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a b s t r a c t 

Shape analysis of cell nuclei is becoming increasingly important in biology and medicine. Recent results 

have identified that large variability in shape and size of nuclei has an important impact on many biolog- 

ical processes. Current analysis techniques involve automatic methods for detection and segmentation of 

histology and microscopy images, but are mostly performed in 2D. Methods for 3D shape analysis, made 

possible by emerging acquisition methods capable to provide nanometric-scale 3D reconstructions, are 

still at an early stage, and often assume a simple spherical shape. We introduce here a framework for 

analyzing 3D nanoscale reconstructions of nuclei of brain cells (mostly neurons), obtained by semiauto- 

matic segmentation of electron micrographs. Our method considers two parametric representations: the 

first one customizes the implicit hyperquadrics formulation and it is particularly suited for convex shapes, 

while the latter considers a spherical harmonics decomposition of the explicit radial representation. Point 

clouds of nuclear envelopes, extracted from image data, are fitted to the parameterized models which 

are then used for performing statistical analysis and shape comparisons. We report on the analysis of a 

collection of 121 nuclei of brain cells obtained from the somatosensory cortex of a juvenile rat. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In biology, the nucleus is a membrane-enclosed organelle found

n eukaryotic cells, including the ones composing the brain. It is

onsidered the control center of the cell, since, in particular, it or-

anizes activities by regulating gene expression. The nuclear en-

elope, consisting of an inner and outer membrane separated by

eri-nuclear space and perforated by nuclear pores, encloses the

ucleus and separates it from the cytoplasm. All active and passive
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ransport processes in and out of the nucleus take place via the

uclear pores. 

Recently, the analysis of proteins associated with the nuclear

nvelope in rat hippocampal neurons provided evidence that the

hape of nuclei is an important factor influencing the nucleo-

ytoplasmic exchange of macromolecules and ions, in particular

alcium, which is a key regulator of neuronal gene expression [1] .

oreover, the size and shape of nuclear envelopes can vary not

nly among species, but also within species and even within a sin-

le individual, depending on cell types and other, even transient,

onditions. Geometrically, the cell nucleus has been often studied

s a spherical structure [2] , but this approximation is increasingly

roving way too coarse for a number of applications [1] . The anal-

sis of shape properties is thus gaining importance in biology and

edicine, since shape variability can provide indicators of different

onditions and can provide hints for classifying cells. 

A major field in which cell nucleus analysis is considered of

aramount importance is computer-aided diagnostics [3] , where
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Method overview: from 3D nanoscale reconstructions of neuron nuclei obtained from electron microscopy image stacks, we fit specific surface representations to 

derive parameter sets for shape analysis and classification. 
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o  
a series of methods have been developed for automated 2D de-

tection and segmentation on microscopy images, with the aim

of providing support for various quantitative analyses, including

calculating cellular morphology, including size, shape, or texture.

However, most of nuclear analysis is performed directly on 2D

images and only few effort s have used 3D reconstruction, in

particular for studying the dynamics of nuclear infoldings in

response to neuronal activity [4] . It is only very recently, with the

emergence of digital acquisition methods capable to provide 3D

reconstructions at nanometric resolution scale [5] , that collections

of 3D shape measurements of nuclei are starting to become avail-

able. There is a clear need to develop shape analysis frameworks

to support domain scientists in performing 3D quantitative mea-

sures, classification and clustering operations, e.g., for associating

different shapes to different nuclear conditions. 

In this paper, we analyze digital 3D reconstructions of nuclei of

brain cells that were obtained by segmenting serial electron mi-

crographs at nanoscale resolution. We propose a shape analysis

framework based on surface parameterizations, which provide sim-

ple but effective representations of nuclear envelope shapes. The

parameters can be used for providing measures, features, and in-

dicators for shape classification. To this end, we considered the

hyperquadrics [6] implicit representation of convex shapes (see

Fig. 1 ) using a formulation that provides us increased control in

fitting the discrete point clouds representing the nuclei shapes as

identified by image segmentation (see Section 4.1 ), and a more

general function decomposition based on spherical harmonics [7] ,

that provides ways to derive rotation-invariant shape descriptors

(see Section 4.2 ). We show how the fitting for both parametric

models can be computed using constrained optimization methods.

For the hyperquadrics implicit representation we then create an

explicit radial representation by sampling, which can be used for

tessellation and shape comparison. 

