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Introduction and background: Second-line treatment of platinum-resistant relapsed/metastatic (R/M)
head and neck cancer (HNC) is a currently unmet clinical need. Clinical trials showed improvement in
overall survival and quality of life of R/M-HNC patients treated with anti-PD-1 regardless of the number
of prior chemotherapy lines; however, the percentage of long-term survivors remains limited.
This study aims to test the hypothesis that attacking the tumor microenvironment at multiple levels

can increase immunogenicity of R/M-HNC without worsening the safety profile of immune checkpoint
inhibitors.
Methods/design: In this open label, multi-center, single-arm, Phase Ib/II, R/M-HNC patients pretreated
with at least one line of therapy containing platinum, fluorouracil, and cetuximab will receive a daily
metronomic dose of 50 mg cyclophosphamide without a drug-free break, 10 mg/kg avelumab on day 1
and every other week until progression, and a single fraction of 8 Gy radiotherapy on day 8.
Discussion: The treatment protocol aims to reverse immune evasion of the tumor through a
radiotherapy-induced self-vaccination effect, suppression of CD4+ CD25+ FoxP3+ regulatory T-cell func-
tion by metronomic cyclophosphamide, and effector T-cell reactivation owing to the inhibition of the PD-
1–PD-L1 axis by avelumab.
The immunologic interplay induced by the proposed combined treatment may theoretically improve

the activity of avelumab without increasing its toxicity profile.
Finally, an ancillary translational study will be extended to all the patients’ population.

Trial registration: EudraCT n. 2017-000353-39.
� 2018 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

Platinum-resistant relapsed/metastatic (R/M) head and neck
cancer (HNC) has a poor prognosis, and immunotherapy is the only
approved second-line treatment, although most patients do not
respond to it and its long-term survival remains poor [1].
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The EGFR-targeting monoclonal antibody cetuximab (plus
platinum-based chemotherapy) was approved in the US and Eur-
ope [2] as a first-line therapy for R/M disease. However, the FDA
approved cetuximab only as second line due to the limited ben-
efit observed. However, no study has shown any improvement in
overall survival (OS). New advances in immunology and
improved understanding of the immunologic effects of both
chemotherapy and radiotherapy initiate a novel approach to can-
cer treatment based on strengthening the host’s natural defenses
rather than directly targeting the tumor. Clinical trials showed
improvement in OS and quality of life (QoL) of patients treated
with anti-PD-1 regardless of the number of prior chemotherapy
lines. Results also showed a limited but constant number of
long-term survivors. However, most patients do not achieve an
objective response or relapse within one year from treatment ini-
tiation. This outcome reflects the limitation of immune check-
point inhibitor (ICI) monotherapy in treating R/M-HNC patients
[3,4].

R/M-HNC is an immune suppressive malignancy with few
tumor-infiltrating T lymphocytes, impaired natural killer (NK) cell
activity, poor antigen-presenting function, and recruited regula-
tory T-cells (Tregs) [5]. Clinical studies of HNC have reported that
PD-L1 is expressed in 66–77% of patients [4,6], leading to exhaus-
tion of PD-1-positive T cells.

The PD-1–PD-L1 axis is common among immune cell popula-
tions, including CTLs, Tregs, NK cells, NKT cells, and antigen-
presenting cells (APCs) [7]. Opposite effects of PD-1–PD-L1 interac-
tions are elicited in different cells, e.g., inhibitory cell signals in
CD8+ CTL [8] and activating signals in CD4+ CD25+ Foxp3+ Treg [9].

Avelumab is a fully human anti-PD-L1 IgG1 monoclonal anti-
body that selectively binds to PD-L1 and competitively blocks its
interaction with PD-1, enabling the activation of T-cells and the
adaptive immune system by inhibiting the PD-1–PD-L1 axis [10].
Moreover, IgG1 monoclonal antibodies, such as avelumab, trigger
antibody-dependent cell-mediated cytotoxicity and engage the
innate immune system as an additional mechanism of tumor
control.

