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Abstract

Current efforts to improve muscle performance are focused on muscle trophism via inhibi-

tion of the myostatin pathway: however they have been unsuccessful in the clinic to date. In

this study, a novel protein has been created by combining the soluble activin receptor, a

strong myostatin inhibitor, to the C-terminal agrin nLG3 domain (ActR-Fc-nLG3) involved in

the development and maintenance of neuromuscular junctions. Both domains are con-

nected via the constant region of an Igg1 monoclonal antibody. Surprisingly, young male

mice treated with ActR-Fc-nLG3 showed a remarkably increased endurance in the rotarod

test, significantly longer than the single domain compounds ActR-Fc and Fc-nLG3 treated

animals. This increase in endurance was accompanied by only a moderate increase in body

weights and wet muscle weights of ActR-Fc-nLG3 treated animals and were lower than

expected. The myostatin inhibitor ActR-Fc induced, as expected, a highly significant

increase in body and muscle weights compared to control animals and ActR-Fc-nLG3

treated animals. Moreover, the prolonged endurance effect was not observed when ActR-

Fc and Fc-nLG3 were dosed simultaneously as a mixture and the body and muscle weights

of these animals were very similar to ActR-Fc treated animals, indicating that both domains

need to be on one molecule. Muscle morphology induced by ActR-Fc-nLG3 did not appear

to be changed however, close examination of the neuromuscular junction showed signifi-

cantly increased acetylcholine receptor surface area for ActR-Fc-nLG3 treated animals

compared to controls. This result is consistent with published observations that endurance

training in rats increased acetylcholine receptor quantity at neuromuscular junctions and

provide evidence that improving nerve-muscle interaction could be an important factor for

sustaining long term muscle activity.

Introduction

Optimal functioning of the muscle tissue depends on the correct interaction of several factors,

two of which are pivotal: on one hand the balance between protein synthesis and degradation

within the muscle fiber, and on the other hand the nerve activity through muscle innervation,

both of which have electrical and trophic influences.
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The correct balance of muscle protein metabolism is regulated by follistatin and myostatin

[1]. Follistatin promotes protein synthesis and increases muscle mass mostly, but not only, by

preventing myostatin binding to its receptor [2, 3]. Myostatin, after binding to the activin

receptor 2B (ActR-IIB), initiates a cascade of reactions that eventually restricts growth of mus-

cle mass [3]. The role of these two proteins has been extensively studied and their effects con-

firmed by multiple in vitro and in vivo experiments both in transgenic and natural animal

models [4–9].

Skeletal muscle tissue is innervated by the second order motor neurons (MNs) located in

the anterior horns of the spinal cord. Each MN innervates a variable number of muscle fibers,

forming the motor unit, where muscles which need a finer control of movement have smaller

motor units [10]. The nerve terminals form a highly specialized synapse called neuromuscular

junction (NMJ) that not only sends signals for contraction, but also secretes and endocytoses

important trophic factors in absence of which the muscle fibers undergo atrophy and degener-

ate [11]. Agrin is a large extracellular proteoglycan protein containing a large number of differ-

ent domains but crucial for the functioning of the NMJ is the neuronal form of the C-terminal

domain (nLG3) [12].

As a consequence of the above, optimal muscle performance relies on the synergistic action

of complex biochemical mechanisms intrinsic to the muscle tissue, in addition to proper neu-

rogenic inputs. Derangements of each step of these complex mechanisms result in impaired

muscle performance in one, or all of its various aspects (strength, rapidity of execution and

endurance, i.e. the capability of sustaining prolonged effort). Under normal circumstances,

muscle performance reaches its peak in the third decade of life in humans [13] and declines

with aging even in absence of disease [14]. Numerous approaches to strengthen muscle perfor-

mance aimed at both reaching extreme performances and/or correcting pathological condi-

tions. In the past few years, the main focus was on the manipulation of the myostatin system,

either by inactivating myostatin with specific antibodies, blocking its receptor with specific

antibodies or by using the soluble myostatin receptor as a decoy [15–20]. These strategies have

resulted in substantial enlargement of muscle masses, in moderately improved muscle

strength, but failed to increase endurance [21, 22].

We hypothesized that increasing muscle mass without adequate incremental innervation

may, in the long run, be counterproductive to sustain prolonged physical activity. Thus, we

designed and produced a new protein to improve both the myogenic and neurogenic compo-

nent of muscle performance. This protein (ActR-Fc-nLG3) was administered during several

weeks to normal young mice resulting in a moderate increase in muscle mass and strength and

in a remarkable endurance in the rotarod test compared to PBS-treated controls and mice that

received myostatin inhibitors only.

Materials and methods

Synthesis of proteins

All proteins and antibodies described were produced and purified by Evitria AG (Schlieren,

Switzerland) and summarized in Table 1. The protein ActR-Fc [23] has been described before.

Briefly, ActR-Fc consists of the mouse extracellular part of the ActR-IIB receptor coupled to

the Fc part of an Igg1 mAb [23]. Fc-nLG3 refers to the neuronal laminin G3 domain of agrin

[12, 24] coupled to the c-terminus of the Fc part of an Igg1 mAb.

SDS-polyacrylamide gel electrophoresis

In order to verify the molecular weights of the synthetized compounds, each one was eluted in

4X LDS Sample Buffer (Invitrogen) and 10X reducing agent (Invitrogen) to reach the
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concentration of 1μg. Samples were heated at 70˚C for 10 minutes, then were run on 4–12%

Bis-Tris Plus gel (Invitrogen). Each chamber of the tank was filled with 400 mL of 1X SDS

Running Buffer (obtained by mix 20 mL of 20X Invitrogen MES SDS Running Buffer with 380

mL of deionized water). Gels were run at 200V voltage for 35 minutes.

