. ³⁴ 35</sub>453 gabonensis kernel extract has been revealed on phytochemical screening and its hepatoprotective, 36 37454 nephroprotective, hypolipidemic effects and its influence on body weight have been confirmed. 38 ³⁹455 Potential anti-carcinogenic, anti-lipidemic, analgesic and anti-inflammatory effects of the kernel have 40 ⁴¹₄₂456 been highlighted.

44457 Various methods are employed to process the seed however, all of them have safety issues, when it 46458 comes to cracking operation. Various researchers indicated that fermented seeds with specific ⁴⁸459 49 moisture content, with the appropriate equipment, are easier to crack and kernel loss is reduced. Main ⁵⁰ 51**460** products from traditional processing are the sun-dried kernels and the 'cake' which is used as a 53**461** thickener in 'ogbono soup', a conventional African food. It was described, that with a more ⁵⁵462 sophisticated process, the fat could be extracted from the kernel powder generating a defated I. ⁵⁷ 58</sub>463 gabonensis cake. This product can be used as a thickener, stabilizer and as a kind of gum. It is also

59 60

43

45

47

52

possible to obtain a crude oil, that can be used not only as edible oil, but in other industries like soup,cosmetic and the pharmaceutical industries.

Furthermore, the production of *I. gabonenis* value-added products could reduce food loss, as this would allow the whole fruit to be used. This will also encourage the consumption of wild fruits and support plant biodiversity. This new approach could ameliorate the diet of rural communities as the *I. gabonensis* fruits are a good source of nutrients and phytochemicals. Commercialization of *I. gabonensis* derived products can also increase the income of the rural communities.

6. References

- Achinewhu, S. (1983). Ascorbic acid content of some Nigerian local fruits and vegetables. *Plant Foods for Human Nutrition*, 33(4):261-266.
- Adekunle, A.S., Oyekunle, J.A.O., Obisesan, O.R., Ojo, O.S. and Ojo O.S. (2016). Effects of
 degumming on biodiesel properties of some non-conventional seedoils. *Energy Reports, 2*:188193.
- Agbor, G., Oben, J., Ngogang, J., Xinxing, C. and Vinson, J. (2005). Antioxidant capacity of some herbs/spices from Cameroon: a comparative study of two methods. *Journal of Agricultural and Food Chemistry*, 53:6819-6824.
- Agbor, L.O.N. (1994). Marketing trends and potentials for *Irvingia gabonensis* products in Nigeria. Paper presented at the ICRAF-IITA Conference on *Irvingia gabonensis*, Ibadan, Nigeria, May.
- Aina, J. (1990). Physico-chemical changes in African mango (*Irvingia gabonensis*) during normal storage ripening. *Food Chemistry*, *36*:205-212.
- Aina, J. and Adesina, A. (1991). Quality attributes of jams from low-usage tropical fruits. *Food* Chemistry, 40:345-351.
- Ainge, L and Brown, N. (2001). *Irvingia gabonensis* and *Irvingia wombolu*. A state of knowledge.
 Report undertaken for the Central African Regional Program for the Environment, Oxford
 Forestry Institute Department of Plant Sciences University of Oxford, UK.

- 2 490 Akubor, P. (1996). The suitability of African bush mango juice for wine production. Plant Foods for 491 Human Nutrition, 49(3):213-219.
- 492 Akusu, O.M., and Kiin-Kabari, D.B. (2013). Effect of storage period on selected functional, chemical 8 9 493 stability and sensory properties of bush mango (Irvingia gabonensis) seed flour. African 10 ¹¹494 Journal of Food Science and Technology, 4(6):136-140. 12
- ¹³₁₄495 Allabi, A., Busia, K., Ekanmian, V. and Bakiono, F. (2011). The use of medicinal plants in self-care 15 16496 in the Agonlin region of Benin. Journal of Ethnopharmacology, 133(1):234-243.
- ¹⁸497 Amujoyegbe, O., Idu, M., Agbedahunsi, J. and Erhabor, J. (2016). Ethnomedicinal survey of 19 ²⁰498 medicinal plants used in the management of sickle cell disorder in Southern Nigeria. Journal 22 ₂₃499 of Ethnopharmacology, 185, pp.347-360.
- 25500 Arogba, S. (2014). Phenolics, antiradical assay and cytotoxicity of processed mango (Mangifera ²⁷501 *indica*) and bush mango (*Irvingia gabonensis*) kernels. *Nigerian Food Journal*, 32(1):62-72.
- ²⁹ 30</sub>502 Arogba, S. and Omede, A. (2012). Comparative antioxidant activity of processed mango (Mangifera 31 32503 indica) and bush mango (Irvingia gabonensis) kernels. Nigerian Food Journal, 30(2):17-21. 33
- ³⁴504 35 Atangana, A.R., Tchoundjeu, Z., Fondoun, J.M., Asaah, E., Ndoumbe, M. and Leakey, R.R.B. (2001) ³⁶₃₇505 Domestication of Irvingia gabonensis: 1. Phenotypic variation in fruits and kernels in two 38 39506 populations from Cameroon. Agroforestry Systems, 53(1):55-64.
- 41507 Awah, F., Uzoegwu, P., Ifeonu, P., Ovugi, J., Rutherford, J., Yao, X., Fehrmann, F., Fowke, K. and 42 ⁴³508 Eze, M. (2012). Free radical scavenging activity, phenolic contents and cytotoxicity of selected 45 46**509** Nigerian medicinal plants. Food Chemistry, 131:1279-1286.
- 48510 Aworh, O.C. (2014). Lesser-known Nigerian fruits and vegetables: Post-harvest handling, utilization 49 ⁵⁰511 ₅₁ and nutritional value. Ibadan, Nigeria: Ibadan University Press.
- ⁵² 53</sub>512 Aworh, O.C. (2015). Promoting food security and enhancing Nigeria's small farmers' income through 54 55513 value-added processing of lesser-known and under-utilized indigenous fruits and vegetables. 56 ⁵⁷514 Food Research International, 76:986-991.
- 58 59 60

