
This is the author’s final version of the contribution published as:

R. Cavoretto, A. De Rossi, F. Dell’Accio and F. Di Tommaso. An Effi-

cient Trivariate Algorithm for Tetrahedral Shepard Interpolation. Journal of
Scientific Computing, 82, 57, 2020, DOI: 10.1007/s10915-020-01159-3.

The publisher’s version is available at:

[https://doi.org/10.1007/s10915-020-01159-3]

When citing, please refer to the published version.

Link to this full text:

[http://hdl.handle.net/2318/1730717]

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302363932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Efficient Trivariate Algorithm for Tetrahedral

Shepard Interpolation

R. Cavoretto · A. De Rossi ·

F. Dell’Accio · F. Di Tommaso

Abstract In this paper we present a trivariate algorithm for fast computation of
tetrahedral Shepard interpolants. Though the tetrahedral Shepard method achieves
an approximation order better than classical Shepard formulas, it requires to de-
tect suitable configurations of tetrahedra whose vertices are given by the set of
data points. In doing that, we propose the use of a fast searching procedure based
on the partitioning of domain and nodes in cubic blocks. This allows us to find
the nearest neighbor points associated with each ball that need to be used in the
3D interpolation scheme. Numerical experiments show good performance of our
interpolation algorithm.

Keywords scattered data interpolation · tetrahedral Shepard operator · fast
algorithms · approximation algorithms

Mathematics Subject Classification (2000) 65D05 · 65D15 · 41A05

1 Introduction

Suppose that discrete values of a function f are given at certain data points or
nodes Xn = {x1, . . . ,xn} in a compact convex domain Ω ⊂ R

2. If the data points
are scattered, that is they have not any structure, the triangular Shepard method
[14] can be applied efficiently [6] to approximate and interpolate the target function
f : Ω → R. This scheme has been introduced by Little in 1983 in light of some

R. Cavoretto · A. De Rossi
Department of Mathematics “Giuseppe Peano”, University of Torino, via Carlo Alberto 10,
10123 Torino, Italy
Tel.: +39 0116702830 and +39 0116702837
Fax: +39 0116702878
E-mail: roberto.cavoretto@unito.it, alessandra.derossi@unito.it

F. Dell’Accio · F. Di Tommaso
Department of Mathematics and Computer Science, University of Calabria, via P. Bucci, Cubo
30A, 87036 Rende (CS), Italy
Tel.: +39 0984 496490 and +39 0984 496493
Fax: +39 0984 496484
E-mail: francesco.dellaccio@unical.it, ditommaso@mat.unical.it

2 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

drawbacks of the more known Shepard method (see [16] for the original paper or
[8] to get acquainted with some strategies to overcome them) and uses the same
idea of combining in a convex way some values obtainable from the data f(xi).

More precisely, the Shepard method is a simple and fast scheme for interpolat-
ing scattered data in R

d that combines weighted inverse distance functions with
function values f(xi), but reproduces only constant polynomials and has flat spots
or cusps in the neighbourhood of all data points. The triangular Shepard method
is a scheme for interpolating scattered data in R

2 that surpasses the Shepard’s
method greatly in esthetic behavior and provides an interpolant with linear pre-
cision without derivative data [14]. However it is more complex than the Shepard
method and presupposes an appropriate triangulation of the node set. In fact, it
combines basis functions which are the normalization of the product of the inverse
distances from the vertices of each triangle with linear combinations of the values
f(xi) at the vertices of those triangles. Each linear combination is chosen in or-
der to interpolate these data and therefore it has a simple expression in terms of
barycentric coordinates and is numerically stable within the triangle, where the
influence of the basis element is greater. The requirement of a triangulation of the
node set Xn ⊂ R

2, e.g. a Delaunay triangulation, is a disadvantage with respect to
the original Shepard method [16], but recent researches have demonstrated that
the triangulation can be organized in an efficient way by reducing by 1/3 the
number of triangles [10]. We are talking about the so called compact triangulation
which allows the triangles to overlap or be disjoint. These triangulations are de-
termined by minimizing the bound of the error of the linear interpolant on the
vertices of the triangle, chosen in a set of nearby nodes. For such kind of triangu-
lations the block-based partitioning structure procedure introduced in [7] can be
easily applied to make the method very fast [6].

The need of scattered data interpolation methods in the multivariate frame-
work and, in particular, in the trivariate case, motivates the generalization of the
triangular Shepard method to the tetrahedral one. In analogy with the 2D case,
the 3D operator is a linear combination of basis functions based on the vertices of
tetrahedra with Lagrange linear interpolants on these vertices as coefficients. In
order to well define this operator, a set of tetrahedra whose vertices cover Xn ⊂ R

3

is needed. This can be determined by standard routines for constructing a 3D De-
launay triangulation, which could be very expensive in general situations, since it
could require a computation cost of O(n2) [12]. However, by adapting the strat-
egy used in [10], we can produce 3D compact triangulations and reduce until to
O(n log n) the computational cost in case of general configurations of nodes.

