
Detecting the Stimulated Decay of Axions at Radio

Frequencies

Andrea Caputoa, Marco Regisb,c, Marco Taosoc, Samuel J. Wittea

a Instituto de Física Corpuscular, CSIC-Universitat de Valencia, Apartado de Correos 22085,

E-46071, Spain

b Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I�10125 Torino, Italy

c Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I�10125 Torino, Italy

Abstract

Assuming axion-like particles account for the entirety of the dark matter in
the Universe, we study the possibility of detecting their decay into photons
at radio frequencies. We discuss di�erent astrophysical targets, such as dwarf
spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The
presence of an ambient radiation �eld leads to a stimulated enhancement of the
decay rate; depending on the environment and the mass of the axion, the e�ect of
stimulated emission may amplify the photon �ux by serval orders of magnitude.
For axion-photon couplings allowed by astrophysical and laboratory constraints
(and possibly favored by stellar cooling), we �nd the signal to be within the
reach of next-generation radio telescopes such as the Square Kilometer Array.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302361374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The cumulative astrophysical and cosmological evidence for the existence of a non-baryonic, min-
imally interacting, cold matter component of the Universe (conventionally referred to as dark
matter) is overwhelming, with current observations suggesting that dark matter resides in the
form of new unknown particles. However, the exact nature of dark matter continues to evade
physicists.

The most popular dark matter candidates are those naturally capable resolving additional
fundamental problems at the forefront of particle physics. One such candidate is the QCD axion,
which inherently appears in the Peccei-Quinn solution to the strong CP problem [1�4]1. If the
mass of the axion is . 20 eV, the axion is stable on cosmological timescales and can contribute
substantially to the current fraction of energy density in the Universe stored in form of cold dark
matter [5�8]. Astrophysical observations constrain the axion mass to reside approximately between
10−4 µeV and 104 µeV [9, 10] 2. The mass range where axions can account for the entirety of the
dark matter depends on the interplay between di�erent production mechanisms (in particular, the
interplay between the misalignment mechanism and the decay of topological defects) and whether
the PQ symmetry (i.e. the symmetry introduced in the Peccei-Quinn solution to the strong CP
problem) is broken before or after in�ation (see e.g. [9,10] for more extensive discussions). In the
post-in�ationary PQ breaking scenario, and assuming axions are produced exclusively from the
misalignment mechanism, one �nds the axion mass ma ' few × (10)µeV [12]. As we will show,
radio telescopes searching for axion decay are ideally placed to probe this mass regime.

In recent years an increasing amount of attention has shifted toward searching for axion dark
matter. An important consequence of this has been the development of a diverse and complemen-
tary search program intended to probe the many unique facets of such a dark matter candidate;
this program includes, but is not limited to, haloscopes [13�17], heliscopes [18�20], 5th force ex-
periments [21�25], light-shinning-through wall experiments [26�31], LC circuit resonators [32�34],
oscillating nuclear dipole searches [35�37], axion-induced atomic transitions [38,39], axion-induced
atomic and molecular electric dipole moments [40], and indirect axion searches [41�46]. Many of
these searches, although certainly not all, rely on the axion's coupling to photons; this interaction
is given by the operator L = −1

4gaγγ aFµνF̃µν , where a is the axion �eld, Fµν is the electromag-

netic �eld strength, F̃µν its dual, and gaγγ the coupling constant. Of particular importance here
is the notion that one may be able to exploit the large number density of axions in astrophysical
environments to indirectly infer their existence through the detection of low-energy photons. For
axion masses in the `characteristic' dark matter window (i.e. µeV . ma . 102µeV), the energy of
a non-relativistic axion corresponds to a photon with a frequency ranging from ∼ O(100) MHz to
∼ O(10) GHz; intriguingly, this lies exactly in the range of frequencies probed by radio telescopes.

There have been various attempts in recent years to use radio telescopes to detect axion dark
matter, a majority of which have relied on the axion-to-photon conversion process (i.e. the so-
called Primako� e�ect). Recently it was shown that unless one exploits a resonant axion-photon
conversion (as e.g. was done in [43�45]), the rate of axion decay into two photons will likely su-
persede that of axion-photon conversion in large-scale astrophysical environments [42, 46]. One
of the di�culties with resonant searches is that they rely on a comprehensive understanding of
highly uncertain astrophysical environments. An alternative approach with a far more limited
dependence on astrophysical uncertainties, albeit at the potential cost of sensitivity, was proposed
in [46]. Ref [46] performed an exploratory study for an idealized near future radio telescope to
determine whether the axion-to-two-photon decay process could potentially produce an observable
signature. This work presented here is intended to serve as a comprehensive follow-up, incorporat-
ing a far more sophisticated treatment of near-future radio sensitivity and exploring a variety of

1Simply put, the strong CP problem arises from the fact that the QCD θ term predicts a non-vanishing neutron
electric dipole moment, while current experimental bounds constrain θ to an unnaturally small value, θ . 10−10.

2However see [11] for models where the astrophysical bounds are relaxed.

2



astrophysical sources (including the Galactic halo, the galaxy M87 in the Virgo cluster and dwarf
spheroidal galaxies). Moreover, this work presents a more detailed treatment of the stimulated
emission, a mechanism which is induced by the presence of a background radiation in the medium
where the axion decay occurs (see also [47�49]). At low radio frequencies, this e�ect enhances the
expected emission by several orders of magnitude.

