
Optimal Skewed Allocation on Multiple Channels
for Broadcast in Smart Cities

Giorgio Audrito
Department of Computer Science,

University of Pisa, Largo B. Pontecorvo,
56100 Pisa, Italy.

Email: giorgio.audrito@gmail.com

Daniele Diodati and Cristina M. Pinotti
Department of Computer Science and Mathematics,

University of Perugia, Via Vanvitelli, 1,
06123 Perugia, Italy

Email: daniele.diodati@dmi.unipg.it, cristina.pinotti@unipg.it

Abstract—We consider the problem of allocating N uniform
data to K transmission channels so as the Average Expected
Delay (AED) is minimized. This problem arises in designing
efficient data-diffusion broadcast algorithms in a smart environ-
ment. We show that the basic dynamic programming algorithm
for solving the uniform allocation problem can be speedup up
to O(NK) time by applying an optimal algorithm to find the
row-minima of totally monotone matrices. Such a new algorithm
is always faster than the best previously known algorithm for
the uniform allocation problem that runs in O(NK logN).
Moreover, it is computationally optimal for the uniform allocation
of up to N data and K channels. We then reduce the largest
allocation problem, i.e., the subproblem with exactly N data
and K channels, to the problem of finding a minimum weight
K-link path in a particular directed acyclic graph. We also
present two heuristics and we show by extended simulations
their effectiveness in practical scenarios. Both the K-link path
algorithm and the heuristics are much faster than O(NK). We
then compare the behaviours of our algorithms on the online
version of the allocation problem in which new single items are
inserted for broadcast.

Index Terms—Data broadcast, multiple channels, average ex-
pected delay, Monge matrix, dynamic programming

I. INTRODUCTION

Data broadcast on multiple channels is a popular data
dissemination method to distribute a set of data [9], [11],
[12]. Specifically, the data broadcast system that we imagine
works as follows. Users require informations in which they
are interested to a data service. Then the users wait –either
listening to radio channels or watching to screens – until the
required info will be broadcast. The server of the data service
collects the requests and, based on their popularity, it decides
a data schedule to be broadcast (that is, it decides for each
data in which order, on which channel/screen, how frequently
it is broadcast). Broadcasting a single item, the server serve
all the users that have done the same request. The level of
satisfaction of the users will be high if the experienced waiting
time is short.

Because of its scalability and flexibility, a multiple wireless
data broadcast system is especially suitable for information of

Work supported by the Research Grant 2010N5K7EB PRIN 2010 ARS
Techno-Media (Algoritmica per le Reti Sociali Tecno-mediate) from the Italian
Ministry of University and Research.

public interest, such as weather, traffic, commercial advertise-
ments and stock quote. We can imagine to broadcast public
information shared on multiple large displays in open areas
of smart-cities. For example, malls could list the commercial
offers of the day, based on their popularities, over multiple
displays. Or, alarms, weather and traffic infos could be dis-
tributed, based on their pressure, on wireless screens or on
wireless radio channels along the highways. This algorithm
could be used to distribute flight and train schedule in airports
or stations, especially with regards to delayed trains or flights,
for which a FIFO order based on the departure time is no
longer applicable. In each of these examples, it is also quite
reasonable that the info are formatted in a regular way and
they have all the same size. In general, the radio-channel,
screen, display where data will be distributed is denoted in
this paper as channel. So, we imagine a base station or a
server will repeatedly broadcast a set of data over multiple
channels according to a predefined schedule. A client, e.g.,
an application on a smartphone or a user, will listen to
the channels until the requested data is broadcast in order
to download it. An efficient allocation schedule on multiple
wireless channels wants to minimize the Average Expected
Delay (AED), that is, the average amount of time (or energy)
that the client waits listening to the channels before receiving
the data.

In [7], the problem of minimizing the AED has been
solved assuming: i) uniform length of items, that is, every
item requires one time slot to be broadcast on any channel;
ii) skewed data allocation for channels, that is, a different
number of items is assigned to each channel; iii) flat data
scheduling for each single channel, that is, the items assigned
to each channel are repeated in a cyclic carousel.

For such a K-Uniform Allocation problem, also called the
AED problem, the best algorithm known so far was devised
in [7] and runs in O(NK logN) time. In [7], it was left as
an open problem to decide whether the time complexity of
the K-uniform allocation problem could be further improved
or not. In this work, we present new algorithms for the K-
uniform allocation problem (and for some variants of it) that
are faster than the one proposed in [7] and that can be proved
optimal for the time complexity or the quality of the solution.

The rest of this paper is so organized. Section I-A introduces

978-1-5090-0898-8/16/$31.00 ©2016 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302363743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the problem statements and gives some notations and defini-
tions. Section II reviews the currently known algorithm solving
the AED problem and presents two new algorithms for the
AED-full and the AED-single problems that run, respectively,
in O(NK) and O(N logN) time thus improving on the
previous solutions which required O(NK logN) time. Section
III presents an ε-approximate solution for the continuous
version of the AED problem that runs in O(K log2 N

ε) time
and it shows how to convert such a solution for the single-
AED (discrete) problem. The effectiveness of the converted
solution is experimentally tested on data that follow the
Zipf distribution, a benchmark distribution for the demand
probabilities [5], [13]. In Section IV, the online AED problem
is studied. Finally, conclusions are offered in Section V.