A very important point in the implementation of local high-dimensional inter-
polants, as the tetrahedral Shepard method, is the construction of fast partitioning
and searching routines, which allow us to efficiently organize the set of data points.
This request derives from the need of detecting suitable configurations of tetrahe-
dra whose vertices are given by the interpolation nodes. It is therefore important
for each point to find the nearest neighbors so as to efficiently compute the tetrahe-
dral Shepard interpolant. In the current literature, the most advanced techniques
suited for this purpose are known as kd-trees (see [2,11]). In this paper, we propose
the use of a fast searching procedure based on the partitioning of the domain and
of its interpolation points in cubic blocks. Acting in this way, by recursively calling
a sorting routine, we can partition and arrange all the nodes in the different cube-
shaped blocks. Then, once the data points are stored in such blocks, an optimized

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 3

searching technique is applied to detect the nearest neighbor points, thus enabling
us to carry out a suitable choice of tetrahedra for 3D interpolation. Similar tech-
niques were also studied in [7,4,5] in the context of partition of unity methods
combined with the use of local radial basis functions, and suitably adapted to 2D
interpolation via triangular Shepard interpolants [6]. Note that in this work we
present the tetrahedral Shepard method and the related theoretical results for a
generic domain Ω ⊂ R

3. However, for our purposes and for the sake of clarity, we
restrict our attention to the unit cube domain Ω = [0, 1]3 ⊂ R

3 when we describe
the algorithms and discuss our numerical results.

The paper is organized as follows. In Section 2 we present the tetrahedral
Shepard method for trivariate interpolation, giving a bound for the error and
analyzing the convergence. Section 3 is devoted to describe our efficient procedures
used to identify and search the nearest neighbor points in the 3D interpolation
scheme. Besides that, a complexity analysis is also provided. In Section 4 we give
a pseudo-code of the complete interpolation algorithm. In Section 5 we propose
a series of numerical experiments to show the performance of our tetrahedral
Shepard algorithm. Finally, Section 6 deals with conclusions and future work.

2 Trivariate Interpolation on Tetrahedra

2.1 Tetrahedral Shepard Method

Let Xn = {x1, . . . ,xn} be a set of data points or nodes of R3 with an associated
set of function data Fn = {f1, . . . , fn} and T = {t1, . . . , tm} be a set of tetrahedra
with vertices in Xn. Let us denote by Vj = {xj1 ,xj2 ,xj3 ,xj4} the set of vertices
of tj , j = 1, . . . ,m and let us assume that the set {Vj}j=1,...,m constitutes a cover
of Xn, that is

m
⋃

j=1

Vj = Xn.

To each tetrahedra tj we can associate the set of barycentric coordinates of a point
x ∈ R

3, that is

λj,j1 (x) =
V (x,xj2 ,xj3 ,xj4)

V (xj1 ,xj2 ,xj3 ,xj4)
, λj,j2 (x) =

V (xj1 ,x,xj3 ,xj4)

V (xj1 ,xj2 ,xj3 ,xj4)
,

λj,j3 (x) =
V (xj1 ,xj2 ,x,xj4)

V (xj1 ,xj2 ,xj3 ,xj4)
, λj,j4 (x) =

V (xj1 ,xj2 ,xj3 ,x)

V (xj1 ,xj2 ,xj3 ,xj4)
,

where V (x,y, v, z) is 6 times the signed volume of the tetrahedra of vertices
x,y, v, z. The linear polynomial Lj(x), which interpolates the data at the ver-
tices of the tetrahedra tj , has a very simple expression in terms of barycentric
coordinates

Lj (x) =

4
∑

k=1

λj,jk (x) fjk , j = 1, . . . ,m. (1)

4 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

The tetrahedral basis functions are a normalization of the product of the inverse
distances from the vertices of the tetrahedra tj

Bµ,j (x) =

4
∏

ℓ=1

‖x− xjℓ‖−µ
2

m
∑

k=1

4
∏

ℓ=1

‖x− xkℓ
‖−µ
2

, j = 1, . . . ,m, µ > 0. (2)

and the tetrahedral Shepard method is defined by

Tµ [f] (x) =

m
∑

j=1

Bµ,j (x)Lj (x) . (3)

Here ‖ · ‖2 denotes the Euclidean distance in R
3. Similarly to the triangular Shep-

ard basis functions, the tetrahedral ones form a partition of unity and allow the
interpolation of functional and derivative values. Below we formalize these state-
ments without proofs which can be easily obtained in analogy with [10, Proposition
2.1].

Proposition 1 The tetrahedral basis function Bµ,j(x) and its gradient (that exists
for µ > 1) vanish at all nodes xi ∈ Xn that are not a vertex of the corresponding
tetrahedron tj. That is,

Bµ,j(xi) = 0, (4)

∇Bµ,j(xi) = 0, µ > 1, (5)

for any j = 1, . . . ,m and i /∈ {j1, j2, j3, j4}. Moreover, they form a partition of
unity, that is

m
∑

j=1

Bµ,j(x) = 1 (6)

and consequently, for each i = 1, . . . , n,

∑

j∈Ji

Bµ,j(xi) = 1, (7)

∑

j∈Ji

∇Bµ,j(xi) = 0, µ > 1, (8)

where Ji =
{

k ∈ {1, . . . ,m} : i ∈ {k1, k2, k3, k4}
}

is the set of tetrahedra which
have xi as a vertex.

