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Abstract. We investigate the property of being Frobenius for some functors strictly
related with Hopf modules over a bialgebra and how this property reflects on the latter. In
particular, we characterize one-sided Hopf algebras with anti-(co)multiplicative one-sided
antipode as those for which the free Hopf module functor is Frobenius. As a by-product,
this leads us to relate the property of being an FH-algebra (in the sense of Pareigis) for
a given bialgebra with the property of being Frobenius for certain naturally associated
functors.
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Introduction

An outstanding result of Morita [13] claims that a k-algebra extension A→ B is Frobenius
if and only if the restriction of scalars U from B-modules to A-modules admits a two-sided
adjoint, that is to say, if and only if U is a Frobenius functor. This established Frobenius
functors as the categorical counterpart of Frobenius extensions, opening the way to the
study of the Frobenius property in a broader sense (see e.g. [4]).

An equally outstanding result of Pareigis [17] claims that, under certain mild conditions,
a k-bialgebra B is a finitely generated and projective Hopf algebra if and only if it is
Frobenius as an algebra and the Frobenius homomorphism is a left integral on B.
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If we consider the free Hopf module functor −⊗B from the category of k-modules to the
one of (right) Hopf B-modules then it is well-known, under the name Structure Theorem
of Hopf modules, that − ⊗ B is an equivalence of categories if and only if B admits an
antipode. What doesn’t seem to be known is that this functor always fits into an adjoint
triple − ⊗B k a − ⊗ B a (−)coB and the Structure Theorem describes when these are
equivalences. It comes natural then to ask ourselves what can be said if − ⊗ B is just
a Frobenius functor. Surprisingly, the answer (see Theorem 2.7) involves the notion of
one-sided Hopf algebras introduced by Green, Nichols and Taft [6] and studied further by
Taft and collaborators [9, 12, 15, 20, 21]: right Hopf algebras whose right antipode is an
anti-bialgebra endomorphism are precisely those bialgebras for which −⊗B is Frobenius.
A left-handed counterpart holds as well (Theorem 2.12) and merging the two together gives
a new equivalent description of when a bialgebra is a Hopf algebra (Theorem 2.13). A
further question which arises is how these achievements can be connected with Pareigis’
classical result. In this direction we will show in Theorem 3.12 that, for a bialgebra B,
being a Frobenius algebra whose Frobenius homomorphism is an integral in B∗ is strictly
related to being Frobenius for certain functors naturally involved in the Structure Theorem.

It is a well-known fact that there should exist a strong relationship between Hopf and
Frobenius properties, as it can be deduced from many scattered results in the literature.
Apart from Pareigis’ work, let us mention that Larson and Sweedler [11] proved that the
existence of an antipode for a finite-dimensional bialgebra B over a PID is equivalent to the
existence of a non-singular integral on B and from this they deduced that finite-dimensional
Hopf algebras over PID are always Frobenius. Hausser and Nill [7] extended these results
to quasi-Hopf algebras, Bulacu and Caenepeel [2] to dual quasi-Hopf algebras and Iovanov
and Kadison [8] addressed the question for the weak (quasi) Hopf algebra case. Let us also
recall the description of groupoids as special Frobenius objects in a suitable category given
in [3]. Following the spirit of these achievements, the results presented herein are intended
to be a first step toward the investigation of the Frobenius-Hopf relationship by revealing
connections between the property of being Hopf for bialgebras and the property of being
Frobenius for certain functors. In a forthcoming paper [22], we will develop further this
project by analysing, for example, the case of the functor −⊗B : BM→ BM

B
B.

Concretely, the paper is organized as follows. In Section 1 we recall some general facts
about adjoint triples and Frobenius functors that will be needed later on. Section 2 is
devoted to the study of when the Larson-Sweedler’s free Hopf module functor is Frobenius.
In Section 3 we will address some categorical implications of [17] and we will investigate the
connection between the Frobenius property for −⊗B : M→MB

B and for other functors
strictly related to this and the property of being an FH-algebra (or, equivalently, a Hopf
algebra) for B.

Notations and conventions. Throughout the paper, k denotes a commutative ring and
B a bialgebra over k with unit u : k→ B, multiplication m : B⊗B → B, counit ε : B → k
and comultiplication ∆ : B → B ⊗ B. We write B+ = ker(ε) for the augmentation ideal
of B. The category of all (central) k-modules is be denoted by M and by MB, MB and
MB

B (resp. BM, BM and B
BM) we mean those of right (resp. left) modules, comodules and
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Hopf modules over B, respectively. The unadorned tensor product ⊗ is the tensor product
over k as well as the unadorned Hom stands for the space of k-linear maps. The coaction
of a comodule is denoted by δ and the action of a module by µ, · or simply juxtaposition.
In addition, if the context requires to report explicitly the (co)module structures on a
k-module V , then we use a full bullet, such as V• or V •, to denote a given action or coaction
respectively. By V u := V ⊗ ku and Vε := V ⊗ kε we mean the trivial right comodule and
right module structures on V (analogously for the left ones).

1. Preliminaries

We report some facts on adjoint triples and Frobenius functors that will be needed in the
sequel.

1.1. Adjoint triples. For categories C,D, an adjoint triple is a triple of functors L,R :
C → D, F : D → C such that L is left adjoint to F , which is left adjoint to R. It is called an
ambidextrous adjunction if L ∼= R. As a matter of notation, we set η : Id→ FL, ε : LF → Id
for the unit and counit of the left-most adjunction and γ : Id→ RF , θ : FR → Id for the
right-most one. If, in addition, F is fully faithful, then we can consider the composition

σ :=
(
R

(εR)−1
// LFR Lθ // L

)
.

Naturality of ε entails that σF ◦ γ ◦ ε = Id and hence we have that

σF = ε−1 ◦ γ−1 (1)

is a natural isomorphism. Note also that

Fσ = FLθ ◦ (FεR)−1 = FLθ ◦ ηFR = η ◦ θ. (2)

Remark 1.1. One may consider (γL)−1 ◦ Rη as well, but by resorting to the naturality of
the morphisms involved, the invertibility of γ and ε and the triangular identities he finds
out that γL ◦ Lθ = Rη ◦ εR.

Proposition 1.2. If F is fully faithful, then the adjoint triple L a F a R is an ambidextrous
adjunction if and only if σ is a natural isomorphism.

Proof. If σ is a natural isomorphism then L a F a R is an ambidextrous adjunction.
Conversely, if there exists a natural isomorphism τ : R → L then the following diagram
commutes

R Rη //

τ

��

RFL
τFL
��

L
Lη
// LFL

From the triangular identities of the adjunction L a F we have that Lη is a natural
isomorphism. Therefore, Rη is invertible and (Rη)−1 ◦ γL gives an inverse for σ. �



4 PAOLO SARACCO

1.2. Frobenius pairs and functors. A Frobenius pair (F ,G) for C and D is a couple of
functors F : C → D and G : D → C such that G is at the same time left and right adjoint
to F . A functor F is said to be Frobenius if there exists a functor G such that (F ,G) is
a Frobenius pair. Clearly, L a F a R is an ambidextrous adjunction if and only if (L,F)
(equivalently, (F ,R)) is a Frobenius pair.