Target protein fractions were identified by Coomassie staining of gel. Gels were left in Coo-

massie staining solution (0.26% Coomassie Blue, 10% Acetic Acid, 25% Methanol) for 4 hours.

After removing Coomassie solutions, gels were then incubated in the destaining solution (10%

Acetic Acid, 25% Methanol) overnight, in order to eliminate the color in excess. Gels were

then scanned and images were acquired using a densitometer (BioRad).

In vitro experiments: AChR clustering

C2C12 mouse skeletal myoblasts from ATCC (ATCC-LGC Standards S.r.l., Italy) were cultured

in Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose (Sigma, St. Louis, MO, USA)

with 10% Fetal Bovine Serum (FBS; Sigma), containing 2 mM L-glutamine, 100 U/ml penicillin

and 100 μg/ml streptomycin (all purchased from Invitrogen-Gibco, Milan, Italy). The cells were

cultured for 2–3 days on 8 well chamber slides in the previous medium, then replaced with

DMEM and 3% FBS, to obtain myotubes. Then the cells were incubated with Fc-nLG3,

ActR-Fc, ActR-Fc-nLG3 or ActR-Fc-LG3 at 10 μM for 24h and fixed with 2% paraformalde-

hyde for 20 min at RT. In addition, PBS was used as negative control. The samples were stained

for the Acetylcholine receptor (AChR) by incubating the cells with Alexafluor 555-conjugated

α-Bungarotoxin (1:500; Invitrogen, Italy) at RT for 1 h. The cells were rinsed and coverslips

were mounted with a drop of PB 0.1M. The samples were then observed with a Leica TCS SP5

confocal laser scanning microscope (Leica Microsystems) and representative images acquired.

Animal care and use

We used young C57BL/6j male mice, purchased from Harlan (Italy). All experimental proce-

dures on live animals were carried out in strict accordance to the European Communities

Council Directive 86/609/EEC (November 24, 1986) Italian Ministry of Health and University

of Turin institutional guidelines on animal welfare (law 116/92 on Care and Protection of liv-

ing animals undergoing experimental or other scientific procedures; authorization number

17/2010-B, June 30, 2010): additionally an ad hoc Ethical Committee of the University of

Table 1. List of compounds used in this study.

Compound

name

Comment, short description Reference

(m)ActR-Fc Mouse extracellular ActR-IIB receptor coupled to Fc constant region of an

antibody

[23]

ActR-Fc Human extracellular ActR-IIB receptor coupled to Fc constant region of an

antibody (Ramatercept)

[23]

(m)Fc-nLG3 nLG3 domain of agrin coupled to the Fc constant region of an antibody [12], this

paper

Fc-nLG3 Human nLG3 domain coupled to the Fc constant region of an antibody [12], this

paper

(m)ActR-Fc-

nLG3

ActR-Fc compound (see above) coupled to the nLG3 domain of agrin This paper

ActR-Fc-nLG3 Human ActR-Fc compound (see above) coupled to the human nLG3 domain of

agrin

This paper

ActR-Fc-LG3 Human ActR-Fc compound (see above) coupled to the human LG3 domain of

agrin

This paper

https://doi.org/10.1371/journal.pone.0228653.t001
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Turin approved the study. All efforts were made to minimize the number of animals used and

their suffering.

Animals were housed into ventilated cages in groups of four to five animals per cage, with a

12:12 h light-dark cycle. They were fed a standard laboratory diet containing 22% protein and

3.5% fat (Mucedola, Settimo Mil.se, Italy). Food and water were provided ad libitum.

In vivo testing of nLG3 and ActR constructs

Nine-week-old male C57BL/6j mice (n = 5 per group) were randomized with body weight and

treated subcutaneously (10 mg/kg) with the following proteins (murine version): (m)ActR-Fc-

nLG3, (m)Fc-nLG3, (m)ActR-Fc, and a mixture of (m)ActR-Fc and (m)Fc-nLG3, three times

per week. Controls received PBS, pH 7.4. The dose and dose frequency was selected based on

the dose of ActR-Fc administrated in a previous study [23].

Behavioral tests

Forelimb grip strength was measured using a Grip Strength Meter (Ugo Basile, Varese, Italy):

mice were held by the tail and allowed to grasp a T-shaped bar with their forepaws. Once the

mouse grasped the bar with both paws, the mouse was pulled away from the bar until the mouse

released the bar. The digital meter displays the level of tension (in gram-force; gF) exerted on the

bar by the mouse. Each animal was given five consecutive tests, and the average value was taken.

Rotarod measurements were done on a 7650-accelerating model of a rotarod apparatus

(Ugo Basile, Comerio, VA, Italy). The mice were placed on the rod of a Rotarod, which was

slowly accelerated from 4 to 32 rpm. Each animal underwent three trials, with the arbitrary

cut-off time of 300 seconds (the best result of each trial has been considered). An additional

extended trial was performed with a maximal duration of 2000 seconds (30 minutes). The first

trials were considered as training, and then the performances on day 21 and 25 were formally

registered.

Histological analysis

At the end of the observation period, the mice were sacrificed by cervical dislocation. Gastroc-

nemius, quadriceps femoris and triceps brachii were collected, weighed and histologically

analyzed.

ActR-Fc-nLG3 and PBS gastrocnemius muscles were then frozen using 2-methylbutane

cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. Muscles were

then embedded in cryostat medium (Killik; Bio-Optica, Milan, Italy), cut on the cryostat (HM

550; Microm) in transverse 20 μm-thick sections and mounted onto 5% gelatin-coated slides:

the sections were then stained with hematoxylin/eosin, dehydrated in graded ethanol baths

(95–100%) and cleared in xylene. Reconstructions and analysis of the sections have been per-

formed by Neurolucida software and the associated data analysis software NeuroExplorer

(MicroBrightField). We evaluated mean fiber perimeter, maximum and minimum Feret diam-

eters of fibers, gastrocnemius cross-sectional perimeter.