Above properties imply that the operator Tµ satisfies the following ones.

Proposition 2 The operator Tµ is an interpolation operator, that is,

Tµ[f](xi) = fi, i = 1, . . . , n,

and reproduces polynomials of degree less than or equal to 1.

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 5

Proof If xi is a vertex of tetrahedron tj (i.e., i ∈ {j1, j2, j3, j4}), then Lj(xi) = fi
by (1), otherwise Bµ,j(xi) = 0 by Proposition 1. Using (7) we then have

Tµ[f](xi) =

m
∑

j=1

Bµ,j(xi)Lj(xi) =
∑

j∈Ji

Bµ,j(xi)fi = fi.

The basis functions Bµ,j are a partition of unity and the polynomials Lj(x), for
j = 1, . . . ,m, reproduce linear polynomials. As a consequence the operator Tµ

reproduces linear polynomials.
✷

2.2 Bound for the Error and Analysis of Convergence

The procedure to select the compact 3D-triangulation (by tetrahedra) of the node
set Xn strongly affects the results of the analysis of the convergence of the operator
Tµ [f] (x) which is the object of this section.

In order to determine the approximation order of the tetrahedral operator, we
denote by Ω ⊂ R

3 a compact convex domain containing Xn and by C1,1(Ω) the
class of differentiable functions f : Ω → R whose partial derivative of order 1 are
Lipschitz-continuous, equipped with the seminorm

‖f‖1,1 = sup

{ |Dνf(u)−Dνf(v)|
‖u− v‖2

: u, v ∈ Ω,u 6= v, ‖ν‖2 = 1

}

, (9)

where | · | denotes the absolute value of the argument. We also denote by ejk,jℓ =
xjk − xjℓ , with ℓ, k = 1, 2, 3, 4, the edge vectors of the tetrahedron tj . Then, the
following result holds.

Proposition 3 Let f ∈ C1,1(Ω) and tj ∈ T a tetrahedron of vertices xj1 , xj2 ,
xj3 , xj4 . Then, for all x ∈ Ω we have

|f (x)− Lj (x)| ≤ ||f ||1,1
(

3 ||x− xj1 ||22 +
27

2
Cjhj ||x− xj1 ||2

)

, (10)

where hj = max
k,ℓ=1,2,3,4

‖ejk,jℓ‖2 and Cj is a constant which depends only on the

shape of the tetrahedron tj.

Proof Let us expand f (xjk), k = 2, 3, 4, by the second order Taylor polynomial
at xj1 with integral remainder

f (xjk) = f (xj1) +∇f (xj1) · (xjk − xj1)

+ ‖xjk − xj1‖22
∫ 1

0

∂2f (xj1 + t (xjk − xj1))

∂ν2
jk

(1− t) dt, (11)

where ∂2

∂ν2

jk

, k = 2, 3, 4, is the second order directional derivatives along the unit

vectors νjk =
xjk

−xj1

‖xjk
−xj1

‖
2

, k = 2, 3, 4. Substituting (11) in (1) we get

Lj (x) = f (xj1) +
4
∑

k=2

λj,jk (x)∇f (xj1) · (xjk − xj1)

+
4
∑

k=2

λj,jk (x) ‖xjk − xj1‖22
∫ 1

0

∂2f (xj1 + t (xjk − xj1))

∂ν2
jk

(1− t) dt

6 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

and then
Lj (x) = T [f,xj1] (x) + δj (x) ,

where

T1 [f,xj1] (x) = f (xj1) +
4
∑

k=2

λj,jk (x)∇f (xj1) · (xjk − xj1)

is the first order Taylor polynomial of f at xj1 and

δj (x) =
4

∑

k=2

λj,jk (x) ‖xjk − xj1‖22
∫ 1

0

∂2f (xj1 + t (xjk − xj1))

∂ν2
jk

(1− t) dt.

By the triangle inequality we have

|f (x)− Lj (x)| ≤ |f (x)− T1 [f,xj1] (x)|+ |δj (x)|

,where we bound the remainder term in Taylor expansion in a standard way

|f (x)− T1 [f,xj1] (x)| ≤ 3 ||f ||1,1 ||x− xj1 ||22
and, to bound the term |δj (x)|, we recall that

|λj,ji (x)| ≤
h2
j

|V (xj1 ,xj2 ,xj3 ,xj4)|
||x− xj1 ||2 , i = 2, 3, 4.

Then, by setting

Cj =
h3
j

|V (xj1 ,xj2 ,xj3 ,xj4)|
(12)

we have

|δj (x)| ≤ 27

2
||f ||1,1 Cjhj ||x− xj1 ||2 .