Lemma 1.3. A fully faithful functor F is Frobenius if and only if it is part of an adjoint
triple L a F a R where the canonical map σ is a natural isomorphism.

Since we are mainly interested in adjoint triples whose middle functor is fully faithful,
Lemma 1.3 allows us to study the Frobenius property by simply looking at the invertibility
of the canonical map σ.

Recall finally from [14] that a functor F : C → D is said to be separable if the natural
transformation F : HomC (·, ·)→ HomD (F(·),F(·)) splits. In light of Rafael’s Theorem [19,
Theorem 1.2], a left (resp. right) adjoint is separable if and only if the unit (resp. counit) of
the adjunction is a split monomorphism (resp. epimorphism).

Proposition 1.4. For a fully faithful functor F : C → D, the following are equivalent
(1) F is an equivalence;
(2) F admits a separable right adjoint R;
(3) F admits a separable left adjoint L.

Proof. We prove that (3) implies (1) (the implication (2) ⇒ (1) is analogous). If R is
separable then there exists a natural transformation τ : Id→ FR such that θ◦τ = Id. Since
the unit γ is a natural isomorphism (because F is fully faithful), the triangular identities
imply that τF = Fγ, as θF ◦ τF = Id and θF = Fγ−1. Now, naturality of τ implies that

τ ◦ θ = FRθ ◦ τFR = FRθ ◦ FγR = F(Rθ ◦ γR) = Id. �

We conclude this section with the following result, for future reference. Recall from
[26, Definition 1.1] that a monad (T : C → C, µ, u) is Frobenius when it is equipped with
a natural transformation e : T → IdC such that there exists a natural transformation
ρ : IdC → T 2 satisfying

Tµ ◦ ρT = µT ◦ Tρ and Te ◦ ρ = u = eT ◦ ρ.
Moreover, recall that a functor F : C → D is said to be monadic if it admits a left
adjoint L and the comparison functor K : C → DT is an equivalence of categories, where
T = (FL, η,FεL) is the monad associated with the adjunction L a F and DT is its
Eilenberg-Moore category.

Proposition 1.5. Let F : C → D be monadic with left adjoint L. Then the monad T is
Frobenius if and only if F is Frobenius. In particular, if L a F a R is an adjoint triple
with F fully faithful, then T = (FL, η,FεL) is a Frobenius monad on C if and only if F is
Frobenius.

Proof. By [26, Proposition 1.5] we know that T is Frobenius if and only if the forgetful
functor UT : DT → D is Frobenius. Denote by FT : D → DT the free algebra functor (which
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is left adjoint to UT) and recall that FT = KL and that UTK = F . The following bijections

HomD (F(X), Y ) ∼= HomD
(
UTK(X), Y

)
,

HomC (X,L(Y )) ∼= HomDT (K(X),KL(Y )) ∼= HomDT

(
K(X),FT(Y )

)
,

make it clear that UT is left adjoint to FT (i.e. UT is Frobenius) if and only if F is left
adjoint to L. Concerning the second assertion of the statement, recall from [1, Proposition
2.5] that, in the stated hypotheses, the functor F is monadic. �

2. One-sided Hopf algebras and the free Hopf module functor

In this section we study an example of an adjoint triple that naturally arises working with
Hopf modules over a bialgebra. Deciding when this adjoint triple gives rise to a Frobenius
functor leads to consider a certain weaker analogue of Hopf algebras, namely one-sided
Hopf algebras.

Let (B,m, u,∆, ε) be a bialgebra over k. It is well-known that (B•,∆, ε) is a comonoid in
the monoidal category MB of right B-modules and hence the forgetful functor UB : MB

B →
MB is left adjoint to −⊗B : MB →MB

B. In addition, since εk is a (B, k)-bimodule, the
hom-tensor adjunction gives rise to another pair of adjoint functors between M and MB:
−⊗B εk a Hom (εk,−). Composing the two adjunctions, we get (−)B a − ⊗ B where
for every Hopf module M the k-module MB is the quotient

MB = M

MB+
∼= UB (M)⊗B εk

and for every V in M the Hopf module structure on V ⊗B is given by
δ (v ⊗ b) = v ⊗ b1 ⊗ b2, (v ⊗ b) · a = v ⊗ ba, (3)

for every v ∈ V, a, b ∈ B (the notation b1 ⊗ b2 stands for ∆(b), by resorting to Sweedler’s
Sigma Notation). On the other hand, since (B•,m, u) is also a monoid in the monoidal
category MB, we can join the two pairs of adjoint functors − ⊗ B a UB (between MB

and MB
B) and −⊗ ku a (−)coB (between M and MB) to get −⊗B a (−)coB, where the

Hopf module structure on V ⊗B is the same of (3), ku is the right B-comodule structure
on k induced by u : k→ B and for every Hopf module M ,

M coB = HomB (ku,UB (M)) = {m ∈ N | δ (m) = m⊗ 1} .
Summing up, we have an adjoint triple

MB
B

(−)B

%%
(−)coB

yy
M

−⊗B
OO

(4)

with units and counits given by
ηM : M →MB ⊗B, m 7→ m0 ⊗m1, εV : V ⊗BB ∼= V, v ⊗ b 7→ vε (b) ,
γV : V ∼= (V ⊗B)coB, v 7→ v ⊗ 1, θM : M coB ⊗B →M, m⊗ b 7→ m · b,

(5)
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and we are exactly in the situation of §1. The canonical morphism σ is simply
σM : M coB →MB, m 7→ m,

and we want to investigate what can be said if this is a natural isomorphism, that is to say,
we are interested in characterizing when the functor −⊗B is a Frobenius functor.

Lemma 2.1. Given M ∈MB
B, σM is an isomorphism if and only if M ∼= M coB ⊕MB+

as a k-module.

Proof. Observe that σM is injective if and only if M coB ∩MB+ = 0 and it is surjective if
and only if M = M coB +MB+, whence it is bijective if and only if the canonical morphism
M coB ⊕MB+ →M is an isomorphism. �

Henceforth, for the sake of simplicity, we will denote the Hopf module B•⊗B•• by B ⊗̂B
or simply B̂. Explicitly, for all a, b, c ∈ B its structures are given by

δ (a⊗ b) = a⊗ b1 ⊗ b2, (a⊗ b) · c = ac1 ⊗ bc2.

Remark 2.2. Notice that for ai ⊗ bi ∈ (B ⊗̂B)coB we have
ai ⊗ bi = (aiε (bi))⊗ 1 (6)

because coinvariance implies that ai ⊗ (bi)1 ⊗ (bi)2 = ai ⊗ bi ⊗ 1. Thus every element in
(B ⊗̂B)coB is of the form x⊗ 1 for x ∈ B.

Lemma 2.3. The k-modules (B ⊗̂B)coB and B ⊗̂BB are left B-modules with actions
a · (x⊗ 1) = ax⊗ 1 and a · xi ⊗ yi = axi ⊗ yi, (7)

respectively. The canonical morphism σ
B̂

is left B-linear with respect to these actions.

