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SUMMARY

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units 

affecting sensitivity to cytarabine, the mainstay of treatment for AML, we developed a 

comprehensive and integrated genome wide platform based on a Dual protein-coding and 

noncoding Integrated CRISPRa Screening (DICaS). Putative resistance genes were initially 

identified using pharmacogenetic data from 517 human pan-cancer cell lines. Subsequently, 

genome scale functional characterization of both coding and lncRNA genes by CRISPR activation 

was performed. For lncRNA functional assessment we developed a CRISPR activation of lncRNA 

(CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified 

novel cell cycle regulation, survival/apoptosis, and cancer signaling genes. Furthermore, 

transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to 

hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers, including 

AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and 

non-coding pathways of therapeutic relevance.

INTRODUCTION

Although precision medicine and targeted therapies offer new hope for treating cancer, 

chemotherapy still remains the first, and last, line of defense for most patients. Cytarabine 

(1-p- d-arabinofuranosylcytosine, Ara-C) is a deoxycytidine analogue that is used as part of 

a standard chemotherapeutic regimen for the treatment of AML (Ramos et al., 2015). 

However, approximately 30% to 50% of patients relapse with chemotherapy-resistant 

disease. Thus, there is an ever-present need to better understand the genetic and molecular 

mechanisms that contribute to chemotherapy resistance.

To date, studies on mechanisms leading to therapy resistance have focused on proteincoding 

genes, yet cancer development and progression cannot be fully explained by the coding 

genome (Huarte, 2015; Imielinski et al., 2012). The recent explosion in research and 

understanding related to the non-coding RNA (ncRNA) transcriptome has highlighted the 

importance of ncRNAs in biology (Hon et al., 2017; Iyer et al., 2015). Functional validation 

of various ncRNA species highlights the fact that these RNAs may play important roles in 

the pathogenesis of diseases including cancer (Schmitt and Chang, 2016).

One large group of ncRNAs is represented by long non-coding RNAs (lncRNA). LncRNAs 

can be either nuclear or cytoplasmic in localization and play roles in a diverse array of 

biological processes. As many nuclear lncRNAs behave in a cis-acting manner (Quinn and 

Chang, 2016), their study requires their expression from endogenous loci, and CRISPR 
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technologies now facilitate the modulation of gene expression directly from the endogenous 

promoter (Joung et al., 2017a; Konermann et al., 2014). This approach has already been 

compellingly demonstrated using CRISPR interference (CRISPRi) to silence the expression 

of lncRNAs genome-wide (Liu et al., 2017).

Although we now have a wealth of high-throughput data delineating expression of coding 

and non-coding genes across hundreds of cancer cell lines (Barretina et al., 2012; Garnett et 

al., 2012), there remains a critical lack of integrated high-throughput functional 

characterization and validation of these data in a disease context. We therefore sought to 

develop an integrative and comprehensive CRISPR activation (CRISPRa) framework that 

would complement these publicly available ‘Big Data’ databases to enable the discovery of 

functional human protein coding and lncRNA genes contributing to chemotherapy 

resistance. In doing so, we developed a dual coding and non-coding Integrated CRISPRa 

Screening (DICaS) platform and applied this integrative approach to identify genetic units 

and pathways that promote resistance to Ara-C treatment.

RESULTS

Pan-Cancer Cell Line Analysis of IncRNAs Affecting Drug Response

In order to comprehensively define resistance mechanisms to chemotherapy, we chose to 

examine cellular responses to Ara-C. We developed a computational strategy to identify 

genes that correlate with sensitivity or resistance to Ara-C by correlating pharmacological 

profiles from the Cancer Target Discovery and Development (CTD2) database (Basu et al., 

2013; Rees et al., 2016) with the transcriptomes of 760 corresponding cell lines from the 

Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) (Figure S1A). To identify 

high confidence gene targets it is imperative to integrate analysis of as many cell lines as 

possible (Rees et al., 2016); however, we found that the cell line drug sensitivities formed a 

skewed distribution (Figure S1B), likely conferred by tissue of origin and histological 

subtype. Indeed, cancer cell type annotations explained a substantial amount of the variation 

in drug sensitivities (adjusted R2 = 0.5123, ANOVA p < 2.2e-16) (Figure S1A), which were 

subsequently corrected (Figure S1C). Thus, using a linear regression model to remove these 

effects we established a normalized distribution of Ara-C sensitivity for the 760 cell lines 

analyzed (Figure 1A).

We subsequently performed a correlation analysis between drug sensitivities and gene 

expression levels across the 760 cell lines (Figure 1B, Table S1) and determined appropriate 

Z-score thresholds (Figure S1D-S1E). Interestingly, genes involved in the metabolism of 

Ara-C were highly enriched, illustrating the applicability of such an approach to identifying 

chemotherapy resistance mechanisms. Low expression of deoxycytidine kinase (DCK) and 

equilibrative nucleoside transporter 1 (ENT1) correlated with increased resistance to Ara-C 

(Z = −2.51 and −1.61, respectively), whereas high expression of cytidine deaminase (CDA) 

and SAM Domain and HD Domain 1 (SAMHD1) correlated with increased resistance 

(Herold et al., 2017; Schneider et al., 2016) (Z = 2.54 and 2.03, respectively) (Figure 1B). 