A. Problem statements

Let K be the number of wireless channels available and
N be the number of items {d1, d2, . . . , dN} to be broadcast,
with associated demand probabilities {p1, p2, . . . , pN} where
pi represents how frequently item di is requested. Each item
di, 1 ≤ i ≤ N has uniform length, that is, it requires one time
slot to be broadcast on any channel. In the following, we shall
consider the following instances of the K-uniform allocation
problem:

AED: The goal is to find the partition of the N
items into K groups G1, . . . , GK that minimizes the average
expected delay AED, which is defined as follows.

Group Gj collects the data items assigned to channel j,
with 1 ≤ j ≤ K. The cardinality of Gj is Nj . Since the items
in Gj are cyclically broadcast according to a flat schedule
and since we assume that each data item has unit length, Nj

is the schedule period of channel j. The expected delay for
receiving item di ∈ Gj is Nj

2 , that is, half of the period of
channel j because the clients can start to listen, with the same
probability, at any instant of the schedule period. Then:

AED =

N∑
i=1

Nj

2
pi =

1

2

K∑
j=1

Nj

∑
di∈Gj

pi

 (1)

Notice that the AED can be split into the sum of the
per-channel average waiting time defined as: wAED(Gj) =
Nj

2

∑
di∈Gj

pi.

Single and full versions: We shall consider the following
variations and denote them by postponing a “-single”, “-full”
suffix to the AED acronym.

single: the requirement is to solve only the largest subprob-
lem with n = N and k = K;

full: the requirement is to solve all the subproblems with
1 ≤ n ≤ N , 1 ≤ k ≤ K (a prefix of the items and
of the channels);

II. THE AED PROBLEM

The AED-full problem has been first introduced in [11] and
further developed in [7]. They prove that optimal solutions for
the AED problem have to be sought among the segmentations,

that is, the partitions that preserve the probability order,
e.g. p1 ≤ p2 . . . ≤ pN . An N -segmentation is a partition
G1, . . . , GK , such that if di ∈ Gj and dk ∈ Gj , then dh ∈ Gj

whenever i ≤ h ≤ k. That is, each group is made of
consecutive sorted items. Based on that, the cost of group
Gj

i = {i + 1, . . . , j} is w(i, j) = j−i
2

∑j
k=i+1 pk and the

AED-full problem can be solved via the following dynamic
programming for 1 ≤ k ≤ K, k ≤ n ≤ N :

opt(k, n) =

{
w(0, n) if k = 1

min
k−1≤`≤n−1

{opt(k − 1, `) + w(`, n)} if k ≥ 2

(2)

where opt(k, n) denotes the cost of the optimal solution
OPT (k, n) for the k-uniform allocation problem applied to
data items d1, . . . dn. Moreover, the final border F [k, n] of
OPT (k, n), that is, the index of the last item that belongs to
group Gk−1 of OPT (k, n), is:

F [k, n] = arg min
k−1≤`≤n−1

{opt(k − 1, `) + w(`, n)} (3)

Note that, in case of multiple indices that lead to the same
opt(k, n) value, F [k, n] is set to the minimum index.

Clearly, the cost of the K-uniform allocation problem
applied to N data items can be found in opt(K,N) and the
solution OPT (K,N) can be built backwards from the final
border F [K,N]. The dynamic programming implementation
stores in matrices M and F the optimal costs opt(k, n) and
the final borders F [k, n], respectively. The matrices M and F
are filled row-by-row for increasing values of k. The algorithm
takes overall O(N2K) time [11]. Indeed, M [k, n] = opt(k, n)
is the minimum of O(n) values, each of which can be
computed in O(1) time because w(`, n) = n−`

2 (P (n)− P (`))
where P (n) =

∑n
i=1 pi, 1 ≤ n ≤ N . The prefix sum vector

P can be computed just once in an O(N) time preprocessing
step.

Ardizzoni et al. proposed the Dichotomic algorithm, which
takes advantage from the fact that the final border of the
optimal solution moves only towards right when the set of data
items increases [7]. This implies that if the borders F [k, l] and
F [k, r] are known for some 1 ≤ l ≤ r ≤ N , then F [k, c] has to
be sought only between F [k, l] and F [k, r], for any l ≤ c ≤ r.
Thus, the recurrence in Equation 2 can be rewritten as:

opt(k, c) =

w(0, n) if k = 1

min
`∈{F [k,l]...F [k,r]}

{opt(k − 1, `) + w(`, c)} if k ≥ 2

By this property, the evaluation via dynamic programming of
the entries of M can be accelerated. Namely, for a fixed value
of k, all the values opt(k, n) in the k-th row of M can be
computed in Θ(logN) phases, filling in each phase the middle
points of the entries filled in the previous phases and just
checking overall O(N) possible borders in each phase. In this
way, the Dichotomic algorithm takes O(N logN) time to fill
one row of M and O(NK logN) to solve the K-uniform
allocation problem.