3 4

5 6

7

17

24

26

40

47

URL: http://mc.manuscriptcentral.com/bfsn Email: fergc@foodsci.umass.edu

1 2 515	Ayivor, J.E., Debrah, S., Nuviadenu, C.K. and Forson, A. (2011). Evaluation of elemental contents
4 5 ⁴ 516	of wild mango (Irvingia gabonensis) fruit in Ghana. Advance Journal of Food Science and
⁶ ₇ 517	<i>Technology, 3(5):</i> 381-384.
8 9 518 10	Ayuk, E., Duguma, B., Franzel, S., Kengue, J., Mollet, M., Tiki-Manga, T. and Zenkeng, P. (1999).
¹¹ 519 12	Uses, management and economic potential of Irvingia gabonensis in the humid lowlands of
¹³ 520	Cameroon. Forest Ecology and Management, 113(1):1-9.
15 16 521 17	Bamidele, O., Ojedokun, O. and Fasogbon, B. (2015). Physico-chemical properties of instant ogbono
18 522 19	(Irvingia gabonensis) mix powder. Food Science & Nutrition, 3(4):313-318.
²⁰ 523	Bello, E.I., Fade-Aluko, A.O., Anjorin, S.A., and Mogaji, T.S. (2011). Characterization and
²² 23 524	evaluation of African bush mango Nut (Dika nut) (Irvingia gabonensis) oil biodiesel as
24 25 525 26	alternative fuel for diesel engines. Journal of Petroleum Technology and Alternative Fuels,
²⁷ 526	2(9):176-180.
²⁹ 30 527	Bvenura, C. and Sivakumar, D. (2017). The role of wild fruits and vegetables in delivering a balanced
31 32 528 33	and healthy diet. Food Research International, 99(1):15-30.
³⁴ 529 35	Caspa, R.G., Tchouamo, I.R., Mate Mweru, J.P., Mbang Amang, J. and Ngang Ngwa, M. (2015). The
³⁶ 530	place of Irvingia Gabonensis in village communities around the Lobeke National Park in
38 39 5 31	Cameroon. Bois & Forets des Tropiques, 324(2):5-17.
40 41 532 42	Codex Alimentarius (2015). Standard for edible fats and oils not covered by individual standards.
⁴³ 533	CODEX STAN 19-1981. Revision: 1987 and 1999. Amendment: 2009, 2013 and 2015.
45 46 5 34	Dosumu, O., Oluwaniyi, O., Awolola, G. and Oyedeji, O. (2012). Nutritional composition and
47 48 535 49	antimicrobial properties of three Nigerian condiments. Nigerian Food Journal, 30(1):43-52.
⁵⁰ 536	Ejiofor, M.A.N. and Okafor, J. (1997). Prospects for commercial exploitation of Nigerian indigenous
⁵² 53537	trees, vegetables, fruits and seeds through food and industrial products formulation.
54 55 538	International Tree Crops Journal, 9(2):119-129.
50 57 58	
59	