Interestingly, we also observed a number of cell-cycle and DNA damage regulators 

previously implicated in modulation of AraC sensitivity (Figure 1B).
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To define biological pathways predictive of Ara-C resistance we performed gene set 

enrichment analysis (GSEA) on the drug sensitivity-gene expression correlations using 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations (Figure 1C and 

Table S3)(Kanehisa et al., 2014; Subramanian et al., 2005). We identified positive 

enrichment of cell survival signaling pathways, including the Jak-STAT (NES = 1.385, p = 

0.013), PI3K-Akt (NES = 1.232, p = 0.025), and MAPK (NES = 1.222, p = 0.042) pathways 

and negative enrichment of the pyrimidine metabolic pathway (NES = −2.456, p = 0.00016), 

mechanisms related to DNA damage (e.g. p53 signaling pathway: NES = −2.293, p = 

0.00016) and RNA regulatory mechanisms (e.g. RNA degradation: NES = −2.613, p = 

1.6e-4) (Figure 1C-1D and Figure S1F). To confirm their relevance in human AML, we 

correlated pre-treatment AML transcriptome profiles with corresponding disease-free 

survival data from 121 patients treated with Ara-C from The Cancer Genome Atlas (TCGA) 

(Cancer Genome Atlas Research Network, 2013) and identified a large number of enriched 

pathways shared with our cell line predictions, including oxidative phosphorylation (NES = 

−1.994, p = 1.1e-4) and RNA regulatory mechanisms (e.g., RNA degradation: NES = 

−1.702, p = 0.0011) (Figure S1G-S1H).

As many non-coding genes act in a proximal and localized manner (Schmitt and Chang, 

2016), we evaluated coding and non-coding cognate gene pairs for correlation with either 

resistance or sensitivity to Ara-C and compiled a genome wide set of 997 coding/con-coding 

sense/antisense gene pairs. Indeed, we observed a significant positive correlation between 

sense-antisense gene expression levels across the cell line panel (Pearson correlation, 

median R = 0.5312; Wilcoxon rank-sum test, p < 2.2e-16) (Figure 1E). Furthermore, 

cognate gene pairs demonstrated significant positive correlation in drug sensitivity (Pearson 

correlation, R = 0.5636, p < 2.2e-16) (Figure 1F). Importantly, analysis of these same 

cognate gene pairs among the TCGA AML patient cohort identified a similarly significant 

positive correlation (Figure S2A-S2C). Interestingly, cognate sense genes were found to be 

positively enriched in PI3K-Akt (NES = 1.426, p = 0.0764) and MAPK signaling pathways 

(NES = 1.787, p = 0.0040) (Figure S2D), implicating these sense-antisense gene pairs in a 

number of the previously identified enriched pathways.

A CRISPRa approach to study AML resistance to Ara-C

To functionally validate our predictive analysis in a high-throughput manner we established 

a CRISPRa-based system in AML cell lines to provide a comprehensive and integrative 

genomewide study of both the coding and non-coding genes contributing to Ara-C 

resistance.

We identified the MOLM14 AML cell line to be the most appropriate model for our 

screening, as its IC50 (~0.13^M) ranks it amongst the most sensitive AML cell lines (Yang 

et al., 2013) (Figure 2A). Overexpression of the anti-apoptotic B-cell lymphoma 2 (BCL2) 
gene increased the IC50 of MOLM14 for Ara-C, while shRNA-mediated knockdown of 

DCK provided an even more significant protection, increasing its IC50 almost 300-fold 

(Figure 2B), confirming that sensitivity to Ara-C can be readily manipulated.

We also tested synergistic activation mediator (SAM) mediated CRISPRa (Konermann et al., 

2014) in MOLM14 cells as compared with two additional leukemia cell lines, K562 and 
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HL60, and the previously validated HEK293T. Using a panel of validated sgRNAs targeting 

the promoters of both coding (TTN, RHOXF, ASCL1, HBG1) and non-coding (MIAT, 
TUNA) genes (Chavez et al., 2015, 2016), we established that the majority of sgRNAs gave 

the highest activation in MOLM14 among the leukemia cell lines (Figure S3A).

Genome wide CRISPRa Screening of Protein-Coding Genes in AML

We next applied our CRISPRa platform to screen for protein-coding genes using a genome 

wide sgRNA library (Konermann et al., 2014) (Figure 2C). For library screening cells were 

treated for 14 days with 0.25 pM Ara-C, and cell viability monitored over the treatment 

period (Figure S3B). Following treatment sgRNA abundances were quantified and analyzed 

for quality control (Figure S3C-S3E). Transcript-level representation between T0 and T14 

identified a host of genes enriched and depleted in Ara-C treated cells (Figure 2D and 

Figure S3F). Interestingly, both the correlation analysis and our forward genetic screen 

revealed DCK to be the most significantly depleted gene, thereby indicating that strong 

transcriptional activation of DCK by CRISPRa confers high sensitivity to Ara-C (Figure 1B 
and 2D). Indeed, this was confirmed by overexpressing the top-scoring DCK targeting 

sgRNA (Figure S3G). Furthermore, multiple genes suspected to modulate sensitivity to 

Ara-C were also identified (Table S4).