From now on, we assume that the data items are given
sorted, and thus we shall derive the time complexity of the
algorithms without taking into account the sorting step. We
remark that all the complexities previously given for algo-
rithms known in literature (O(N2K) in [11], O(NK logN)
in [7]) are also derived without taking into account the sorting
step; which is in any case needed and whose time complexity
O(N logN) is negligible with respect to the complexities of
all algorithms presented when K = Ω(logN) (except for the
heuristics which run in O(K log2 N)).
A. The new O(NK) algorithm for the AED-full problem

Definition 1: A 2 × 2 matrix
[
a b
c d

]
is concave Monge if

a+ d ≤ b+ c. An m×n matrix A is concave Monge if every
2× 2 submatrix is concave Monge. That is, for all 1 ≤ i < m
and 1 ≤ j < n,

A[i, j] +A[i+ 1, j + 1] ≤ A[i+ 1, j] +A[i, j + 1]

or, equivalently:

A[i, j + 1]−A[i, j] ≥ A[i+ 1, j + 1]−A[i+ 1, j].

Definition 2: A 2×2 matrix is monotone if the minimum of
the upper row is not to the right of the minimum of the lower

row. More formally,
[
a b
c d

]
is monotone if b < a implies that

d < c and b = a implies that d ≤ c. An m × n matrix A is
totally monotone if every 2× 2 submatrix of A is monotone.
It is well known (see [1], [4], [6]):

Fact 1: Every concave Monge matrix is totally monotone.
For a totally monotone matrix, we mention the following
important result:

Fact 2: The minimum in each row of a totally monotone
matrix of size n×m can be computed in O(n+m) time by
applying the SMAWK algorithm proposed in [1].
The rest of this section explains how to apply the SMAWK
algorithm to optimally solve the AED-full problem (a short
description of the SMAWK algorithm is given in Appendix).

Define the upper triangular single-channel cost matrix W of
size N ×N as W [i, j] = w(i, j) for 0 ≤ i < j ≤ N , where
w(i, j) = j−i

2

∑j
k=i+1 pk is defined as the cost of the group

Gj
i = {i+ 1, . . . , j}.
Lemma 1: The single-channel cost (upper triangular) matrix

W is a concave Monge matrix, for 0 ≤ ` < n < N :

w(`, n) + w(`+ 1, n+ 1) ≤ w(`, n+ 1) + w(`+ 1, n).

Proof: The simplest way to prove this result is to observe
that the column-marginal is not-increasing. In fact, for 0 ≤ ` <
n ≤ N ,

w(`, n+ 1)− w(`, n) =
n− `+ 1

2
pn+1 +

1

2

n∑
q=`+1

pq ≥

n− `

2
pn+1 +

1

2

n∑
q=`+2

pq = w(`+ 1, n+ 1)− w(`+ 1, n).

It is worthy to point out that the Monge property for the single-
channel costs holds independently of the order of the items.

If we fill the lower triangular matrix W with +∞ values,
the matrix W is totally monotone.

From now on let us denote Sk
`,n = opt(k − 1, `) +w(`, n).

Thus, Sk
`,n can be seen as a single entry of a three-dimensional

matrix S, with the first dimension k varying on the set of
channels [1, . . . ,K], the second dimension ` on the possible
positions of the final border of the group Gk−1 (i.e., k− 1 ≤
` ≤ N−1), and the third dimension n on the set of data items
[1, . . . , N].

After having fixed the first dimension of S to the value k, we
may extract from S the two dimensional matrix Sk = [Sk

`,n],
k − 1 ≤ ` ≤ N − 1, k ≤ n ≤ N . Thus, the three dimensional
S = ∪Kk=1Sk, that is, S can be decomposed into K two
dimensional matrices, one for each value of k. Accordingly
to the new notation, for k ≥ 2, we can rewrite Eqs. 2 and 3
as:

opt(k, n) = min
k−1≤`≤n−1

{Sk
`,n}; (4)

F [k, n] = arg min
k−1≤`≤n−1

{Sk
`,n} (5)

Then, opt(k, n) is the minimum in row n of Sk.
Now we prove that each matrix Sk, for 1 ≤ k ≤ K, is

totally monotone. Namely, if we add the same value opt(k −
1, `) + opt(k − 1, `+ 1) to both sides of the concave Monge
condition for the single-channel cost matrix W, we obtain the
concave Monge condition for matrix Sk:

opt(k − 1, `) + w(`, n)︸ ︷︷ ︸
Sk
`,n

+ opt(k − 1, `+ 1) + w(`+ 1, n+ 1)︸ ︷︷ ︸
Sk
`+1,n+1

≤ opt(k − 1, `) + w(`, n+ 1)︸ ︷︷ ︸
Sk
`,n+1

+ opt(k − 1, `+ 1) + w(`+ 1, n)︸ ︷︷ ︸
Sk
`+1,n

(6)

Hence, to compute the row k of the matrix M of the classical
dynamic programming algorithm, it is sufficient to apply the
SMAWK algorithm to matrix Sk. Specifically, by applying
Fact 2, it holds:

Lemma 2: Fixed any k ≥ 2, the SMAWK algorithm can
compute the values opt(k, n) for k ≤ n ≤ N in O(N) time,
if the values opt(k−1, n) for k−1 ≤ n ≤ N are known (that
is, if the row k − 1 of the matrix M is known).