Now we prove that the constant Cj depends only on the shape of tj . To this aim
we recall the Cayley-Menger formula [17] for the computation of the volume of tj

V (xj1 ,xj2 ,xj3 ,xj4)
2 =

1

288

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1

1 0 ‖ej1,j2‖22 ‖ej1,j3‖22 ‖ej1,j4‖22
1 ‖ej2,j1‖22 0 ‖ej2,j3‖22 ‖ej2,j4‖22
1 ‖ej3,j1‖22 ‖ej3,j2‖22 0 ‖ej3,j4‖22
1 ‖ej4,j1‖22 ‖ej4,j2‖22 ‖e2j4,j3‖2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and, since ‖ejk,jℓ‖2 = αjk,jℓhj with αjk,jℓ ∈ R, it follows that

V (xj1 ,xj2 ,xj3 ,xj4)
2 =

= h6
j

[

1

144

(

α2
j1,j2 + α2

j1,j3 + α2
j1,j4 + α2

j2,j3 + α2
j2,j4 + α2

j3,j4

)

×

×
(

α2
j1,j2α

2
j3,j4 + α2

j1,j3α
2
j2,j4 + α2

j1,j4α
2
j2,j3

)

+

− 1

72
α2
j1,j2α

2
j3,j4

(

α2
j1,j2 + α2

j3,j4

)

− 1

72
α2
j1,j3α

2
j2,j4

(

α2
j1,j3 + α2

j2,j4

)

+

− 1

72
α2
j1,j4α

2
j2,j3

(

α2
j1,j4 + α2

j2,j3

)

− 144
(

α2
j1,j2α

2
j1,j3α

2
j2,j3−

+α2
j1,j2α

2
j1,j4α

2
j2,j4 + α2

j1,j3α
2
j1,j4α

2
j3,j4 + α2

j2,j3α
2
j2,j4α

2
j3,j4

)

]

.

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 7

As a consequence
V (xj1 ,xj2 ,xj3 ,xj4) = αjh

3
j ,

where

αj =

[

1

144

(

α2
j1,j2 + α2

j1,j3 + α2
j1,j4 + α2

j2,j3 + α2
j2,j4 + α2

j3,j4

)

(

α2
j1,j2α

2
j3,j4 + α2

j1,j3α
2
j2,j4 + α2

j1,j4α
2
j2,j3

)

+

− 1

72
α2
j1,j2α

2
j3,j4

(

α2
j1,j2 + α2

j3,j4

)

− 1

72
α2
j1,j3α

2
j2,j4

(

α2
j1,j3 + α2

j2,j4

)

− 1

72
α2
j1,j4α

2
j2,j3

(

α2
j1,j4 + α2

j2,j3

)

− 144
(

α2
j1,j2α

2
j1,j3α

2
j2,j3+

α2
j1,j2α

2
j1,j4α

2
j2,j4 + α2

j1,j3α
2
j1,j4α

2
j3,j4 + α2

j2,j3α
2
j2,j4α

2
j3,j4

)

]1/2

,

and this proves that the constant Cj in (12) is independent from hj .
✷

To determine the approximation order of the operator Tµ [f] we need some addi-
tional notations and definitions. Let ||·||∞ be the maximum norm and Br (y) =
{

x ∈ R
3 : ||x− y||∞ ≤ r

}

be the closed cube of center y and radius r. With V (t)
we denote the set of vertices of the tetrahedron t and we define

h′ = inf {r > 0 : ∀x ∈ Ω∃t ∈ T : Br (x) ∩ V (t) 6= ∅} , (13)

h′′ = inf {r > 0 : ∀t ∈ T∃x ∈ Ω : t ⊂ Br (x)} (14)

and
h = max

{

h′, h′′} . (15)

Finally, we set
M = sup

x∈Ω
♯ {t ∈ T : Bh (x) ∩ V (t) 6= ∅} , (16)

where ♯ denotes the cardinality operator. M is the maximum number of tetrahedra
with at least a vertex in some cube with edge length 2h.

Theorem 1 Let Ω be a compact convex domain which contains Xn, f ∈ C1,1 (Ω)
and µ > 5/4. Then

|f (x)− Tµ [f] (x)| ≤ CM ||f ||1,1 h
2 (17)

for any x ∈ Ω, with C a positive constant which depends on T and µ and M
defined in (16).

Proof The proof follows by Proposition 3 and by [9, Theorem 3.1] by setting s = 3,
p = 1 and σ = 4.

✷

In order to implement the tetrahedral Shepard method (3) we need to identify
a 3D-triangulation of the node set Xn. The right hand side of the bound (17)
suggests to use triangulations with a smaller number of – as regular as possible –
small tetrahedra (see equations (15), (16) and (12)). In analogy with the case of the
triangular Shepard method, the 3D-triangulation can be organized in an efficient
way by allowing tetrahedra to overlap or be disjoint. In the following section we
describe in details a fast algorithm to detect and select subsets of nearby nodes,
among them we select the vertices of the tetrahedra.

8 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

3 Fast Algorithms for Detection and Search of Points

In this section we present the algorithms that are used to implement our tetrahe-
dral Shepard method (3). The latter requires indeed to find suitable configurations
of tetrahedra (whose vertices are given by the data points), which allow us to lo-
cally reduce the bound of the error in (10) for the local linear interpolants in (1).
It is therefore important to efficiently determine the nearest neighbor points as-
sociated with each node because this guarantees to reduce the local error, then
enabling us to compute the related tetrahedral basis functions in (2). For this rea-
son, we need to use a fast searching technique for the computation of the nearest
neighbor points, which in our case is based on two previous stages consisting in par-
titioning and localizing the interpolation nodes. More precisely, these algorithms
consist of three stages and briefly can be sketched as follows:

– Stage 1: for each interpolation point we define a ball centred at that point,
which is used for the localization of the nearest neighbor points;

– Stage 2: we construct a partitioning structure that partition the domain and
the interpolation points in cube-shape blocks;

– Stage 3: combining the two previous phases, we can quickly find the nearest
neighbor points by examining only a limited number of cubic blocks.