Gene set enrichment analysis identified a number of pathways congruent with our cell line 

analysis (Figure 2E and Table S3). Importantly, we identified a large overlap of 2,411 genes 

significantly enriched/depleted in both our cell line and protein-coding CRISPRa screening 

(Figure S3H). We subsequently validated a subset of these genes, including ZBP1, MUL1 
and PI4K2A, whose expression was associated with poor prognosis and decreased disease-

free survival (Figure 2F). Cells expressing the relevant sgRNAs demonstrated increased 

survival upon treatment with Ara-C (Figure 2G and Figure S3I), and a decrease in 

apoptosis (Figure 2H and Figure S3J), thereby validating our findings. Importantly, the 

proliferative capacity of cells was not affected by the overexpression of these sgRNAs 

(Figure 2I).

Functional Genome Wide Screening of IncRNAs in AML

To study the functional roles of IncRNA genes in Ara-C resistance, we designed an sgRNA 

library using a comprehensive set of 14,701 lncRNA genes, covering all major 

classifications of lncRNAs (Figure 3A and Table S5). We designed at least 4 sgRNAs per 

lncRNA, accounting for 22,253 transcriptional start sites (TSSs), covering multiple TSSs per 

individual lncRNA. This resulted in a library with 88,444 targeting guides (Figure 3A). We 

termed this CRISPRa SAM- mediated approach "CRISPR activation of lncRNA” (CaLR).

To test our library, we picked sgRNAs targeting the TUNA lncRNA gene (n=4 sgRNAs) 

(Figure S4A) and two alternative TSSs for the MIAT lncRNA gene (MIAT-01, n=5 sgRNAs, 

MIAT-06, n=4 sgRNAs), and we confirmed activation of each TSS using at least two 

sgRNAs (see Figure S3A, and Figure S4A-S4B). An additional set of randomized sgRNAs 

was also tested on HEK293T and MOLM14, revealing that the majority of sgRNAs 

demonstrated transcriptional activation in at least one of these cell lines (Figure S4D). Next, 
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we carried out screening using our CaLR library similar to that for the protein-coding library 

above.

After quantifying sgRNA abundance, library preparations were analyzed as above for 

potential technical bias (Figure S4E-S4G). In order to estimate the false positive rate within 

our non-coding RNA screening, we included 99 non-targeting sgRNAs (Figure 3A). These 

99 nontargeting sgRNAs behaved as expected (Figure S4G) and were utilized to determine 

an appropriate FDR cut-off to control for the false positive rate (Figure S4H). Interestingly, 

several cancer-associated lncRNA genes were identified among enriched sgRNAs, including 

Taurine Up-Regulated 1 (TUG1), HOXA Transcript Antisense RNA, Myeloid-Specific 1 

(HOTAIRM1) and Plasmacytoma variant translocation 1 (PVT1) (Figure 3B, Figure S4I, 

and Table S6).

Interestingly, expression analysis of lncRNAs and coding genes from the TCGA AML 

patient cohort revealed that enriched lncRNAs from our screen tended to be both detected at 

a higher rate (p = 6.92e-3) and expressed more highly than depleted lncRNAs (p = 5.4e-7), 

whereas a similar pattern was not observed among the enriched/depleted protein-coding 

mRNAs (Figure 3C-3D).

Furthermore, guilt by association analysis of the enriched lncRNAs identified two distinct 

gene set networks: (1) oxidative phosphorylation and fatty acid metabolism and (2) leukemia 

development and progression (Figure S4J). Enrichment of these pathways in the first 

network is reflective of the role of the mitochondria in regulating nucleotide metabolism, 

while specific pathways enriched in the latter network include leukemia associated pro-

survival pathways (e.g. Interferon response, IL6/JAK/STAT3 signaling, TNFa/NF«B 

signaling) (Steelman et al., 2004) (Stavropoulou et al., 2016).

We compiled a short list of novel annotated lncRNAs to characterize further, which were 

significantly enriched in both our functional screening and our cell line analysis (Figure 
3B). Coexpression analysis to associate individual lncRNA transcript levels with their most 

highly correlated protein coding genes from our CCLE cell line panel identified many of the 

pathways uncovered in our global analysis, suggesting that these lncRNAs play roles in 

survival pathways know to affect leukemia and drug resistance (Figure 3E and Table S3).

Validation of Top lncRNA Candidates

To validate the findings from our screening experimentally, we chose eleven genes 

significantly enriched and two genes significantly depleted in our screening for further 

characterization (Figure 3B and 3E). Of these 13 genes selected from our screening, 10 

were also found to be candidate genes predicted to influence Ara-C response in our cell line 

analysis. The enriched sgRNAs resulted in a significant protection over control cells, while 

the two depleted genes resulted in decreased viability in response to Ara-C (Figure 4A). 

Indeed, we confirmed increased lncRNA expression across the different sgRNAs examined 

(Figure 4B). To further characterize the ability of induced lncRNA expression to resist Ara-

C cytotoxicity, we treated cells expressing the relevant sgRNAs with Ara-C (Figure 4C and 

Figure S5A-S5B). Expression of each enriched sgRNA resulted in decreased Ara-C 
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sensitivity (Figure 4C and Figure S5A), correlating with the protective effect observed in 

Figure 4A, while the depleted lncRNA genes also behaved as expected (Figure S5B).