In addition, longitudinal muscle slices [PBS, (m)ActR-Fc, (m)ActR-Fc-nLG3, (m)ActR-Fc-

LG3] were also collected and stained for the acetylcholine (ACh) receptor by incubating the

tissues with Alexafluor 555-conjugated α-Bungarotoxin (1:500; Invitrogen, Italy) at RT for 30

min. The slides were then rinsed, coverslipped with the anti-fade mounting medium Mowiol

and analyzed with a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems),

using these parameters: objective 40x, format 1024x1024, scan speed 200 Hz, step size 0.49μm

(until covering the whole NMJ volume), zoom 4.0, laser power 100%, gain range (V) 820–930,

offset range (%) -20-23. Area and perimeter of the NMJs of 4 animals per group were analyzed
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by using ImageJ software (MIT). The wand tracing tool was used to select the α-Bungarotoxin

stained area(s) of the NMJ. Subsequently the measured area and perimeter were determined

with the “measure” function. Areas and perimeters of fragmented NMJs were added together

to calculate the total area and perimeter of the NMJ. Additionally, as densitometric analysis,

NMJ fluorescent signal was measured by Scion Image software for Windows (freeware version

of NIH Image, Scion Corporation, Frederick, MD, USA): the background was subtracted from

photographs by automatic thresholding [25, 26].

Neuronal LG3 (nLG3) versus LG3

In another set of experiments, twenty 6-week-old C57BL/6j male mice were split randomly into

four experimental groups (n = 5 per group). Control group received injections of PBS, whereas

the other groups were treated with the following proteins (human version): ActR-Fc, ActR-Fc-

nLG3 and ActR-Fc-LG3. Injections (10 mg/kg) were performed subcutaneously 3 times per

week for three weeks. Body weight (BW) was measured 5 times per week during experiment.

Then mice were sacrificed by cervical dislocation, the fresh skeletal muscles (triceps, quadri-

ceps and gastrocnemius) were quickly dissected and the wet muscle weight determined, as pre-

viously described.

Statistical analysis

Data are presented as mean ± S.E.M. (standard error of mean). All the raw data are reported in

S1 Dataset. Student’s unpaired t-test was used to determine significant differences in the mor-

phological analysis of muscles (muscle perimeter, mean fiber length, maximum and minimum

Feret diameters; ratio nuclei/100 fibers). One-way ANOVA was employed to analyze the

weight increase (%) and the wet weight of muscles, and NMJ area, perimeter and fluorescent

signal. Two-way ANOVA repeated measures was used to evaluate the wet weight of muscles

(experiments with neuronal agrin), the BW increase and motor performance (rotarod) during

time. Values of P<0.05 were considered significant (�), P<0.01 very significant (��) and

P<0.001 extremely significant (���). The investigators were blind during the study and the

analysis of the results.

Results

Assessment of the molecular weight of murine and human compounds

We have synthesized a compound that combines muscular hypertrophy (ActR, extracellular

domain of the activin receptor) with neuromuscular innervation (nLG3, agrin). The ActR and

nLG3 domains were fused to the Fc domain of an Igg1 antibody and the resulting compound

is called actR-Fc-nLG3. In addition, control compounds actR-Fc, Fc-nLG3 and actR-Fc-LG3

were synthesized, to examine the effects of the individual effector domains. First of all, we veri-

fied the relative molecular mass of each synthetized compound (mouse- and human-deriva-

tives) by SDS-polyacrylamide gel electrophoresis (PAGE), after Coomassie staining (S1 Fig).

The results show that the molecular weights of mouse and human Fc-nLG3 and ActR-Fc are

very similar, about 55 kDa. The molecular weight of mouse and human ActR-Fc-nLG3 is

about 75 kDa. As expected, human ActR-Fc-LG3 is nearly identical to ActR-Fc-nLG3: indeed

ActR-Fc-LG3 differs for only 8 amino acids compared to ActR-Fc-nLG3.

In vivo testing of nLG3 and ActR constructs

With the aim to verify the ability of (m)ActR-Fc-nLG3 to simultaneously promote both muscle

hypertrophy and innervation, we administrated this compound to nine-week-old mice. At this
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age, the development of NMJs and muscles is completed [27]. The average starting weight of

the animals was 28.55 ± 0.5 g and 29.21 ± 0.4 g respectively for the controls (PBS-treated) and

the (m)ActR-Fc-nLG3 animals. Since the mice were young, the BWs of both the controls and

the (m)ActR-Fc-nLG3 dosed animals increased during the experiment. (m)ActR-Fc-nLG3

dosed animals increased more rapidly in BW and were on average 5.5% heavier than PBS con-

trol animals throughout the experiment. The increase in BW was statistically significant only

at certain days of dosing, but not consistently throughout the dosing period (5 weeks) (S2A

Fig). Previous publications have shown that myostatin inhibitors increase muscle strength [15,

19]. In order to determine if the (m)ActR-Fc-nLG3 compound induced a similar effect we

measured grip strength during one week in either the 4th or the 5th week of dosing. The grip

strength of (m)ActR-Fc-nLG3 mice (66.3 ± 3.4) was increased by 24% (P = 0.0148) compared

to controls (53.7 ± 3.8). This corresponded with a slight increase in measured muscle weight

(MW): the wet MW was increased on average by 9%. Only the weight increase of the triceps

was statistically significant (P<0.05) (S2B Fig).