Proof. Straightforward. �

Proposition 2.4. For a bialgebra B, σ is a natural isomorphism if and only if there exists
a k-linear endomorphism S : B → B such that S(1) = 1, ε ◦ S = ε and

a1S(ba2) = ε(a)S(b), (8)
S(b)⊗ 1 = S(b2)1 ⊗ b1S(b2)2, (9)

for all a, b ∈ B. In particular, if the foregoing conditions hold then σ−1
M (m) = m0 · S(m1)

for all M ∈MB
B and m ∈M .

Proof. Observe that if we set σ−1
M (m) := m0 · S(m1) for all M ∈MB

B and m ∈M , then the
following computations

σ−1
M (m · b) = m0 · b1S(m1b2) (8)= m0 · S(m1)ε(b),

δM
(
σ−1
M (m)

)
= m0 · S(m2)1 ⊗m1S(m2)2

(9)= m0S(m1)⊗ 1,

σM(σ−1
M (m)) = m0 · S(m1) = m0ε(S(m1)) = m and
σ−1
M (σM(m′)) = m′0 · S(m′1) = m′ · S(1) = m′,
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for all m ∈ M , m′ ∈ M coB and b ∈ B, imply that σ−1
M is well-defined and an inverse to

σM . Thus we are left to prove the forward implication. Assume then that σ is a natural
isomorphism. Since δM : M•

• →M• ⊗B•• is a morphism of Hopf modules, naturality of σ−1

implies that
σ−1
M = (M ⊗ ε) ◦ σ−1

M⊗B ◦ δM .
In addition, since fm : B• → M•, b 7→ m · b, is right B-linear for every m ∈ M , again
naturality of σ−1 implies that

σ−1
M⊗B(m⊗ b) = σ−1

M⊗B(fm(1)⊗ b) = (fm ⊗B)
(
σ−1
B̂

(1⊗ b)
)

and hence
σ−1
M (m) = (M ⊗ ε)

(
σ−1
M⊗B (m0 ⊗m1)

)
= (M ⊗ ε)

(
(fm0 ⊗B)

(
σ−1
B̂

(1⊗m1)
))

= m0 · (B ⊗ ε)σ−1
B̂

(1⊗m1)

for all m ∈M . Set S(b) := (B⊗ε)σ−1
B̂

(1⊗ b) for every b ∈ B, so that σ−1
M (m) = m0 ·S(m1).

Since σ−1
B̂

(1⊗ b) ∈ (B ⊗̂B)coB,

S(b)⊗ 1 (6)= σ−1
B̂

(1⊗ b)=(1⊗ b)0 · S ((1⊗ b)1) = S(b2)1 ⊗ b1S(b2)2

for all b ∈ B, which is (9). Since

b⊗ 1 = σ−1
B̂

(
σ
B̂

(b⊗ 1)
)

= σ−1
B̂

(
b⊗ 1

)
,

we get that 1 = S(1) by considering b = 1 and applying B ⊗ ε to both sides. Moreover,
since σ−1

B̂
is B-linear with respect to the actions of Lemma 2.3, a direct computation shows

that
a1S(ba2) = a1 (B ⊗ ε)

(
σ−1
B̂

(
1⊗ ba2

))
= (B ⊗ ε)

(
(a1 ⊗ 1)

(
σ−1
B̂

(
1⊗ ba2

)))
= (B ⊗ ε)

(
a1 ·

(
σ−1
B̂

(
1⊗ ba2

)))
= (B ⊗ ε)

(
σ−1
B̂

(
a1 ⊗ ba2

))
= (B ⊗ ε)

(
σ−1
B̂

(
(1⊗ b) · a

))
= ε (a) (B ⊗ ε)

(
σ−1
B̂

(
(1⊗ b)

))
= ε (a)S (b) ,

which is (8). From these relations we can conclude also that
ε (S (b)) = ε (b1) ε (S (b2)) = ε (b1S (b2)) = ε (ε (b)S(1)) = ε (b)

for every b ∈ B and this concludes the proof. �

Proposition 2.5. If σ
B̂

is invertible, then the k-linear endomorphism S of B given by
S(b) := (B ⊗ ε)

(
σ−1
B̂

(
1⊗ b

))
for all b ∈ B is an anti-bialgebra morphism satisfying (8).

Proof. A closer inspection of the proof of Proposition 2.4 reveals that relations σ−1
B̂

(
1⊗ b

)
=

S(b) ⊗ 1, S(1) = 1, (8) and ε ◦ S = ε follow already from the invertibility of σ
B̂

alone.
Moreover, the left B-linearity of σ−1

B̂
with respect to the actions of Lemma 2.3 imply that

σ−1
B̂

(
a⊗ b

)
= a · σ−1

B̂

(
1⊗ b

)
= aS (b)⊗ 1 and so (10)
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aS (b)⊗ 1 = σ
B̂

(aS (b)⊗ 1) (10)= σ
B̂

(
σ−1
B̂

(
a⊗ b

))
= a⊗ b (11)

for every a, b ∈ B. Now, consider the k-module B ⊗̂BB as endowed with the B⊗B-module
structure given by (a⊗ b) . (x⊗ y) = ax⊗ by for a, b, x, y ∈ B. Then we have that

S (b)S (a)⊗ 1 (10)= σ−1
B̂

(
S (b)⊗ a

)
= σ−1

B̂

(
(1⊗ a) .

(
S (b)⊗ 1

))
(11)= σ−1

B̂

(
(1⊗ a) .

(
1⊗ b

))
= σ−1

B̂

(
1⊗ ab

) (10)= S (ab)⊗ 1

and so S (b)S (a) = S (ab). Concerning anti-comultiplicativity, consider the map λ :
B ⊗B → B ⊗B ⊗̂BB given by

λ (a⊗ b) := a1S (b2)⊗ a2S (b1)⊗ 1 for all a, b ∈ B
and pick xizi1 ⊗ yizi2 ∈ (B ⊗B)B+ (summation understood). We have that

λ (xizi1 ⊗ yizi2) = (xizi1)1 S ((yizi2)2)⊗ (xizi1)2 S ((yizi2)1)⊗ 1

= xi1zi1S (yi2zi4)⊗ xi2zi2S (yi1zi3)⊗ 1 (8)= xi1zi1S (yi2zi2)⊗ xi2S (yi1)⊗ 1
(8)=
(
xi1S (yi2)⊗ xi2S (yi1)⊗ 1

)
ε (zi) = 0

and so λ factors through the quotient, giving a linear morphism B ⊗̂BB → B ⊗B ⊗̂BB

that we denote by δbar. Set π : B ⊗̂B → B ⊗̂BB. From the following computation
δbar

(
σ
B̂

(x⊗ 1)
)

= δbar (x⊗ 1) = x1 ⊗ x2 ⊗ 1 = (B ⊗ π) ((∆⊗B) (x⊗ 1))

it follows that δbar = (B ⊗ π) ◦ (∆⊗B) ◦ σ−1
B̂

. Thus

S (b2)⊗ S (b1)⊗ 1 = δbar
(
1⊗ b

)
=
(
(B ⊗ π) ◦ (∆⊗B) ◦ σ−1

B̂

) (
1⊗ b

)
= S(b)1 ⊗ S(b)2 ⊗ 1

for all b ∈ B. By applying B ⊗ σ−1
B̂

to both sides of this relation we conclude that

S (b2)⊗ S (b1) = S (b)1 ⊗ S (b)2

for all b ∈ B. �

Remark 2.6. The interested reader may check that δbar used in the foregoing proof make of
B ⊗̂BB a left B-comodule in such a way that σ

B̂
is left colinear, where on

(
B ⊗̂B

)coB
one

consider the coaction δco (b⊗ 1) := b1 ⊗ (b2 ⊗ 1) for all b ∈ B.