To address how these lncRNAs may be promoting cell viability, we examined lncRNA 

ability to promote either increased proliferation or increased survival. Out of our candidate 

lncRNAs, only three appeared to promote proliferation in the absence of Ara-C 

(AL353148.1, LINC02426; AL157688.1) (Figure 4D and Figure S5C-S5D), suggesting 

that their enrichment might be facilitated by increased proliferation. On the other hand, 

while all sgRNAs were able to promote increased survival to some extent (Figure 4E, 
Figure S5E), both AC012150.1 and GAS6-AS2 demonstrated a significant ability to 

attenuate apoptosis (Figure 4E, right panel). These results were further confirmed in an 

independent HL-60 hematopoietic cell line (Figure S5F-S5H).

Given that Ara-C promotes extensive genotoxic stress we tested if our IncRNAs may affect 

the DNA damage response (DDR). Indeed, we found that the lncRNA AL353148.1 affected 

DDR response following Ara-C treatment (Figure 4F).

For two of our candidate lncRNAs (GAS6-AS2 and AC008073.2), not only were they 

identified as candidates in both our cell line analysis and functional CaLR screening, but 

higher expression levels of these lncRNA genes were also associated with poor prognosis 

and decreased disease-free survival in AML patients treated with Ara-C (Figure 4G).

Taken together these data reify our screening process as a platform to identify clinically 

relevant lncRNAs that may modulate Ara-C cytotoxicity through targeting a number of 

cellular processes.

lncRNA GAS6-AS2 Regulates the GAS/AXL Signaling Axis

We next integrated our computational analysis with both the coding and non-coding 

functional screens. Statistical analysis demonstrated significant enrichment of 7 sense-

antisense gene pairs (Chi-Squared Test, p < 2.2e-16) (Figure 5A and Figure S2B). Of the 7 

cognate pairs identified, GAS6/GAS6-AS2 appeared to be one of the best candidate pairs for 

further analysis as both were highly enriched, GAS6 is already known to play an important 

role in drug resistance in cancer, including AML (Figure S6A), while the role and function 

of GAS6-AS2 remains unknown.

To confirm the on-target effect of our CRISPRa sgRNA, we overexpressed 8 different 

GAS6-AS2-targeting sgRNAs (Figure S6B). As expected, the majority of these sgRNAs led 

to a significant increase in cell survival (Figure 5B). Importantly, we found a strong 

correlation between the levels of GAS6-AS2 activation and the resistance to Ara-C, 

indicating a dose dependent specific effect of GAS6-AS2 (Figure 5B and 5C). Similarly, 

expression of the strong inducer sgRNAs #1 and #3 promoted decreased sensitivity to Ara-C 

(Figure 5C and 5D) and a potent ability to reduce apoptosis (Figure 5E). Thus, the GAS6-
AS2 lncRNA appears to be a bona fide promoter of Ara-C resistance.

AML is known to develop as a multi-clonal disease, and resistant clones are frequently 

observed in early stages of the disease. The selective pressure of treatment leads to rapid 
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clonal evolution and the emergence of resistant clones. Indeed, following Ara-C treatment of 

a mixed population of two MOLM14 cells, one expressing high GAS6-AS2 (labeled with 

red florescent protein) and the other expressing a non-targeting sgRNA (labeled with blue 

florescent protein), the GAS6-AS2 expressing clone emerged as dominant and was 

significantly enriched post-treatment (Figure 5F). These results were also confirmed in vivo 
as outlined in Figure 5G, with NSG mice engrafted with equal numbers of GAS6-AS2 

overexpressing and control MOLM14 cells. Analysis of the bone marrow found significant 

enrichment (p = 0.002) of the GAS6-AS2-Red cells (Red/Blue cells=10.9±6.4) (Figure 
5H-5I, and Figure S6D-S6E). Importantly, within a non-treated cohort, both populations of 

cells were present in an equal ratio, demonstrating that GAS6-AS2 did not exert a 

proliferative advantage (Figure 5H and 5I). Furthermore, mice transplanted with GAS6-

AS2 overexpressing cells alone had a greater tumor burden post-Ara-C treatment as 

compared with control cells (Figure S6F).

Several lncRNAs have been shown to exert their functional role by cis-regulation of 

neighboring genes (Rinn and Chang, 2012), and this is further supported by our genome 

wide analysis of sense-antisense cognate gene pairs (Figure 1E-1F and Figure 5A). As 

GAS6-AS2 lies in an antisense head-to-head manner with GAS6 (Figure S6G), we 

hypothesized that the GAS6/GAS6-AS2 cognate gene pair may function in this manner. 

Importantly, GAS6-AS2 displayed nuclear (and cytoplasmic) localization (Figure S6H), 

suggesting that it may have the potential to regulate the GAS6 locus. GAS6 is an important 

ligand for the TYRO3-AXL-MER2K (TAM) receptor tyrosine kinase signaling axis, 

controlling known pro-survival signals in AML (Wu et al., 2017). Indeed, upregulation of 

GAS6/TAM signaling strongly correlates with resistance to chemotherapy and is a predictor 

of poor survival (Hong et al., 2008). In line with our hypothesis, GAS6 expression levels 

were found to be strongly correlated with GAS6-AS2 expression upon CRISPRa modulation 

(Figure 6A). In addition, we also observed a striking correlation between these cognate gene 

pairs across the diverse 760 CCLE cell line panel (Pearson’s R = 0.8762, p < 2.2e-16) 

(Figure 6B), as well as for a diverse set of primary human cancer types including AML 

(Figure 6C and Figure S7A).