A mechanism employed by HNC to escape antitumor immunity
is through the immunosuppressive action of Tregs. Various studies
have demonstrated an increased number of Tregs in the tumor
microenvironment (TME) in HNC patients [11]. Depletion of Treg
results in tumor regression in experimental models [12,13]. The
effect is dependent on the extent of Treg suppression [14]. Long-
term, low-dose (metronomic) cyclophosphamide treatment selec-
tively reduces Treg populations both in experimental models and
in humans, but does not affect effector T-cells [15]. The PD-1–
PD-L1 axis enhances and sustains the expression of Foxp3 and
the suppressive function of inducible Treg cells (iTreg) [9]. The con-
temporary use of two independent mechanisms of Treg control
(avelumab inhibiting Treg clonal expansion and function, and
mCTX reducing Treg populations) may result in the profound inhi-
bition of Treg populations.

If immune-suppressive mechanisms are weakened, the release
of high levels of tumor-specific antigens or stress-related antigens
(EpCAM, HSPs, HMBG-1, Calreticulin, ATP) through the induction of
immunogenic cell death (ICD) [16] may result in an effective
immune response. Radiotherapy (RT) can also induce ICD [17],
even in patients previously treated with heavy doses of
chemotherapy in whom the HNC developed resistance to cytotoxic
chemotherapy. This radiation-induced immune effect is considered
the basis of the abscopal effect: the regression of metastatic tumors
outside the irradiated field. The optimal dose of RT to generate an
in situ tumor vaccine has yet to be established, but new insights
into the molecular mechanism responsible for RT-induced absco-
pal responses outline the importance of the size of the single RT
dose, not of the total dose delivered [18]. Thus, irradiation with a
non-ablative dose, which preserves the immune cells, can elicit
an abscopal response.

This study aimed to test pharmacologic and physical interven-
tions that cooperate to activate the immune system rather than a
single pathway, thereby restoring immune competence toward
the tumor.
Materials and methods

Study design and patient population

In this multicentric phase I-II study, patients with HNC who
received at least one prior line of systemic therapy for relapsed
or metastatic disease will receive avelumab (PD-L1 inhibitor) 10
mg/kg i.v. on day 1 and repeated every 14 days until progression,
unacceptable toxicity, or informed consent withdrawal; CTX 50/
mg tab daily continuously until progression or unacceptable toxic-
ity; and radiotherapy on day 8 targeting one macroscopic lesion
with highly conformal, hypofractionated RT at a dose of 8 Gy in
one fraction (flow-chart is shown in Fig. 1). This study is designed
as a phase Ib–II trial because the combination under investigation
has not been previously tested. Phase II will be performed only
after demonstration of tolerability of the schedule within the phase
I study.
Inclusion criteria
The main inclusion criteria are listed below:

� ECOG Performance Status 0–2;
� Histologically or cytologically confirmed recurrent or meta-
static (disseminated) head and neck squamous cell carcinoma;

� Disease progression after treatment with at least one line of
therapy including at least Cisplatin, Fluorouracil, and Cetux-
imab for recurrent (disease not amenable to curative treat-
ment)/metastatic disease;

� Measurable disease by RECIST criteria;
� At least one metastatic site suitable for irradiation;
� Adequate bone marrow, liver, and renal function.

Exclusion criteria
Patients will be excluded if any of the following conditions are

present:

� History of malignant disease (except for non-melanoma skin
tumors and/or in situ cervical cancer) in the preceding five
years;

� Brain metastases;
� Autoimmune or allergic disorders; patients with diabetes type I,
vitiligo, psoriasis, or hypo- or hyperthyroid diseases not requir-
ing immunosuppressive treatment are eligible.

� Prior treatment with inhibitors of the PD-1–PD-L1 axis or inhi-
bitors of CTLA-4 (immune checkpoint inhibitors);

� Previous HBV or HCV infections;
� Current use of immunosuppressive medication;
� Radiotherapy within 6 weeks before enrolment;
� Clinically significant (i.e., active) cardiovascular disease.