The coupling of the QCD axion to the photon gγγ grows linearly with the axion mass and with
a proportionality constant that depends on the UV completion of the axion model. Considering
various types of UV completions thus de�nes a band in the mass-coupling plane identifying where
viable QCD axions may reside (see the light green region in Fig. 2)3. More generically, many
extensions of the Standard Model predict light particles with similar properties to the QCD
axion, but that might not be related to the strong CP problem and for which the relation between
gγγ and the mass could be di�erent. These are referred to as axion-like particles (ALPs), and they
appear generically in low energy-e�ective theories arising from string theory, e.g. [55�58]. It is
therefore important to explore all the parameter space of ALPs, beyond the well-motivated case
of the QCD axion.

The results presented here suggest that near-future surveys will be incapable of probing the
parameter space of the QCD axion; however we �nd that the Square Kilometer Array (SKA) will
be able to improve current bounds on ALPs by about one order of magnitude.

The paper is organized as follows. Section 2 outlines the origin of stimulated decay and the
relevant contributions to the ambient photon background. Section 3 describes how to compute
the expected signal-to-noise arising from axion decay for a generic choice of astrophysical envi-
ronment and radio telescope. We present the sensitivity on the ALP-photon coupling for various
astrophysical targets and telescopes in Section 4. In Section 5 we conclude.

2 Axion decay in a photon bath - stimulated emission

The decay of an axion with mass ma proceeds through the chiral anomaly and produces two
photons, each with a frequency ν = ma/4π. The lifetime of the axion can be expressed in terms
of its mass and the e�ective axion-two-photon coupling gaγγ as

τa =
64π

m3
a g

2
aγγ

. (2.1)

Evaluating the lifetime for an axion mass ma ∼ 1µeV and a coupling near the current upper limit,
i.e. gaγγ ∼ 10−10 GeV−1, one �nds τa ∼ 1032 years; this is perhaps the main reason why axion
decay has been largely neglected in the literature. The decay rate, however, is only valid in vacuum.
In reality, for the axion masses of interest this decay process takes place in an ambient radiation
�eld, which, at radio frequencies is sourced by the combination of cosmic microwave background
(CMB) radiation, synchrotron radiation, and bremsstrahlung radiation. Consequently, the photon
production rate is enhanced via stimulated emission, a phenomenon due to the indistinguishability
of photons and Bose-Einstein statistics. Here we review how to derive the e�ect in the case of a
decay into two photons (for the more canonical decay into a single photon, see, e.g. [59]).

Let us denote a particular phase-space distribution with f , related to the number density of
particles n by dn = g

(2π)3
f(p) d3p, with g being the number of degrees of freedom. We consider

a initial quantum state where there exist fa axions with a particular momentum. The �nal state
contains fa− 1 axions and two photons, each with half the energy of the initial axion. The decay
occurs in a medium of photons, with fγ particles with the same momentum and polarization as the
photons produced by the axion decay. Therefore, the initial state is |fa; fγ ; fγ〉 and the �nal state
is |fa − 1; fγ + 1; fγ + 1〉. The interaction Hamiltonian in terms of the creation and annihilation

3See [50] for a recent determination of the allowed region in the gγγ −ma plane for the KSVZ model [51, 52]
and [53,54] for scenarios where the range of couplings can be further extended.
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operators looks like
Hint =M†0a

†
γa
†
γaa + h.c. (2.2)

whereM0 is related to the spontaneous emission, as will be made clear momentarily. The matrix
element associated with the probability of having a transition from initial to �nal state is:

Mi→f = 〈fa − 1; fγ + 1; fγ + 1|H|fa; fγ ; fγ〉 =M†0
√
fa
√
fγ + 1

√
fγ + 1. (2.3)

where we have used the properties of ladder operators (i.e., a|fi〉 =
√
fi|fi − 1〉 and a†|fi〉 =√

fi + 1|fi + 1〉). Squaring the matrix element, one �nds

|Mi→f |2 = |M0|2 fa (fγ + 1)2 . (2.4)

A similar computation can be performed for the inverse process (i.e. two photons creating an
axion in a medium with fγ photons and fa axions):

Mf→i = 〈fa + 1; fγ − 1; fγ − 1|H|fa; fγ ; fγ〉 → |Mf→i|2 = |M0|2 f2
γ (fa + 1) . (2.5)

The variation of the number of axions is just the di�erence between production (described by
Eq. (2.5), which is the term usually identi�ed as the �absorption� term) and decay of axions
(given by Eq. 2.4, i.e., the emission term):

|Mf→i|2 − |Mi→f |2 = −|M0|2 (fa + 2fa fγ − f2
γ ) (2.6)

The last three terms in the right-hand side of Eq. (2.6) describe the spontaneous decay, stimulated
decay, and inverse decay, respectively. Note that the term ∝ fa f2

γ cancels out between decay and
production. For all environments considered in this work fa � fγ , so the inverse decay can be
neglected.

The axion decay rate can then be obtained integrating the matrix element over all the momenta
(and imposing energy-momentum conservation), leading to the well-known Boltzmann Equation
(see e.g. [60]):

ṅa = −
∫
dΠadΠγdΠγ(2π)4 δ4(pa − pγ − pγ) |M0|2 [fa (fγ + 1)(fγ + 1) + (fa + 1) fγ fγ ]

= −
∫
dΠadΠγdΠγ(2π)4 δ4(pa − pγ − pγ) |M0|2 [fa (1 + 2 fγ)− f2

γ ]

' −na Γa (1 + 2 fγ) , (2.7)

where dΠi = gi/(2π)3d3p/(2E) and in the last line we used the de�nition of the decay rate
Γa =

∫
dΠγdΠγ(2π)4 δ4(pa − pγ − pγ) |M0|2/(2ma).