Proof: To apply the SMAWK algorithm to the totally
monotone matrix Sk it is required that each entry Sk

`,n can
be computed in constant time. This trivially holds since we
assume to know opt(k − 1, n) for 1 ≤ n ≤ N and since we
have shown that each entry of the single-channel cost matrix
W can be computed in constant time.

Theorem 1: The AED-full problem can be solved in O(NK)
time by applying K − 1 times the SMAWK algorithm [1] as
illustrated in Algorithm SMAWK-AED. The complexity of such
an algorithm is optimal since it solves NK subproblems.

Clearly, the SMAWK-AED algorithm is always faster than
the Dichotomic algorithm.

Finally, observe that the SMAWK-AED algorithm can be
adapted to solve the AED-single problem. Indeed, a careful

Algorithm 1: SMAWK-AED
Input: W, N , K
Output: opt(k, n), 1 ≤ k ≤ K, 1 ≤ n ≤ N
opt(1, n) = w(0, n), 1 ≤ n ≤ N ;1

for 2 ≤ k ≤ K do2

opt(k, n) = +∞ for 1 ≤ n ≤ k − 1;3

opt(k, k), . . . , opt(k,N)← SMAWK(Sk)4

analysis of the size of the matrices involved in the K − 1
repeated applications of the SMAWK algorithm required to
compute opt(K,N) leads to the following result:

Theorem 2: For fixed K ≥ 2 and N ≥ K, AED-single can
be solved in O(K(N −K)) time by solving K − 1 instances
of the SMAWK algorithm. �
Observe that for K = θ(1) and K = N − θ(1), AED-single
can be solved in O(N) time.

In the next section we show that faster solutions can be
found for AED-single if we abandon the dynamic program-
ming technique.
B. The AED-single problem: Minimum Weight K-Link Path

In order to outperform the O(NK) time of SMAWK-
AED we shall need to drop the requirement of solving all
subproblems of allocating a prefix of the items {1, . . . , n}
to k channels with 1 ≤ n ≤ N , 1 ≤ k ≤ K, and instead
concentrate on solving only the largest subproblem with N
data items and K channels. The largest subproblem can be
considered the most meaningful in practice, but we will show
that the ad-hoc solution for the largest subproblem lacks of
flexibility and cannot be easily adapted to variants of the
original problem, like those proposed in this work.

AED-single can be reduced to the problem of finding a
minimum weight K-link path (see [2], [3], [10]) in a particular
directed Acyclic Graph (DAG) G. This problem asks to
identify a path from v0 to vN in G consisting of exactly K
edges whose cost is minimum among all such paths.

In our solution, the graph G has a vertex for each data
item di, with 1 ≤ i ≤ N , plus a dummy starting vertex v0
that marks the start. For any pair of positions ` and n such
that 0 ≤ ` ≤ N , we have an edge (v`, vn) whose cost is the
single-channel cost w(`, n).

Very efficient solutions for the problem of computing a
minimum weight K- link path have been provided in literature
(see [2], [3], [10]) whenever the DAG satisfies the concave
Monge condition. Let us borrow from [8] the survey of the
best known solutions for such a problem.

Fact 3 ([8, Thm. 1]): Given a DAG G satisfying the concave
Monge condition and whose weights are integers, and given
K ≤ N , a minimum weight K-link path in G can be computed
in O(N logU) time where U is the maximum absolute value
of the weights.
In fact, this algorithm performs a binary search for an additive
constant d to be added to every edge of G, in order to ensure
that the Single Source Shortest Path (SSSP) is made of exactly
K edges. Since adding d = −U grants that the SSSP is

made of N links, and adding d = U forces the SSSP to be
made of 1 link only, this strategy performs logU instances of
SSSP which are solved in O(N) time by applying SMAWK
algorithm.

Thus Fact 3 provides a weakly polynomial algorithm for
the problem. In fact, the demand probabilities p1, p2, . . . , pN
of data items are typically frequencies derived by observing
requests in a request-log of total length, say, L. Thus, we
can label the edges of G with integral weights by appro-
priately multiplying each of these frequencies by L. In this
way, the factor logU in the time complexity of Fact 3 is
O(logN+logL) for the AED problem. For completeness, we
notice that there exists also a solution whose time complexity
is independent on the values of the weights.

Fact 4 ([8, Thm. 2]): Given a DAG G satisfying the concave
Monge condition, and given K = Ω(logN), a minimum
weight K-link path in G can be computed in O(NKε) time
for any fixed ε.