2 539 Ejiofor, M.A.N., Onwubuke, S. and Okafor, J. (1987). Developing improved methods of processing 3 4 540 and utilization of kernels of Irvingia gabonensis (var. Gabonensis and var. Excelsa). 5 6 541 International Tree Crops Journal, 4(4):283-290. 7 8 9 542 Ejiofor, M.A.N. (1994). Nutritional values of Ogbono (Irvingia gabonensis var. excelsa). Paper 10 ¹¹543 presented at the ICRAF-IITA Conference on Irvingia gabonensis, Ibadan, Nigeria, May. 12 ¹³₁₄544 Eka, O.U. 1980. Proximate Composition of seeds of bush mango tree and some properties of dika fat. 15 16545 Nigerian Journal of Nutrition Science, 1:33 – 36. 17 ¹⁸546 Ekpe, O.O., Umoh, I.B. and Eka, O.U. (2007). Effect of a typical rural processing method on the 19 ²⁰547 proximate composition and amino acid profile of bush mango seeds (Irvingia gabonensis). 22 23²⁵248 *African Journal of Food, Agriculture, Nutrition and Development, 7(1):1–12.* 24 25**549** Ekundayo, F.O., Oladipupo, O.A., and Ekundayo, E.A. (2013). Studies on the effects of microbial 26 ²⁷550 fermentation on bush mango (Irvingia gabonensis) seed cotyledons. African Journal of ²⁹ 30⁵⁵¹ Microbiological Research, 7(34):4363-4367. 31 Elah, E. (2010). Markets and market chain analysis for bush mango (Irvingia sp.) in the South West 32**552** 33 ³⁴553 35 and East regions of Cameroon. PhD diss., University of Buea. ³⁶₃₇554 Emejulu, A.A., Alisi, C.S., Asiwe, E.S., Iheanacho, K.M. and Onwuliri, V.A. (2014). Hypolipidemic 38 39555 effect of Irvingia gabonensis fruits juice on sodium fluoride induced dyslipidemia in rats. 40 41556 African Journal of Biochemistry Research, 8(8):151-157. 42 ⁴³557 44 Etebu, E. (2013). Differences in Fruit Size, Postharvest Pathology and Phytochemicals between 45 46**558** Irvingia gabonensis and Irvingia wombolu. Sustainable Agriculture Research, 2(1):52-61. 47 Etong, D.I., Mustapha, A.O., and Taleat, A.A. (2014). Physicochemical properties and fatty acid 48559 49 ⁵⁰560 composition of dikanut (Irvingia gabonensis) seed oil. Research Journal of Chemical Sciences, ⁵² 53**561** *4(12)*:70-74. 54 55**562** Ezeabara, C.A. and Ezeani, D.S. (2016). Comparative study of phytochemical and nutrient contents 56 ⁵⁷563 of various parts of Irvingia gabonensis (Aubry-Lecomte ex O' Rorke) Baill. and Irvingia 58

⁵⁹₆₀564 *wombolu* Vermoesen. *Scientia Agriculturae*, *14(3)*:284-288.

2 565	Ezekwe, C.I. and Obidoa, O. (2001). Biochemical effects of Vernonia amygdalina on rat liver							
4 5 5 5 5 6 6	microsome. Nigerian Journal of Biochemistry and Molecular Biology, 16:1745-1798.							
⁶ ₇ 567	Falade, K. and Aworh, O. (2004). Adsorption isotherms of osmo-oven dried african star apple (
8 9 568 10	Chrysophyllum albidum) and african mango (Irvingia gabonensis) slices. European Food							
¹¹ 569 12	Research and Technology, 218(3):278-283.							
¹³ ₁₄ 570	Falade, K. and Aworh, O. (2005). Sensory evaluation and consumer acceptance of osmosed and oven-							
16 16 571 17	dried African star apple and African mango. Journal of Food, Agriculture and Environment.							
¹⁸ 572 19	3:91-96.							
²⁰ 573	FAO (1968). Food composition table for use in Africa. Accessed December 29, 2018.							
22 23 574 24	http://www.fao.org/docrep/003/X6877E/X6877E00.htm#TOC							
25 575 26	Festus, C. and Ibor, M. (2014). The effect of defatting on the sliminess and shelf-life of Ugiri							
²⁷ 576 ²⁸	cotyledons. Archives of Applied Science Research, 6(6):1-6.							
²⁹ 30577	Franzel, S., Jaenicke H. and Janssen W. (1996). Choosing the right trees: setting priorities for							
32 578 33	multipurpose tree improvement. ISNAR Research Report 8. The Hague: International Service							
³⁴ 579 ³⁵	for National Agricultural Research.							
³⁶ ₃₇ 580	Fungo, R., Muyonga, J., Kabahenda, M., Okia, C. and Snook, L. (2016). Factors influencing							
39 581 40	consumption of nutrient rich forest foods in rural Cameroon. Appetite, 97:176-184.							
⁴¹ 582 ⁴²	Giami, S., Okonkwo, V. and Akusu, M. (1994). Chemical composition and functional properties of							
⁴³ 583	raw, heat-treated and partially proteolysed wild mango (Irvingia gabonensis) seed flour. Food							
45 46 584 47	Chemistry, 49:237-243.							
48 585 49	Gopalan, C., Rama Sari, B.V. and Balasubramanian, S.C. (2014). Nutritive Value of Indian Foods.							
⁵⁰ 586	Hydebarad, India: National Institute of Nutrition, Indian Council of Medical Research.							
⁵² 53 54	Harris, D.J. (1996). A revision of the Irvingiaceae in Africa. Bulletin du Jardin Botanique National							
55 588 56	<i>de Belgique, 65</i> :143-196.							
⁵⁷ 589 ⁵⁸	Ibezim, G.N.U. (2015). Chemical constituents of dikanut and soyabean seeds. Time Journals of							
⁵⁹ 590	Medicinal Plant Sciences and Pharmacology, 3(2):17-22.							