It should be clear from Eq. (2.7) that the e�ect of stimulated emission can be incorporated
by simply multiplying the rate of spontaneous emission by a factor 2 fγ . The photon occupation
number fγ can be obtained from the associated di�erential energy density of the ambient radiation
using ρi(Ei) dEi = dΠi 2E2

i fi which leads to:

fγ =
π2ργ
E3
γ

. (2.8)

In Fig. 1, we show the stimulated emission factor arising from the CMB (black), Galactic di�use
emission (red), and the extragalactic radio background (green), as a function of the axion mass.
Fig. 1 shows that for an axion mass ma ∼ 1µeV, the stimulated decay produces an enhancement
by a factor & 105, regardless of the astrophysical environment.
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3 Radio Sensitivity

In the following Sections we outline the procedure for computing the expected radio emission from,
and the detectability of, axion decay for various astrophysical targets and telescopes. Before
beginning, we comment on a number of subtle, but important features of the expected signal.
First, the signal is expected to be rather di�use, at least when compared with the beam of
typical radio telescopes. For such a di�use emission, a relatively large beam is desired in order
to enhance the signal-to-noise. This can be easily achieved by single-dish telescopes. On the
other hand, their collecting area (and thus the sensitivity) is typically much smaller than that of
interferometers (that, in addition, have a smaller synthesized beam). Moreover, larger beams also
imply larger foregrounds and larger confusion from background sources. Since it is not obvious
a priori whether single-dish telescopes or radio interferometers will perform better, we consider
results for both observing modes.

In the near future, one of the most powerful radio telescopes available will be the SKA.
We consider here a total of �ve di�erent con�gurations for SKA [61]. Phase one of SKA-Mid
(labeled here as `SKA1-Mid') will be built and operational as early as 2022. We also consider a
con�guration of SKA-Mid consistent with the proposed upgrade (labeled here as `SKA2-Mid'),
which has a slightly wider frequency band, 10 times more telescopes, and includes phase array
feed (PAF) technology.4 The analysis below allows both telescopes to operate in either single-
dish or interferometric modes. The SKA collaboration has also planned the construction of a low
frequency array, which is assumed here to operate solely in the interferometric con�guration (note
that the synthesized beam increases at small frequencies, and thus the potential tradeo� between
interferometric and single-dish observations is reduced signi�cantly). In the coming years, the
radio community will begin a signi�cant experimental e�ort to map large scales at frequencies
below 1 GHz in connection to the study of cosmological hydrogen (redshifted 21 cm line). Data
collected in these surveys can also be used to search for the signal discussed here. As a reference
telescope of this class, we consider the inteferometer HIRAX [62]. Other planned surveys that can
be used to this aim involve, among others, the APERTIF, BINGO, CHIME, FAST and Tianlai
telescopes (see [63] for a review of forthcoming experiments).

Details of the performances for HIRAX and for the various con�gurations of SKA considered
in this work are summarized in Tab. 1.

The axion signal is expected to appear as a narrow spectral line, broadened by the axion
velocity dispersion. For targets in ordinary galaxies, the expected velocity dispersion is ∼ 10−3 c,
while for dwarf galaxies may be as small as a few km/s (i.e., a few times 10−5 c). An experiment
hoping to resolve the spectral features of the line would therefore typically require, respectively,
∼ 103 and ∼ 105 frequency channels. This is in full compliance with SKA capabilities, and while
the current HIRAX design includes only 1024 channels, there exists however a foreseen possibility
to up-channelizing data to a spectral resolution of 1.5 km/s.

3.1 Expected Flux

The �ux density, i.e. the power per unit area per unit frequency, from the spontaneous and
stimulated decay of an axion is given by

Sdecay =
Γa

4π∆ν

∫
dΩ d` ρa(`,Ω) e−τ(ma,`,Ω) [1 + 2fγ(`,Ω,ma)] , (3.1)

wherema is the axion mass, Γa = τ−1
a is the spontaneous decay rate of axions (given by the inverse

of Eq. (2.1)), ρa(`,Ω) is the axion mass density, ∆ν is the width of the axion line, fγ(`,Ω,ma) is
the ambient photon occupation evaluated at an energy Eγ = ma/2, and τ is the optical depth.

4A PAF consists of an array of receivers that are o�-set in the focal plane of the dish and therefore see slightly
di�erent parts of the sky. Combining multiple simultaneous beams, an antenna equipped with PAF provides a
much larger �eld-of-view.

5



SKA1-Mid SKA2-Mid SKA-Low HIRAX

Freq. [GHz] 0.35-14 0.35-30 0.05-0.35 0.4-0.8

NPAF 1 36 1 1

Ntele 200 2000 911 1024

D [m] 15 15 35 6

θsinth [′] 3.6-0.09 3.6-0.04 25.2-3.6 10-5

Trcvr [K] 20 20 40 50

Table 1. Telescope performances and con�gurations considered in this work. For the case of SKA1-Mid
and SKA2-Mid, we consider the array working both in interferometric and single-dish modes.

The integral in Eq. (3.1) should be performed over the solid angle covered by the radio telescope
and the line of sight between the source and the location of Earth.

