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ABSTRACT 

In recent years, the outcome of mantle cell lymphoma has improved, especially in younger 

patients, receiving cytarabine-containing chemoimmunotherapy and autologous stem cell 

transplantation. Nevertheless, a proportion of mantle cell lymphoma patients still experience early 

failure. To identify biomarkers anticipating failure of intensive chemotherapy in mantle cell lymphoma, 

we performed target resequencing and DNA profiling of purified tumor samples collected from patients 

enrolled in the prospective FIL-MCL0208 phase III trial (high-dose chemoimmunotherapy followed by 

autologous transplantation and randomized lenalidomide maintenance). Mutations of KMT2D and 

disruption of TP53 by deletion or mutation associated with an increased risk of progression and death, 

both in univariate and multivariate analysis. By adding KMT2D mutations and TP53 disruption to the 

MIPI-c backbone, we derived a new prognostic index, the “MIPI-genetic”. The “MIPI-g” improved the 

model discrimination ability compared to the MIPI-c alone, defining three risk groups: i) low-risk 

patients (4-years progression free survival and overall survival of 72.0% and 94.5%); ii) intermediate-

risk patients (4-years progression free survival and overall survival of 42.2% and 65.8%) and iii) high-

risk patients (4-years progression free survival and overall survival of 11.5% and 44.9%). Our results: 

i) confirm that TP53 disruption identifies a high-risk population characterized by poor sensitivity to 

conventional or intensified chemotherapy; ii) provide the pivotal evidence that patients harboring 

KMT2D mutations share the same poor outcome as patients harboring TP53 disruption; and iii) allow 

to develop a tool for the identification of high-risk mantle cell lymphoma patients for whom novel 

therapeutic strategies need to be investigated. (Trial registered at clinicaltrials.gov identifier: 

NCT02354313) 
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INTRODUCTION 

The introduction of high dose cytarabine-containing chemoimmunotherapeutic regimens and 

autologous transplantation (ASCT) have considerably improved the outcome of young fit mantle cell 

lymphoma (MCL) patients. Nonetheless, approximately 20 to 25% of MCL patients demonstrate 

inadequate efficacy of intensified chemoimmunotherapy as they are either primary refractory or relapse 

within two years from autologous stem cell transplantation.1-5  

Clinical and pathological scores, including the MCL international prognostic index (MIPI),6 the 

Ki-67 proliferative index,7 and their combination in the MIPI-c score, stratify MCL patients in groups 

at different risk of relapse.8 However, none of these tools has sufficient positive predictive value to 

trigger the development of tailored schedules specifically designed for high risk patients.9  

Several recurrent mutations have been described in MCL, affecting DNA repair genes and cell 

cycle regulators (TP53, ATM, CCND1), epigenetic regulation genes (KMT2D, WHSC1) and cell-

signaling pathways genes (NOTCH1-2, BIRC3, TRAF2).10-12 The proof of principle that MCL genetics 

can impact on disease outcome stems from studies that have focused on the TP53 tumor suppressor 

gene, including both mutations and 17p deletions.13-17 

We prospectively assessed the clinical impact of a panel of genomic alterations in a cohort of 

young MCL patients treated with high dose chemoimmunotherapy and ASCT from the Fondazione 

Italiana Linfomi (FIL) “MCL0208” phase III trial.18 The results document that KMT2D mutations 

associate with poor outcome in MCL and, along with TP53 mutations and 17p deletions, might be 

integrated in a new prognostic score to segregate a subgroup of patients who obtain minimal or no 

benefit from intensive chemoimmunotherapy. The prognostic score was validated in an independent 

series of cases. 

 



 7

METHODS 

 

Patients series 

The FIL-MCL0208 (NCT02354313) is a phase III, multicenter, open-label, randomized, 

controlled study, designed to determine the efficacy of lenalidomide as maintenance versus observation 

in young (18-65 years old), fit, advanced stage (Ann arbor II-IV) MCL patients after first line 

intensified and high-dose chemo-immunotherapy followed by ASCT. Cases of non-nodal MCL were 

excluded.19 The clinical trial, as well as the ancillary mutational study, were approved by the Ethical 

Committees of all the enrolling Centers. All patients provided written informed consent for the use of 

their biological samples for research purposes, in accordance with Institutional Review Boards 

requirements and the Helsinki's declaration. Clinical results of the fist interim analysis of the trial were 

already presented.18 Further information are supplied in the Supplementary appendix. 

 

Biological samples 

Tumor cells were sorted from the baseline BM samples by immunomagnetic beads (CD19 

MicroBeads,human-Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) and stocked as dry pellets.  

Tumor DNA was extracted according to DNAzol protocol (Life Technologies). Germline DNA was 

obtained from PB mononuclear cells collected under treatment and proven to be tumor free by MRD 

analysis. Further information are supplied in the Supplementary appendix. 