Recall that the module End(B) of k-linear endomorphisms of a bialgebra (B,m, u,∆, ε)
is an algebra in a natural way: the unit is u ◦ ε and the multiplication is given by the
convolution product f ∗ g := m ◦ (f ⊗ g) ◦∆. A left (resp. right) convolution inverse of the
identity is called left (resp. right) antipode and if it exists then B is called left (resp. right)
Hopf algebra (see [6]). Summing up, the following is the first main result of the paper.

Theorem 2.7. The following are equivalent for a bialgebra B
(1) σ is a natural isomorphism;
(2) for every M ∈MB

B, M ∼= M coB ⊕MB+ as a k-module;
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(3) σ
B̂

is invertible;
(4) B is a right Hopf algebra with anti-(co)multiplicative right antipode S.

In particular, if anyone of the above conditions holds then σ−1
M (m) = m0 · S(m1) for all

M ∈MB
B and m ∈M .

Proof. The equivalence (1) ⇔ (2) is the content of Lemma 2.1. Clearly, (1) implies (3),
which in turn implies (4) in light of Proposition 2.5. Moreover, if B admits an anti-
(co)multiplicative right antipode S, then the conditions (8) and (9) are satisfied and hence
(4) implies (1) by Proposition 2.4. �

Remark 2.8. Observe that the condition IdB ∗ S = u ◦ ε implies that S (1) = 1S (1) =
uε (1) = 1 and that ε (S (a)) = ε (a1S (a2)) = ε (uε (a)) = ε (a) for every a ∈ B. Thus every
right antipode is automatically unital and counital (analogously for left antipodes).

Example 2.9 ([6, Example 21]). Let k be a field and consider the free algebra

T := k
〈
e

(k)
ij | 1 ≤ i, j ≤ n, k ≥ 0

〉
with bialgebra structure uniquely determined by

∆
(
e

(k)
ij

)
=

n∑
h=1

e
(k)
ih ⊗ e

(k)
hj and ε

(
e

(k)
ij

)
= δij

for all 1 ≤ i, j ≤ n, k ≥ 0 and the assignment s := e
(k)
ij 7→ e

(k+1)
ji for all i, j, k. The ideal

K ⊆ T generated by{
n∑
h=1

e
(k+1)
hi e

(k)
hj − δij1,

n∑
h=1

e
(l)
ih e

(l+1)
jh − δij1

∣∣∣∣∣ k ≥ 1, l ≥ 0, 1 ≤ i, j ≤ n

}
is an s-stable bi-ideal and the bialgebra anti-endomorphism S induced by s is a right
antipode but not a left one. Thus (H,S) is a genuine right Hopf algebra satisfying the
conditions of Theorem 2.7.

Example 2.10. In [15, §3], the authors exhibit a left Hopf algebra such that no left
antipode is a bialgebra anti-endomorphism. Therefore, the requirements that the one-sided
antipodes are either anti-comultiplicative or anti-multiplicative cannot be avoided, as in
general a one-sided antipode can be neither.

Recall, from [4] for example, that a bimodule SPR is a Frobenius bimodule if and only if
(−⊗S P, HomR (P,−)) : MS →MR is a Frobenius pair of functors.

Corollary 2.11. Let B be a bialgebra which is finitely generated and projective as a k-
module and denote by Bc the co-opposite bialgebra (same algebra structure, co-opposite
coalgebra structure). Then B is a Hopf algebra if and only if kBB#Bc∗ is a Frobenius
(k, B#Bc∗)-bimodule.

Proof. Note that B is a left Bc-comodule algebra, so that we can consider the category
Bc
M(Bc)B of Doi-Hopf modules over (Bc, B) in the sense of [5]. Note also that MB

B =
M(B)BB and that we have an equivalence of categories M(B)BB ∼= Bc

M(Bc)B. Since B is
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finitely generated and projective, we also have an equivalence Bc
M(Bc)B ∼= MB#Bc∗ (see

[5, Remark 1.3(b)]). Thus, MB
B
∼= MB#Bc∗ and we can identify − ⊗ B : M → MB

B with
− ⊗ kBB#Bc∗ : Mk → MB#Bc∗ and HomB

B (B,−) with HomB#Bc∗ (kBB#Bc∗ ,−). In this
context, and in light of [6, Proposition 5], Theorem 2.7 can be restated by saying that B
is a (right) Hopf algebra if and only if −⊗B : M→MB#Bc∗ is Frobenius, if and only if
kBB#Bc∗ is a Frobenius (k, B#Bc∗)-bimodule. �

As we have seen with Example 2.9, there exist one-sided Hopf algebras whose one-sided
antipode is a bialgebra anti-endomorphism. As a consequence, the right antipode of
Theorem 2.7 will not be a left convolution inverse in general. In light of this, let us proceed
along a different path. The left-handed analogue of the previous construction holds, in the
sense that we have another adjoint triple

B(−) a B ⊗− a coB(−)
between the category of k-modules M and the category of left Hopf modules B

BM, where
BM = M

B+M
, coBM = {m ∈M | δ (m) = 1⊗m}

and B ⊗ V has the left module and comodule structures induced by those of B. We will
denote with η′, ε′, γ′ and θ′ the units and counits of these adjunctions, analogously to (5).

We are again in the framework of §1, the canonical morphism now being ς : coBM →
BM, m 7→ m. As before, we may also consider the component of ς corresponding to the
Hopf module B̌ = B⊗̌B := •

•B ⊗ •B, that is to say,

ςB̌ : coB
(
B⊗̌B

)
→ BB⊗̌B; 1⊗ b 7→ 1⊗ b,

and by mimicking the arguments used to prove Proposition 2.4 and Proposition 2.5 one
can prove the following result.

Theorem 2.12. The following are equivalent for a bialgebra B.
(1) ς is a natural isomorphism;
(2) For every M ∈ B

BM, M ∼= coBM ⊕B+M as a k-module;
(3) ςB̌ is invertible;
(4) B is a left Hopf algebra with anti-(co)multiplicative left antipode S ′.

In particular, if anyone of the above equivalent conditions holds then ς−1
M (m) = S ′(m−1)m0

for all M ∈ B
BM and m ∈M .

In light of Theorem 2.7 and Theorem 2.12 we may now draw the following conclusions.

Theorem 2.13. The following are equivalent for a bialgebra B.
(1) B is a Hopf algebra,
(2) the canonical morphisms σ and ς are natural isomorphisms,
(3) the distinguished components σ

B̂
and ςB̌ are isomorphisms,

(4) σ
B̂

is an isomorphism and either θ
B̂

is surjective or η
B̂

is injective,
(5) ςB̌ is an isomorphism and either θ′

B̌
is surjective or η′

B̌
is injective,

(6) either the functor (−)coB or the functor (−)B is separable,
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(7) either θ admits a natural section or η admits a natural retraction,
(8) either the functor coB(−) or the functor B(−) is separable,
(9) either θ′ admits a natural section or η′ admits a natural retraction.