Eq. (3.1) describes an isotropic emission. On the other hand, if the ambient radiation �eld
is anisotropic, then the stimulated axion-decay emission will follow the direction of the ambient
radiation (since the photon emitted from stimulated axion-decay is produced in the same quantum
state as the ambient photon sourcing the stimulated emission). As it will be clearer in the following,
we either consider radiation �eld that are isotropic up to very good approximation (such as CMB
and extragalactic background) or model the ambient photons at the source location by exactly
taking only the measured continuum emission, namely, only the photons directed towards us. In
other words, we consider photons with the right direction to induce a stimulated emission directed
towards our location and therefore our estimate are not a�ected by possible anisotropies in the
considered ambient �elds.

It is conventional in radio astronomy to work with e�ective temperatures rather than �ux
densities. The observed antenna temperature in a single radio telescope is given by

Tant =
Aeff 〈S〉

2kb
, (3.2)

where Aeff is the e�ective area of the telescope, which we set to be Aeff = η Acoll where Acoll is the
physical collecting area of the telescope and η is the e�ciency (assumed to be 0.8 for SKA [61]
and 0.6 for HIRAX [62]), and 〈S〉 is the bandwidth-averaged �ux density. Throughout this work
we take the bandwidth to be equal to that width of the axion line, i.e. ∆B = ∆ν = νa σ/c, where
νa is the central frequency of the line and σ the velocity dispersion of the dark matter particles.

3.2 Telescope Sensitivities

The minimum (rms) observable temperature for a single telescope and one polarization is given
by

Tmin =
Tsys√

∆B tobs
, (3.3)

where tobs is the observation time (set to be equal to 100 hours throught this work), ∆B is the
bandwidth, and the system temperature Tsys is given by Tsys = Trcvr + Tsky. Trcvr is the noise
of the receiver, while Tsky(`, b) is the �sky noise� in the direction of observation. In the case of
dSph galaxies, we extracted the temperature Tsky at the dSph position from the Haslam map [64]
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at 408 MHz and rescaled to other frequencies with a spectral index of −2.55. In the cases of
the Galactic center and M87, we considered the temperature derived by the same observations
we used to describe the radiation �eld in the context of computing the stimulated emission, see
below. Finally, in the case of the Galactic halo, we adopt a sky-average value Tsky ' 60 (λ/m)2.55

K [61], since we are considering a very large fraction of the sky.
Transitioning from Eq. (3.2) and Eq. (3.3) to observable signal-to-noise of a telescope or an

array depends inherently the mode of observation, i.e. interferometric or single-dish observation.
The �eld of view (FoV) can be computed similarly in the two cases, while angular resolution and
sensitivity have to be treated separately.

3.3 Field of view

The angle corresponding to the full-width at half maximum (FWHM) of the primary beam is
given by

θpb ' 1.22
λ

D
' 0.7◦

(
1 GHz

ν

) (
15 m

D

)
, (3.4)

where λ and ν are the wavelength and frequency of observation, and D is the diameter of the
dish/station. Here, we consider the primary beam area to be Ωpb = 2π (1 − cos(θpb/2)). In the
cases of SKA1-Mid, SKA-Low and HIRAX, the FoV is set by the primary beam, i.e. FoV = Ωpb.

The FoV can be however enlarged by equipping the interferometer with PAF technology, which
makes FoV = NPAF Ωpb, with NPAF expected to be & 36 for next generation radio telescopes [61].
This is the picture we consider for SKA2-Mid and in this case the signal-to-noise ratio becomes

(
S

N

)PAF
=

√√√√NPAF∑
i=1

(
S

N

)2

bi

(3.5)

where (S/N)bi is the signal-to-noise in the beam i and there are NPAF beams in the FoV. For a
spatially uniform emission, the increase of the FoV due to PAF would lead to an increase of the
signal-to-noise by a factor of ten.

3.4 Single-dish angular resolution and sensitivity

For single-dish telescopes, the angular resolution is set by Eq. (3.4). The latter de�nes the in-

tegration angle to be used in Eq. (3.1), which leads (through Eq. 3.2) to a certain T pb
ant. The

signal-to-noise ratio for a single telescope and one polarization is simply given by the ratio be-
tween Eq. (3.2) and Eq. (3.3): (

S

N

)
sd,single

=
T pb

ant

Tmin
. (3.6)

Clearly the actual temperature measured by the telescope will not just include the emission
associated to axion decay, but also a number of other Galactic or extragalactic radio sources. We
assume to be able to remove the continuum (�smooth�) radiation, since the telescope considered in
this work have a large number of frequency channels that can be used to constrain the spectrum.
For a discussion about foreground removal, see, e.g., [65, 66]. On top of that, if the continuum
emission is also spatially smooth, like in the direction of dSphs (since they are not expected
to source a signi�cant continuum emission, see, e.g., [67]), the foreground does not even enter
interferometric observations which are blind to large scales. Therefore, the case of interferometric
observations of dSph can be considered the most solid scenario for what concerns foreground
removal.

The presence of spectral lines would instead constitute an irreducible background (in partic-
ular, if the width is comparable to the width of the axion line). However, there are only a very
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limited number of radio lines in the frequency range of interest. The only potentially problematic
spectral line is the redshifted 21-cm line, which is relatively bright at low redshifts. The observed
frequency scales as νobs = νem/(1 + z) and the emission stays signi�cant up to approximately
z . 5. Therefore, it a�ects the possible detection of axions with masses between about 2-12 µeV.
This range is however already strongly constrained by haloscopes except for a narrow window
around 3-4 µeV (see Fig. 2). To study potential technical ways to remove such a background
(exploiting e.g. di�erent line width and morphology of the axion signal) is beyond the goal of this
paper.