 

Next generation sequencing 

A targeted resequencing panel (target region: 37’821 bp) (Table S1) including the coding exons 

and splice sites of 7 genes (ATM, TP53, CCND1, WHSC1, KMT2D, NOTCH1 exon 34, BIRC3) that are 

recurrently mutated in ≥ 5% of MCL tumors was specifically designed.10-12 We also included in the 
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panel TRAF2 20 and CXCR4.21 NGS libraries preparation was performed using TruSeq Custom 

Amplicon sequencing assay according to manufacturer’s protocol (Illumina, Inc., San Diego, CA). 

Multiplexed libraries (n=48 per run) were sequenced using 300-bp paired-end runs on an Illumina 

MiSeq sequencer, (median depth of coverage 2356x). A robust and previously validated bioinformatics 

pipeline was used for variant calling (Supplementary Appendix). Copy number variation analysis 

methods22,23 are supplied in the Supplementary Appendix.  

 

Minimal residual disease analysis  

For MRD purposes, MCL diagnostic BM and PB samples were investigated for IGH gene 

rearrangements and BCL1/IGH MTC by qualitative PCR.24-26 Both BM and PB samples were analyzed 

for MRD at specific time points during and after treatment. Further information are supplied in the 

Supplementary appendix.  

 

Statistical analysis 

The primary outcome of the clinical study was progression-free survival (PFS) and secondary 

outcomes included overall survival (OS).27 The adjusted effects of mutations and exposure variables 

(MIPI-c and blastoid variant) on PFS and OS were estimated by Cox regression. To compare clinical 

baseline features between patients enrolled in the molecular study and patients not included in the 

analysis, we used Mann-Whitney test for continuous variables and Pearson’s chi-squared test for 

categorical variables. Statistical analyses were performed using Stata 13.0 and R 3.4.1. Further 

information are supplied in the Supplementary appendix. 

 

Validation set 
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The Nordic Lymphoma Group “MCL2” and “MCL3”, phase 2, prospective trials17 were used 

for independent validation of our findings. In particular, the raw sequencing data of the study by 

Eskelund were reanalyzed according to our bioinformatics pipeline (detailed before), to get a uniform 

mutation calling.  
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RESULTS 

Patients characteristics  

Out of the 300 patients enrolled in the FIL-MCL0208 clinical trial, 186 (62%) were provided 

with CD19+ sorted tumor cells from the BM and evaluable for both mutations and copy number 

abnormalities. Moreover, four more patients were provided with the copy number abnormalities data 

only. Baseline features of cases included in the molecular study overlapped with those of cases not 

included in the molecular analysis because of lack of tumor material in the BM aspirates. As expected, 

tumor cells were obtained more frequently in cases with BM infiltration documented by morphological 

or flow-cytometry analysis (Table 1). Overall, this observation did not introduce a selection bias, since 

cases evaluable for genomic studies showed a similar outcome to that of cases not analyzed, both in 

terms of PFS and OS (Figure S1).  

 

Description of genomic alterations 

At least one somatic non-synonymous mutation affecting genes of the target region was 

observed in 69.8% of patients (130/186) (Figure 1, Figure S2; Table S2). Mutated genes were ATM 

(41.9%), followed by WHSC1 (15.6%), KMT2D (12.4%), CCND1 (11.8%), TP53 (8.1%), NOTCH1 

(7.5%), BIRC3 (5.9%) and TRAF2 (1.1%). KMT2D deletion occurred in 1.6% of patients (3/190) and 

TP53 deletion in 13.2% patients (25/190). TP53 was inactivated by mutations or deletions in 31/186 

(16.6%) cases, including 8/186 (4.3%) mutated/deleted cases, 16/186 (8.6%) deleted but not mutated 

cases, and 7/186 (3.7%) mutated but not deleted cases. KMT2D was inactivated by mutations or 

deletions in 25/186 (13.4%) cases, including 1/186 (<1%) mutated/deleted case, 2/186 (<1%) deleted 

but non mutated cases, and 22/186 (11.8%) mutated but not deleted cases.  
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KMT2D mutations and TP53 disruption associate with poor outcome in MCL 

By univariate analysis, mutations of KMT2D were associated with poor clinical outcome in 

terms of both PFS and OS. At 4 years, the PFS of KMT2D mutated patients was 33.2% vs 63.7% 

(p<0.001) in wild type cases (Figure 2 A). The OS of KMT2D mutated patients was 62.3% vs 86.8% 

(p=0.002) in wild type patients (Figure 2 B). Consistent with previous reports, both TP53 mutations 

and deletion associated with shorter PFS and OS at 4 years (Figure 2 C,D and Figure 3). In detail, the 

negative prognostic impact for TP53 disruption was equal for all the three inactivation modalities, 

which were then considered as a single group for further analyses (Figure S3). No further survival 

analysis was performed on KMT2D deletions, given the low frequency of this genetic lesion. All the 

other investigated mutations did not show strong association with PFS or OS (Figures S4-6 and Table 

S3). 