III. CONTINUOUS ALLOCATION PROBLEM

In this section we shall consider the continuous version of
AED-single, and show that an ε-approximated solution for it
can be found in O(K log2(N/ε)) time. Such a solution can
be converted into a solution for the discrete AED-single either
directly by rounding, or by applying a “hinted” version of the
dynamic programming algorithm running in O(K log2(N))
time. Experimental tests show that this approach is effective
both in time and accuracy on practical data sets.

In the remainder of this section, we refer to the AED
function defined in Eq. 1 as the discrete AED.

Let p : [0, N] → R+ be an integrable function. Define the
continuous channel cost w(x, y) with x ≤ y as

w(x, y) =
y − x

2

∫ y

x

p(z)dz

The continuous AED-single asks to find K−1 real numbers
Fi, i = 1 . . .K − 1 such that 0 = F0 < F1 . . . < FK−1 <
FK = N and

cAED =
K∑
i=1

w(Fi−1, Fi) (7)

be minimized. We say that Fi : i ≤ K is an ε-solution if
|Fi −Gi| < ε for all i ≤ K where Gi : i ≤ K is a real
solution of continuous AED-single.

Notice that in case p is a step-function following the
sequence pi (i.e. p(x) = pbx+1c), the continuous channel
cost coincides with the discrete channel cost associated to
the sequence for all integer x, y. We could also choose p
so as to interpolate smoothly the sequence pi, for example,
the linear interpolation p(i− 1

2 + x) = (1− x)pi + xpx+1 for
x ∈ [0, 1]. However, this is not as effective as the step-function
in practice.

As in the discrete case, we are able to prove that (a
continuous version of) the concave Monge property holds for
w.

Fig. 1: AED relative error (top) and border position mean error with standard deviation added in grey (bottom) for heuristic
cont-round. All tested input cases are exactly solved by heuristic cont-dp and thus are not reported.

Lemma 3: The function w(x, y) satisfies the concave Monge
property, that is, given 0 ≤ x1 < x2 ≤ y1 < y2 ≤ N ,

w(x1, y1) + w(x2, y2) < w(x2, y1) + w(x1, y2).

Proof: We prove that

w(x1, y1)− w(x2, y1) < w(x1, y2)− w(x2, y2).

In fact,

w(x1, y)−w(x2, y) =

y − x1

2

∫ x2

x1

p(z)dz +
x2 − x1

2

∫ y

x2

p(z)dz

which is strictly increasing as y increases.
In analogy with the discrete case, we can then prove that

for any fixed K, Fi for all i ≤ K monotonically increase as
N increase. If we allow N to range over the reals, an easy
continuity argument shows that Fi increase continuously for
all i ≤ K. Furthermore, we can exploit the continuity and use

the partial derivatives w1(x, y) and w2(x, y), that is,

w1(x, y) =
∂w(x, y)

∂x

= −1

2

[
(y − x)p(x) +

∫ y

x

p(z)dz

]
w2(x, y) =

∂w(x, y)

∂y

=
1

2

[
(y − x)p(y) +

∫ y

x

p(z)dz

]
in order to find local minima of the continuous AED-single
problem.

Lemma 4: Suppose that F1, . . . FK−1 is a solution of contin-
uous AED-single, that is, an assignment that minimizes cAED.
Then for every i ≤ K − 1, w2(Fi−1, Fi) +w1(Fi, Fi+1) = 0.

Proof: Fix i ≤ K−1, and notice that the expression above
is the derivative of w(Fi−1, Fi)+w(Fi, Fi+1) with respect to
Fi. If w2(Fi−1, Fi) + w1(Fi, Fi+1) < 0, we have that

w(Fi−1, Fi+ε)+w(Fi+ε, Fi+1) < w(Fi−1, Fi)+w(Fi, Fi+1)

for small enough ε < 0. If w2(Fi−1, Fi) + w1(Fi, Fi+1) > 0,
the same holds for Fi − ε.

Lemma 5: Given x < y in [0, N], the unique z in [y,N]
such that w2(x, y) + w1(y, z) = 0 can be found by binary
search if it exists.

Proof: Notice that w2(x, y) > 0, w1(y, y) = 0 and
w1(y, z) strictly decreases continuously as z increases. Thus
if w2(x, y) + w1(y,N) > 0 there is no such z, while if
w2(x, y) + w1(y,N) < 0, such a z exists by the interme-
diate zero theorem. Since w2(x, y) + w1(y, z) is (strictly)
monotonous such a z is unique and can be found by binary
search in the interval [y,N].

Fix the first border F1 of a solution of continuous AED-
single. Then the previous lemma can be applied repeatedly
in order to determine uniquely the subsequent borders Fi for
i = 2 . . .K − 1 with any arbitrary precision ε. Furthermore,
the error can be bounded by means of the following lemma.