1 2 591	Idowu M. Omonivi S. Henshaw F and Olaviwola I (2013) Sensory acceptability of partially
3	nowu, wi., omoniyi, b., nonsinuw, r. unu onuyiwolu, r. (2015). Sonsory deceptionity of partially
⁴ 592	defatted dikanut (Irvingia gabonensis) flour in ogbono soup. Journal of Culinary Science &
⁶ ₇ 593	Technology, 11(4):346-355.
8 9 594 10	Joseph, J. (1995). Physico-chemical attributes of wild mango (Irvingia gabonensis) seeds.
¹¹ 595 ₁₂	Bioresource Technology, 53(2):179-181.
¹³ 596	Joseph, K. and Aworh, O. (1991). Composition, sensory quality and respiration during ripening and
15 16 597 17	storage of edible wild mango (Irvingia gabonensis). International Journal of Food Science &
¹⁸ 598 19	Technology, 26(3):337-342.
²⁰ 599	Joseph, K. and Aworh, O. (1992). Post-harvest treatment of wild mango (Irvingia gabonensis) for
22 23600 24	improved shelf life. Food Chemistry, 44:45-48.
25 601 26	Kiin-Kabari, D. B., and Akusu, O. M. (2017). Production, proximate, functional and organoleptic
²⁷ 602 28	assessment of Ready-To-Cook "Ogbono"/"Egusi" seeds premix (Dry mix powder).
²⁹ 30603	International Journal of Food Science and Nutrition, 2(1):82-85.
32 604 33	Kuete, V. and Efferth, T. (2011). Pharmacogenomics of Cameroonian traditional herbal medicine for
³⁴ 605 35	cancer therapy. Journal of Ethnopharmacology, 137(1):752-766.
³⁶ 606	Ladipo, D.O. (1999) The development of quality control standard for Ogbono (Irvingia gabonensis
38 39 607 40	and Irvingia wombolu) kernels: efforts toward encouraging organized and further international
41 608 42	trade in NWFP in West and central Africa. In Non wood forest products of central Africa -
⁴³ 609	Current research issues and prospects for conservation and development, ed. T.C.H
45 46610 47	Sundarland, L.E. Clark and P. Vantomme, 245-250, Rome: FAO.
48 611 49	Ladipo, D.O., Fondoun, J.M. and Ganga, N. (1996). Domestication of the bush mango (Irvingia spp):
⁵⁰ 612	Some exploitable intra-specific variation in West and Central Africa. In Domestication and
⁵² 53613	commercialization of non-timber forest products in agroforestry systems, ed. R.R.B. Leakey,
54 55 614 56	A.B. Temu, M. Melnyk and P. Vantomme, 193-205, Rome:FAO.
58	
59 60	

1 2 615	Leakey, R. and Page, T. (2006). The 'Ideotype Concept' and its application to the selection of
4 5 616	cultivars of trees providing agroforestry tree products. Forests, Trees and Livelihoods, 16(1):5-
⁶ ₇ 617	16.
8 9 618 10	Leakey, R., Fondoun, J., Atangana, A. and Tchoundjeu, Z. (2000). Quantitative descriptors of
¹¹ 619 12	variation in the fruits and seeds of Irvingia gabonensis. Agroforestry Systems, 50(1):47-58.
¹³ 620	Leakey, R., Greenwell, P., Hall, M., Atangana, A., Usoro, C., Anegbeh, P., Fondoun, J. and
16 621 17	Tchoundjeu, Z. (2005). Domestication of Irvingia gabonensis: 4. Tree-to-tree variation in food-
¹⁸ 622 19	thickening properties and in fat and protein contents of dika nut. Food Chemistry, 90(3):365-
²⁰ 623	378.
22 23624 24	Leakey, R.R.B. and Newton, A.C. (1994). Domestication of 'Cinderella' species as the start of a
25 625 26	woody-plant revolution, In Tropical Trees: The Potential for Domestication and the Rebuilding
²⁷ 626 28	of Forest Resources, ed. R.R.B. Leakey and A.C. Newton, 3-6, London:HMSO.
²⁹ 30627	Lieb, V.M., Schuster, L.K., Schmarr, H.G., Carle, R. and Steingass C.B. (2018). Lipophilic
32 628 33	compounds and thermal behaviour of African mango (Irvingia gabonensis (Aubry-Lecomte ex.
³⁴ 629 35	O'Rorke) Baill.) kernel fat. International Journal of Food Science & Technology.
³⁶ 37630	https://doi.org/10.1111/ijfs.13940.
38 39631 40	Matos, L., Nzikou, J., Matouba, E., Pandzou-Yembe, V., Guembot Mapepoulou, T., Linder, M. and
41632 42	Desobry, S. (2009). Studies of Irvingia gabonensis seed kernels: oil technological applications.
⁴³ 633	Pakistan Journal of Nutrition, 8(2):151-157.
45 46634 47	Mbaeyi, I.E. and Anyanwu, L.N. (2010). Production and evaluation of yoghurt flavoured with solar-
48 635 49	dried bush mango (Irvingia gabonensis) pulp. Agro-Science, 9(2):137-146.
⁵⁰ 636 ₅₁	Nangue, T.J., Womeni, H.M., Mbiapo, F.T., Fanni, J. and Michel, L. (2011). Irvingia gabonensis fat:
⁵² 53637	nutritional properties and effect of increasing amounts on the growth and lipid metabolism of
54 55 638 56	young rats wistar sp. Lipids in Health and Disease, 10:43.
⁵⁷ 639	National Research Council (2006). Lost crops of Africa. Volume II: vegetables. Washington, D.C.:
⁵⁹ 640	The National Academies Press.