Patients harboring TP53 disruption were significantly enriched in known high-risk features of 

MCL. Indeed, 48.3% of the TP53 disrupted patients had Ki-67 ≥30%, 37.9% scored in the higher 

MIPI-c risk classes (i.e. “intermediate-high” and “high”), and 22.6% showed blastoid morphology. 

Conversely, 45.5% of cases harboring KMT2D mutations scored in the higher MIPI-c risk classes but 

did not associate with Ki-67 expression or blastoid morphology (Table S4). Moreover, KMT2D 

mutated patients showed slightly higher beta-2 microglobulin (B2M) median values, as well as higher 

prevalence of B symptoms and bulky disease (>5 cm) than wild type patients (all p<0.05). 

Interestingly, also TP53 disrupted patients showed slightly higher B2M median values (p<0.05) than 

wild type patients (Table S4) and were associated with a high rate of disease progression during 

treatment (9 out of 31 patients, 29%). Moreover, TP53 disrupted patients reached lower levels of MRD 

negativity after ASCT, if compared with wild type ones: 35% vs 58% in BM (p=0.06) and 58% vs 80% 

in PB (p=0.04), respectively. Similar trends were seen for KMT2D mutated patients (46% vs 55% in 

BM and 58% vs 79%), albeit not statistically significant (Table S5).  Analogous to the Nordic 
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Lymphoma Group MCL2 and MCL3 trials17, also in our study morphological BM involvement was 

significantly associated with the presence of mutations in any of the genes analysed (p < 0.05). 

However, both TP53 disruptions and KMT2D mutations were equally distributed in patients with and 

without BM involvement (p = 0.26 and p = 0.32, respectively). 

By multivariate analysis adjusted for the validated risk factors MIPI-c and blastoid variant, both 

KMT2D mutations and TP53 disruptions maintained an independent increased hazard of progression 

and death (Table 2 and S6).  Patients carrying at least one of these genetic lesions, namely KMTD2 

mutations, TP53 mutations or deletion (n=49/186, 26.3%), had a 4-year PFS of 32.0% vs 69.9% of 

wild type patients (p<0.0001) and a 4-year OS of 65.1% vs 90.3% (p<0.0001), respectively (Figure 4).  

 

Integration of a genetic score into the MIPI-c: the “MIPI-g” model 

In order to integrate the clinical impact of KMT2D mutations and TP53 disruptions into the 

MIPI-c prognostic index (complete data available for 172 patients), we assigned a score to each of the 

single variables, based on the multivariate Cox regression analysis. MIPI-c low, low-intermediate and 

intermediate-high risk classes scored 0 points, MIPI-c high-risk class scored 1 point, while KMT2D 

mutations as well as TP53 disruption scored 2 points (Table 3). Patients were then grouped into three 

risk classes, according to their total score, in the “MIPI-genetic” index (“MIPI-g”), namely: i) 0 points, 

low risk group (LR 121 patients, 70.3%); ii) 1-2 points, intermediate risk group (IR 38 patients, 

22.1%); iii) ≥3 points, high risk group (HR 13 patients, 7.6%). PFS and OS at 4-years for low-, 

intermediate-, and high-risk groups were 72.0%, 42.2%, 11.5% (p<0.0001) and 94.5%, 65.8%, 44.9% 

(p<0.0001), respectively (Figure 5). The MIPI-g index improved the model discrimination ability, with 

a C-statistics of 0.675 for PFS (bootstrapping corrected 0.654) and 0.776 for OS (bootstrapping 

corrected 0.747), as compared to MIPI-c alone (C-statistics 0.592 and 0.7, respectively). 
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Validation set 

Most KMT2D variants considered in the Nordic study have been removed by our mutational 

calling, since these were missense variants not reported in COSMIC. At the end of the re-analysis, from 

the original 28 mutations, 21 were excluded. Two previously unrecognized frameshift mutations have 

been identified by our bioinformatics pipeline, overall accounting for a total of 9 KMT2D mutations (all 

disrupting, as expected for KMT2D) in the Nordic validation series. In the Nordic validation series, 

KMT2D mutated patients showed a similar increased risk for OS, with a median OS 12.7 years (95% 

C.I. not evaluable) for wild type vs. 8.4 (95% C.I 0-17.6) for mutated cases. The Nordic validation 

series also replicated the MIPI-g score. The re-analysis of TP53 mutations confirmed the original data 

of Eskelund et al., with median OS of 12.7 (95% C.I. not evaluable) for wild type cases and 2.0 years 

(95% C.I, 1.2-2-8) for mutated cases. Consistently, also the MIPI-g validation on the Nordic series 

showed similar results: 4-year OS for LR (N=103), IR (N=36) and HR (N=13) MIPI-g groups were 

91.3%, 72.2%, 15.4%.  