Algorithm 2: CONT-AED
Input: p, N , K, ε
Output: Fi, i = 0 . . .K
F0 = 0;1

a1 = 0;2

b1 = N ;3

while b1 − a1 > ε
2K do4

F1 = a1+b1
2 ;5

for 2 ≤ k ≤ K do6

ak = Fk−1;7

bk = N ;8

while bk − ak > ε
2K2 do9

Fk = ak+bk
2 ;10

if w2(Fk−2, Fk−1) + w1(Fk−1, Fk) > 0 then11

ak = Fk;12

else13

bk = Fk;14

if FK < N then15

a1 = F1;16

else17

b1 = F1;18

Lemma 6: Suppose that p is (weakly) increasing. Given F1,
G1 = F1+ ε in [0, N] let Fi, Gi for i ≤ K be the subsequent
real borders as calculated in Lemma 5. Then Gi ≤ Fi+ iε for
all i ≤ K.

Proof: The worst case scenario happens when p is
constant, since the more p is increasing the less the changes in
F1 (which regards smaller values) affects subsequent Fi’s. If
p is constant, Fi = iF1 and Gi = iG1 = i(F1 + ε) = Fi + iε.

Theorem 3: Suppose that p is (weakly) increasing. Then
an ε-solution for continuous AED-single can be found in
O(K log2(N/ε))) time by algorithm CONT-AED.

Proof: We now prove that the algorithm indeed returns
an ε-solution. Let Fi, ai, bi, i ≤ K be the borders calculated
by the algorithm, G1

i , i ≤ K be the optimal borders. Since

a1 induces a sequences of borders that terminates before N ,
and b1 after N , by continuity we know that G1

1 ∈ [a1, b1]
thus

∣∣F1 −G1
1

∣∣ ≤ ε
2K . Let now G2

i for i = 2 . . .K be the
subsequent real borders calculated from F0 = 0, F1. By
Lemma 6,

∣∣G2
i −G1

i

∣∣ ≤ iε
2K ≤

ε
2 for all i ≤ K.

Proceed by induction on k ≤ 2. For all k ≤ K define Gk
i ,

i = k . . .K as the subsequent real borders calculated from
Fk−2, Fk−1. By the cycle invariant of the binary search, we
know that Gk

k ∈ [ak, bk] hence
∣∣Fk −Gk

k

∣∣ ≤ ε
2K2 . Again by

Lemma 6, we conclude that
∣∣Gk+1

i −Gk
i

∣∣ ≤ (i−k+1)ε
2K2 ≤ ε

2K
for all i = k . . .K.

Notice that for all i, Fi = Gi+1
i . Furthermore,

∣∣Gi+1
i −G1

i

∣∣ ≤ ∣∣G2
i −G1

i

∣∣+ i∑
k=2

∣∣Gk+1
i −Gk

i

∣∣
≤ ε

2
+ (i− 1)

ε

2K
≤ ε

2
+

ε

2
= ε

hence Fi, i ≤ K indeed forms an ε-solution.
As regard to the time complexity, the algorithm CONT-AED

binary searches in log(NK/ε) steps for a suitable F1, and in
every one of this steps performs K binary searches which
take log(NK2/ε) steps each, for total O(K log2(NK2/ε)) =
O(K log2(N/ε)) time.
A. Heuristics for the AED-Single problem and experimental
tests

In order to convert the ε-solution found by CONT-AED into
a solution for the discrete AED-single problem, we considered
two strategies.

First, we can simply round every Fi, i = 1 . . .K − 1 to the
closest integer: we call this heuristic cont-round.

Second, we can use the borders Fi as a hint in order to run
a restricted SMAWK only on the “feasible” indexes. Given a
radius δ, we say that an index i is δ-feasible with respect to the
continuous solution if and only if there exists a j = 0, . . . ,K−
1 such that |Fj− i| < δ. Since there are at most δK δ-feasible
indexes, we can run a restricted SMAWK on the log2(N)-
feasible positions in additional negligible O(K log2(N)) time,
and find the optimal solution for AED-single such that all the
borders are log2(N)-feasible. We call this heuristic cont-dp.

We compare these two heuristics with the optimal algo-
rithms SMAWK-AED and minimum K-link path (in short,
smawk and k-link) introduced in Sections II-A, II-B.

The implementation was written in Python2 and
run on PyPy version 2.6.1, and is available at
www.dmi.unipg.it/ pinotti for download.
Experiments were done on a system with 8 gigabytes
of RAM and a Intel Core i7 processor running at 2.9
GHz (we used only one core). The system was running
OS X 10.10.5 with Darwin kernel 14.5.0. The data set pi,
i = 1 . . . N was chosen according to a Zipf distribution [5],
[13] with skewness θ in [0 . . . 4], sorted in ascending order.
Namely, pi =

(1/i)θ∑N
i=1(1/i)

θ with 1 ≤ i ≤ N . The error ε was
set to 0.1.

In Figure 1 we tested the precision of cont-round
against several different input parameters. We do not plot

Fig. 2: Execution times of the algorithms proposed, varying
N (top) and K (bottom).

the precision of strategy cont-dp because it was able to
solve exactly all input cases we tested. The relative error of
cont-round happened to depend linearly on K, with a bell-
shaped correlation with the skewness θ and no dependence on
N . All these correlations are confirmed by the border errors.
The AED error was constantly lower than 0.5% on all test
cases. The impact of random noise can be clearly seen due to
the low total error: this happens in particular on the left side
of Figure 1 where the relative error is lowest (below 10−7).