Proof. After recalling that B is a Hopf algebra if and only if − ⊗ B is an equivalence,
(1)⇔ (6)⇔ (7)⇔ (8)⇔ (9) by Proposition 1.4 and the chain of implications (1) ⇒ (2)
⇒ (3) is clear. To go from (3) to (1) notice that Theorem 2.7 and Theorem 2.12 provide for
us a right and a left convolution inverses of the identity morphism: S and S ′ respectively.
Since End(B) is a monoid with the convolution product, the two have to coincide and the
resulting endomorphism S ′ = S is an antipode for B. Thus, let us prove the equivalence
between (1) and (4). The only non trivial implication is (4)⇒ (1), whence assume that σ

B̂

is an isomorphism and that η
B̂

: B ⊗̂B → B ⊗̂BB ⊗B, xi⊗ yi 7→ xi ⊗ yi1 ⊗ yi2 , is injective
(the proof with θ

B̂
surjective is analogous(1)). In light of relation (2) we deduce immediately

that η
B̂

has to be surjective as well and hence an isomorphism of Hopf modules, which is
also B-linear with respect to the left actions

b . (xi ⊗ yi) = bxi ⊗ yi and b . (xi ⊗ yi ⊗ zi) = bxi ⊗ yi ⊗ zi
on B ⊗̂B and B ⊗̂BB⊗B respectively. For all b ∈ B, set ν(b) := (B⊗ε)

(
η−1
B̂

(
1⊗ b⊗ 1

))
.

This gives an endomorphism ν of B. Since η−1
B̂

is B-bilinear and B-colinear, we have that

η−1
B̂

(
1⊗ b⊗ 1

)
= (B ⊗ ε⊗B)

(
(B ⊗∆)

(
η−1
B̂

(
1⊗ b⊗ 1

)))
= (B ⊗ ε⊗B)

(
η−1
B̂

(
1⊗ b⊗ 1

)
⊗ 1

)
= ν(b)⊗ 1

and hence η−1
B̂

(xi ⊗ yi ⊗ zi) = xiν(yi)zi1 ⊗ zi2 for every xi ⊗ yi ⊗ zi ∈ B ⊗B ⊗B. Now, for
every b ∈ B we have

1⊗ b = η−1
B̂

(
η
B̂

(1⊗ b)
)

= ν(b1)b2 ⊗ b3

and so, by applying B ⊗ ε to both sides, 1ε(b) = ν(b1)b2, i.e. ν is a left convolution inverse
of the identity. Since we already have a right one, the two have to coincide, giving an
antipode for B. The proof of the equivalence between (1) and (5) is similar. �

Remark 2.14. (1) By rephrasing (4) of Theorem 2.13 in functorial terms we have that a
bialgebra B is a Hopf algebra if and only if −⊗ B is Frobenius and either (−)B is
faithful or (−)coB is full (and analogously on the other side).

(2) With Theorem 2.13, we implicitly proved another structure theorem for Hopf modules:
a bialgebra B is a Hopf algebra if and only if the morphism η

B̂
is an isomorphism,

if and only if every Hopf module M over B satisfies M ∼= MB ⊗B. Indeed, if η
B̂

is
invertible then Remark 1.1 entails that σ

B̂
is invertible as well and hence we conclude

by the argument in (1). This is the coassociative analogue of the structure theorem
for quasi-Hopf bimodules [24, Theorem 4].

Let us conclude this section with the following interesting remark, linking the theory we
developed here with Hopfish algebras.

(1)Note that θ
B̂

is the Hopf-Galois map β : B ⊗B → B ⊗B : a⊗ b 7→ ab1 ⊗ b2.
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Remark 2.15 (Hopfish algebras). Consider a bialgebra (B,m, u,∆, ε) and its modulation

ε := kkε ∆ := B⊗B (B ⊗B) ∆

in the sense of [27]. If we consider the Hopf module B• ⊗B•• , then

B ⊗̂BB = UB (B• ⊗B••)
UB (B• ⊗B••)B+ = B ⊗B

(B ⊗B) ∆ (ker (ε)) =: S.

By construction, S is just a k-module, but we may endow it with the B ⊗ B-module
structure induced by the left multiplication, that is, (a⊗ b) . (x⊗ y) := ax⊗ by. Recall
from [27, Theorem 4.2] that S is a preantipode for the modulation of B. If we assume
further that the distinguished morphism σ

B̂
is invertible, then the left B-linear morphism

B
∼= //

(
B ⊗̂B

)
coB

σ
B̂ // B ⊗̂BB = B ⊗B

(B ⊗B) ∆ (ker (ε))
b � // (b⊗ 1) + (B ⊗B) ∆ (ker (ε))

is invertible and hence S is a free left B-module of rank one generated by the class of 1⊗ 1.
Summing up, if σ

B̂
is invertible then (B,∆, ε,S) is a Hopfish algebra.

An interesting question which remains open is if the converse is true as well, that is to
say, if we can characterize Hopfish algebras which are modulations of bialgebras in terms of
the invertibility of σ.

3. Adjoint pairs and triples related to Hopf modules and FH-algebras

As we have seen at the beginning of §2, the adjoint triple (4) studied in the previous
section is just one member of a family of adjunctions appearing in the study of Hopf
modules. In the present section we will spend a few words concerning the others and the
property of being Frobenius for them and we will address the question concerning the
relationship with Pareigis’ results [17].

Let M ∈MB
B. For the sake of clearness, for every N ∈MB we set N ⊗̂M := N•⊗M•

• , for
every P ∈MB we set P ⊗̃M := P • ⊗M•

• and for every V ∈M we set V ⊗M := V ⊗M•
•

in MB
B. The notation −⊗M will be reserved for the functor M→MB, V 7→ V ⊗M•.

Given a bialgebra B over a commutative ring k, it is straightforward to check that the
category of left B-modules is not only monoidal, but in fact a (right) closed monoidal
category with internal hom-functor HomB (B ⊗N,−) for all N ∈MB.