 

DISCUSSION 

To identify new molecular predictors in MCL, we performed targeted resequencing and DNA 

profiling of purified tumor samples collected from younger patients enrolled in the ASCT-based 

prospective FIL-MCL0208 phase III trial (NCT02354313). Our study documents that: i) KMT2D 

mutations are a novel, independent, adverse genetic biomarker in MCL, impacting both on PFS and OS 

(Figure 2 A,B); ii) TP53 aberrations (both mutations and deletion) prospectively confirm their adverse 

prognostic value in younger MCL patients receiving high-dose chemo-immunotherapy followed by 

ASCT, both in terms of PFS and OS (Figures 2 C,D and Figure 3); iii) identification of either KMT2D 

mutations or TP53 disruption (or both) defines a high-risk group of young MCL patients whose 

outcome is still not satisfactory despite intensive immunochemotherapy and ASCT (Figure 4); iv) these 
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biomarkers may be incorporated into a “genetic” MIPI-c (“MIPI-g”) model, accounting for three risk 

classes (Figure 5), that improve the C-statistics discrimination ability on survival, if compared to MIPI-

c alone. 

The adverse prognostic value of TP53 mutations in MCL has been already observed in some 

retrospective series,13-17 and has been recently confirmed in a combined series from two, ASCT-based, 

phase II trials of the Nordic Lymphoma Group.17 TP53 deletions impacted on both PFS and OS in the 

randomized, phase III European MCL Network “Younger” trial,16 while these data were not confirmed 

by multivariate analysis in the Nordic study, due to the high association with TP53 mutations.17 Our 

prospective study performed in a similar patient population of young MCL patients demonstrates that 

the presence of either TP53 mutations or deletions or both associates with poor prognosis. Importantly, 

although TP53 aberrations associated with elevated Ki-67, higher MIPI-c classes and blastoid 

morphology, their impact on survival was independent of these known risk factors. Moreover, TP53 

disrupted patients show higher levels of MRD positivity after ASCT, as described in Table S5. Finally, 

some previous studies reported also a negative impact of NOTCH1 mutations in univariate analysis,10,17 

however in our cohort these mutations were not an independent predictor of survival, as most of them 

co-occurred with TP53 mutations.   

In the FIL-MCL0208 trial, KMT2D mutations emerged as a novel biomarker heralding chemo-

immunotherapy failure, with a predictive value similar to that of TP53 aberrations. KMT2D (Lysine 

Methyltransferase 2D), also known as MLL2, acts as a tumor suppressor gene mutated in several B-cell 

lymphoma types, including 10-15% of MCL.28-31 Even though KMT2D mutated patients of the FIL-

MCL0208 trial scored in the higher MIPI-c risk classes, they did not show either elevated Ki-67 or 

blastoid morphology, suggesting that KMT2D mutations capture high-risk patients not otherwise 

identifiable through conventional pathologic parameters.  
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To the best of our knowledge, the adverse impact on cancer survival of KMT2D mutations has 

not been documented to date. No impact on survival was found for KMT2D mutations in the Nordic 

study.17 The lack of impact on survival of KMT2D mutations in the Nordic MCL series might be 

related to two main reasons. First, in the Nordic series, most KMT2D mutations were missense 

sequence variants (15/28) not reported as somatic variants in the COSMIC database, and therefore not 

fulfilling the criteria of “true” mutations. Conversely, in our series 74% of KMT2D mutations were 

protein truncating events, as expected28-31. Second, since Eskelund et al. performed mutational analysis 

in unsorted bone marrow samples, the low or absent tumor content of many cases might lead to 

underestimate KMT2D “true” mutations. By applying our bioinformatics pipeline to the raw 

sequencing data of the MCL2 and MCL3 Nordic Lymphoma Group trials, we validated the poor 

prognostic role of KMT2D mutations in an independent prospective cohort. 

The independent adverse prognostic value of TP53 and KMT2D aberrations prompted us to 

integrate the molecular results into the MIPI-c,8 aiming at further improving its ability to discriminate 

high-risk patients. The “MIPI-genetic” (“MIPI-g”) was able to divide patients into three risk classes, on 

the basis of a simple score given to each variable (namely: MIPI-c class, TP53 disruption and KMT2D 

mutations). Patients in the high “MIPI-g” risk groups may deserve new treatments, and a simple tool 

like the MIPI-g might be proposed in a future, “tailored” trial to select high-risk MCL patients for 

targeted experimental strategies. 

Our study suffers from some limitations. The analyses were performed only on CD19+ sorted 

BM cells and no tissue control is available at the moment; this issue might represent a limit for the 

extrapolation of the results to lymph-node samples, as across-compartment heterogeneity of the 

mutational landscape is described in MCL.10 However, the CD19+ selection approach we used, 

increasing the purity of tumor cells and, consequently, the sensitivity of our mutational approach, 

ensured that all the analyzed samples are representative of MCL. Therefore, we set a VAF threshold of 
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10% to call a mutation, accordingly to ERIC guidelines for the mutational analysis of the TP53 gene in 

chronic lymphocytic leukemia.32 Although we acknowledge that the present validation relies on a 

limited number of KMT2D mutated patients, we note that the Nordic trials are currently the only 

prospective studies with prompt available mutational data, adequate clinical follow-up and similar 

characteristics (i.e. patients age and treatment schedule), to validate our original findings from the 

“FIL-MCL0208” trial. 