Considering an array with Ntele telescopes observing in single-dish mode, the signal-to-noise
is given by (

S

N

)
sd,array

=
√
Ntele npol

(
S

N

)
single

=
√
Ntele npol

T pb
ant

Tmin
, (3.7)

where npol is the number of polarizations (we set npol = 2). Finally, for an array equipped with
PAF the signal-to noise is simply

(
S

N

)PAF
sd,array

=
√
Ntele npol

√√√√NPAF∑
b=1

(
T bant

Tmin

)2

, (3.8)

where T bant is the antenna temperature in the beam b.

3.5 Angular resolution and sensitivity of interferometers

In a radio interferometer, the angular resolution is set by the longest baseline bmax, i.e. θres '
1.22λ/bmax, while the largest scale that can be imaged is set by the shortest baseline bmin,
i.e. θmax ' 1.22λ/bmin. The actual synthesized beam and largest observable scale depends also
on observational details, such as the coverage in the visibility plane. The emissions discussed here
have a typical size . θmax for all telescopes, so it is reasonable to assume that there is no �ux
lost by the interferometric observations, except possibly for high frequencies and extended targets
(cases for which we will consider single-dish observations, see Sec. 4). The synthesized beam is
determined by considering an �average� baseline, leading to the values of θsinth detailed in Table 1.
The signal in each �pixel� is the integral of Eq. (3.1) over the synthesized beam, which provides
T sb

ant (again through Eq. (3.2)).
Considering an array with Ntele telescopes operating in an interferometric mode, there are

Ntele(Ntele − 1)/2 independent baselines, the signal-to-noise given by

(
S

N

)
if,array

=

√
1

2
Ntele(Ntele − 1)npol

√√√√√ Npix∑
pix=1

(
T pixant

Tmin

)2

, (3.9)

where Npix is the number of synthesized beams contained in the area of the primary beam.
For a spatially uniform emission, the signal-to-noise is increased by a factor

√
Npix in the limit

that the synthesized beam is equal to the primary beam.

To compute
(
S
N

)PAF
if,array

, one can again apply Eq. (3.5).

3.6 Radiation Fields for Stimulated Emission

As discussed in Sec. 2, the presence of a non-negligible photon background with the same energy
as that produced in the axion decay implies a stimulated enhancement of the axion decay rate;
this e�ect manifests in terms of a non-zero contribution to fγ in Eq. (3.1). In general, fγ will be a
linear combination over the sources which contribute to the photon bath. At radio frequencies, this
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Figure 1. Left: Stimulated emission factor (2 fγ) broken down in terms of contributions from the CMB,
the extragalactic radio background, and Galactic di�use emission. The Galactic contribution is averaged in
a region of angular radius of 1 and 0.01 degrees about the Galactic center, see Eq. (4.8). Right: Di�erential
photon energy density at ν = 1.4 GHz as a function of the distance from the Galactic Center.

includes, but is not limited to5, photons from the cosmic microwave background (CMB), di�use
emission from within the galaxy under consideration, and the radio background from extragalactic
sources, i.e. we assume

fγ(`,Ω,ma) ' fγ,CMB(ma) + fγ,gal(`,Ω,ma) + fγ,ext−bkg(ma) , (3.10)

where the spatial dependence of fγ appears exclusively in the contribution from galactic emission,
while fγ,CMB and fγ,ext−bkg are (at �rst approximation) isotropic.

The photon occupation from a blackbody spectrum is given by

fγ,bb =
1

ex − 1
x ≡ Eγ

kbT
(3.11)

where kb is Boltzmann's constant and T is the blackbody temperature. Eq. (3.11) can be used to
incorporate the contribution to fγ from the CMB, taking T = 2.725 K.

For the galactic di�use and the extragalactic contributions we use Eq. (2.8), namely, we derive
the stimulated enhancement factor from the measured radio intensity. The extragalactic radio
background has been measured [68,69] to have a frequency-dependent temperature given by

Text−bkg(ν) ' 1.19

(
GHz

ν

)2.62

K . (3.12)

The contribution to fγ from galactic di�use emission will be instead speci�ed for each target
(Galactic center, M87, Galactic halo) in the next Section. Its spatial dependence is computed
from the angular pro�le of the measured radio �ux.

4 Results

Below we present the projected sensitivity contours in the ALP parameter space for di�erent astro-
physical targets. For the SKA-Mid, we considered the telescope operating both in single-dish and
interferometric modes. These two con�gurations lead to similar results for the Galactic center and

5It is worthwhile to note that at high-frequencies, free-free emission in hot and high-density environments may
become the dominant contribution to fγ . This contribution is neglected in this work.
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Figure 2. Left panel: Projected sensitivities for the Reticulum II dwarf galaxy. Results are displayed
alongside current bounds from haloscopes (light blue) [14�17] and helioscopes (orange) [18], projected
bounds from ALPS-II [70] (black, short dashed) and IAXO [19, 20] (black, long dashed), and benchmark
QCD axion models (light green band, blue line, orange line) [50]. The width of the expected exclusion
contours re�ect the astrophysical uncertainty in the dSph environment. Right panel: Comparison between
the sensitivites of interferometric and single-dish observations for the Reticulum II dwarf galaxy, considering
the SKA2-Mid con�guration.

dwarf spheroidal galaxies and we quote only the sensitivities from single-dish observations. This is
because in the high-frequency end, the largest scale that can be imaged by the interferometer be-
comes comparable/smaller than the size of the source, so there might be some loss of �ux (that we
are not including in the modeling), which does not happen in the case of single-dish observations.
At lower frequencies, observational beams become larger, and SKA-Low and HIRAX do not face
above issue. For M87 instead, SKA-Mid operating in interferometric mode provides signi�cantly
better sensitivities, therefore we show the results only for this con�guration. Given the distance
from us and the large stimulated emission factor in the central region of the galaxy, the emission
from M87 is more compact than in the case of the Galactic center and dwarf spheroidal galaxies.
This explains why the interferometric mode, which has a better rms sensitivity and a smaller
smaller synthesized beam, is favored with respect to the single-dish mode.