Lemma 3.1 (compare with [23, §2.1], [25, Proposition 3.3]). Let B be a bialgebra. The
category MB of right B-modules is left and right-closed. Namely, we have bijections

HomB (M ⊗N,P )
ϕ // HomB (M, HomB (B ⊗N,P )) ,
ψ
oo (12)

HomB (N ⊗M,P )
ϕ′ // HomB (M, HomB (N ⊗B,P )) ,
ψ′
oo
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natural in M and P , given explicitly by
ϕ(f)(m) : a⊗ n 7→ f(m · a⊗ n), ψ(g) : m⊗ n 7→ g(m)(1⊗ n),
ϕ′(f)(m) : n⊗ a 7→ f(n⊗m · a), ψ′(g) : n⊗m 7→ g(m)(n⊗ 1),

where the right B-module structures on HomB (B ⊗N,P ) and HomB (N ⊗B,P ) are in-
duced by the left B-module structure on B itself.
Lemma 3.2. For N ∈MB

B, the natural bijection (12) induces a bijection
HomB

B

(
M ⊗̂N,P

) ∼= HomB

(
M, HomB

B

(
B ⊗̂N,P

))
natural in M ∈ MB and P ∈ MB

B. Thus, the functor HomB
B

(
B ⊗̂N,−

)
: MB

B → MB is
right adjoint to the functor −⊗̂N : MB →MB

B

Proof. We refer to the notation used in Lemma 3.1. We already know that for every
f ∈ HomB

B

(
M ⊗̂N,P

)
, ϕ(f) ∈ HomB (M•, HomB (B• ⊗N•, P•)). In addition,(

ϕ(f)(m)
)
(a⊗ n0)⊗ n1 = f(m · a⊗ n0)⊗ n1 = f(m · a⊗ n)0 ⊗ f(m · a⊗ n)1

for all m ∈M,n ∈ N, a ∈ B, whence it is also colinear. For what concerns ψ, we know that
ψ(g) ∈ HomB

B (M• ⊗N•, P•) for all g ∈ HomB

(
M, HomB

B

(
B ⊗̂N,P

))
. In addition,

ψ(g)(m⊗ n0)⊗ n1 = g(m)(1⊗ n0)⊗ n1 = g(m)(1⊗ n)0 ⊗ g(m)(1⊗ n)1

for every m ∈M , n ∈ N . Naturality is left to the reader. �

Summing up, we can consider the following family of adjunctions strictly connected with
Hopf B-modules and the Structure Theorem:

MB
B

UB




MB

−⊗̃B

JJ
MB

(−)coB




M

−⊗ku

JJ
MB

B

(−)
B

��
(−)coB




M

−⊗B

OO
MB

U ′

��
HomB(B,−)




M

−⊗′B

OO

MB

−⊗Bk
��
M

−⊗kε

TT
MB

U
��

M

−⊗B
JJ

Hom(B,−)
TT

MB
B

UB

��
HomB

B(B ⊗̂B,−)




MB

−⊗̂B

OO

(13)

For every V ∈M, N ∈MB and P ∈MB we have
UB(V ⊗B) = V ⊗B, (N ⊗̂B)coB ∼= U(N),

UB (V ⊗B) = V ⊗′ B and P ⊗̃B
B ∼= U ′(P ).

(14)

Proposition 3.3. The following assertions hold.
(1) If −⊗̃B is Frobenius and HomB (UB(M), V u) ∼= Hom

(
M coB, V

)
naturally in M ∈

MB
B, V ∈M then −⊗B is Frobenius.
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(2) If −⊗̂B is Frobenius and HomB

(
Vε, U

B(M)
) ∼= Hom

(
V,M

B
)

naturally in M ∈
MB

B, V ∈M then −⊗B is Frobenius.
(3) If −⊗B and −⊗̂B are Frobenius then −⊗B is Frobenius.
(4) If −⊗B and −⊗̃B are Frobenius then −⊗′ B is Frobenius.
(5) If −⊗̃B is Frobenius and HomB (UB(M), V u) ∼= Hom

(
M coB, V

)
naturally in M ∈

MB
B, V ∈M then −⊗′ B is Frobenius.

(6) If −⊗̂B is Frobenius and HomB

(
Vε, U

B(M)
) ∼= Hom

(
V,M

B
)

naturally in M ∈
MB

B, V ∈M then −⊗B is Frobenius.
Proof. Straightforward. �

Remark 3.4. Concerning conditions under which the adjunctions (13) give rise to Frobenius
pairs, the interested reader may check [4, §3.3 and §3.4].

In [17], Pareigis proved that for a bialgebra B over a commutative ring k the following
assertions are equivalent: (1) B is a Hopf algebra, finitely generated and projective as a
k-module, such that

∫
lB
∗ ∼= k and (2) B is Frobenius as an algebra and its Frobenius

homomorphism is a left integral on B (see also [10]). We conclude this section by discussing
some categorical implications of this result.
Remark 3.5. For the sake of honesty and correctness, let us point out that in [17] there
is no explicit reference to the fact that if B is Frobenius as an algebra and its Frobenius
homomorphism ψ is a left integral on B then

∫
lB
∗ ∼= k. Nevertheless, the subsequent

argument is a straightforward consequence of the results therein. If a bialgebra B is
Frobenius as an algebra and ψ ∈

∫
lB
∗, then by [17, Theorem 2] B is a Hopf algebra and it

is finitely generated and projective over k. By [17, Theorem 3],
∫
lB
∼= k. As observed at

[17, page 596], B∗ is a finitely generated and projective Hopf algebra as well, B∗∗ ∼= B as
Hopf algebras and

∫
lB
∼=
∫
lB
∗∗. Therefore, by [17, Theorem 1], B∗ is a Frobenius algebra.

By [17, Theorem 3] again,
∫
lB
∗ ∼= k.

Let us begin by recalling some facts about Frobenius algebras. A k-algebra A is Frobenius
if it is finitely-generated and projective as a k-module and A ∼= A∗ as right (or left) A-
modules. This is equivalent to say that there exist an element e := e1 ⊗ e2 ∈ A ⊗ A
(summation understood) and a linear map ψ : A→ k such that ae = ea for all a ∈ A and

e1ψ(e2) = 1 = ψ(e1)e2. (15)
The element e is called a Casimir element and the morphism ψ a Frobenius homomorphism.
The pair (ψ, e) is a Frobenius system for B. A Frobenius homomorphism ψ is a free
generator of A∗ as a right (resp. left) A-module and the isomorphism Ψ : A→ A∗ is given
by Ψ(a) = ψ · a (resp. Ψ(a) = a · ψ), where (ψ · a)(b) = ψ(ab) for every a, b ∈ B. If A is
Frobenius and it is also augmented with augmentation ε : A→ k, then there exists T ∈ A
such that ε = Ψ(T ) = ψ · T . It is called a right norm in A with respect to ψ. In particular,
ψ(T ) = 1. If e is a Casimir element such that (15) holds (we will naively call it the Casimir
element corresponding to ψ), then T = ε(e1)e2, because

ψ(ε(e1)e2a) = ε(ae1)ψ(e2) = ε(ae1ψ(e2)) = ε(a)
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for every a ∈ A and Ψ is invertible. In particular, T is a right integral in A. Analogously,
one may call left norm an element t ∈ A such that t · ψ = ε and in this case the identity
t = e1ε(e2) tells us that t is a left integral. Finally, if B is a bialgebra which is also a
Frobenius algebra such that the Frobenius morphism ψ is a right integral in B∗, then we
call B an FH-algebra by mimicking [10, 16].
Remark 3.6. If we consider a right-handed analogue of Pareigis’ results, then we have that
any finitely generated and projective Hopf algebra B with

∫
r B
∗ ∼= k is Frobenius with

Frobenius morphism ψ ∈
∫
r B
∗ (by using the Structure Theorem for left Hopf modules).