The impact of lenalidomide maintenance in the FIL-MCL0208 trial on the described genetic 

aberrations has not been addressed, as complete data on randomization are not available yet. However, 

it should be noted that due to the high number of progressive diseases in the aberrant TP53/KMT2D 

group, 27 patients have been finally randomized but only 9 actually started lenalidomide maintenance. 

Therefore, it is unlikely that lenalidomide might play a clear role in driving the outcome of these 

patients and the trial will probably not be able to fully address this issue even with longer follow-up. 

In conclusion, our results show that KMT2D mutated and/or TP53 disrupted younger MCL 

patients are a high-risk population, characterized by poor sensitivity even to intensified chemo-

immunotherapy. Given the negative prognostic impact of these genetic lesions, they might be used to 

select high-risk patients for novel therapeutic approaches that can circumvent these detrimental genetic 

lesions. As in other lymphoid disorders, novel non-chemotherapeutic strategies specifically designed 

for high-risk patients need to be investigated in MCL. Besides the approved drugs lenalidomide and 

ibrutinib, new molecules such as the Bcl-2 inhibitor venetoclax might be very promising for these 

chemorefractory patients, especially for TP53 disrupted cases.33,34 Moreover, as the majority of 

KMT2D mutated and/or TP53 disrupted patients of our series actually achieve a response, though short-

lasting after ASCT, an alternative consolidation with allogeneic transplantation deserves investigation.  
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Table 1. Clinical and biological baseline characteristics of the patients included and not included 
in the molecular analysis 
 

Characteristics 

Patients analysed for 

mutations and/or CNV 

(N=190) 

Patients not analysed 

for mutations and CNV 

(N=110) 

P-value 

Median age 57 58 0.987 

Gender     

0.090 Female 47 (24.7%) 18 (16.4%) 

Male 143 (75.3%) 92 (83.6%) 

Ki-67     

0.210 <30% 126 (71.6%) 61 (64.2%) 

≥30% 50 (28.4%) 34 (35.8%) 

Median WBC 74500/ul 75000/ul 0.567 

ECOG     

0.722 
0 144 (75.8%) 87 (79.2%) 

1 40 (21.1%) 19 (17.3%) 

2 6 (3.2%) 4 (3.6%) 

Median LDH 275.5 UI/L 298 0.848 

Risk class MIPI     

0.562 
Low 114 (60.0%) 66 (60.0%) 

Intermediate 49 (25.8%) 24 (21.8%) 

High 27 (14.2%) 20 (18.2%) 

Risk class MIPI-c     

0.685 

Low 88 (50.0%) 45 (47.4%) 

Low-Intermediate 49 (27.8%) 30 (31.6%) 

Intermediate/High 25 (14.2%) 10 (10.5%) 

High 14 (8.0%) 10 (10.5%) 

BM Invasion     

<0.001 No 26 (13.9%) 37 (33.9%) 

Yes 161 (86.1%) 72 (66.1%) 

Median BM invasion by 

flow (%) 
10% 0.8% <0.0001 

Histology     

0.842 MCL Classic 174 (91.6%) 100 (90.9%) 

MCL blastoid variant 16 (8.4%) 10 (9.1%) 

Bulky mass     

0.315 No 124 (65.3%) 78 (70.9%) 

Yes 66 (34.7%) 32 (29.1%) 

CNV, Copy Numer Variation Analysis; WBC, White Blood Cells; ECOG, Eastern Cooperative Oncology Group; LDH, 
Lactate dehydrogenase; MIPI, MCL International Prognostic Index; MIPI-c, Combined MIPI; BM, Bone Marrow 



Table 2. Uniavariate and multivariate Cox-regression analysis in terms of PFS an OS 
 

  Progression free survival   Overall survival 

  

Univariate  

  

Multivariate                    

(MIPI-c and blastoid variant 

adjusted)   

Univariate 

  

Multivariate                    

(MIPI-c and blastoid variant 

adjusted) 

Genes HR 95% CI  P-value   HR 95% CI  P-value   HR 95% CI  P-value   HR 95% CI  P-value 

ATM mut 1.29 0.84-1.97 0.245   1.19 0.77-1.83 0.432   1.52 0.62-2.51 0.527   1.05 0.52-2.12 0.887 

WHSC1 mut 1.53 0.90-2.60 0.119   1.51 0.87-2.61 0.140   0.85 0.30-2.41 0.755   0.741 0.25-2.15 0.581 

CCND1 mut 0.83 0.41-1.66 0.595   0.94 0.46-1.92 0.860   0.75 0.23-2.48 0.643   1.01 0.29-3.53 0.980 