At first sight, the results were similar to what has previously been described for a myostatin

inhibitor, but MWs and BWs were only very moderately increased [18, 19, 23], possibly

because of poor tissue penetration of (m)ActR-Fc-nLG3. However, despite the diminished

hypertrophy, there was a significant increase in grip strength as expected from a myostatin

inhibitor [15, 19]. This intriguing observation led us to test the controls compounds (m)

ActR-Fc and Fc-nLG3 and investigate our findings in more detail.

For this purpose, other nine-week-old animals were randomized on body weight (BW;

average value 24.61 ± 0.48 g) and treated with the “single” constructs [i.e. (m)ActR-Fc and (m)

Fc-nLG3] as well as with a mixture of both constructs [(m)ActR-Fc + (m)Fc-nLG3]. The

results were compared to the “double” compound [(m)ActR-Fc-nLG3] and a PBS control

group. The animals were treated between day 0 and day 18, and weighed at regular intervals

throughout the experiment until day 25 (Fig 1A).

The BW increase of (m)Fc-nLG3 mice (17.22% at day 25) was not significantly different

from that of the PBS group (13.34% at day 25) (Fig 1B and 1C). As expected, (m)ActR-Fc

administration resulted in a steady and significant weight increase compared to PBS group

(P<0.001 from day 7 to day 25; weight increase at day 25 is 36.95%). Also (m)ActR-Fc in the

mixture with (m)Fc-nLG3 caused a highly significant BW increase of 31.43% at day 25

(P<0.05 at day 7, P<0.001 from day 11 to day 25). The BW increase induced by the “double”

compound (m)ActR-Fc-nLG3 was similar to what observed in the previous experiment, and

was only significantly different from the PBS group between day 7 and day 21 (P<0.001), but

not on day 4, 23 and 25 (P>0.05). The average weight increase of this group on day 25 was

19.07%.

We have also calculated the BW increase at day 11, 18 and 25, by attributing a value of

100% to the PBS group, as shown in Fig 1D. Until day 11, the percent BW increase was similar

among (m)ActR-Fc, (m)ActR-Fc-nLG3 and the mixture group, and statistically different com-

pared to (m)Fc-nLG3, whose values remain constant during this time (until day 25). Then,

after the treatment interruption (day 18), "(m)ActR-Fc + (m)Fc-nLG3” and (m)ActR-Fc-nLG3

groups showed a partial weight decline, whereas the values for the (m)ActR-Fc group

remained unchanged until day 25 (Fig 1B and 1D). Interestingly, at day 25, (m)ActR-Fc-nLG3

was no longer statistically different from (m)Fc-nLG3.

Rotarod test

Throughout the experiments the individual and social behavior of all mice appeared normal

without unhealthy signs. Animals treated with the test compounds did not differ from the
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controls under all aspects. Food and water consumption also were identical/similar among

groups.

During the dosing period, the animals were subjected to a rotarod test for 300 sec or 2000

sec, to evaluate motor performance. In the “300 sec trial”, we did not observe any significant

differences among groups (Fig 2A).

Fig 1. Evaluation of body weight. (A) Experimental timeline. (B) Weight increase displayed by PBS, (m)ActR-Fc, (m)

Fc-nLG3, (m)ActR-Fc, (m)ActR-Fc-nLG3 and (m)ActR-Fc + (m)Fc-nLG3 treated groups. Two way ANOVA repeated

measures: (m)ActR-Fc vs PBS, ���P< 0.001 from day 7 to day 21; (m)ActR-Fc + (m)Fc-nLG3 vs PBS, �P< 0.05 at day

7, ��P< 0.01 at day 9, ���P< 0.001 from day 11 to day 21 (m)ActR-Fc-nLG3 vs PBS, �P< 0.05 at day 4, 23 and 25;
���P<0.001 from day 7 to day 21. (C) Weight increase between day 0 and day 25 expressed as a percentage; one way

ANOVA, Bonferroni post hoc test ��P< 0.01, ���P<0.001. (D) BW increase reached at day 11, day 18 and day 25,

expressed by attributing to PBS group the value of 100% (two way ANOVA, Bonferroni post hoc test �P<0.05,
��P< 0.01, ���P<0.001).

https://doi.org/10.1371/journal.pone.0228653.g001

Fig 2. Motor performance on rotarod on day 21 and 25. (A) In the 300 sec trial no statistically significant differences

among groups have been observed, whereas (B) in the 2000 sec trial (m)ActR-Fc-nLG3 mice demonstrated an

unexpected resistance, in particular on day 21 (Two way ANOVA repeated measures Treatment: F(4,20) = 3.32;

p = 0.0306; Time: F(1,20) = 1.83; p = 0.1911; Bonferroni post hoc test: (m)ActR-Fc-nLG3 vs PBS ��P<0.01; (m)ActR-Fc-

nLG3 vs (m)Fc-nLG3 / (m)ActR-Fc / (m)ActR-Fc + (m)Fc-nLG3 ���P<0.001).

https://doi.org/10.1371/journal.pone.0228653.g002
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More interestingly, in the “2000 sec trial” (m)ActR-Fc-nLG3 mice demonstrated an un-

expected endurance: in the first trial they were able to remain on the rotating cylinder for

1149±299 sec, compared to 347±20.1 sec for PBS (P<0.01), 302±82.6 sec for (m)ActR-Fc

(P<0.001), 292.8±28.8 sec for the mixture (m)ActR-Fc and (m)Fc-nLG3 (P<0.001), and

262.80±29.5 sec for (m)Fc-nLG3 (P<0.001). This result was repeated in a second “2000 sec

trial”, performed 4 days later. In this session the other test groups showed similar performance

to the first test (ranging from 320 and 360 sec), whereas the (m)ActR-Fc-nLG3 group doubled

these results (651.8±339.1), confirming a remarkable increase in performance in the rotarod

test (Fig 2B).