Our framework makes it possible to obtain parametric repre-

sentations of shapes that can be used for measuring sizes, per-

forming comparisons and for classifying nuclei to cell types and

various conditions. 

This article is an invited extended version of our STAG 2018

contribution [8] , which was limited to the presentation of the hy-

perquadric approach. We here provide a more thorough exposi-

tion, but also significant new material, including the description of

the acquisition method, the presentation of a refined pipeline sup-

porting multiple fitting models, a generalized spherical harmonics

solution, and additional qualitative and quantitative results. Also,

we extended the classification options by comparing and evaluat-

ing the accuracy of different machine learning dimension reduction

techniques. 

The original framework was developed around a specific

implicit representation, hyperquadrics, that was chosen after

visual assessment of neural nuclei envelopes according to do-

main scientists indications. It proved to be more accurate than

the usual spherical approximation for identifying convex neu-

ronal nuclei. However, it was not optimal for concave and other
ontorted shapes. By generalizing the framework by including

he spherical harmonics basis decomposition [9] , and deriving a

arameterization of the explicit radial surface, we achieve in-

reased performance on complex cases. 

Here, we demonstrate the method on a collection of 121 brain

ell nuclear envelopes. The input data came from semiautomatic

egmentation of electron micrographs of a sample of somatosen-

ory cortex of a juvenile rat coming from layers VI and II/III. We

rovide preliminary results of fitting performance of the proposed

arametric models, as well as a discussion of a preliminary shape

nalysis performed by domain scientists with our framework. 

. Related work 

We aim at creating a 3D shape analysis framework based on

n implicit surface parameterization to be used for the study of

D shapes obtained from nanoscale cell nuclear envelopes recon-

tructions. We discuss here the state-of-the-art in nuclei detection,

hape analysis in neuroscience, and implicit representations in

isual computing. 

.1. Cell nuclei segmentation 

Accurate detection of individual cell nuclei in microscopy im-

ges is an essential and fundamental task for many biological stud-

es. A comprehensive review of cell detection and segmentation al-

orithms can be found in [3] . The accuracy of segmentation and

econstruction determines the quality of morphology features ex-

racted and is in some cases crucial for identifying and grading

iseases. Broadly, three popular strategies are used for nucleus/cell

egmentation: 

(a) separate the foreground from the background, and split the

object groups into individual nuclei or cells [10,11] ; 

(b) identify markers of nuclei or cells, and then, expand the

markers to the object boundaries [12–14] ; 

(c) generate a sufficient number of region candidates, and then,

select the best ones as final segmentation [15–17] . 

Very recently, Ram and Rodriguez [18] presented a cell nucleus

etection system using the fast radial symmetry transform (FRST),

o be used in fluorescence in-situ hybridization (FISH) images ob-

ained via confocal microscopy. To the best of our knowledge, all

ublished models are based on 2D segmentation of cell nuclei. Our

ethod fits parametric representations to 3D reconstructions of

ell nuclear envelopes. It extends a generic implicit surface model

n a way that proves to be a simple but effective 3D paramet-

ic representation, expressive enough to perform statistical analysis

nd shape comparisons of rodent brain cell nuclear shapes. 

.2. Implicit representations in visual computing 

A parametric representation of shape allows for the definition

f geometrical objects using a few parameters and incorporating
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cell nuclei at varying conditions. 
rior knowledge. Because implicit surfaces can be designed so that

he algebraic distance to them can be quickly computed by eval-

ating a simple differentiable function, they are better suited to

tting 2D and 3D data that the most common explicit models [19] .

mplicit geometry has been used extensively for various applica-

ions, ranging from constructive solid geometry [20] , to geometric

odeling [21] , to real time ray tracing [22,23] , to molecular dy-

amics [24,25] . One of the most common implicit representations

s the superquadric, introduced by Barr [26] and then widely ap-

lied to many problems, such as object representation [27] , shape

ecovery [28] , image segmentation [29] , and object modeling [30] . 

Superquadrics are, however, constrained to represent

ymmetrical-section volumes. This limitation was removed by

anson [6] with the introduction of the hyperquadric primi-

ives, which include quadrics and superquadrics as special cases.

yperquadrics are not symmetric and support taperings and

istortions that are not normally present within the conventional

uperquadric framework. The application of hyperquadrics can be

ainly found in shape recovery [31] , but also in fitting models to

parse data [32] . Their 2D versions were used for 2D segmentation

f nuclei shapes in nuclei observed with an epi-fluorescence

icroscope [33] . 