Activation of the GAS6/TAM pathway has been reported to promote MAPK, JAK/STAT, 

and NFkB signaling (Schoumacher and Burbridge, 2017), with both MEK-ERK and S6K-

RPS6 signaling axes being known downstream targets of TAM signaling (Xu et al., 2017). 

Western blot analysis of lysates from cells expressing three distinct GAS6-AS2 targeting 

sgRNAs confirmed activation of the GAS6/TAM pathway (Figure 6D). Importantly, both 

pERK and pRPS6 were strongly phosphorylated in response to GAS6-AS2 activation 

(Figure 6D).

Surprisingly in a variety of cancer subtypes, including AML, GAS6-AS2 expression levels 

share strong correlations not only with GAS6 but also to its target receptor AXL (Figure 6E 
and S6B). AXL correlation was also mirrored in our 760 CCLE cell line panel (Pearson’s R 

= 0.6064, p < 2.2e-16) (Figure 6F) and by overexpression of GAS6-AS2 in both MOLM14 

and HEK293 cells in vitro (Figure S7C). These data suggested that GAS6-AS2 may be able 

to regulate the TAM receptor signaling axis at a number of levels.
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To further investigate the role of GAS6-AS2 in regulating GAS6 and AXL, we took 

advantage of the K562 leukemia cell line, which we found to express high levels of GAS6-

AS2, GAS6, and AXL relative to MOLM14 (Figure 6G) and which we demonstrate to be 

highly resistant to Ara-C treatment (Figure 6G). Interestingly, knockdown of GAS6-AS2 

using two specific locked nucleic acid (LNA)-enhanced anti-sense oligonucleotides (ASOs) 

led to a significant decrease in both GAS6 and AXL mRNA levels (Figure 7A and Figure 
S7I-S7J) as well as an increased sensitivity of K562 cells to the activity of Ara-C (Figure 
6B).

Previous studies found that AXL transcription is regulated by methylation of CpGs upstream 

of its TSS (Mudduluru and Allgayer, 2008). Direct methylation analysis using a bisulfite 

assay identified 6 highly methylated sites in the AXL promoter. Correspondingly, GAS6-

AS2 overexpressing cells show significant decreases in methylation of these CpG sites 

(Figure 7C), suggesting that GAS6-AS has the potential to act in both a cis- and trans-acting 

manner.

To characterize the global function of GAS6-AS2 in cancer we performed an unbiased K- 

means clustering based on coding and non-coding gene expression across 53 AML patients 

(Garzon et al., 2014) (Figure S7D). A large number of genes known to be regulated by 

promoter methylation were clustered together with GAS6-AS2 (Figure 7D), supporting our 

hypothesis that GAS-AS2 mediates CpG modification.

Based on these results, we hypothesized that GAS6-AS2 trans-activity may function through 

a DNA methyltransferase. An unbiased screening of our CCLE panel for candidate DNA 

methyltransferases that would correlate with Ara-C sensitivity identified decreased 

expression of DNMT1 and DNMT3A (Figure 7E). Importantly, we observed GAS6-AS2 to 

be significantly enriched in RNAs bound to DNMT1 using a DNMT1 RNA-IP sequencing 

(RIP-Seq) dataset (Figure 7F) (Di Ruscio et al., 2013). This suggests that GAS6-AS2 

mediates trans-regulation of AXL by coordinating activity of DNMT proteins at the AXL 
promoter.

Thus, our data support a model whereby increased transcription and expression of GAS6- 
AS2 promotes upregulation of both the GAS6 ligand and its TAM receptors to promote 

cellular survival and resistance to Ara-C treatment in AML (Figure 7G).

DISCUSSION

Although thousands of IncRNAs have now been detected and annotated in the human 

genome, the need to characterize their functions remains a critical challenge. Here, we 

developed a global approach to integrate computational analysis of cell line 

pharmacogenomic data sets with functional CRISPRa screens targeting coding and 

noncoding genes. This approach aimed to uncover integrated mechanisms regulating normal 

cellular homeostasis and disease and was applied to identifying functional lncRNAs 

modulating the cytotoxic effect of Ara-C, a front-line chemotherapy agent frequently used in 

the treatment of AML patients.
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Because lncRNAs are poorly annotated, we developed a bioinformatic framework to 

facilitate the prioritization of candidate genes by their functional and physiological 

relevance. Using pharmacogenomic and transcriptomic data, we obtained a list of coding 

and non-coding genes whose expression levels are associated with cellular response to Ara-

C. Our list identified many of the coding genes and pathways previously shown to regulate 

the response to Ara-C treatment. In addition, not only did this analysis reveal a large number 

of lncRNAs to influence response to Ara-C, but it also implicated a pattern of cis-regulation 

by lncRNAs on their adjacent cognate coding genes. Thus, this analysis provides us with a 

unique resource that can both deliver a wealth of novel predictive biomarkers for response to 

therapy and prioritize functionally relevant genes identified through functional screening.