2 641 3	Ndjouenkeu, R., Goycoolea, F., Morrisa, E. and Akingbala, J. (1996). Rheology of okra (Hibiscus							
4 642 5	esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydrate Polymers							
⁶ ₇ 643	<i>29(3)</i> :263-269.							
8 9 644	Ngondi, J.L., Oben, J.E., and Minka, S.R. (2005). The effect of Irvingia gabonensis seeds on bod							
¹¹ 645 12	weight and blood lipids of obese subjects in Cameroon. Lipids in Health and Disease, 4:12.							
¹³ 14646	Nkwatoh, A., Labode, P., Iyassa, S. and Nkwatoh, F. (2010). Evaluation of Irvingia (I. gabonens							
15 16 647 17	and I. wombulu) trade; a major non-timber forest product in the Ejagham Forest Reserve of							
¹⁸ 648 19	South West Cameroon. Ethiopian Journal of Environmental Studies and Management, 3(1):70-							
²⁰ 649 ²¹	77.							
²² 23650	Nwokocha, L. and Williams, P. (2014). Hydrodynamic and rheological properties of Irvingia							
24 25 651 26	gabonensis gum. Carbohydrate Polymers, 114:352-356.							
²⁷ 652 28	Obianime, A. and Uche, F. (2010). The phytoconstituents and the comparative effects of aqueous							
²⁹ 30653	extract of Irvingia gabonensis seeds and proviron on the biochemical parameters of male guinea							
31 32 654 33	pigs. Asian Pacific Journal of Tropical Medicine, 3(2):101-104.							
³⁴ 655 35	Ofundem, T., Ndip, N.R., Abdon, A. and Patrice, L. (2017). Bush mango (Irvingia spp.): forest and							
³⁶ ₃₇ 656	on-farm resource availability and market chains in the Southwest region of Cameroon. Forests,							
38 39 657	Trees and Livelihoods, 26:170-182.							
41 658 42	Ogaji, I., Nan, A. and Hoag, S. (2012). A novel extraction method and some physicochemical							
⁴³ 659	properties of extractives of Irvingia gabonensis seeds. Journal of Young Pharmacists, 4(2):66-							
45 46660	72.							
47 48661 49	Ogundahunsi O.E., Ogunsina B.S. and Ibrahim R.O. (2016). A motorized device for cracking pre-							
⁵⁰ 662	treated dika nuts. Agricultural Engineering International: CIGR Journal, 18(2):309-322.							
⁵² 53663	3 Ogunsina, B.S., Bhatnagar, A.S., Indira, T.N. and Radha, C. (2012). The proximate composition of							
54 55 664 56	African bush mango kernels (Irvingia gabonensis) and characteristics of its oil. Ife Journal of							
⁵⁷ 665	Science, 14(1):177-183.							
59								

1	
2 666	Ogunsina, B.S., Koya, O.A. and Adeosun, O.O. (2008a). Deformation and fracture of Dika nut
3 4 ₅ 667	(Irvingia gabonesis) under uniaxial compressive load. International Agrophysics. 22:249-253.
6 7 668	Ogunsina, B.S., Koya, O.A. and Adeosun, O.O. (2008b). A table mounted device for cracking dika
8 9 669 10	nut (Irvingia gabonensis). Agricultural Engineering International: CIGR Journal. Manuscript
¹¹ 670 12	PM 08 011, Vol. X.
¹³ ₁₄ 671	Ogunsina, B., Olatunde, G. and Adeleye, O. (2014). Effect of pre-treatments on mechanical oil
16 16 672 17	expression from dika kernels. Nigerian Food Journal, 32(1):1-9.
¹⁸ 673 19	Okafor, J.C. Okolo, H.C. Ejiofor, M.A.N. (1996) Strategies for enhancement of utilization potential
²⁰ 674	of edible woody forest species of south-eastern Nigeria. In The Biodiversity of African Plants,
23 23 675 24	ed. van der Maesen L.J.G., van der Burgt X.M., van Medenbach de Rooy J.M., 684-695,
25 676 26	Dordrecht: Springer.
²⁷ 677 ²⁸ 29	Okolo, C., Johnson, P., Abdurahman, E., Abdu-Aguye, I. and Hussaini, I. (1995). Analgesic effect of
30 30 31	Irvingia gabonensis stem bark extract. Journal of Ethnopharmacology, 45(2):125-129.
32 679 33	Okolo, H.C. (1994). Industrial potential of various Irvingia gabonensis products such as oil, Ogbono
³⁴ 680 ³⁵	and juice. Paper presented at the ICRAF-IITA Conference on Irvingia gabonensis, Ibadan,
37 37 38	Nigeria, May.
39 682 40	Okoronkwo, C.U., Agoha, E.E.C., Alloysius, O., Ogodo, A.C. and Nwachukwu, N.O. (2014).
41683 42	Physical and chemical characteristics of the african bush mango (Irvingia gabonensis var.
⁴³ 684 44	garbonensis) seed oil. International Journal of Advances in Engineering and Management,
₄₆ 685 47	1(6):28-31.
48 686 49	Oktay, S. and Sadıkoğlu, S. (2018). The gastronomic cultures' impact on the African cuisine. <i>Journal</i>
50 687 51 52	of Ethnic Foods, 5:140-146.
53 53 54	Olayiwola, I., Akinfenwa, V., Oguntona, C., Sanni, S., Onabanjo, O. and Afolabi, W. (2013).
55 689 56	Phytonutrient, antioxidant and mineral composition of some wild fruits in South West Nigeria.
⁵⁷ 690 ⁵⁸ 59	Nigerian Food Journal, 31(2):33-40.
60	