Muscle analysis

Looking for an explanation for the observed effects on muscle strength and rotarod perfor-

mance, we performed a histological analysis of the muscles. At the end of the observation

period, the animals were sacrificed and muscles (gastrocnemius, quadriceps and triceps) iso-

lated. In the gastrocnemius, the strongest increase in MW compared to PBS group was

induced by (m)ActR-Fc compound (35.21%) alone and by the mixture [(m)ActR-Fc + (m)Fc-

nLG3)] (25.74%). (m)ActR-Fc-nLG3 induced a more moderate MW gain of 10.87%. A similar

trend was also seen for quadriceps and triceps. As expected, the “single” nLG3 construct did

not affect muscle trophism. The overall data of the MW reflect, as expected the BW trend (Fig

3), as summarized in Table 2.

The histological analyses of the gastrocnemius of PBS and (m)ActR-Fc-nLG3 groups

revealed a significant increase in the mean fiber length as well as in the maximum Feret diame-

ter of fibers (P�0.05, unpaired T test) in the (m)ActR-Fc-nLG3 group, whereas the cross-sec-

tional perimeter and the minimum Feret diameter did not significantly differ from the control

group (Table 3).

Table 2. Wet weight (g) of analyzed muscles (quadriceps, gastrocnemius, triceps). The values are represented as mean ± S.E.M.

PBS (m)Fc-nLG3 (m)ActR-Fc (m)ActR-Fc-nLG3 (m)ActR-Fc + (m)Fc-nLG3

Quadriceps 0.190±0.016 0.201±0.017 0.244±0.040 0.200±0.023 0.231±0.017

Gastrocnemius 0.165±0.007 0.168±0.012 0.223±0.011 0.183±0.009 0.207±0.017

Triceps 0.119±0.012 0.116±0.009 0.175±0.013 0.125±0.011 0.148±0.014

https://doi.org/10.1371/journal.pone.0228653.t002

Fig 3. Wet weight (g) of gastrocnemius, quadriceps and triceps muscles. (A) Gastrocnemius: One-way ANOVA

F(4,45) = 46.02; p<0.0001; Bonferroni post hoc test (m)ActR-Fc vs PBS / (m)Fc-nLG3 / (m)ActR-Fc-nLG3 ���P<0.001;

(m)ActR-Fc vs (m)ActR-Fc + (m)Fc-nLG3 �P<0.05; (m)ActR-Fc + (m)Fc-nLG3 vs PBS / (m)Fc-nLG3 / (m)ActR-Fc-

nLG3 ###P<0.001; (m)ActR-Fc-nLG3 vs PBS §P<0.05; (B) Quadriceps: One-way ANOVA F(4,45) = 9.313; p<0.0001;

Bonferroni post hoc test (m)ActR-Fc vs PBS ���P<0.001, (m)ActR-Fc vs (m)Fc-nLG3 / (m)ActR-Fc-nLG3 ��P<0.01;

(m)ActR-Fc + (m)Fc-nLG3 vs PBS §§P<0.01; (C) Triceps: One-way ANOVA F(4,45) = 43.98; p<0.0001; Bonferroni

post hoc test (m)ActR-Fc vs PBS / (m)Fc-nLG3 / (m)ActR-Fc-nLG3 / (m)ActR-Fc + (m)Fc-nLG3 ���P<0.001, (m)

ActR-Fc + (m)Fc-nLG3 vs PBS / (m)Fc-nLG3 / (m)ActR-Fc-nLG3 ###P<0.001.

https://doi.org/10.1371/journal.pone.0228653.g003
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We have also evaluated the number of nuclei per 100 muscle fibers. (m)ActR-Fc-nLG3

showed a slightly higher number of nuclei compared to the PBS group (2.13±0.15 versus 1.89

±0.19), without reaching statistical significance.

NMJ analysis

Muscle analysis of ActR-Fc-nLG3 treated animals did not provide a satisfactory explanation of

the observed experimental rotarod results. It has been previously described that endurance

training increases acetylcholine receptor quantity at neuromuscular junctions of adult rat skel-

etal muscle (26), so we decided to stain with fluorescent α-Bungarotoxin (BGTX) the NMJs of

mice treated with PBS, (m)ActR-Fc, (m)ActR-Fc-nLG3 and (m)ActR-Fc-LG3 (Fig 4). Three

representative NMJ pictures for each group are given in Fig 4. Further analysis showed that the

area of NMJs of (m)ActR-Fc-nLG3 treated animals was significantly enlarged (P�0.001, One-

way ANOVA) compared to PBS treated animals (Fig 4A), indicating that more AChRs are

present: conversely the other groups (namely, ActR-Fc and ActR-Fc-LG3 are not statistically

different from PBS). The perimeter of (m)ActR-Fc-nLG3 NMJs was not statistically increased

(Fig 4B), indicating growth of the NMJ area was achieved by thickening of the stained struc-

tures. Additionally in Fig 4C we quantified the BGTX fluorescent signal, confirming that only

(m)ActR-Fc-nLG3 NMJs are significantly different from PBS group.