For our purposes, functional screening was carried out with CRISPRa based technologies 

using both an established protein-coding sgRNA library (Konermann et al., 2014) and a new 

genome wide non-coding sgRNA (CaLR) library. In adapting the CRISPRa technology, we 

found that appropriate cell models and optimization are critical. For our new CaLR library 

we chose to generate sgRNAs targeting lncRNA genes that are well annotated. This in turn 

enabled extensive promoter coverage upstream of TSSs and targeting of multiple TSSs for 

individual lncRNA genes. In addition, this screening approach offers the advantage of 

driving lncRNA overexpression from the endogenous genomic locus, enabling us to capture 

c/s-acting and nuclear lncRNA functions, which cannot be readily studied by traditional 

overexpression approaches (Shechner et al., 2015). It should be noted however, that as some 

genes harbor other small noncoding RNAs including microRNAs and snoRNAs within 

intronic regions, driving expression from the endogenous promoter may also result in their 

expression.

Indeed, our novel CaLR approach identified lncRNAs that facilitate resistance to Ara-C 

treatment. These data demonstrate that many lncRNA genes are functionally relevant for 

cancer and modulate distinct cellular programs. Integrating coding and noncoding screening 

approaches also allows us to categorize lncRNA genes by function, and although we have 

applied these libraries to the identification of novel genes involved in chemotherapeutic 

resistance, this platform alone can be applied to the functionalization of lncRNAs across a 

wide range of biological questions.

Thus, complete integration of computational cell line analysis, coding/non-coding CRISPRa 

screens, and patient outcome data resulted in the discovery of a distinct set of 7 cognate 

sense- antisense gene pairs. Of these seven pairs, we pursued the GAS6/GAS6-AS2 cognate 

gene pair as drivers of resistance to Ara-C in AML. We found that GAS6-AS2 functions 

through cis- regulation of its adjacent cognate gene, coding for the GAS6 ligand, as well as 

the transregulation of its receptor AXL to drive aberrant downstream signaling of this 

pathway.

While each of these approaches as individual modules (computational and screening) has 

been shown to be useful to identify genes regulating specific cellular processes, each harbors 

inherent limitations and bias requiring extensive validation of hits. However, our integrated 

approach described here serves as a more powerful framework for the screening and 

discovery of protein-coding and non-coding networks regulating biological processes, 
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thereby providing a resource to facilitate improvements towards the annotation and 

functionalization of non-coding RNAs at large. Our analysis suggests that there are a 

substantial number of coding and noncoding genes that at a minimum serve as predictive 

biomarkers that correlate with differential Ara-C responses and may serve as therapeutic 

targets for the tuning of Ara-C response through modulation of their expression levels. 

Indeed, this approach may facilitate the identification of novel high confidence and clinically 

relevant therapeutic opportunities across a broad spectrum of human diseases.
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Figure 1. Identification of Protein-Coding and Noncoding Gene Biomarkers Correlated with 
Differential Ara-C Response
(A) Distribution of Ara-C drug sensitivities across 760 pan-cancer cell lines profiled by both 

CCLE and CTD2 studies, quantified by their Z-scaled area under the dose response curve 

values after regressing out lineage-specific effects. See also Table S1.

(B) Distribution of Z-scaled drug resistance-gene expression Pearson correlation values of 

all analyzed genes. Representative protein-coding and non-coding gene symbols enriched 

beyond a Z-score threshold of ± 1.16 are demarcated. See also Table S1.

(C) Summary of gene set enrichment analysis (GSEA) of protein-coding genes ranked by 

drug resistance-gene expression correlation values using annotated KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways. See also Table S3.

(D) Representative KEGG pathways from GSEA of protein-coding genes ranked by drug 

sensitivity-gene expression correlation values as shown in Figures 1B–1C. See also Table 
S3.
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(E) Pearson correlation distributions of gene pair expression levels in the cancer cell line 

panel across 997 sense-antisense cognate gene pairs and 5,000 random protein coding- 

lncRNA gene pairs. Wilcoxon rank-sum test: p < 2.2e-16.

(F) Relationship of drug sensitivity-gene expression correlation values between protein 

coding-lncRNA gene pairs across 997 sense-antisense cognate gene pairs (left panel: 

Pearson’s R = 0.552, p < 2.2e-16) and 5,000 random gene pairs (right panel: Pearson’s R = 

0.021, p = 0.1338).
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Figure 2. CRISPRa Functional Screening of Coding Genes Modulating Ara-C Response
(A) Distribution of Ara-C IC50 values across a panel of AML cell lines.

(B) Effect of BCL2 overexpression (Blue) or DCK knockdown on sensitivity to Ara-C in 

MOLM14 cells. Data are represented as mean ± SD, n = 3.

(C) Schematic of CRISPRa pooled screening for the identification of genes whose activation 

modulate sensitivity to Ara-C in MOLM14 cells.

(D) Volcano plot summarizing the global changes in sgRNA representation of protein-

coding genes before and after 14 days of treatment with Ara-C. A subset of genes validated 
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herein (red text) or previously annotated (black text) to modulate Ara-C sensitivity are 

labeled. A false discovery rate threshold of 0.339 was determined by receiver operating 

characteristic analysis (Figure S3F). Red - enrichment in the CRISPRa screening; blue 

depletion in the CRISPRa screening; open black circles - genes previously associated with 

differential Ara-C sensitivity and above the significance threshold; filled black points genes 

validated herein. See also Figure S3C-F, S3H, and Table S4.

(E) Summary of gene set enrichment analysis (GSEA) of protein-coding genes ranked by 

CRISPRa screening using annotated KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways. See Table S3.