KMT2D mut 2.59 1.50-4.48 0.001   2.74 1.55-4.84 0.001   3.20 1.48-6.92 0.003   2.48 1.12-5.46 0.024 

TP53 mut 2.84 1.57-5.13 0.001   2.55 1.36-4.78 0.003   5.28 2.44-11.45 <0.0001   2.78 1.09-7.06 0.032 

NOTCH1 mut 1.86 0.93-3.72 0.078   1.57 0.76-3.24 0.226   1.34 0.41-4.40 0.629   0.61 0.17-2.12 0.609 

BIRC3 mut 0.88 0.32-2.41 0.807   0.70 0.25-1.96 0.500   1.84 0.56-6.08 0.315   1.15 0.33-3.98 0.822 

TP53 del 3.51 2.09-5.88 <0.0001   3.13 1.73-5.68 <0.001   4.46 2.14-9.29 <0.0001   2.65 1.06-6.59 0.036 

TP53 dis 3.39 2.10-5.45 <0.0001   3.17 1.87-5.38 <0.0001   4.26 2.09-8.67 <0.0001   2.65 1.10-6.37 0.030 

Del, deleted; dis, disrupted; PFS, Progression Free Survival; OS, overall survival; HR, Hazard Ratio; CI, Confidence Interval. 
 

 



Table 3. The MIPI-g score 
 

Variables  
Beta-

coefficients 
Points 

KMT2D mutations 1,035,607 2 

TP53 disruption 1,113,875 2 

MIPI-c     

Low - 0 

Low-Intermediate  - 0 

Intermediate-High - 0 

High  0.6847757 1 

MIPI-c, Combined Mantle Cell International Prognostic Index 
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FIGURE LEGENDS 

Figure 1. Overview on prevalence and molecular spectrum of non-synonymous somatic 

mutations discovered in patients’ tumor DNA.  Heatmap representing the mutational profiles of 186 

MCL cases, genotyped on tumor DNA (and four additional patients with copy number abnormalities 

data only). Each column represents one patient, each row represents one gene. The fraction of patients 

with mutations in each gene is plotted on the right. The number of aberrations in a given patient is 

plotted above the heatmap.  

 

Figure 2. Prognostic impact of KMT2D and TP53 mutations. Kaplan-Meier estimates of progression 

free survival and overall survival of KMT2D (A, B), and TP53 (C, D) mutated versus wild type 

patients. Cases harboring mutations (mut) in these genes are represented by the yellow line. Cases wild 

type (wt) for these genes are represented by the blue line. The Log-rank statistics p values are indicated 

adjacent curves. 

 

Figure 3. Prognostic impact of TP53 deletion. Kaplan-Meier estimates of progression free survival 

(A) and overall survival (B) of TP53 deleted versus wild type patients. Cases with TP53 deletion are 

represented by the yellow line. Cases without TP53 deletion are represented by the blue line. The Log-

rank statistics p values are indicated adjacent curves. 

 

Figure 4. Prognostic impact of combined KMT2D mutations and TP53 disruption. Kaplan-Meier 

estimates of (A) progression free survival and (B) overall survival of patients harboring KMT2D 

mutations and/or TP53 disruption (mutations and/or deletions). Cases harboring at least one of these 3 

genetic lesions are represented by the yellow line. Cases without these genes are represented by the 

blue line. The Log-rank statistics p values are indicated adjacent curves.  
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Figure 5. The “MIPI-g” model. Kaplan-Meier estimates of (A) progression free survival and (B) 

overall survival of patients harboring KMT2D mutations and/or TP53 disruption (mutations and/or 

deletions) integrated into the MIPI-c. Low MIPI-g risk cases are represented by the blue line, 

intermediate MIPI-g cases by the yellow line and high MIPI-g cases by the red line. The Log-rank 

statistics p values are indicated adjacent curves.  
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SUPPLEMENTARY METHODS 

 

Patients series 

The FIL-MCL0208 (NCT02354313) is a phase III, multicenter, open-label, randomized, 

controlled study, designed to determine the efficacy of lenalidomide as maintenance versus 

observation in young (18-65 years old), fit, advanced stage (Ann arbor II-IV) MCL patients who 

achieved complete or partial remission after first line intensified and high-dose chemotherapy plus 

rituximab followed by ASCT. Briefly, patients received 3 R-CHOP-21, followed by R-high-dose 

cyclophosphamide (4g/m2), 2 cycles of R-high-dose Ara-C (2g/m2 q12x3 d) and ASCT conditioned 

by using the BEAM or FEAM regimen. From May 2010 to August 2015, a total of 300 patients were 

enrolled in the study. Cases of non-nodal MCL were excluded.1 All patients required to have a biopsy 

proving MCL, including evidence of cyclin D1 overexpression or t(11;14)(q13;q32) translocation. 