4.1 Dwarf galaxies

As a �rst target we consider dwarf spheroidal galaxies, re�ning the analysis performed in [46].
Dwarf spheroidal galaxies o�er large dark matter densities, a low velocity dispersion and their
angular size is within the �eld of view of the radio telescopes that we are considering. These
properties make them prime targets for searches of radio emissions produced by the decay of
axions. The signal, as shown in Eq. (3.1), depends on the integral of the dark matter density
distribution in the region of observation, the so-called D-factor D(θ) :

D(θ) =

∫
dΩ dl ρa(l,Ω), (4.1)

with θ the angular distance from the center of the the dwarf galaxy. A signi�cant e�ort is ongoing
to reconstruct the D-factors from stellar kinematical observations, see for example [71�76]. Here
we make use of the publicly available data in [72, 73], which provide the median values of the
D-factors and their uncertainty intervals for several dwarf galaxies. In particular we focus on
Reticulum II, which is one of the most promising dwarf galaxies that can be observed by radio
telescopes located in the southern hemisphere, like SKA and HIRAX. Similar D-factors have been
reported also for other observable (by southern located telescopes) dwarf spheroidal galaxies, both
classical (e.g. Sculpture) and ultrafaint (e.g. Coma).
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The dark matter velocity dispersion is estimated from the measured stellar velocity dispersion
which we take to be σ ' 4 km s−1, see [73]. The uncertainty on σ a�ects the results mildly, since the
sensitivity on gaγγ scales as σ

−1/4. For the stimulated emission, we include only the contributions
from the CMB and the extragalactic radiation, neglecting any (currently undetected, and likely
subdominant) radio emission produced inside the dwarf galaxy.

We show our results in the left panel of Fig. 2. The bands refer to the 95% credibility interval
on the D-factor provided in [73]. Under the stated assumptions future radio telescopes might be
able to probe a currently unexplored region of the parameter space, corresponding to gaγγ & 10−11

GeV−1.
In Fig. 2 (right), we compare the results of single-dish versus inteferometric observing modes

for the SKA2-Mid con�guration. As clear from the plot, the di�erence is limited. For what said
in Sec. 3.4, this also shows that the main conclusion of this paper should be not a�ected by the
removal of the continuum emission.

The sensitivity reported in this work di�ers by about three orders of magnitude (about a
factor of 30 in the axion-photon coupling) with respect to [46]. That work applied the SKA
interferometric sensitivity as if the source were point-like rather than extended as instead we
consider in Eq. (3.9). Moreover, they considered an optimistic SKA collecting area which is not
currently foreseen in the future SKA design (i.e., Aeff/Tsys = 105m2/K at high-frequency, about
one order of magnitude larger than our SKA-2 case).

4.2 Galactic center

Due to the close proximity and high dark matter column density, the Galactic center is typically
among the most promising targets for indirect dark matter searches. Additionally, the presence
of a large synchrotron background is expected to lead to a signi�cant enhancement of the decay
rate of axions. We describe the details and caveats of this calculation below.

The distribution of dark matter in the Galactic center, and in particular the inner slope of
the density pro�le, remains largely unknown. N-body simulations of collisionless cold dark matter
predict density pro�les well-modeled by a Navarro-Frenk-White (NFW) pro�le [77], in which
ρ(r) ∝ r−1 at small radii. However, mechanisms have been proposed which can either �atten or
steepen the distribution to produce a core or cusp. In an attempt to account for this source of
uncertainty, we present sensitivity studies for three distinct pro�les, one `reference' distribution,
and two pro�les intended to characterize the relative extremes. The reference distribution that
we consider is the NFW pro�le:

ρ(r) =
ρs(

r
rs

)(
1 + r

rs

)2 , (4.2)

where we take a scale radius rs = 24.42 kpc [78] and ρs is normalized in order to obtain a density
at the Earth's location (r� = 8.3 kpc) ρ(r�) = 0.3 GeV/cm3. For the more optimistic scenario we
consider a cuspy distribution, given by a generalized NFW pro�le

ρ(r) =
ρs(

r
rs

)γ (
1 + r

rs

)3−γ , (4.3)

with rs and ρs de�ned as before, and an inner slope γ taken to be 1.3. To model the cored dark
matter density pro�le we adopt the so-called Burkert pro�le, given by