(F) Disease-free survival association with expression levels of ZBP1, MUL1, and PI4K2A, 

genes enriched in both protein-coding CRISPRa screening and drug sensitivity-gene 

expression correlation analyses among patients treated with Ara-C therapy within the 

TCGA-LAML patient cohort. ZBP1: VST expression level cutoff = 6.13 (low, n = 42; high, 

n = 79), log-rank test: p-value = 0.0074. MUL1: VST expression level cutoff = 9.64 (low, n 

= 108; high, n = 13), log-rank test: p-value = 0.0033. PI4K2A: VST expression level cutoff 

= 7.23 (low, 36; high, n = 85), log-rank test: p-value = 0.038.

(G) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs targeting ZBP1, 

MUL1, or PI4K2A based on normalized MTS reads following 48 hours of treatment. Data 

are represented as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, 

p<0.001

(H) Modulation of apoptotic response upon stable expression of sgRNAs targeting ZBP1, 

MUL1, or PI4K2A in MOLM14 cells. The percentage of apoptosis is determined by annexin 

V and propidium iodide (PI) staining of cells treated with 0.25 pM Ara-C for 72 hours. Data 

are represented as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, 

p < 0.001

(I) Proliferation of unchallenged MOLM14 cells expressing sgRNAs targeting ZBP1, 

MUL1, or PI4K2A. Proliferation is quantified over four days (D1-D4). Data are represented 

as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 0.001
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Figure 3. CRISPRa Functional Screening of Noncoding Genes Modulating Ara-C Response
(A) Left panel: summary of the CaLR library design specifications, including lncRNA gene 

numbers, transcriptional start sites (TSS), and total sgRNA numbers. Right panel: 

relationships between coding genes and lncRNA genes for corresponding lncRNA 

classifications. See also Table S5.

(B) Volcano plot summarizing the global changes in sgRNA representation of noncoding 

genes before and after 14 days of treatment with Ara-C. A subset of genes either validated 

herein to modulate Ara-C sensitivity (red text) or previously annotated in various cancer-

related pathways (black text) are labeled. A false discovery rate threshold of 3.51e-5 was 

determined by analysis of nontargeting sgRNA negative controls at the transcript level 

(Figure S4H). Red points - enrichment in the CRISPRa screening; blue points - depletion in 
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the CRISPRa screening; filled black points - genes validated herein. See also Figure S4E-I 
and Table S6.

(C) Percentages of significantly enriched or depleted protein-coding or noncoding genes 

from CRISPRa screens detected in the TCGA-LAML patient samples. Chi-squared test: 

***, p = 6.92e-3,

(D) Gene expression level distributions of significantly enriched or depleted protein-coding 

or noncoding genes from CRISPRa screens detected in the TCGA-LAML patient samples. 

Wilcoxon rank-sum test: ***, p = 5.4e-7.

(E) Guilt-by-association pathway annotation of enriched genes identified in the CaLR 

screen. KEGG pathway gene sets were used for this analysis.
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Figure 4. Validation of CaLR Screening Results
(A) Fold change (FC) of MOLM14 cell viability treated with 0.25 pM Ara-C for 48 hours. 

Data are represented as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 

0.01,***, p < 0.001.

(B) Fold change (FC) of expression levels of targeted lncRNAs upon overexpression of 

enriched sgRNAs versus endogenous levels. Data are represented as mean ± SD, n = 3.

(C) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs targeting indicating 

genes based on normalized MTS reads following 48 hours of treatment with the indicated 
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concentrations of Ara-C. Data are represented as mean ± SD, n = 3, Welch two sample t-test: 

*, p < 0.05. **, p < 0.01, ***, p < 0.001

(D) Proliferation of unchallenged MOLM14 cells expressing sgRNAs targeting indicating 

genes. Proliferation is quantified over four days (D1-D4). Data are represented as mean ± 

SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 0.001.

(E) Left panel: modulation of apoptotic response upon stable expression of sgRNAs 

targeting a panel of significantly enriched sgRNAs as determined through CaLR screening in 

MOLM14 cells. The percentage of apoptosis is determined by annexin V and propidium 

iodide (PI) staining of MOLM14 cells stably infected with individual sgRNAs and treated 

with 0.25 pM Ara-C for 72 hours. Data are represented as mean ± SD, n = 3. Welch two 

sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 0.001. Right panel: representative flow 

cytometry plots of annexin V/PI staining intensities corresponding to two sgRNAs 

promoting survival versus nontargeting control.

(F) Immunofluroscence images (left panel) for DAPI and phospho-YH2A.X staining in 

MOLM14 cells stably infected with sgRNAs targeting the lncRNA genes shown, and treated 

with 25 pM Ara-C for 24 hours. Staining is quantified in the right panel. Data are 

represented as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 

0.001.

(G) Disease-free survival association with expression levels of GAS6-AS2 and AC008073.2, 

genes enriched in both noncoding CRISPRa screening and drug resistance-gene expression 

correlation analyses among patients treated with Ara-C therapy within the TCGA-LAML 

patient cohort. GAS6-AS2: VST expression level cutoff = 3.38 (low, n = 92; high, n = 29), 

log-rank test: p-value = 0.035. AC008073.2: VST expression level cutoff = 4.39 (low, n = 

93; high, n = 28), log-rank test: p-value = 0.0026.
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Figure 5. GAS6-AS2 Promotes Drug Resistance In Vitro and In Vivo
(A) Integration of drug resistance-gene expression correlative analysis and forward genetic 

screenings identifies seven sense-antisense gene pairs which pass all significance thresholds, 

a higher number than expected by chance alone (Chi-squared test: p = 9.85e-7).