MCL diagnosis was confirmed by centralized pathological revision according to WHO criteria.1 The 

clinical trial, as well as the ancillary mutational study, were approved by the Ethical Committees of 

all the enrolling Centers. All patients provided written informed consent for the use of their biological 

samples for research purposes, in accordance with Institutional Review Boards requirements and the 

Helsinki's declaration. Clinical results of the fist interim analysis of the trial were already presented.2 

Final, unblinded results are not available at the moment and have not been yet presented anywhere. 

 

Biological samples 

Bone marrow (BM) and peripheral blood (PB) samples were collected, as per protocol, at 

baseline and at several time-points during follow-up, corresponding to the pre-planned time-points 

for minimal residual disease (MRD) analysis. To identify and quantify the rate of tumor invasion, 

flow cytometry (FC) was performed both on BM and PB with the following antibodies: anti-CD19 

APC, anti-CD23 PE, anti-CD5 FITC, and anti-CD20. Tumor cells were sorted from the baseline BM 



samples by immunomagnetic beads (CD19 MicroBeads,human-Miltenyi Biotec GmbH, Bergisch 

Gladbach, Germany) and stocked as dry pellets. 

Tumor DNA was extracted according to DNAzol protocol (Life Technologies). Germline DNA was 

obtained from PB mononuclear cells collected under treatment and proven to be tumor free by MRD 

analysis. 

 

Next generation sequencing 

A targeted resequencing panel (target region: 37’821 bp) (Table S1) including the coding 

exons and splice sites of 7 genes (ATM, TP53, CCND1, WHSC1, KMT2D, NOTCH1 exon 34, BIRC3) 

that are recurrently mutated in ≥ 5% of MCL tumors was specifically designed.3-5 We also included 

in the panel TRAF2 6 and CXCR4.7 The gene panel was analyzed in tumor DNA from baseline BM 

CD19+ purified MCL cells (186 cases) and, for comparative purposes to filter out polymorphisms, in 

the paired normal genomic DNA (105 cases). NGS libraries preparation was performed using TruSeq 

Custom Amplicon sequencing assay according to manufacturer’s protocol (Illumina, Inc., San Diego, 

CA). Multiplexed libraries (n=48 per run) were sequenced using 300-bp paired-end runs on an 

Illumina MiSeq sequencer, (median depth of coverage 2356x). To avoid the loss of NOTCH1 ex 34 

c.7544_7545delCT mutation, that is included in a region poorly covered by the target design, all MCL 

cases were also analyzed by amplification refractory mutation system (ARMS) polymerase chain 

reaction (PCR).  

 

Bioinformatic analysis  

FASTQ sequencing reads were locally aligned to the hg19 version of the human genome 

assembly using the BWA v.0.6.2 software with the default setting, and sorted, indexed and assembled 

into a mpileup file using SAMtools v.1. The aligned read families were processed with mpileup. A 

cut-off of 10% of variant allele frequency (VAF) was set for variant calling. Among cases provided 

with both tumor and paired normal gDNA, single nucleotide variations and indels were called using 



the somatic function of VarScan2. The variants called by VarScan2 were annotated by using the 

SeattleSeq Annotation 138 tool by using the default setting. Variants annotated as SNPs according to 

dbSNP 138 (with the exception of TP53 variants that were manually curated and scored as SNPs 

according to the IARC TP53 database), intronic variants mapping >2 bp before the start or after the 

end of coding exons, and synonymous variants were then filtered out. The following strict post-

processing filters were then applied to the remaining variants to further improve variant call 

confidence. Accordingly, variants represented in >10 reads of the paired germline and/or variants 

with a somatic p value from VarScan2 >3.305e-7 [multiple comparisons corrected p threshold=3.305e-

7, corresponding to alpha of 0.05/(37’821 x 4 alleles per position)] were no further considered. Variant 

allele frequencies for the resulting candidate mutations and the background error rate were visualized 

using IGV. Among patients lacking the paired normal gDNA, single nucleotide variations and indels 

were called in tumor gDNA with the cns function of VarScan2. The variants called by VarScan2 were 

annotated by using the SeattleSeq Annotation 138 tool by using the default setting. Variants annotated 

as SNPs according to dbSNP 138 (with the exception of TP53 variants that were manually curated 

and scored as SNPs according to the IARC TP53 database), intronic variants mapping >2 bp before 

the start or after the end of coding exons, and synonymous variants were then filtered out. Only 

protein truncating variants (i.e. indels, stop codons and splice site mutations), as well as missense 

variants not included in the dbSNP 138 and annotated as somatic in the COSMIC v78 database, were 

retained. 