Study objectives

The primary endpoint of the phase Ib trial is the absence of
unacceptable toxicity. Assessment of the safety profile of the asso-
ciation of avelumab and metronomic cyclophosphamide (mCTX)
will be graded using the common toxicity criteria and adverse
events (NCI CTC-AE v 4.0).



Fig. 1. Study schema.
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The primary activity endpoint (phase II) is the achievement of
an objective response. Objective response is the sum of the com-
plete responses and the partial responses defined as per RECIST
evaluation criteria v1.1 (RECIST 1.1). The rates of objective
responses will be reported.

The secondary endpoints are: assessment of the safety profile of
the association of avelumab and mCTX; progression-free survival
(PFS), defined as the time from study treatment initiation to the
first occurrence of disease progression or death for any cause,
whichever occurs first; OS, defined as the time from treatment ini-
Table 1
Translational research overview.

Evaluation of the main circulating
T cells, MDSC and of circulating
dendritic cells (DCs)

Evaluation of cell
subpopulations-specific
interleukins

Evaluation o
(as VEGF, TG
IFN-c and ID

Baseline Baseline Baseline
1 day after RT 1 day after RT 1 day after R
At beginning of cycle 2 At beginning of cycle 2 At beginning
At disease progression At disease progression At disease pr

Abbreviations: MDSC = myeloid-derived suppressor cell, DCs = dendritic cells, VEGF = va
alpha = tumor necrosis factor-alpha, IFN-c = interferon-gamma, IDO = indoleamine 2,3-D
heat shock protein 90, HMGB1 = high-mobility group box 1, EpCAM = epithelial cell adh
tiation to death for any cause; QoL will be assessed using EORTC
QLQ-30 and EORTC QLQ–H&N35.

The exploratory objectives of the study are the effects of the
immunological treatment (RT + avelumab + cyclophosphamide)
on both cell and humoral homeostasis developed by the tumor,
and to identify variations among the major circulating immunolog-
ical factors during the study and the impact of observed changes (if
any) on patient outcomes (Table 1). The expression of PD-1/PD-L1
in tumor tissues will not be investigated due to the difficulty in
f the major cytokines
F-beta, TNF-alpha,
O)

Evaluation of the main tumor
associated antigens (TAA) inducible
by ICD (as HSP70, HSP90, HMGB1, EpCAM)

Baseline
T 1 day after RT
of cycle 2
ogression

scular endothelial growth factor, TGF-beta = transforming growth factor-beta, TNF-
iOxygenase, ICD = immunogenic cell death, HSP70 = heat shock protein 70, HSP90 =
esion molecule.
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obtaining repeated biopsies for analyzing the dynamic changes
induced by the treatment itself.

Statistical analysis

The objective response rate can be recognized as the activity
endpoint for the second-line treatment of relapsed/metastatic
HNC.

The historical response rate with chemotherapy or target ther-
apy is 6–10% and the proportion of non-responders to
immunotherapy is still 80–85%.

We hypothesize a 40% response rate as the level to justify fur-
ther investigations of the proposed experimental approach.

Even though a low toxicity profile can be anticipated for the
combination of treatments, the study is designed as a phase Ib–II
trial. The phase II trial will be conducted only after the demonstra-
tion of tolerability in patients enrolled in the phase Ib part. The
phase II trial will be conducted according to Simon’s two-stage
optimal design [19]. The null hypothesis is that the true response
rate is 25% (considered the best response rate reported with other
PD-1 inhibitors), and will be tested against a one-sided alternative.
In the first stage, we will accrue 20 patients. If there are 5 or fewer
objective responses in these 20 patients, the study will be stopped.
Otherwise, 51 additional patients will be accrued for a total of 71.
The null hypothesis will be rejected if 24 or more responses are
observed in 71 patients. This design yields a type I error rate of
0.05 and power of 80% when the true response rate is 40%.