In Figure 2 we compared the performance of the different
exact and approximated algorithms proposed, in logarithmic
scale. The algorithms were consistently sorted (from slowest
to fastest) as smawk, k-link, cont-dp and cont-round,
in every data set considered. As expected, smawk showed its
linear dependence both from N and from K, while k-link
showed its almost linear dependence on N and indepen-
dence from K. Conversely, the two approximated strategies

were roughly independent from N and linear on K, with
cont-dp being twice as slow than the other. Furthermore,
cont-round proved to be up to 1200 times faster than
smawk, while k-link was significantly faster than smawk
only for large values of K, being 24 times faster for K =
1000.

IV. ONLINE ALGORITHM

The column-online AED problem is so defined: Assume
that the matrix M with K rows and N columns has already
been calculated, and a new item dN+1 is given. Calculate the
values M [k,N + 1] = opt(k,N + 1), with 1 ≤ k ≤ K, or
equivalently, add column (N + 1) to matrix M. We assume
that we are searching for the optimal segmentation of the
items. This version of the problem is quite useful in a dynamic
context as a smart city. For example, the insertion of a new
item may model a new urgent alarm or a new commercial
offer that has to be broadcast on the highway or in the mall.

We now prove that column-online problem can be solved by
applying the SMAWK algorithm to a suitable decomposition
of S.

Namely, fix n in 1 . . . N and extract from S the two dimen-
sional matrix Sn = [Sk

`,n] for 1 ≤ k ≤ K, 1 ≤ ` ≤ N − 1.
Thus S = ∪Nn=1Sn, that is, S can be decomposed into N two
dimensional matrices, one for each value of n.

Adding the rightmost item dN+1 to previously existing
items d1, d2, . . . , dN and computing the values opt(k,N +1)
with 1 ≤ k ≤ K using Eq. 4 may require up to O(NK)
comparisons. In fact for each k in 1 . . .K, M [k,N + 1] =
opt(k,N + 1) = min

k−1≤`≤N
Sk
`,N+1 that is, opt(k,N + 1)

corresponds to the minimum in row k of SN+1.
We now prove that the above online problem can be solved

in O(N) time because SN+1 is totally monotone. We first state
that the matrix M of the classical dynamic programming, i.e.,
M [k, n] = opt(k, n), satisfies the concave Monge property.

Lemma 7: Matrix M is a concave Monge matrix. �
Corollary 1: Given 1 ≤ n ≤ N + 1, matrix Sn satisfies the

concave Monge property and therefore it is totally monotone.
Proof: Sn is a concave Monge matrix if and only if M

is a concave Monge matrix. Namely:

opt(k − 1, `) + w(`, n)︸ ︷︷ ︸
Sk
`,n

+ opt(k, `+ 1) + w(`+ 1, n)︸ ︷︷ ︸
Sk+1
`+1,n

≤ opt(k, `) + w(`, n)︸ ︷︷ ︸
Sk+1
`,n

+ opt(k − 1, `+ 1) + w(`+ 1, n)︸ ︷︷ ︸
Sk
`+1,n

or equivalently, if and only if opt(k − 1, `) + opt(k, `+ 1) ≤
opt(k, `) + opt(k − 1, `+ 1).

In conclusion:
Theorem 4: Adding a new item N+1 to the set of data items,

the column-online AED problem can be solved in O(N) time
by applying the SMAWK algorithm to the two-dimensional
matrix SN+1.

It is worth to point out that all the results hold both for in-
creasing and decreasing demand probabilities since Lemma 1

does not depend on the order of the data items 1. This can
be pushed even further since matrices W, M, Sk, and Sn
are concave Monge matrices whatever is the order of the
data items. Therefore, the online algorithm computes the best
K-partition for any given order of the N data items, this
corresponds to an optimal solution for the AED problem
only if the items are sorted. If the increasing or decreasing
order of the items is not preserved, the online version can
be considered a fast heuristic for the allocation problem in
the dynamic context. Indeed, notice that the K-link path
algorithm for AED-single cannot be easily adjusted in order
to accommodate the introduction of new data items, thus it
would give suboptimal O(N logU) time because the solution
has to be recomputed from scratch.

Also the approximated CONT-AED algorithm and the as-
sociated heuristics described in Section III cannot be ad-
justed. However, CONT-AED and the two heuristics can be
applied from scratch and their time complexity O(K log2 N/ε)
can still be competitive with the SMAWK online algorithm
whenever K is O(N1−δ) for some δ > 0. Moreover the
heuristics, due to their low time complexity, can competitively
recompute the solution from scratch when data items are added
in arbitrary order. Recall, however, that they do not necessarily
return the optimal solution for the (discrete) AED problem.

V. CONCLUSIONS

In this paper we study the AED-single and AED-full vari-
ants of the K Uniform Allocation problem with N data items
and K channels, strictly improving all the solutions previously
known in literature.

This problem arises in the context of quickly distributing
data to multiple users via wireless communications.