Conversely, if B is a FH-algebra with Frobenius morphism ψ and if T is a right norm in B
with respect to ψ, then B is a (finitely generated and projective) Hopf algebra, where the
antipode is given by S(a) = ψ(T1a)T2 for all a ∈ B (see [10]). Moreover, if t is a left norm
in B with respect to ψ, then the assignment B → B : a 7→ ψ(at1)t2 provides an inverse S−1

for the antipode S, in light of [18, Proposition 10.5.2(a)] for example. We will often make
use of these facts in what follows, as well as of the fact that for a finitely generated and
projective k-bialgebra B, ψ ∈

∫
r B
∗ if and only if ψ(a1)a2 = ψ(a)1 for all a ∈ B.

Lemma 3.7. If B is an FH-algebra, then the Casimir element e corresponding to ψ ∈
∫
r B
∗

satisfies e1
1 ⊗ e2

1 ⊗ e1
2e

2
2 = e1 ⊗ e2 ⊗ 1, that is to say, e ∈ (B• ⊗B•)coB.

Proof. Let T be a right norm in B with respect to ψ and t be a left norm instead. In light
of [10, Proposition 4.2], the element S−1(T2)⊗ T1 = ψ(T2t1)t2 ⊗ T1 is the Casimir element
corresponding to ψ and it is easy to see that it is coinvariant with respect to the coaction
of the statement. �

Henceforth, let us assume that B is an FH-algebra with Frobenius morphism ψ ∈
∫
r B
∗

and Casimir element e = e1 ⊗ e2.
Proposition 3.8. The assignment

HomB (UB(M), P )→ HomB
B

(
M,P ⊗̃B

)
: f 7→

[
m 7→ f(me1)⊗ e2

]
is a bijection, natural in M ∈MB

B and P ∈MB, with inverse
HomB

B

(
M,P ⊗̃B

)
→ HomB (UB(M), P ) : g 7→ [m 7→ (P ⊗ ψ)(g(m))] .

In particular, the functor UB : MB
B →MB forgetting the B-module structure is Frobenius

with left and right adjoint −⊗̃B : MB →MB
B.

Proof. Since B is in particular a Frobenius algebra, we know that there exists a bijection
φ : Hom (U(M), V ) oo // HomB (M,V ⊗B)

f � // [n 7→ f(ne1)⊗ e2]
[n 7→ (V ⊗ ψ)(g(n))] g�oo

(16)

for every M ∈MB and V ∈M. Consider the unit ηM : M → U(M)⊗B, m 7→ me1 ⊗ e2,
and the counit εV : U(V ⊗B)→ V, v⊗ b 7→ vψ(b), of (16). In light of Lemma 3.7, we have

δUB(M) ⊗̃B (ηM(m)) = δUB(M) ⊗̃B

(
me1 ⊗ e2

)
= (me1)0 ⊗ e2

1 ⊗ (me1)1e
2
2
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= m0e
1
1 ⊗ e2

1 ⊗m1e
1
2e

2
2 = m0e

1 ⊗ e2 ⊗m1 = ηM(m0)⊗m1,

so that ηM ∈ HomB
B

(
M,UB(M) ⊗̃B

)
, and since ψ ∈

∫ r B∗ we have

(V ⊗ψ⊗B) (δV⊗B(v ⊗ b)) = v0ψ(b1)⊗v1b2 = v0⊗v1ψ(b1)b2 = v0⊗v1ψ(b) = δV (εV (v ⊗ b)) ,

so that εV ∈ HomB
(
UB(V ⊗̃B), V

)
. Therefore (16) induces a bijection

HomB (UB(M), P ) ∼= HomB
B

(
M,P ⊗̃B

)
for M ∈MB

B and P ∈MB. Concerning the last claim, since B is a monoid in the monoidal
category of right B-comodules it is well-known that −⊗̃B : MB → MB

B is always left
adjoint to UB : MB

B →MB. �

Lemma 3.9. For every M ∈MB
B and every V ∈M the assignment

φM,V : HomB (UB(M), V u)→ Hom
(
M coB, V

)
: f 7→

[
m 7→ f

(
me1ε(e2)

)]
provides a bijection HomB (UB(M), V u) ∼= Hom

(
M coB, V

)
, natural in M and V , with

explicit inverse

ϕM,V : Hom
(
M coB, V

)
→ HomB (UB(M), V u) : g 7→ [m 7→ g (m0S(m1))ψ(m2)] .

Proof. Set φ := φM,V and ϕ := ϕM,V for the sake of brevity and recall that for a finitely
generated and projective k-bialgebra B, ψ is a right integral on B if and only if (ψ⊗B)◦∆ =
ψ ⊗ u. Recall also that e1ε(e2) = t is the left norm in B with respect to ψ, whence we can
rewrite φ(f) = t · f and ϕ(g) = (g⊗ψ) ◦ θ−1

M where θ is the one of (5). The first assignment
is clearly well-defined. For what concerns the second one, the following computation

(g ⊗ ψ ⊗B) ◦ (θ−1
M ⊗B) ◦ δM = (g ⊗ ψ ⊗B) ◦ (M coB ⊗∆) ◦ θ−1

M = (V ⊗ u) ◦ (g ⊗ ψ) ◦ θ−1
M

proves that ϕ(g) is colinear, so that ϕ is well-defined. Let us prove that φ and ϕ are each
other inverses. On the one hand, for all m ∈M coB and g ∈ Hom

(
M coB, V

)
we have

φ(ϕ(g))(m) = ϕ(g)(mt) = g (m0t1S(m1t2))ψ(m2t3) = g (mt1S(t2))ψ(t3) = g(m),

which proves that φ ◦ ϕ is the identity. On the other hand, recall from Lemma 3.7 that
we have e = e1 ⊗ e2 ∈ (B• ⊗B•)coB, so that t⊗ 1 = e1

1 ⊗ e1
2e

2, and that at = ε(a)t for all
a ∈ B. For every m ∈M and f ∈ HomB (UB(M), V u) compute

ϕ(φ(f))(m) = φ(f) (m0S(m1))ψ(m2) = f (m0S(m1)t)ψ(m2) = f(m0t)ψ(m1)

= f
(
m0e

1
1

)
ψ(m1e

1
2e

2) (∗)= f
(
me1

)
ψ(e2) = f(m),

where (∗) follows from colinearity of f :

f(m0e
1
1)ψ(m1e

1
2e

2) = (V ⊗ (ψ ◦mB))
(
f
(
(me1)0

)
⊗ (me1)1 ⊗ e2

)
= (V ⊗ (ψ ◦mB))

(
f
(
me1

)
⊗ 1⊗ e2

)
= f

(
me1

)
ψ(e2).
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Therefore ϕ◦φ is the identity as well. We are left to check that φM,V is natural. To this aim,
consider α : M ′ →M in MB

B and β : V → V ′ in M. Then for every f ∈ HomB (UB(M), V u)
and m ∈M ′ we have

φM ′,V ′(β ◦ f ◦ α)(m) = β (f (α (mt))) = β (f (α (m) t)) = (β ◦ φM,V (f) ◦ α) (m). �

Consider now the adjoint triple
UB a − ⊗̂B a HomB

B

(
B ⊗̂B,−

)
between MB

B and MB, with units and counits
ηM : M → UB(M) ⊗̂B, m 7→ m0 ⊗m1, εN : UB(N ⊗̂B)→ N, n⊗ b 7→ nε(b),

γN : N → HomB
B

(
B ⊗̂B,N ⊗̂B

)
, n 7→ [a⊗ b 7→ n · a⊗ b],

θM : HomB
B

(
B ⊗̂B,M

)
⊗̂B →M, f ⊗ a 7→ f(1⊗ a).