In vitro AChR clustering

Agrin is a multidomain extracellular matrix protein. The most C-terminal domain of agrin is a

laminin G domain (LG3) [12]. Neuronal agrin differs from non-neuronal agrin as it contains

an 8 amino acid insertion in the C-terminal LG3 domain (nLG3). nLG3 is capable of phos-

phorylating the muscle-specific kinase (MuSK) by binding to the low-density lipoprotein

receptor-related protein 4 (LRP4) receptor thereby inducing Ach receptor clusters on C2C12

cells, whereas non-neuronal agrin (LG3) cannot bind or signal via LRP4. In order to determine

if signaling via the LRP4 receptor is important for the observed metabolic effects of ActR-Fc-

nLG3, the human ActR-Fc was coupled to the human non-neuronal LG3 domain generating

ActR-Fc-LG3. When we tested in vitro the proteins containing the neuronal agrin fragments

[i.e., Fc-nLG3 and ActR-Fc-nLG3], we demonstrated the capability of promoting aggregation

of the various components of the NMJs only at a concentration of 10 μM (Fig 5), which is a

1000-fold above the reported EC50 of the nLG3 protein (10 nM) alone [12]. At ten-fold lower

concentrations clusters were hardly visible. As expected, ActR-Fc and ActR-Fc-LG3 were

completely inactive in this assay (Fig 5). Since Fc-nLG3 and ActR-Fc-nLG3 were about equally

active in inducing AChR clustering, it is likely that the Fc part makes the protein more soluble,

thus less prone to binding to the wall of the myotube resulting in lower than expected effica-

cies. So, although ActR-Fc-nLG3 is active only at very high concentration in vitro, it does not

Table 3. Morphological analysis of gastrocnemius of PBS and (m)ActR-Fc-nLG3 mice. Muscle perimeter, mean

fiber length, maximum and minimum Feret diameter, and ratio nuclei/100 fibers are listed, and expressed as

mean ± SEM (Student’s unpaired t-test; mean fiber length �P�0.05; maximum Feret diameter #P<0.05).

PBS (m)ActR-Fc-nLG3

Total muscle perimeter (μm) 17961.04±272.97 19232.34±820.02

Mean fiber length (μm) 182.52±8.79 210.24±8.26 (�)

Max Feret diameter (μm) 68.10±3.35 79.63±2.91 (#)

Min Feret diameter (μm) 43.96±1.89 48.96±2.48

Ratio nuclei/100 fibers 1.89±0.19 2.13±0.15

https://doi.org/10.1371/journal.pone.0228653.t003
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mean that the nLG3 component is not capable of signaling via the LRP4 receptor in vivo at

much lower concentration.

Neuronal LG3 (nLG3) is required

We subsequently examined the effects of ActR-Fc-LG3 on mice using ActR-Fc-nLG3 and

ActR-Fc as controls. If ActR-Fc-LG3 treated animals resemble ActR-Fc-nLG3 treated animals,

it would mean that LRP4 binding does not play an important role. However, if ActR-Fc-LG3

treated animals resemble ActR-Fc treated animals, it means that signaling via LRP4 is

important.

The treatment and body weight assessment schedule are illustrated in Fig 6A. After three

weeks of dosing, ActR-Fc and ActR-Fc-LG3 induced a remarkable increase of BW compared

to the PBS group (Fig 6B). The increase was particularly significant at the second and third

Fig 4. Morphometric analyses and confocal images of NMJs. (A-B) NMJ area and perimeter measured by ImageJ software (One-way ANOVA F(3,36) = 14.00;

p<0.0001; Dunnett’s Multiple Comparison Test, PBS vs (m)ActR-Fc-nLG3 ���P<0.001); (C) Fluorescent signal intensity measured by Scion Image software (One-way

ANOVA F(3,31) = 7.791; p<0.005; Dunnett’s Multiple Comparison Test, PBS vs (m)ActR-Fc-nLG3 �P<0.05). (D-O) Representative images of NMJs labeled by α-

Bungarotoxin (BGTX, in red) for binding ACh receptors: (D-H-I) PBS-treated NMJs, (E-I-M) (m)ActR-Fc-treated NMJs, (F-J-N) (m)ActR-Fc-nLG3-NMJs, (G-K-O)

(m)ActR-Fc-LG3-NMJs. Scale bar: 18 μm.

https://doi.org/10.1371/journal.pone.0228653.g004

PLOS ONE Novel protein enhancing motor performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0228653 March 11, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0228653.g004
https://doi.org/10.1371/journal.pone.0228653


PLOS ONE Novel protein enhancing motor performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0228653 March 11, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0228653


weeks of dosage, with maximal increases reaching 30% for ActR-Fc and 25% for ActR-Fc-LG3

respectively. Most important, no significant differences have been observed during the whole

period between ActR-Fc and ActR-Fc-LG3 treated animals. In addition, ActR-Fc-LG3 BWs

Fig 5. In vitro experiments. AChR clustering (see red α-Bungarotoxin-positive spots) induced by Fc-nLG3 and

ActR-Fc-nLG3 in C2C12 skeletal myotubes. ActR-Fc and ActR-Fc-LG3 were not capable of inducing AChR clusters.

Negative control is represented by PBS. Scale bar: 50 μm.

https://doi.org/10.1371/journal.pone.0228653.g005

Fig 6. Effects of nLG3 and LG3 on body weight and muscle weight. (A) Experimental timeline. (B) Percent increase

of BW (referred to PBS mice) over 3 weeks of treatment with ActR-Fc, ActR-Fc-nLG3, and ActR-Fc-LG3, dosed three

times per week 10 mg/kg. Treatment: F(3,140) 214.52; p<0.0001; Time: F(14,240) = 29.55; p<0.0001; Bonferroni post hoc

test: PBS vs ActR-Fc: P<0.01 at day 4, P<0.001 from day 7 to day 18; PBS vs ActR-Fc-LG3: P<0.001 from day 7 to day

18. ActR-Fc vs ActR-Fc-nLG3: P<0.01 at day 7 (##), P<0.001 from day 8 to day 18 (###); ActR-Fc-nLG3 vs ActR-Fc-

LG3: P<0.01 from day 8 to day 10 (§§), P<0.001 from day 11 to day 18 (§§§). (C) Wet muscle weights of

gastrocnemius, quadriceps and triceps muscles. Two way ANOVA repeated measures Treatment: F(3,48) = 61.18;

p<0.0001; Muscle: F(2,48) = 53.34; p<0.0001; Bonferroni post hoc test: �P<0.05, ��P<0.01, ���P< 0.001.

https://doi.org/10.1371/journal.pone.0228653.g006
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were significantly higher than BWs of ActR-Fc-nLG3 treated animals from dosing day 8 until

the end (Fig 6B).