The new fast algorithms were possible due to a careful
analysis of the mathematical properties of the cost functions at
hand, namely proving that the concave Monge property holds
not only for the costs W but also for the solutions M and all
the matrices involved in its computation Sk, Sn.

We also presented a faster O(K log2(N/ε)) solution to
the continuous version of the Uniform Allocation problem,
which can be converted in two heuristics for the corresponding
(discrete) allocation problem. Experimental results show that
the cont-dp heuristic is in fact exact in every reasonable
test data considered but slightly slower than the cont-round
heuristic whose relative error depends on K and on the
skewness of the data demand probabilities. An online version
of the problem is also considered that allows to extend the
set of items to be broadcast without recomputing the solution
from scratch and guaranteeing the optimality of the solution.

REFERENCES

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric
applications of a matrix-searching algorithm. Algorithmica, 2(1-4):195–
208, 1987.

[2] A. Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a
minimum-weight k-link path in graphs with the concave monge property
and applications. Discrete & Computational Geometry, 12:263–280,
1994.

1 Note that it is high probable that at the time of insertion the alarm’s
pressure will be maximum, while the offer’s popularity will be minimum.

[3] Alok Aggarwal, Baruch Schieber, and Takashi Tokuyama. Finding
a minimum weight k-link path in graphs with monge property and
applications. In Proceedings of the Ninth Annual Symposium on
Computational Geometry, SCG ’93, pages 189–197, New York, NY,
USA, 1993. ACM.

[4] Wolfgang Bein, Mordecai J. Golin, Lawrence L. Larmore, and Yan
Zhang. The knuth-yao quadrangle-inequality speedup is a consequence
of total monotonicity. ACM Trans. Algorithms, 6(1):17:1–17:22, De-
cember 2009.

[5] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
Web caching and zipf-like distributions: Evidence and implications.
In INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 1,
pages 126–134, 1999.

[6] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives
of Monge properties in optimization. Discrete Applied Mathematics,
70(2):95–161, 1996.

[7] Ardizzoni E, A. A. Bertossi, C.M. Pinotti, S. R., R. Rizzi, and M. V. S.
Shashanka. Optimal Skewed Data Allocation on Multiple Channels with
Flat Broadcast per Channel. IEEE Trans. Computers, 54(5):558–572,
2005.

[8] Paolo Ferragina, Jouni Sirén, and Rossano Venturini. Distribution-aware
compressed full-text indexes. Algorithmica, 67(4):529–546, 2013.

[9] Zaixin Lu, Yan Shi, Weili Wu, and Bin Fu. Efficient data retrieval
scheduling for multi-channel wireless data broadcast. In INFOCOM,
2012 Proceedings IEEE, pages 891–899, 2012.

[10] Baruch Schieber. Computing a minimum weight k-link path in graphs
with the concave monge property. J. Algorithms, 29(2):204–222, 1998.

[11] Wai Gen Yee, Shamkant B Navathe, Edward Omiecinski, and Chris
Jermaine. Efficient data allocation over multiple channels at broadcast
servers. Computers, IEEE Transactions on, 51(10):1231–1236, 2002.

[12] Song-Yi Yi, Seunghoon Nam, and Sungwon Jung. Effective genera-
tion of data broadcast schedules with different allocation numbers for
multiple wireless channels. Knowledge and Data Engineering, IEEE
Transactions on, 20(5):668–677, 2008.

[13] George Kingsley Zipf. Human behavior and the principle of least effort.
1949.

APPENDIX: ALGORITHM SMAWK
Let A be an m × n, with m ≤ n, matrix and assume that

we can compute or access each A[i, j] in constant time, for
any i, j. Let A be totally monotone, that is, by Def. 2, for all
a < b and c < d, A[a, d] ≤ A[a, c] implies A[b, d] ≤ A[b, c].

We describe how to compute the row-minima of A by the
SMAWK algorithm.

The main block of SMAWK is the subroutine Reduce. It
takes as input matrix A and returns an m×m submatrix G ⊂ A
that contains the columns of A which have the row-minima
of A. Let k be a column index of G. Initially k = 1. Reduce
maintains the invariant on k that G[1 : j−1, j] cannot contain
row-minima, for all 1 ≤ j ≤ k. Also, only columns that do
not contain row-minima are deleted. If G[k, k] < G[k, k +
1] then G[1 : k, k + 1] cannot contain row-minima by total
monotonicity. Therefore, if k < m, k is increased by 1. If
k = m, column k + 1 cannot contain row-minima and it is
deleted. Thus, k is unchanged. If G[k, k] ≥ G[k, k + 1] then
G[k : m, k] cannot contain row-minima by total monotonicity.
Since G[1 : k − 1, k] was already excluded by the invariant,
column k is deleted because it cannot contain the row-minima.
Then, k is set to the minimum between 1 and k − 1.

The row-minima of an m × n totally monotone matrix A
with m ≤ n are then found as follows. Invoke Reduce on
A to get an m ×m matrix G, and then recursively find the
row-minima of the submatrix of G which consists of the even
rows of G. After having found the row-minima of even rows
of G, compute the row-minima in odd rows.