Proposition 3.10. The assignment
Γ : HomB

B

(
B ⊗̂B,M

)
→ UB(M) : f 7→ f(e1e2

1 ⊗ e2
2) = f(e1 ⊗ 1) · e2

is an isomorphism of right B-modules, natural in M ∈MB
B, with inverse given by

Λ : UB(M)→ HomB
B

(
B ⊗̂B,M

)
: m 7→

[
a⊗ b 7→ m0 · S(m1)ψ(m2aS(b1))b2

]
.

In particular, the functor −⊗̂B : MB →MB
B is Frobenius with left and right adjoint the

functor UB : MB
B →MB. Explicitly,

HomB
B

(
N ⊗̂B,M

)
oo // HomB

(
N,UB(M)

)
f � //

[
n 7→ f (n · e1 ⊗ 1) · e2

]
[
n⊗ b 7→ g(n)0 · S (g(n)1)ψ (g(n)2S (b1)) b2

]
g�oo

Proof. We may compute directly
Λ(Γ(f))(a⊗ b) = Λ(f(e1e2

1 ⊗ e2
2))(a⊗ b)

= f(e1e2
1 ⊗ e2

2)0 · S
(
f(e1e2

1 ⊗ e2
2)1
)
ψ(f(e1e2

1 ⊗ e2
2)2aS(b1))b2

= f(e1e2
1 ⊗ e2

2) · S(e2
3)ψ(e2

4aS(b1))b2 = f(e1 ⊗ 1)e2
1S(e2

2)ψ(e2
3aS(b1))b2

= f(e1 ⊗ 1) · ψ(e2aS(b1))b2 = f(aS(b1)e1 ⊗ 1)ψ(e2)b2

= f(aS(b1)⊗ 1) · b2 = f(aS(b1)b2 ⊗ b3) = f(a⊗ b)

for all f ∈ HomB
B

(
B ⊗̂B,M

)
and a, b ∈ B and

Γ(Λ(m)) = Λ(m)(e1 ⊗ 1) · e2 = m0 · S(m1)ψ
(
m2e

1
)
e2 = m0 · S(m1)ψ(e1)e2m2 = m

for all m ∈M , so that both Γ ◦ Λ and Λ ◦ Γ are the identity morphism. For what concerns
the explicit bijection giving that −⊗̂B is also left adjoint to UB, it can be easily deduced
by using γ, θ, Γ and Λ. �
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Lemma 3.11. For every M ∈MB
B and V ∈M the assignment

φ′M,V : HomB

(
Vε, U

B(M)
)
→ Hom

(
V,M

B
)

: f 7→
[
v 7→ f(v)0ψ (f(v)1)

]
provides a bijection HomB

(
Vε, U

B(M)
) ∼= Hom

(
V,M

B
)

, natural in M ∈MB
B and V ∈M,

with explicit inverse

ϕ′M,V : Hom
(
V,M

B
)
→ HomB

(
Vε, U

B(M)
)

: g 7→
[
g(v)′0 · S (g(v)′1) ε(e1)e2

]
,

where g(v)′ ∈M is any element such that g(v) = g(v)′.

Proof. We leave to the reader to check that ϕ′M,V is well-defined. Notice that for every
f ∈ HomB

(
Vε, U

B(M)
)

we have f(v) · b = f(v)ε(b) and compute

ϕ′M,V

(
φ′M,V (f)

)
(v) = f(v)0 · S(f(v)1)ψ(f(v)2)ε(e1)e2 = f(v)0 · e1

1S(f(v)1e
1
2)ψ(f(v)2e

1
3)e2

= f(v)0 · S(f(v)1)ψ(f(v)2e
1)e2 = f(v)0 · S(f(v)1)ψ(e1)e2f(v)2

(15)= f(v)
for every v ∈ V , whence ϕ′M,V ◦ φ′M,V is the identity. The other way around, for every
g ∈ Hom

(
V,M

B
)

we have

φ′M,V

(
ϕ′M,V (g)

)
(v) = g(v)′0 · S (g(v)′2)1 ε(e1)e2

1ψ (g(v)′1S (g(v)′2)2 e
2
2)

= g(v)′0 · S (g(v)′3) ε(e1)e2
1ψ (g(v)′1S (g(v)′2) e2

2) = g(v)′0 · S (g(v)′1) ε(e1)e2
1ψ (e2

2)
(∗)= g(v)′0ε (S (g(v)′1)) ε(e1)ε

(
e2

1

)
ψ
(
e2

2

)
= g(v)′ε

(
e1ψ

(
e2
)) (15)= g(v)

for all v ∈ V , where (∗) follows from the fact that mb = mε(b). Therefore, φ′M,V ◦ ϕ′M,V is
the identity as well. �

In conclusion, we have the following result.

Theorem 3.12. The following are equivalent for a finitely generated and projective k-
bialgebra H.
(1) The functor −⊗H : M→MH

H is Frobenius and
∫
rH

∗ ∼= k.
(2) H is a Hopf algebra with

∫
rH

∗ ∼= k.
(3) H is a FH-algebra.
(4) The functor −⊗̃H : MH→MH

H is Frobenius and HomH(UH(M), V u)∼= Hom(M coH , V ),
naturally in M ∈MH

H , V ∈M.
(5) The functor −⊗H : M→MH

H is Frobenius and
∫
rH
∼= k.

(6) H∗ is a Hopf algebra with
∫
rH

∗∗ ∼= k.
(7) H∗ is a FH-algebra.
(8) The functor −⊗̂H : MH →MH

H is Frobenius and HomH(Vε, UH(M)) ∼= Hom(V,MH),
naturally in M ∈MH

H , V ∈M.

Proof. Let us show firstly that (1) ⇔ (2) ⇔ (3) ⇔ (4). The implication from (1) to (2)
follows from Theorem 2.7 and [6, Proposition 5]. The one from (2) to (3) is the right-handed
analogue of Pareigis’ [17]. The fact that (3) implies (4) is the content of Proposition 3.8
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and Lemma 3.9. Finally, (4)⇒ (1) follows from Proposition 3.3 (1) and the observation
that

∫
rH

∗ ∼= HomH (UH(H),ku) ∼= Hom
(
HcoH ,k

) ∼= k.
Secondly, let us prove that (3)⇔ (5)⇔ (6)⇔ (7)⇔ (8). If (5) holds then H is a Hopf

algebra and
∫
rH
∼=
∫
rH

∗∗, whence we have (6). The implication from (6) to (7) is again
Pareigis’ result applied to H∗. The one from (7) to (3) is the content of [10, Proposition
4.3]. The fact that (3) implies (8) follows from Proposition 3.10 and Lemma 3.11 and,
lastly, the implication from (8) to (5) is Proposition 3.3 (2) and the observation that∫
rH
∼= HomH

(
kε, UH(H)

) ∼= Hom
(
k, HH

) ∼= k. �
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