Similar computational procedures were first introduced to efficiently solve in-
terpolation and differential problems in the context of radial basis function par-
tition of unity methods [7,4,5], and then suitably modified for classical and tri-
angular Shepard-type methods defined on plane, sphere and other manifolds [1,
6]. Although such fast algorithms can be applied to 2D and 3D generic domains,
for the sake of brevity and clarity, here we describe our localizing and searching
techniques focusing on the unit cube, that is the domain Ω = [0, 1]3 ⊂ R

3.

3.1 Description of the Algorithms

Stage 1: localization phase. We define a ball of radius

δ =

√
3

d
,

where

d =

⌊

(n

8

)1/3
⌋

, (18)

and each ball is centred at a data point belonging to Ω. We remark that the larger
(smaller) the value of d is, the finer (coarser) the structure is. The value (18) is
suitably chosen extending the definition contained in [7].

Stage 2: partitioning phase. To find the closest points that belong to the
different balls and then apply our tetrahedral interpolation method, we construct
a structure based on a partition of the domain Ω in cube-shaped blocks. Such
technique leads to an effective searching procedure which turns out to be quite
efficient from a computational point of view. To be more precise, this structure

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 9

allows us to partition the domain Ω with b3 cubic blocks, where b denotes the
number of blocks along one side of the unit cube defined by

b =

⌈

1

δ

⌉

.

From this assumption we get the side of each cubic block is equal to the ball
radius. This choice enables us to examine in the searching procedure only a small
number of blocks, so as to importantly reduce the computational cost as compared
to the most advanced searching techniques, as for instance the kd-trees [2,18]. This
benefit is indeed proved by the fact that our searching process is carried out in
constant time, i.e. O(1). Further, in this partitioning phase we number the cube-
shaped blocks from 1 to b3. As a consequence, by repeatedly using a quicksort
routine, we can split the set Xn in the b3 cubic blocks, so that we can easily
construct the subsets Xnk

, k = 1, . . . , b3, where Xnk
contains the points belonging

to twenty-seven blocks: the k-th block and its twenty-six neighboring blocks. In
such framework, we are able to obtain a fast searching procedure to detect the
interpolation points nearest to each of nodes. In Figure 1 we show an example
of domain partitioning in cube-shaped blocks along with a set of scattered data
points.

Fig. 1: Example of 3D block-based partitioning structure with a set of interpolation
nodes (blue dots) contained in Ω = [0, 1]3 ⊂ R

3.

Stage 3: searching phase. After arranging the interpolation points in the
b3 cubic blocks, we need to answer the following two queries, known respectively
as containing query and range search, i.e.

a) given a point that belongs to the domain Ω, return the k-th cubic block con-
taining that point;

10 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

b) given a set Xn of points and a ball, determine all points included in that ball.

Thus, given a data point in the ball, solving the containing query problems
consists in finding the index of the k-th cubic block containing such point. As a
result, denoted rispectively by ki, i = 1, 2, 3, the index associated with the xi-axis,
we can detect the k-th block by means of the following rule:

k = (k1 − 1) b2 + (k2 − 1) b+ k3.

After answering the query a), for each given ball the searching procedure en-
ables us to find all interpolation points lying in the balls, and so we also reply
to the query b). Then, among all points belonging to each ball, in the definition
of the tetrahedral Shepard method – and specifically in the selection of suitable
configurations of tetrahedra – we only consider the nw nearest neighbor points. In
particular, assuming that the node ball belongs to the k-th cubic block, the search
routine examines all data points lying in the k-th block and in its twenty-six neigh-
boring blocks. Obviously, if a block lies on the boundary of the cubic domain Ω,
the partitioning structure and the search process allows us to further reduce the
number of neighboring blocks that need to be examined.

3.2 Computational Complexity

The localization phase described in Stage 1 is basically a sort of data pre-processing
that is not involved in computational cost. As a result, we focus our attention on
Stage 2 where we partition the n interpolation points in cube-shaped blocks. In
the assessment of the total complexity we should also take into account the cost
associated with the storing of the evaluation points. However, for simplicity and
brevity, we here refer to the interpolation data points only.

As illustrated in Stage 2, the partitioning structure in b3 cubic blocks is based
on the use of a quicksort routine, i.e. recursive calls to the Matlab sortrows.m

routine. It has O(n log n) time complexity and requires O(log n) space, n being
the number of points that need to be sorted. This approach enables us to partition
the unit cube Ω, organizing the points in a block-based structure. Therefore, we
can estimate that the cost of the second phase is given by O (2n log n+ 6n).

Finally, as regards the search technique of Stage 3 we need to apply again
a quicksort routine to sort distances of points within each ball. Since the data
point distribution is supposed to be quite uniform (and so it is in the twenty-seven
neighboring cube-shaped blocks), we can estimate the complexity of this search
phase is O(1).