 

Copy number variation analysis  

DNA profiling was performed on DNA samples derived from baseline BM CD19+ purified 

tumor cells using the HumanOmni2.5 arrays (Illumina, San Diego, CA, USA). Copy number status 

of the genes included in the targeted resequencing panel (KMT2D and TP53) was assessed after 

genomic profiles segmentation with the Fast First-derivative Segmentation Algorithm, as previously 

described.8,9 



Minimal residual disease analysis  

For MRD purposes, MCL diagnostic BM and PB samples were investigated for IGH gene 

rearrangements and BCL1/IGH MTC by qualitative PCR. Briefly, IGH were screened using forward 

consensus primers annealing the IGH-V-regions and a reverse primer complementary to the JH 

region. BCL1/IGH MTC translocation was investigated by nested-PCR approach, as described.10-12 

After direct sequencing, FASTA files alignment was performed by IMGT/V-QUEST 

(http://imgt.org) and BlastN tool (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi), in order to define 

rearranged loci nomenclature, chromosomic breakpoints, and to assess patient specific nucleotide 

insertions (N insertions), then used to design allele specific oligonucleotides primers for nested-PCR 

MRD monitoring. Therefore, both BM and PB samples were analyzed for MRD at specific time 

points during and after treatment. 

 

Statistical analysis 

The primary outcome of the clinical study was progression-free survival (PFS). PFS was 

calculated from the date of enrolment into the clinical study to the date of disease progression (event), 

death from any causes (event), or last follow up (censoring).13 Secondary outcomes included overall 

survival (OS), measured from the date of enrolment into the clinical study to the date of death from 

any causes (event), or last follow up (censoring). Time-to-event outcomes (PFS and OS) were 

estimated using the Kaplan-Meier method and compared between groups using the Log-rank test. 

The adjusted effects of mutations and exposure variables (MIPI-c and blastoid variant) on PFS and 

OS were estimated by Cox regression. To compare clinical baseline features between patients 

enrolled in the molecular study and patients not included in the analysis, we used Mann-Whitney test 

for continuous variables and Pearson’s chi-squared test for categorical variables. A Cox model for 

PFS was estimated including MIPI-c and clinically impacting genetic alterations, and an additive 

score was computed according to the proportion between each predictor coefficient and the lowest 

one. The Cox model was internally validated using 1000 bootstrap samples and the C-statistic correct 



for optimism was also provided. Patients were then grouped in classes of risk according to their total 

score using the nonparametric tree modelling technique of classification and regression tree (CART) 

analysis. Statistical analyses were performed using Stata 13.0 and R 3.4.1. The outcome data for the 

present analysis were updated as of December, 2017 the randomization arms being still blinded. 

 

  



SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Survival analysis for patients enrolled in the MCL0208 clinical trial included and 

not included in the present molecular study.  Kaplan-Meier estimates of progression free survival 

(A) and overall survival (B) of patients with available DNA included in the present molecular study 

(in blue) and of patients without available DNA not included in the present molecular study (in 

yellow). The Log-rank statistics p values are indicated adjacent curves. 

 

Figure S2. Disposition of identified gene mutations across the protein. Mutations identified in the 

studied cohort are plotted above the protein divided into the main domains. Missense mutations are 

plotted in green, stop codon mutations in red, splicing mutations in black, frameshift mutations in 

red, in-frame mutations in yellow.  

 

Figure S3. Prognostic impact of TP53 mutation and TP53 deletion. Kaplan-Meier estimates of 

progression free survival (A) and overall survival (B) of TP53 mutated patients, TP53 deleted 

patients, TP53 mutated and deleted patients, versus wild type patients. Cases with TP53 mutation are 

represented by the yellow line, cases with TP53 deletion are represented by the red line, cases with 

TP53 mutation and deletion are represented by the black line, cases without TP53 mutation and 

deletion are represented by the blue line. The Log-rank statistics p values are indicated adjacent 

curves. 

 

Figure S4. Prognostic impact of NOTCH1 mutation and ATM mutation. Kaplan-Meier estimates 

of (A) progression free survival and (B) overall survival of patients harboring NOTCH1 mutation and 

Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of patients harboring 

ATM  mutation. Cases harboring NOTCH1 or ATM mutation are represented by the yellow line. Wild 



type cases are represented by the blue line. The Log-rank statistics p values are indicated adjacent 

curves.  

 

Figure S5. Prognostic impact of WHSC1 mutation and CCND1 mutation. Kaplan-Meier 

estimates of (A) progression free survival and (B) overall survival of patients harboring WHSC1 

mutations and Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of 

patients harboring CCND1 mutation. Cases harboring WHSC1 or CCND1 mutation are represented 

by the yellow line. Wild type cases are represented by the blue line. The Log-rank statistics p values 

are indicated adjacent curves. 

 
 
Figure S6. Prognostic impact of  BIRC3 mutation and TRAF2 mutation. Kaplan-Meier estimates 

of (A) progression free survival and (B) overall survival of patients harboring BIRC3 mutation and 

Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of patients harboring 

TRAF2 mutation. Cases harboring BIRC3 or TRAF2 mutation are represented by the yellow line. 

Wild type cases are represented by the blue line. The Log-rank statistics p values are indicated 

adjacent curves. 
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