The first six patients will be treated with CTX 50 mg daily with-
out a drug-free interval, avelumab 10 mg/kg every two weeks, and
radiotherapy at 8 Gy in one fraction. The maximum follow-up for
evaluation of unacceptable toxicity for patients enrolled in phase
I will be 120 days. If two or more unacceptable toxicities are
observed, the study will be closed (unacceptable toxicities are
detailed in Appendix I). If no more than one unacceptable toxicity
is observed in the first six patients, the study will continue with the
enrolment of 14 patients up to the completion of stage I of Simon’s
two-stage design. Patients enrolled in phase Ib will also be evalu-
ated for activity and will correspond to the number of subjects
planned for the first stage of phase II. All patients who will be
enrolled in the study and who started the treatment will be consid-
ered for toxicity evaluation. All patients who completed at least
one course of treatment will be considered evaluable for response.
All patients recruited for the study will be considered evaluable for
PFS and OS. All patients recruited into the study who will complete
at least two QoL questionnaires will be considered for QoL analysis.

Translational study objectives and methods

The goal of this translational study is to identify variations
among the major circulating immunological factors during treat-
ment and link them to patient outcome.

We will collect 15-ml blood samples at baseline, on the day
after RT, at the beginning of cycle 2, and at disease progression.
Plasma samples will be obtained by centrifugation. We will repeat
the following determinations at each point:

� Evaluation of the major circulating T-cells, myeloid-derived
suppressor cells and dendritic cells;

� Evaluation of cell subpopulation-specific interleukins;
� Evaluation of the major cytokines (such as VEGF, TGFb, TNFa,
IFNc, and IDO).

We will evaluate ICD-associated antigens (such as HSP70,
HSP90, HMGB1, EpCAM) the day after radiation therapy. Cell pop-
ulations will be studied by flow cytometry. VEGF, TGFb, and the
other cytokines and interleukins will be analyzed with commer-
cially available ELISA kits. The statistical analysis of translational
data, considering the number of comparisons planned, will be
adjusted for multiple testing using the ‘‘false discovery rate meth-
od” which is the adequate standard procedure of adjustment for
multiple testing. The correlation between the levels of circulating
immunological factors at baseline and during treatment, and the
objective clinical response (responders vs. non-responders) will
be descriptive and does not apply formal statistical texts.

Discussion

Locally advanced squamous cell carcinoma of the head and neck
recurs in up to 50% of cases even after aggressive combined-
modality therapy [20]. A small number of patients with localized
recurrence can be treated with curative intent, but the vast major-
ity receives palliative systemic therapy. In the first-line treatment
of R/M-HNC, the ‘‘EXTREME” regimen has shown the best results so
far in terms of overall response rate (ORR), PFS, and OS without sig-
nificant difference in PFS between those who had received prior
systemic therapy and those who had not [21]. For patients who
failed to respond or relapsed less than six months after their initial
treatment and for patients who progress after the ‘‘EXTREME” reg-
imen, no second-line therapy has been established. Immunothera-
pies using is the PD-1-directed ICIs can be proposed according to
the result of two recently published phase III trials (CheckMate
141 [22] and KEYNOTE-040 [23]). Taken together, these trials show
that nivolumab and pembrolizumab are well tolerated, but pro-
duce a modest overall response rate of approximately 15% in
second-line treatment. The therapeutic efficacy of ICIs in
monotherapy may be limited because immune dysfunction in the
TME of R/M-HNC is mediated by tumor-driven mechanisms other
than immune checkpoint overexpression.

Multiple immunotherapeutic agent combinations, addressing
different additional escape mechanism, are under evaluation in
ongoing trials (NCT02551159, NCT02369874). Toxicity of ICIs in
combination is an actual concern and should be carefully consid-
ered when treating patients with R/M-HNC. For example, in the
CheckMate 067 phase III trial on melanoma patients, the incidence
of grade 3 or 4 toxicity with the combination of nivolumab and
ipilimumab was increased compared with either single agent
(59% versus 21% and 28% for nivolumab and ipilimumab, respec-
tively) [24]. Because ICIs elicit delayed clinical effects, safety anal-
ysis, including QoL analysis, remains an essential objective of
immunotherapy in R/M-HNC patients.