4 Trivariate Interpolation Algorithm

In this section we describe in a pseudo-code the interpolation algorithm, which
performs the tetrahedral Shepard method (3) using the block-based partitioning
structure and the related searching procedure. Here, for shortness, the presentation
is carried out by assuming that the domain Ω = [0, 1]3 ⊂ R

3. It is however possible
to extend the algorithm to generic domain as in [7].

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 11

INPUTS: n, number of data;Xn = {x1, . . . ,xn}, set of data points; Fn = {f1, . . . , fn},
set of data values; ne, number of evaluation points; Zne

= {z1, . . . , zne
}, set of

evaluation points; nw, number of nearest neighbor points for the selection of suit-
able configurations of tetrahedra.

OUTPUTS: Ene
= {Tµ[f](z1), . . . , Tµ[f](zne

)}, set of approximated values.

Step 1: For each point xi, i = 1, . . . , n, construct a ball of radius

δ =

√
3

d
, with d =

⌊

(n

8

)1/3
⌋

.

Step 2: Compute the number b of blocks (along one side of the unit cube Ω)
defined by

b =

⌈

1

δ

⌉

.

Step 3: Build the partitioning structure on the domain Ω and split the set Xn of
interpolation nodes in b3 cubic blocks.

Step 4: For each ball (or data point), solve the containing query and the range
search problems to detect all nodes Xnk

, k = 1, . . . , b3, belonging to the twenty-
seven neighboring blocks.

Step 5: For each data point xi ∈ Xn, fix the set N (xi) ⊂ Xn of the nw nearest
neighbors to xi ordered with respect to the increasing distances from xi. Set
tk, k = 1, . . . , nw(nw−1)(nw−2)

6 one of the tetrahedra with a vertex in xi and other
three vertices inN (xi) and set ti that one for which the quantity Ckhk, in equation
(12), is minimum.

Step 6: Set T = {ti}ni=1, where equal tetrahedra are identified.

Step 7: Compute the local basis function Bµ,j(z), j = 1, . . . ,m, at each evaluation
point z ∈ Zne

.

Step 8: Compute the linear interpolants Lj [f](z), j = 1, . . . ,m, at each evaluation
point z ∈ Zne

.

Step 9: Apply the tetrahedral Shepard method (3) and evaluate the trivariate
interpolant at the evaluation points z ∈ Zne

.

5 Numerical Results

In this section we illustrate the performance of our trivariate interpolation algo-
rithm, which is implemented in Matlab. All the numerical experiments have been
carried out on a laptop with an Intel(R) Core i7 6500U CPU 2.50GHz processor
and 8.00GB RAM.

In the following presentation of our results we discuss about several tests car-
ried out, which refer to solving very large interpolation problems by means of
the tetrahedral Shepard method (3). This analysis is therefore realized by tak-
ing two different distributions of irregularly distributed (or scattered) data points

12 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

contained in the unit cube Ω = [0, 1]3 ⊂ R
3, and considering a number n of inter-

polation nodes that varies from 10 000 to 80 000. More precisely, as interpolation
points we focus on a few sets of low discrepancy Halton points generated through
the Matlab function haltonset called with the setting haltonset(2,’Skip’,1),
and pseudo-random points obtained by using the randMatlab command. In addi-
tion, the interpolation errors are computed on a grid consisting of ne = 21×21×21
evaluation points, while we fix the value nw = 13 which guarantees a sufficient
number of tetrahedra for an effective choice of the triangulation T .

In the various experiments we thus analyze the performance of our interpola-
tion algorithm assuming the data values are given by the following four trivariate
test functions [15]:

f1(x1, x2, x3) =
3

4
exp

(

− (9x1 − 2)2 + (9x2 − 2)2 + (9x3 − 2)2

4

)

+
3

4
exp

(

− (9x1 + 1)2

49
− 9x2 + 1

10
− 9x3 + 1

10

)

+
1

2
exp

(

− (9x1 − 7)2 + (9x2 − 3)2 + (9x3 − 5)2

4

)

− 1

5
exp

(

−(9x1 − 4)2 − (9x2 − 7)2 − (9x3 − 5)2
)

,

f2(x1, x2, x3) =
tanh(9x3 − 9x1 − 9x2) + 1

9
,

f3(x1, x2, x3) =
1

9

√

64− 81 ((x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2)− 0.5,

f4(x1, x2, x3) =
1

1 + 50((x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2)
.

These functions are usually used in approximation schemes to test and validate
new methods and algorithms (see e.g. [3,13]).

As a measure of the quality/accuracy of our results, we compute the Maximum
Absolute Error (MAE) and the Root Mean Square Error (RMSE), whose formulas
are respectively given by

MAE = ||f − Tµ[f]||∞ = max
1≤i≤ne

|f(zi)− Tµ[f](zi)|

and

RMSE =
1√
ne

||f − Tµ[f]||2 =

√

√

√

√

1

ne

ne
∑

i=1

|f(zi)− Tµ[f](zi)|2,

where zi ∈ Zne
is an evaluation point belonging to the domain Ω.