ρ(r) =
ρs(

1 + r
rsb

)(
1 + r

rsb

)2 , (4.4)

where rsb = 12.67 kpc [78], and as before the scale density is set to provide the reference local
density ρ(r�).
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The velocity dispersion of dark matter, characterizing the width of the decay line, is taken
to be σ = 200 km/s. To estimate the Galactic contribution to fγ in Eq. (3.10) the morphology
of the radio di�use emission should be taken into account. Here, we attempt to infer the value
and spatial dependence of fγ,gal from the measurements of the radio �ux in the Galactic center
region presented in [79]. Speci�cally, we analyze the radial pro�le at ν∗ = 1.415 GHz derived by
averaging the emission in elliptical annuli (with aspect ratio of two-to-one), located around the
Galactic center. To simplify the analysis, we assume that the �ux observed in [79], extending up
to an angular scale of one degree along the semi-major axis, can be mapped onto a spherically
symmetric region, i.e. a circle rather than elliptic annuli, of equivalent area. The observed �ux at
Earth from a spherically symmetric emissivity j(r) is given by

I(θ) =
1

4π

∫
ds j(r̂(θ, s, r�)) , (4.5)

where the line-of-sight coordinate s is related to the radial distance from the Galactic center

r̂ =
√
s2 + r2

� − 2 s r� cos(θ) and θ is the aperture angle from the line-of-sight and the Galactic

center direction. For the small angles θ under consideration, one can perform an Abel transform
to infer the value of j(r) from the value of I(θ) provided in [79]. Then, once the emissivity pro�le
has been obtained, one can compute the di�erential photon density (at the frequency ν∗) as a
function of the distance r from the Galactic center:

ρν(r) =
1

4π

∫
ds dΩ j(r̂(θ, s, r)) . (4.6)

The resulting distribution is shown in the right panel of Fig. 1. The intensity pro�le I(θ) in [79]
�attens at small values of θ, an e�ect due to the �nite angular resolution (539′′) of the observations.
In Fig. 1, the corresponding range of Galactic distances r is shaded: in that region the ρν(r)
distribution is likely to be steeper than reported, but we conservatively choose not to extrapolate
it. The ρν(r) is instead extrapolated as r−2 at large distances, beyond the range covered by the
observations. We checked that our results do not depend on the speci�c prescription adopted.
Finally, it is then straightforward to obtain the photon occupation number fγ,gal(r, ν) from the
density distribution ρν(r). The frequency dependence of the occupation number can be obtained
from the observed spectral shape of the emission. From Table 1 of [79] we obtain:

fγ,gal(r, ν) = fγ,gal(r)
∣∣∣
ν=ν∗

×


(ν/ν∗)

−3.173 ν < ν∗

(ν/ν∗)
−3.582 ν∗ ≤ ν ≤ 4.85 GHz

0.49× (ν/ν∗)
−4.14 ν > 4.85 GHz

. (4.7)

The contribution of fγ,gal to the stimulated emission is presented in the left panel of Fig. 1. We
show the average value in a region of 1 and 0.01 degrees around the Galactic center, de�ned as:

f̄γ,gal =

∫
dΩ d` ρa(`,Ω) fγ(`,Ω,ma)∫

dΩ d` ρa(`,Ω)
(4.8)

The Galactic contribution dominates over the CMB and extragalactic ones in a large range of
frequencies.

The free-free self absorption becomes relevant only at frequencies ν . 10 − 20 MHz for ob-
servations of targets located above the Galactic plane, as dwarf galaxies, and so can be neglected
for our purposes. Instead, the emission of sources located at low Galactic latitudes is signi�cantly
absorbed already at ν . 200 MHz, because of the large column density of electrons lying in the
Galactic plane. We need to incorporate this e�ect in our analysis of the Galactic center. We com-
pute the optical depth τ in Eq. (3.1) using [80] and setting a kinetic temperature of 5000 K and
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Figure 3. Same as Fig. 2 but for Galactic center (left) and M87 (right).

an emission measure EM = 104 cm−6 pc. The impact of absorption in our results, presented in
the left panel of Fig. 3, can be easily recognized: the sensitivity quickly degrades moving towards
low frequencies. Overall, the sensitivity reach that we obtain is similar to the one found in Sec. 4.1
for dwarf spheroidal galaxies.

4.3 M87

Given its position in the sky, mass, and distance, the Virgo cluster is likely to be among the most
promising galaxy clusters in the search for axion decay. The massive elliptical galaxy M87 lying
at its center accounts for a signi�cant fraction of the Virgo mass (' 5− 10%), and it is a bright
radio emitter. An intra-cluster large scale radio halo is much fainter [81]. We checked that M87
provides stronger constraints on ALP parameter space than the Virgo intra-cluster medium. This
is because the former hosts a large density of radio photons, leading to a large stimulated emission.
In the following we show results only for M87.

To obtain the contribution to the stimulated emission from the di�use radiation in M87,
fγ,gal(r, ν) in Eq. (3.10), we proceed as follows. The total power radiated by M87 from 10 MHz up
to 150 GHz is Lγ = 9.6× 1041erg/s, and it is predominantly produced within rp = 40 kpc of the

center of the galaxy [82]. The photon energy density ρ can be estimated simply as ρ =
Lγ rp
V c with

V = 4
3πr

3
p. Then, using a spectral dependence of the �ux ∝ ν−1 [82], one can infer the photon

energy density, and thus the occupation number fγ,gal(r, ν), at any frequency. For simplicity we
consider a constant photon distribution inside rp, with an average value estimated as explained
above, and an abrupt depletion of the photon density outside this region.

The dark matter density distribution is modeled using the results of [83], where the mass den-
sity has been inferred by jointly analyzing the dynamics of stars, globular clusters, and satellites.
In particular, we consider two density distributions, the NFW pro�le and a cored pro�le (cgNW
in [83]). Finally we caution that we do not attempt to model any absorption inside M87. On the
other hand, this can have an impact on both the derived energy density of background photons
and the estimated axion-induced �ux, with the two e�ects expected to be of similar size.