1 2 691	Omoniyi, S., Idowu, M., Adeola, A. and Folorunso, A. (2017). Chemical composition and industrial
4 ₅ 692	benefits of dikanut (Irvingia gabonensis) kernel oil. Nutrition & Food Science, 47(5):741-751.
⁶ ₇ 693	Omonkhua, A.A. and Onoagbe, I.O. (2012). Long-term effects of three hypoglycaemic plants
8 9 694 10	(Irvingia gabonensis, Urena lobata and Carica papaya) on the oxidative status of normal
¹¹ 695 12	rabbits. Biokemistri, 24(2):82-89.
¹³ 696	Onabanjo, O.O. and Oguntona, C.R.B. (2003). Iron, zinc, copper and phytate content of standardized
16 697 17	Nigerian dishes. Journal of Food Composition and Analysis, 16(6):669-676.
18 698 19	Onimawo, I., Oteno, F., Orokpo, G. and Akubor, P. (2003). Physicochemical and nutrient evaluation
²⁰ 699	of African bush mango (Irvingia gabonensis) seeds and pulp. Plant Foods for Human Nutrition,
22 23 700 24	58(3):1-6.
25 701 26	Onyeike, E. and Acheru, G. (2002). Chemical composition of selected Nigerian oil seeds and
²⁷ 702	physicochemical properties of the oil extracts. Food Chemistry, 77(4):431-437.
²⁹ 30703	Orhevba, B.A., Idah, P.A, Adebayo S. E. and Nwankwo C.C. (2013). Determination of some
32 704 33	engineering properties of dika nut (Irvingia gabonensis) at two moisture content levels as
³⁴ 705 ³⁵	relevant to its processing. International Journal of Engineering Research and Applications,
³⁶ ₃₇ 706	3(2):182-188.
39 707 40	Ruth Charrondière, U., Stadlmayr, B., Rittenschober, D., Mouille, B., Nilsson, E., Medhammar, E.,
41 708 42	Olango, T., Eisenwagen, S., Persijn, D., Ebanks, K., Nowak, V., Du, J. and Burlingame, B.
⁴³ 709	(2013). FAO/INFOODS food composition database for biodiversity. Food Chemistry,
45 46 7 10 47	140(3):408-412.
48 711 49	Shaheen, S., Ahmad, M. and Haroon, N. (2017). Edible Wild Plants: A Solution to Overcome Food
⁵⁰ 712	Insecurity. In Edible Wild Plants: An alternative approach to food security, ed. S. Shaheen, M.
⁵² 53 54	Ahmad and N. Haroon, 41-57. 1st ed. Heidelberg:Springer
55 714 56	Silou, T., Loumouamou, B.W., Nsikabaka, S., Kinkela, T., Nzikou, M., Chalard P. and G. Figueredo
⁵⁷ 715 ⁵⁸ 59 60	G. (2011). Contribution to the varietal delimitation of Irvingia gabonensis and Irvingia

2 716	wombulu. Chemical composition variability of fats extracted from kernels. Journal of Food							
4 5 717	<i>Technology</i> , 9(1):36–42							
⁶ ₇ 718	Singh, A.K. (2007). Bush mango (Irvingia gabonensis): new potential multipurpose fruit tree for							
8 9 719 10	India. Indian Journal of Plant Genetic Resources, 20(1):32-37.							
¹¹ 720	Stadlmayr, B., Charrondière, U., Eisenwagen, S., Jamnadass, R. and Kehlenbeck, K. (2013). Nutrien							
¹³ 721	composition of selected indigenous fruits from sub-Saharan Africa. Journal of the Science of							
15 16 722 17	Food and Agriculture, 93(11):2627-2636.							
18 723 19	Tchoundjeu, Z., Atangana, A. and Degrande, A. (2005). Indigenous methods in preserving bush							
²⁰ 724 21	mango kernels in Cameroon. American Journal of Applied Sciences, 2(9):1337-1342.							
23 725 24	USDA (2018). Food Composition Databases. Accessed December 29, 2018.							
25 726 26	https://ndb.nal.usda.gov/ndb/							
²⁷ 727 ²⁸ 29	 USDA (2018). Food Composition Databases. Accessed December 29, 2018. https://ndb.nal.usda.gov/ndb/ Uzomah, A. and Ahiligwo, R. (1999). Studies on the rheological properties and functional potentials of achi (<i>Brachystegea eurycoma</i>) and ogbono (<i>Irvingia gabonesis</i>) seed gums. <i>Food Chemistry</i>, 67(3):217-222. Vihotogbé, R., van den Berg, R.G. and Sosef, M.S.M. (2013). Morphological characterization of African bush mango trees (<i>Irvingia</i> species) in West Africa. <i>Genetic Resources and Crop</i> 							
30 728	of achi (Brachystegea eurycoma) and ogbono (Irvingia gabonesis) seed gums. Food Chemistry,							
32 729 33	67(3):217-222.							
³⁴ 730 35 36	Vihotogbé, R., van den Berg, R.G. and Sosef, M.S.M. (2013). Morphological characterization of							
37731	African bush mango trees (Irvingia species) in West Africa. Genetic Resources and Crop							
39 732 40	<i>Evolution, 60(4):</i> 1597-1614.							
41733 42 43 70 4	Vivien, J. and Faure, J.J. (1996). Fruitiers sauvages d'Afrique. Espèces du Cameroun. Clohars							
⁴⁵ 734	Carnoetn, F: Nguila-Kerou Editions.							
46735 47	Yamoneka, J., Malumba, P., Blecker, C., Gindo, M., Richard, G., Fauconnier, M.L., Lognay, G. and							
48736 49 50 727	Danthine, S. (2015). Physicochemical properties and thermal behaviour of African wild mango							
⁵⁰ 737 51 ⁵² 700	(Irvingia gabonensis) seed fat. LW I-Food Science and Technology, 64:989–996.							
53738 54	Zirini, G., Mambu, L., Guede-Guina, F., Bodo, B. and Greilier, P. (2005). In vitro antiplasmodial							
557 39 56 57 740	activity and cytotoxicity of 33 west African plants used for treatment of malaria. Journal of							
57 740 58 59	Einnopnarmacology, 90(5):281-285.							
00								