After the animals were sacrificed, we evaluated the wet MW of the gastrocnemius, the quad-

riceps and the triceps (Table 4; Fig 6C). MW of all muscles was significantly increased in

ActR-Fc-LG3 and ActR-Fc treated groups compared to PBS group. Conversely, ActR-Fc-

nLG3 treated mice did not show significant differences in wet muscle weight when compared

to control mice. These results show that ActR-Fc and ActR-Fc-LG3 are both capable of induc-

ing strong muscle hypertrophy.

Discussion

Potentiation of human muscle performance is an important health factor when motor activity

fails due to pathological conditions and/or aging hampering the well-being of millions of peo-

ple worldwide as a major cause of morbidity and disability [28].

Several inhibitors of the myostatin pathway have been produced with the therapeutic aim

of stimulating muscle growth and/or preventing muscle loss in human muscle disease [21, 29,

30]. All these compounds have been shown to increase muscle growth in clinical settings, how-

ever, no effect was detected in the 6 min walking distance test (6MWD). The failure of the

myostatin inhibitor in clinical testing requiring sustained activity (such as the 6MWD test), in

spite of the clearly increased muscle mass and potency, suggests that muscle hypertrophy per
se is not sufficient to maintain muscle performance beyond momentary effort [21, 30].

In this study, we focused on combining neuromuscular effects with muscle hypertrophy,

hypothesizing that it these might result in optimized performance. Thus, we constructed a

novel protein by adding the fragment of agrin (nLG3) that is capable of signaling via LRP4

[24] to the anti-myostatin agent (ActR-Fc).

A previous study showed that administration of myostatin inhibitors causes a substantial

increase in BW due to muscle mass increase [31]. We therefore verified the effects of the com-

bined ActR-Fc-nLG3 and single compounds (ActR-Fc, Fc-nLG3) on mouse BW. Our experi-

ments confirmed the BW increases by the known myostatin inhibitor compound ActR-Fc.

This compound is very similar if not identical in sequence to Ramatercept [23]. The results

obtained in this study duplicate those in several reports in the literature, describing a remark-

able gain in muscle mass in several animal species by inhibition of myostatin [3]. The adminis-

tration of the nLG3 agrin fragment alone (Fc-nLG3) did not produce statistically significant

changes throughout the experiment. Unexpectedly, by adding the nLG3 agrin fragment to the

activin receptor inhibitor, the increase in BW is significantly less prominent than with ActR-Fc

alone (Fig 1). It appears that the addition of the agrin moiety stifled the hypertrophic process

and this effect was caused by a reduction in muscle hypertrophy (Fig 3). The nLG3 containing

compound (ActR-Fc-nLG3) caused a weight increase compared to PBS, but this effect was

transient (Fig 1) and most importantly the BW increase was significantly lower than expected.

Surprisingly, the two single compounds ActR-Fc and nLG3-Fc administered together did have

the same effect on BW as ActR-Fc alone, meaning that the coupling of the two moieties is

needed for the reduced BW increase.

Table 4. Wet weight (g) of gastrocnemius, quadriceps and triceps. The values are represented as mean ± S.E.M. The statistical analysis is reported in Fig 4.

PBS ActR-Fc ActR-Fc-nLG3 ActR-Fc-LG3

Quadriceps 0.210±0.010 0.302±0.008 0.201±0.011 0.271±0.006

Gastrocnemius 0.180±0.007 0.263±0.020 0.170±0.008 0.224±0.009

Triceps 0.140±0.009 0.226±0.010 0.128±0.006 0.194±0.010

https://doi.org/10.1371/journal.pone.0228653.t004
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We also verified if binding to the LRP4 receptor is important for this observed reduced BW

increase effect. To this aim, we made the compound ActR-Fc-LG3, without the 8 amino acids

involved in binding to the LRP4 receptor. LG3 linked to ActR-Fc (ActR-Fc-LG3) exerted a

similar effect to ActR-Fc (Fig 6). This suggests that the observed BW and muscle weight

changes are mediated by activation of the cascade of events triggered by binding to LRP4 and

MuSK activation. In addition, it also shows that there is no steric hindrance of the ActR

domain by the nLG3 domain.

A remarkable increase in endurance in the rotarod test was noted in animals treated with

ActR-Fc-nLG3 (Fig 2). The 300 sec rotarod test did not differentiate various groups although

the (m)ActR-Fc-nLG3 treated group reached the best performance of all groups on day 21.

However, when the trial time was extended to 2000 sec, the (m)ActR-Fc-nLG3 treated mice

outperformed all the other groups, demonstrating an exceptional endurance in the rotarod

test. This performance declined seven days after treatment end, but time spent on the rotarod

was still the longest of all the groups. This strongly indicates that to induce long-term sustain-

ing muscle activity, the activin receptor inhibitor and the neuronal agrin fragment need to be

present on one molecule, as no enhancement of the motor performance was observed when

the parts of the molecules were administered separately. To the best of our knowledge, only

one recent report [32] describes the successful enhancement of endurance in motor perfor-

mance. There are, however, important differences to the current study. Firstly, they used trans-

genic (TG) mice overexpressing nicotinamide phosphoribosyl transferase in muscle, whereas

ActR-Fc-nLG3 can be given as a drug. Secondly, the enhanced endurance was seen in the TG

mice after nicotinamide supplementation in the diet which per se did not induce the same

effect in the wild types. Lastly, the endurance effect was obtained only after repetitive exercise.