The sensitivities are shown in Fig. 3 (right). The changes due to the di�erent choice of
dark matter density pro�le are modest. The two adopted pro�les di�er little at the distances
corresponding to the angular scales under examination.

4.4 Wide �eld surveys

One of the primary goals of HIRAX is to observe the large-scale structure of the Universe through
the 21 cm emission line produced by the neutral hydrogen, the so-called hydrogen intensity map-
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ping. For this purpose HIRAX has been designed to measure a large fraction of the sky (1.5×104

squared degrees) with a fairly large integrated time (104 hours) [62]. We investigate whether the
same observational campaign can be used to search for radio lines produced by the decay of ax-
ions inside the Galactic halo. We estimate the sensitivity of HIRAX, approximating the region of
observation with a circle centered at the Galactic center and spanning an equal area (i.e. 1.5×104

squared degrees). The signal is computed assuming the NFW density pro�le in Sec. 4.2 and a
velocity dispersion σ ' 200 km/s. To model the stimulated emission, in Eq. (3.10) we incorpo-
rate the sum of the Galactic and extragalactic contribution using Tsky described in Sec. 3.2 as a
measure of the total radio �ux.

We �nd that the reach is at the level of the region already excluded by haloscopes, namely
gaγγ ' 8.6− 17× 10−11 GeV−1 in the mass range ma ' 3.3− 6.7µeV. We have obtained similar
sensitivities for the CHIME telescope [84], which will perform a complementary survey of the
northern sky.

These estimates, although involving several approximations (namely the patch of the sky
which will actually be observed, and the modeling of fγ,gal(r, ν)), are enough to conclude that
the strategies considered in the previous Sections, i.e. observations of the Galactic center, dwarf
galaxies and galaxy clusters, are more promising to look for the decay of axions.

The cumulative line emission from all dark matter halos at all redshifts forms a nearly isotropic
emission with a continuum spectrum. We �nd the cosmological emission to be . 10−4 of the
measured extragalactic background (for couplings in the allowed range). Since this collection of
lines determines a contribution with no prominent spatial or spectral features, it can be very
complicated to identify. A potentially interesting way to overcome this issue is given by line-
intensity mapping [85]. We postpose a dedicated analysis of this approach to future work.

4.5 Discussion

The main goal of this work was to study the observability of the two-photon decay of ALPs, with
the QCD axion used as a very well-motivated benchmark. More generally, our results apply to
any scenario in which a light dark matter candidate (with mass in the range 0.1− 100µeV) has a
monochromatic decay to one or two photons. For instance, one could extend the ALP model that
we have analyzed, supplementing the Lagrangian by a term aFµνF̃ ′µν , where F̃

′
µν is the dual of a

new �eld strength tensor arising from a dark U(1) gauge symmetry [86�90]. Here, if the mass of
the dark photon is less than the mass of the axion, the axion decay will proceed via a→ γγ′ (this
model has beed studied e.g. in [91�94]).

For sake of generality, in Fig. 4 we present our sensitivities in terms of the ALP lifetime; these
results can then be easily recast for alternatively models. The sensitivity curve is plotted as a
function of the ALP mass. For the decay into two photons, we show the best sensitivity from
Figs 2 and 3. For the decay into a photon plus a lighter state X, we recast the sensitivity using

the relation Eγ = ma
2

(
1− m2

X
m2
a

)
and we show two cases: mX = 0 and mX = 0.9ma. Remarkably,

Fig. 4 shows that it may be possible to probe lifetimes as large as 1046 seconds.

5 Conclusions

In this work we studied the radio emission arising from axion decays in various types of nearby
astrophysical structures. We have presented projected sensitivities for targets with the best ob-
servational prospects, including the Galactic center, the ReticulumII dwarf galaxy, M87, and the
Galactic halo. We have found that for ALPs with masses below meV, the stimulated decay arising
from the presence of ambient photons results in a large enhancement of the decay rate � poten-
tially up to eight orders of magnitude for axion masses ∼ µeV and in environments with large
radio emission like the Galactic Center.
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function of the ALP mass. We show the cases of decays into two photons (black) and into a photon plus
a state X, massless (green) or with mX = 0.9ma (red).

Once the axion mass and the coupling to photons are �xed, the main uncertainty comes
from the dark matter distribution in the structure under consideration. Indeed, the e�ect of
stimulated emission can be well determined since the distribution of ambient photons can be
con�dently derived from continuum radio measurements. This is di�erent from the possible signal
coming from photon-axion conversion in strong magnetic �elds around stars, which is potentially
more promising but su�ers of larger uncertainties associated with the poorly known astrophysics
(namely the structure of the magnetic �eld and the plasma density).

We have showed that with near-future radio observations by SKA, it will be possible to increase
sensitivity to the ALP-photon coupling by nearly one order of magnitude. Interestingly, it has
been shown that in this range of parameter space, axions provide a viable solution to a non-
standard cooling mechanism identi�ed in various stellar systems [95]. If forthcoming axion search
experiments, such as ALPS-II and IAXO, �nd a signal consistent with axion dark matter in the
10−7 − 10−3 eV mass range, the technique proposed here might become the standard route to
understand the properties of dark matter, such as e.g. its spatial distribution and clustering in
cosmological structures.
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