(B) Fold change (FC) of MOLM14 cell viability treated with 0.25 pM Ara-C for 48 hours. 

Cells expressing individual sgRNAs targeting GAS6-AS2. Data are represented as mean ± 

SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 0.001.
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(C) Pearson correlation between cell viability versus GAS6-AS2 expression level for each of 

the 8 sgRNAs targeting GAS6-AS2.
(D) Ara-C efficacy measurements in MOLM14 cells expressing sgRNAs #1 and #3 targeting 

GAS6-AS2 based on normalized MTS reads following 48 hours of treatment. Data are 

represented as mean ± SD, n = 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 

0.001.

(E) Left panel: representative flow cytometry data of MOLM14 cells expressing either 

control or GAS6-AS2-targeting sgRNAs, treated with 25 pM Ara-C for 24 hours and labeled 

with viability (propidium iodide (PI)) and apoptotic (annexin V) markers. Right panel 

percentage of apoptosis determined from quantification of staining results. Data are 

represented as mean ± SD, n > 3, Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 

0.001.

(F) Competition assay between populations of MOLM14 control-Blue and MOLM14 

GAS6- AS2-Red following 25 pM Ara-C treatment. Left panels: representative flow 

cytometry plots. Right panel: ratios between red and blue cells over time. Data are 

represented as mean ± SD, n > 3. Welch two sample t-test: *, p < 0.05. **, p < 0.01, ***, p < 

0.001.

(G) Schematic of an orthotopic xenograft competition assay between control (blue) and 

GAS6-AS2 (Red) MOLM14 cells with Ara-C treatment.

(H) Ratios of control (blue) versus GAS6-AS2 (Red) MOLM14 cells from bone marrow of 

mice treated and analyzed at day 17 as outlined in Figure 5G.

(I) Representative flow cytometry results of cells harvested from mouse bone marrow 17 

days following transplantation and treatment with vehicle or Ara-C for 5 days.
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Figure 6. GAS6-AS2 Activates GAS6/TAM Signaling
(A) Pearson correlation between GAS6-AS2 and GAS6 expression levels following GAS6- 

AS2 activation. Data are represented as mean of triplicate measurements.

(B) Pearson correlation between GAS6-AS2 and GAS6 expression levels across the 760 

cancer cell lines analyzed (Figure 1A-B).

(C) Pearson correlation between GAS6-AS2 and GAS6 expression levels in AML patient 

samples.
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(D) Western blot analysis of differential GAS6/TAM signaling activation in response to 

individual control or GAS6-AS2 sgRNA overexpression.

(E) Pearson correlation between GAS6-AS2 and AXL expression levels in AML patient 

samples.

(F) Pearson correlation between GAS6-AS2 and AXL expression levels across the 760 

cancer cell lines analyzed (Figure 1A-B).

(G) Expression levels of GAS6-AS2, GAS6, and AXL in MOLM14 and K562 cell lines.

(H) Ara-C efficacy measurements in MOLM14 and K562 cell lines, based on normalized 

MTS reads following 48 hours of treatment with the indicated concentrations of Ara-C. Data 

are represented as mean ± SD, n = 3.
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Figure 7. GAS6-AS2 Demonstrates Trans-Regulation of AXL
(A) Fold change (FC) of GAS6-AS2, GAS6, and AXL in response to GAS6-AS2 

knockdown via ASO in K562 cells. Data are represented as mean ± SD, n = 3. Welch two 

sample t- test: *, p < 0.05. **, p < 0.01, ***, p < 0.001.

(B) Modulation of Ara-C response upon GAS6-AS2 knockdown via ASO in K562 cells. 

Data are represented as mean ± SD, n = 3, Welch two sample t-test: *, p < 0.05. **, p < 

0.01,***, p < 0.001.
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(C) Methylation of CpG islands in the HEK293T AXL promoter following modulation of 

GAS6-AS2 expression. n = 12, Chi-square test: *, p < 0.05. **, p < 0.01, ***, p < 0.001.

(D) Gene ontology analysis of coding genes clustered with GAS6-AS2 as determined by k- 

means clustering (cluster #6 in Figure S7D).

(E) Drug sensitivity-gene expression Pearson correlation values of DNA methyltransferases. 

Genes enriched beyond a Z-score threshold of ± 1.16 are colored in red. See also Figure 1B.

(F) Distribution of FPKM-normalized transcript abundances associated with DNMT1 versus 

IgG.

(G) Model summarizing the mechanism by which GAS6-AS2 regulates GAS6/TAM 

signaling.

Bester et al. Page 28

Cell. Author manuscript; available in PMC 2019 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	INTRODUCTION
	RESULTS
	Pan-Cancer Cell Line Analysis of IncRNAs Affecting Drug Response
	A CRISPRa approach to study AML resistance to Ara-C
	Genome wide CRISPRa Screening of Protein-Coding Genes in AML
	Functional Genome Wide Screening of IncRNAs in AML
	Validation of Top lncRNA Candidates
	lncRNA GAS6-AS2 Regulates the GAS/AXL Signaling Axis

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