In Tables 1–2 we report MAEs and RMSEs that decrease when the number
n of interpolation points increases. Comparing then the errors obtained by us-
ing the two data distributions, we can note that a (slightly) better accuracy is
achieved whenever we employ Halton nodes. This fact is basically due to greater
level of regularity of Halton points than pseudo-random Matlab nodes. Analyz-
ing the error behavior with the test functions f1, f2, f3 and f4, we get similar
results in terms of accuracy of the interpolation scheme, although the function f1

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 13

results in a slightly lessen precision. In order to test the quadratic approximation
order of the tetrahedral Shepard method stated in Theorem 1 we have consid-
ered a set of Halton nodes with increasing resolution. Table 3 lists the number
of interpolation points, the number of tetrahedra and the maximum edge length
hT = max{h1, h2, . . . , hm}. In this experiment the number n of nodes is chosen so
that at each step the value hT is halved.

f1 f2 f3 f4

n MAE RMSE MAE RMSE MAE RMSE MAE RMSE

10 000 6.23e-2 2.98e-3 2.18e-2 1.97e-3 1.03e-2 1.12e-3 4.14e-2 2.04e-3

20 000 3.11e-2 1.76e-3 2.17e-2 1.28e-3 4.86e-3 6.92e-4 4.87e-2 1.37e-3

40 000 2.02e-2 1.22e-3 1.92e-2 9.40e-4 2.57e-3 4.65e-4 3.71e-2 1.11e-3

80 000 9.46e-3 7.58e-4 9.13e-3 6.07e-4 1.87e-3 2.92e-4 2.85e-2 6.24e-4

Table 1: MAE and RMSE computed on Halton points.

f1 f2 f3 f4

n MAE RMSE MAE RMSE MAE RMSE MAE RMSE

10 000 6.78e-2 3.89e-3 4.51e-2 2.68e-3 1.37e-2 1.60e-3 8.34e-2 3.02e-3

20 000 3.99e-2 2.51e-3 2.07e-2 1.65e-3 8.18e-3 1.00e-3 4.20e-2 1.78e-3

40 000 3.45e-2 1.59e-3 1.75e-2 1.09e-3 5.30e-3 6.37e-4 3.81e-2 1.26e-3

80 000 1.56e-2 1.05e-3 1.10e-2 7.27e-4 2.66e-3 4.11e-4 2.51e-2 7.71e-4

Table 2: MAE and RMSE computed on pseudo-random Matlab points.

With regard to the efficiency of our trivariate algorithm in Table 4 we show
the CPU times computed in seconds, comparing the performance of our searching
procedure based on the partitioning of domain and data points in cubic blocks
(tfast) with a standard implementation of the algorithm where one computes
all the distances between the interpolation nodes (tstandard). From this study we
highlight a remarkable enhancement in terms of computational efficiency when the

n m hT

100 66 5.3968e-1
600 404 2.7502e-1
4850 3066 1.3721e-1
47007 29151 6.7123e-2
500000 290932 3.4831e-2

Table 3: The number m of tetrahedra and the maximum edge length hT for dif-
ferent sets of n Halton points.

14 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

new partitioning and searching techniques are applied. Furthermore, we observe
that the computation of errors and execution times via the standard procedure is
not allowed by Matlab for n > 30 000 points, since it is very expensive from a
computational standpoint and memory required does not turn out to be sufficient
to complete the entire process. In the tables we denote this drawback with the
symbol –. On the contrary, the tetrahedral Shepard interpolant (3) can be applied
successfully – without any particular issues and in an efficient way – when the
block-based technique is used. Then, in order to emphasize the high efficiency
of our new algorithm, we also compute the CPU time ratios between tfast and
tstandard, i.e. tfast/tstandard. Though this comparison is only possible until n =
30 000 points, these results are enough to point out a considerable saving of time
above all when the number of interpolation nodes tends to become larger and
larger.

Halton points Matlab points

n tstandard tfast tfast/tstandard tstandard tfast tfast/tstandard

10 000 40.2 27.0 0.67 42.1 27.1 0.64

20 000 317.3 54.3 0.17 320.0 55.6 0.17

30 000 877.8 103.8 0.12 902.1 102.8 0.11

40 000 – 146.4 – – 151.5 –

50 000 – 221.0 – – 233.6 –

60 000 – 322.1 – – 330.3 –

70 000 – 442.4 – – 454.2 –

80 000 – 605.0 – – 636.3 –

Table 4: Comparison of CPU times obtained by using our new fast procedures
(tfast) and the standard ones (tstandard).

Moreover, to make even clearer the obtained results concerning the efficiency,
in Figure 2 we graphically compare the CPU times obtained by using the fast
algorithm, for both Halton and pseudo-random Matlab data points. In this study
we thus report the execution times for f1 only, because the time behavior with
other test functions is similar.

Finally, in Figure 3 we show the log-log-plot of the MAE over the maximum
edge length hT for the four test functions and the set of tetrahedra given in Table
3.