Notably, in our experiments the endurance on the rotarod was seen both at the first trial as

well as after repetitive trials.

The observed myogenic findings are limited and probably cannot explain the surprising

endurance effect, so we also looked at NMJ changes. In order to determine if ActR-Fc-nLG3

was able to induce postsynaptic changes on the NMJ, α-Bungarotoxin (BGTX) staining was

performed on muscle tissue. Representative images of PBS, ActR-Fc-nLG3, ActR-Fc and

ActR-Fc-LG3 samples are shown in Fig 4D–4O. The measurement of the surface confirmed a

significantly increased NMJ surface area for ActR-Fc-nLG3 animals compared to PBS (Fig

4A). Similarly, performing a densitometric analysis of AchRs, we observed a significantly

higher BGTX fluorescent signal for ActR-Fc-nLG3 animals (Fig 4C). These findings could pro-

vide an explanation for the remarkably increased rotarod performance in ActR-Fc-nLG3-

treated mice reached without training.

It has been demonstrated that the NMJ has the capacity to undergo significant morphologi-

cal changes as a result of increased exercise. For example, endurance training has been shown

to increase the area of Ach receptors and the number of Ach receptors [33]. If training is capa-

ble of inducing these adaptations, it is feasible that treatment with ActR-Fc-nLG3, which

induces similar changes to the NMJ, leads to an increased endurance.

LRP4, the receptor for neuronal agrin, acts as the functional step to transduce neuronal

agrin activity. It is possible that ActR-Fc-nLG3 can bind outside the NMJ to the LRP4 receptor

and enters the NMJ via lateral movement of the compound-LRP4 complex. Within the NMJ,

ActR-Fc-nLG3 can form a complex with MuSK leading to auto-activation of this receptor and

increased signaling of the corresponding pathway.

Signaling within the NMJ, however, does not only involve MuSK: myostatin and myosta-

tin-like proteins regulate synaptic function and neuronal morphology [34] and GDF11 levels/

expression increase with age [35]. In the case of ActR-Fc-nLG3, the soluble Act receptor is

transported into the synaptic cleft because it is attached to the nLG3 protein. Within the
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synaptic cleft, ActR-Fc-nLG3 can bind and inactivate myostatin and/or activin excreted into

the NMJ by the muscle fiber (Figs 1–7). Emerging knowledge of the effects of myostatin and

myostatin-related proteins has recently shown in Drosophila that a homolog of myostatin and

GDF11 regulates not only BW and muscle size, but also inhibits neuromuscular synapse

strength and composition [34].

In this respect it is worth noting that agrin has a number of Follistatin-like domains that are

located at its N-terminus [12]. Follistatin is known to bind and inhibit myostatin and other

members of the TGFbeta family [3]. The Follistatin-like domains of agrin are known to bind

BMP2, BMP4, and members of the TGFbeta family. It is also well-known that proteases regu-

late the activity of Agrin [36, 37]. Proteolysis separates the N- and C-terminus of agrin, and

thus splits the Follistatin-like domains from the nLG3 domain. In the example of ActR-Fc-

nLG3 the ActR domain is separated from the nLG3 domain. This could mean that ActR-Fc-

nLG3 represents a novel form of full-length Agrin.

We are planning further studies to investigate reporter genes that are up- or down-regu-

lated after administration of our compounds as the first step toward entangling the putative

interferences among these multiple pathways. In parallel, to confirm the pivotal role of NMJs

in improving endurance, we plan to investigate if the same increment of enduring motor per-

formance can also be observed in aged mice, where weakening and fragmentation of the NMJ

is known to occur [38].

Supporting information

S1 Dataset. Raw data of in vivo and ex vivo experiments.

(PDF)

S1 Fig. Assessment of the molecular weight of the synthesized compounds. SDS-PAGE

results for mouse (A) and human (B) derivatives, stained with Coomassie Blue. (C)

Table showing the calculated volume (μl) for each human and mouse derivatives, to load 1μg

Fig 7. Illustration of the NMJ (A, left panel) and the effects caused on it by ActR-Fc-nLG3 (A, right panel).

Schematic drawing of a presynaptic motor nerve terminal. ACh vesicles fuse with the terminal membrane releasing the

neurotransmitter in the synaptic cleft which subsequently binds to the ACh receptor. (A, right panel) Postsynaptic

changes potentially induced by ActR-Fc-nLG3 include enfolded junctional folds of the motor endplate amplifying the

surface area for ACh receptors. (B) Schematic illustration of the hypothetical mechanism of action of ActR-Fc-nLG3.

A schematic drawing of an ActR-Fc-nLG3 molecule is given in B (insert). The agrin-Lrp4-MuSK complex is

considered essential for the formation and maintenance of the NMJ. ActR-Fc-nLG3 probably binds with its neural

LG3 component to Lrp4 potentially activating the phosphorylation of muscle-specific tyrosine kinase receptor.

ActR-Fc-nLG3 could also lead to myostatin inhibition within the synaptic cleft.

https://doi.org/10.1371/journal.pone.0228653.g007
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of each compound on the SDS-polyacrylamide gel.

(TIF)

S2 Fig. Preliminary observations after dosing of (m)ActR-Fc-nLG3. (A) Throughout the

dosing period of 5 weeks, the body weight of (m)ActR-Fc-nLG3 animals moderately increased

compared to PBS-mice; (B) similarly, the muscle weight was slightly affected by the treatment

(only the triceps show a significant MW increased compared to control animals; Student’s

unpaired t-test, �P<0.05).

(TIF)
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