The CONFRONT trial is a proof-of-concept study combining two
low-toxicity treatments (mCTX and non-ablative radiotherapy)
with a PD-L1 inhibitor. Each one of these treatments drives positive
immunological effects, and their combination may, in theory, favor
a reversal of immune suppression in the TME. The expected
immune-related toxicity, compared with anti-PD-1 antibodies that
target T-cells, avelumab is specific for PD-L1 and mainly targets
tumor cells; therefore, avelumab has fewer side effects, including
a lower risk of immune-related adverse events, because the block-
ade of PD-L1 leaves the PD-1–PD-L2 pathway intact, which pro-
motes peripheral self-tolerance. Moreover, data published very
recently added new insight into the safety profile of the proposed
combination. In a phase I study [25], avelumab showed acceptable
toxicity up to 20 mg/kg, and the maximum tolerated dose was not
reached. Many clinical trials investigated mCTX in combination
with other metronomic chemotherapeutic drugs and/or with tar-
get agents or immunotherapy (inhibitors of the PD-1–PD-L1 axis)
resulting in a well-tolerated treatment with no significant side
effects [26–30]. Concurrent delivery of PD-1–PD-L1 axis inhibitors
and hypofractionated, non-ablative RT is well tolerated, with man-
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ageable immune-related adverse events that did not seem to be
associated with the particular site irradiated [31,32]. All the above
mentioned studies suggest that the combination planned for this
study should not add toxicity in excess to that expected for avelu-
mab alone.

Multiple preclinical studies have investigated different dose and
fractionation regimens in combination with immunotherapies
[33–39], showing different results for fractionated or single-dose
RT depending on the associated strategy and the investigated
tumor model. Most immune-stimulatory effects of RT occur at 5–
20 Gy; however, a preclinical study showed that radiation doses
above 12–18 Gy attenuate tumor cell immunogenicity by upregu-
lating the exonuclease Trex1, which causes degradation of
interferon-stimulating cytosolic double-stranded DNA. Conversely,
lower RT doses instead stimulate IFN-b secretion, thereby activat-
ing dendritic cells that are critical for CD8+ T-cell priming [40].

The optimal range of dose and fractionation, below which
immune stimulation may be suboptimal and above which
immunosuppression prevails, have not been established so far in
clinical studies. The dose of 8 Gy, which we use in this trial, can
be considered safe when treating R/M-HNC patients because the
majority of failures are in-field in reported intensity-modulated
radiation therapy series [41,42]. This dose level can also induce
ICD and subsequent dendritic cell activation, which facilitate the
presentation of tumor antigens. Alternatively, surviving cancer
cells can undergo immunogenic modulation, which makes them
more susceptible to cytotoxic T-lymphocyte-mediated lysis.

Two ongoing trials (NCT02318771, NCT02684253) in R/M-HNC
combine RT at doses of 8 Gy, 4 Gy in five fractions, or 27 Gy in three
fractions with anti-PD-1 ICIs. The results of ongoing trials will bet-
ter clarify the potential of immunotherapy in R/M-HNC patients.
Complementary multimodal immunotherapy has a strong ratio-
nale to counterbalance the established immunosuppression of R/
M-HNC, and theoretically, the proposed combined treatment could
improve the activity of avelumab without increasing its toxic
profile.
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Appendix I

Unacceptable toxicities:
Unacceptable toxicities are defined as it follows:

grade 4 neutropenia persisting �7 days or requiring treatment
with granulocyte colony- stimulating factor,
febrile neutropenia,
grade IV thrombocytopenia
grade III decreased platelet count requiring platelet transfusion
grade IV anemia requiring a red blood cell transfusion
grade � 3 non hematological toxicity, excluding controllable
grade III nausea, vomiting, or diarrhea that recovered to
grade � 1 as a result of treatment prior to infusion in the next
cycle
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