2 741	Zoué, L., Bédikou, M., Faulet, B., Gonnety, J. and Niamké, S. (2013). Characterisation of a highly
4 5 742	saturated Irvingia gabonensis seed kernel oil with unusual linolenic acid content. Food Science
⁶ 743	and Technology International, 19(1):79-87.
8 9 744	
¹¹ 745	
¹³ ₁₄ 746	
15 16 747	
17 18 748	
¹⁹ 20 749	
21 22 23 750	
24 25 751	
²⁶ ²⁷ 752	
²⁸ ²⁹ ₃₀ 753	
31 32 754	
³³ ³⁴ 755	
³⁵ 36 37 56	
38 39 757	
40 41 758	
42 43 759	
44 45 46 760	
47 48 761	
⁴⁹ ⁵⁰ 762	
⁵¹ ⁵² 5763	
53 54 55 764	
56 57 765	
58 59	
60	

Table 1: Proximate composition of Irvingia gabonensis ripe raw pulp

	FAO, 1968	Onimawo et	Stadlmayr et	Aina,	Joseph and	Mbaeyi and
		al., 2003	al., 2013	1990	Aworh, 1991	Anyanwu,
						2010
Moisture (%)	81.4	80.0	78.8	80.5	80.0	90.47
Ash (%)	1.8	0.8	0.8	-	-	1.41
Fibre (%)	0.4	0.4	0.4	-	-	4.91
Fat (%)	0.2	1.06	1.1	-	-	2.20
Protein (%)	0.9	1.09	1.1	-	-	4.37
Carbohydrate (%)	15.7	16.7	17.8	-	-	4.65
Total Acidity (%)	-	0.112	-1	0.31	0.11	-
рН	-	5.84	-	4.7	5.0	6.18
Soluble solids (%)	-	10.0	-	10.5	14.0	9.51

For peer Review Only

		Reference	
	Onyeike and Acheru, 2002	Ayivor et al., 2011	Dosumu et al., 2012
Lead	0.054	-	-
Iron	0.315	19.374	10.101
Copper	0.139	5.722	2.346
Zinc	0.285	5.786	4.386
Potassium	15.600	0.723	612.55
Sodium	2.020	4.383	59.99
Phosphate	16.800	-	
Sulphate	0.008	-	- 4
Chloride	259.000	42.639	-
Aluminium	-	3.567	-

Table 5: Physicochemical parameters of I. gabonensis kernel oil

				Reference			
	Onyeike	Joseph,	Ogunsina et	Okoronkwo et	Matos	Zoué et	Etong
	and	1995	al., 2012	al., 2014	et al.,	al.,	et al.,
	Acheru,				2009	2013	2014
	2002						
		Chemical	Parameters				
Oil yeld (%)	62.80	66.5	68.37	68.81	62.67	69.76	22.50
Acid value	24.7	-	-	3.18	12.94	4.67	9.40
(mg KOH/g)							
Saponification value (mg KOH/g)	701	219.2	256.5	230.95	199.50	233.75	187.90
Peroxide value (meq O ₂ /kg fat)	0.04	1.98	0.5	2.67	1.9	3.33	1.80
Iodine value	21.5	4.2	8.2	13.40	4.3	32.43	4.50
(g I ₂ / 100g fat)							
Free fatty acids (%)	1.19	0.30	2.72	1.59	4.61	2.33	4.70
Unsaponifiable matter (%)	1.70	0.12	-	-	-	1.50	1.50