6 Conclusions and Future Work

In this article we proposed a new trivariate algorithm to efficiently interpolate
irregularly distributed or scattered data points through the tetrahedral Shepard
method. Since this interpolation scheme needs to find suitable tetrahedra asso-
ciated with the nodes, we considered a fast searching procedure based on the
partitioning of domain/nodes in cube-shaped blocks. Such a technique turned out

An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation 15

0 1 2 3 4 5 6 7 8

n 10
4

-2

0

2

4

6

8

10

12

14

C
P

U
 t
im

e
 (

in
 l
o
g
a
ri
tm

ic
 s

c
a
le

)

0 1 2 3 4 5 6 7 8

n 10
4

-2

0

2

4

6

8

10

12

14

C
P

U
 t
im

e
 (

in
 l
o
g
a
ri
tm

ic
 s

c
a
le

)

Fig. 2: CPU times (in seconds) in logarithmic scale computed on Halton (left)
and pseudo-random Matlab (right) points for f1 by using the fast algorithm (the
dashed line is the logarithmic plot of n log n).

10
-1

10
0

h
T

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
A

E

f
1

f
2

f
3

f
4

Fig. 3: Log-log-plot of the approximation error MAE over the maximum edge
length hT for the four test functions and the set of tetrahedra in Table 3. As a
reference the solid line indicates a quadratic trend.

to be computationally more efficient than a standard implementation of the inter-
polation algorithm. Numerical experiments showed good performance of our pro-
cedures, which enabled us to quickly deal with a large number of points, whereas
standard routines were not able to solve the approximation problems in all con-
sidered cases.

As future work we propose to study a new triangular/tetrahedral Shepard
method, which can be applied on the sphere S

2 or other manifolds (see e.g. [1,
19]).

Acknowledgements This work was partially supported by the INdAM-GNCS 2018 research
project “Methods, algorithms and applications of multivariate approximation” and by the 2018
project “Mathematics for applications” funded by the Department of Mathematics “Giuseppe
Peano” of the University of Torino. This research has been accomplished within RITA (Re-
search ITalian network on Approximation). All the authors are members of the INdAM Re-
search group GNCS.

16 R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso

References

1. Allasia, G., Cavoretto, R., De Rossi, A.: Hermite-Birkhoff interpolation on scattered data
on the sphere and other manifolds. Appl. Math. Comput. 318, 35–50 (2018)

2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM 45, 891–923 (1998)

3. Bozzini, M., Rossini, M.: Testing methods for 3D scattered data interpolation. Monogr.
Real Acad. Ci. Exact. Fis.-Quim. Nat. Zaragoza 20, 111–135 (2002)

4. Cavoretto, R., A. De Rossi: Adaptive meshless refinement schemes for RBF-PUM collo-
cation. Appl. Math. Lett. 90, 131–138 (2019)

5. Cavoretto, R., De Rossi, A.: Error indicators and refinement strategies for solving Poisson
problems through a RBF partition of unity collocation scheme. Appl. Math. Comput.
369, 124824 (2020)

6. Cavoretto, R., De Rossi, A., Dell’Accio, F., Di Tommaso, F.: Fast computation of trian-
gular Shepard interpolants. J. Comput. Appl. Math. 354, 457–470 (2019)

7. Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity
interpolants through a block-based searching technique. Comput. Math. Appl. 71, 2568–
2584 (2016)

8. Dell’Accio, F., Di Tommaso, F.: Scattered data interpolation by Shepard’s like methods:
Classical results and recent advances. Dolomites Res. Notes Approx. 9, 32–44 (2016)

9. Dell’Accio, F., Di Tommaso, F.: Rate of convergence of multinode Shepard operators.
Dolomites Res. Notes Approx. 12, 1–6 (2019)

10. Dell’Accio, F., Di Tommaso, F., Hormann, K.: On the approximation order of triangular
Shepard interpolation. IMA J. Numer. Anal. 36, 359–379 (2016)

11. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Pub-
lishing Co., Inc., Singapore (2007)

12. Golin, M.J., Na, H.S.: On the average complexity of 3d-voronoi diagrams of
random points on convex polytopes. Computational Geometry 25(3), 197
– 231 (2003). DOI https://doi.org/10.1016/S0925-7721(02)00123-2. URL
http://www.sciencedirect.com/science/article/pii/S0925772102001232

13. Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of
large scattered data sets. J. Comput. Appl. Math. 140, 521–536 (2002)

14. Little, F.F.: Convex combination surfaces. In: R.E. Barnhill, W. Boehm (eds.) Surfaces
in Computer Aided Geometric Design, vol. 1479, pp. 99–108. North-Holland (1983)

15. Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math.
Softw. 14, 139–148 (1988)

16. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:
Proceedings of the 1968 23rd ACM National Conference, ACM ’68, pp. 517–524. ACM,
New York, NY, USA (1968)

17. Uspensky, J.V.: Theory of equations / J.V. Uspensky. McGraw-Hill New York (1948)
18. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge University Press (2005)
19. Zhang, M., Liang, X.Z.: On a Hermite interpolation on the sphere. Appl. Numer. Math.

61, 666–674 (2011)

	Introduction
	Trivariate Interpolation on Tetrahedra
	Fast Algorithms for Detection and Search of Points
	Trivariate Interpolation Algorithm
	Numerical Results
	Conclusions and Future Work