4			Physical P	arameters				
5	State at room temperature	Semi	-	Solid	-	-	-	Solid
0		liquid						
6	Specific gravity	0.89	0.85	-	-	-	-	0.88
7	Smoke point (°C)	-	213.0	-	147.57	-	-	78
8	Clevel a sint (%C)		25.0		41.92			
a		-	35.0	-	41.85	-	-	-
0	Flash point (°C)	-	-	Ø	335.33	-	-	-
10	Fire point (°C)	-	-	- 0	340.67	-	-	-
11	Setting point (°C)	26.3		_				25 30
12		20.5			· R			20.00
12	Melting/freezing point (°C)	56.0	39.5	-	32.47		-	13
15	Colour	Golden	_	White		-	0	Grev
14		vellow						vellow
15								
16								
17								
18								
10								
13								
20								
			URL: http	o://mc.manu	scriptcentral.com	ı/bfsn En	nail: fergo	@foodsci.u
				-			5	

Table 6: Mean values (%) of the fatty acid profile of *I. gabonensis* kernel oil

				Re	eference			
	Matos	Nangue	Silou	Ogunsina et al., 2012	Zoué et al., 2013	Etong	Yamoneka	Lieb et al.,
	et al.,	et al.,	et al.,			et al.,	et al.,	2018
	2009	2011	2011			2014	2015	
Capric acid (C 10:0)	1.34	1.54	0.82	-	0.25	-		1.3
Lauric acid (C 12:0)	39.37	40.70	33.18	27.63	39.35	39.40		37.6
Myristic acid (C 14:0)	50.92	49.05	55.74	61.68	20.54	20.50		51.3
Palmitic acid (C 16:0)	4.97	5.06	5.85	7.49	10.39	10.30		5.4
Stearic acid (C 18:0)	0.73	2.38	0.76	0.81	11.46	11.40		1.0
Oleic acid (C 18:1)	1.97	0.49	1.35	2.12	6.99	6.90		2.3
Linoleic acid (C 18:2)	0.48	-	0.44	0.27	0.01	6.40		-
Linolenic acid (C 18:3)	0.00	-	-	-	6.44	57		-
Arachidic acid (C 20:0)	-	-	-	-	4.52			-
Saturated fatty acid	97.33	98.73	-	97.61	86.56	_		-
Monosaturated fatty acid	1.97	-	-	2.21	6.99	-		-
Polyunsaturated fatty acid	0.48	0.49	-	0.27	6.45	-		-
n-6/n-3 ratio	-	-	-	-	1.55	-		-

URL: http://mc.manuscriptcentral.com/bfsn Email: fergc@foodsci.umass.edu

Table 7: Phytochemical constituents of I. gabonensis kernel

	Value	Reference
DPPH antiradical assay	177.22% (IC ₅₀)	Arogba and Omede, 2012
	431.58 mg of catechin equiv/g	Agbor et al., 2005
FKAP* assay	65.43 mM Fe ⁺² (IC ₅₀)	Arogba, 2014
Lipid peroxidation assay	375.38% (IC ₅₀)	Arogba, 2014
Nitric oxide assay	106.12% (IC ₅₀)	Arogba, 2014
	2.6 mg/100g	Giami et al., 1994
TPC*	10.74 mg/g	Agbor et al., 2005
	1.15 mg/g dw	Arogba, 2014
TFC*	077 mg QUE/g dw	Arogba, 2014
TAC*	0.67 ng cyanidin chloride/g dw	Arogba, 2014
TTC*	1.25 mg catechin/g dw	Arogba, 2014
TCC*	3.6 mg/100g	Giami et al., 1994
Ascorbic acid	6.2 mg/100g	Giami et al., 1994

*(FRAP - Ferric reducing antioxidant power; TPC - Total Phenolic Compounds; TFC - Total Flavonoid Compounds; TAC - Total Anthocyanin Compounds; TTC - Total Tannin Compounds; TCC - Total Carotenoid content)

Table 8: Proximate composition (%) of *I. gabonensis* stem bark, leaf and root bark (Ezeabara and Ezeani 2016)

Moisture 9.43 10.83 8.91 Dry matter 90.58 89.17 91.09 Ash 7.72 9.61 6.58 Fibre 11.38 15.34 8.69 Fat 2.78 1.86 1.45 Protein 5.28 14.78 5.92 Carbohydrates 63.43 47.58 68.44		Stem bark	Leaf	Root bark
Dry matter90.5889.1791.09Ash7.729.616.58Fibre11.3815.348.69Fat2.781.861.45Protein5.2814.785.92Carbohydrates63.4347.5868.44	Moistu	re 9.43	10.83	8.91
Ash7.729.616.58Fibre11.3815.348.69Fat2.781.861.45Protein5.2814.785.92Carbohydrates63.4347.5868.44	Dry matte	er 90.58	89.17	91.09
Fibre 11.38 15.34 8.69 Fat 2.78 1.86 1.45 Protein 5.28 14.78 5.92 Carbohydrates 63.43 47.58 68.44	As	sh 7.72	9.61	6.58
Fat 2.78 1.86 1.45 Protein 5.28 14.78 5.92 Carbohydrates 63.43 47.58 68.44	Fibi	re 11.38	15.34	8.69
Protein 5.28 14.78 5.92 Carbohydrates 63.43 47.58 68.44	Fa	at 2.78	1.86	1.45
Carbohydrates 63.43 47.58 68.44	Protei	in 5.28	14.78	5.92
	Carbohydrate	es 63.43	47.58	68.44