In this paper, we customize the hyperquadrics formulation for

uilding a 3D shape analysis framework targeted to 3D nanoscale

epresentations of brain cell nuclear shapes. We further generalize

he approach by considering spherical harmonics, which have often

een employed for representing spherical functions [34] , but not

reviously in the context of nuclear shape fitting. 

.3. Shape analysis in neuroscience 

The availability of 3D reconstructions of brain structures is driv-

ng the development of various frameworks for shape analysis in

rder to classify and account for variability to be associated to dif-

erent structures and conditions. For a recent overview of the main

ethods employed in the analysis of brain structures, we refer

eader to [35] . In general, shape analysis methods are mainly tar-

eted to the full cortex acquired with MRI methods [36] . Recently,

 study for 3D morphological analysis of asymmetric neuronal

orphogenesis in developing zebrafish has been proposed [37] ,

ut wider application of shape analysis studies of brain structures

t nanometric resolution are still lacking [5] . 

In the context of the specific analysis of nuclear envelopes,

ueisser et al. [1] developed a tool to retrieve the 3D view of cell

uclei from laser scanning confocal microscopy data. Their method

xtracts surface information of the membrane by creating an iso-

urface with a marching tetrahedra algorithm combined with a

odified Dijkstra graph-search algorithm, and it has been used to

how how synaptic activity induces dramatic changes in the ge-

metry of the cell nucleus [4] . Recent methods on 3D morphomet-

ic analysis consider frequency decomposition frameworks [38] , or

unctional spaces like Wesserstein space [39] , or Random Markov

ields [40] , and they are mostly used for studying hippocampi

hapes [40] or full cortex affected by Alzheimer’s disease [39] . 

Here we focus on 3D reconstructions of brain cell nuclei, and,

o the best of our knowledge, our method is the first attempt of

D shape analysis based on implicit parameterization. 

. Method overview 

The full pipeline of the proposed shape analysis framework is

chematized in Fig. 1 . The first stage is data acquisition, which

s carried out by digital imaging of brain samples using electron

icroscopes is followed by nuclear 3D shape reconstruction and

arametric model fitting. Finally, the shape parameters are used

or performing analysis and classification. The rest of the methods
ection details the various components of the pipeline and

resents the proposed parametric models in detail. 

.1. Data acquisition 

A number of automated serial electron microscopy techniques

ave recently been developed, driven by the need of imaging large

ortions of the brain from different species. State-of-the-art EM

etups can nowadays automatically cut serial sections and image

hem to produce aligned stacks with minimal human supervision.

he use of electron micrographs also makes it possible to visualize

ven the finest lamelliform processes. 

The general workflow for 3D reconstruction and visual anal-

sis of brain structures is represented in Fig. 2 . It begins with

ample preparation and 3DEM [41] imaging. Acquisition of bio-

ogical tissues can be performed automatically at a z-resolution

f 5–50 nanometers depending on the cutting technique [41] . Af-

er imaging, image stack needs preprocessing prior the 3D recon-

truction of the various cellular structures. First, the image stack

eeds to be aligned [42] . Following image registration, the stack is

hen segmented by means of manual or semi-automatic segmen-

ation techniques [43] . Automated and semi-automated segmenta-

ion techniques reduce tremendously the time and effort needed to

enerate a first-pass three-dimensional model. Finally, the model

hen needs to be proofread and corrected manually to achieve best

esults. The created dataset is composed of high-resolution, seg-

ented image stacks that can be visualized, explored and analyzed

ith a variety of tools based on either volume data representation,

r surface mesh generated from the segmentations. 

Many neuroscientists take advantage of commercial or free

oftware solutions [44,45] to perform the reconstruction. In our

ase, we currently rely on available semi-automatic solutions, such

s ilastik [45] that aims for a segmentation accuracy compara-

le to what is obtainable with manual tools [44] . The specific

ipeline employed to generate the data used in this work was de-

igned by combining the complementary strengths of ilastik and

rakEM2 [46] , since ilastik is good for quickly finding the gross

eatures and processes of a cell, while the manual approach of

rakEM2 is good for specifying exact boundaries and finer details. A

ractical solution was also designed for dealing with large datasets

n a single machine by subdividing them in piecewise chunks to fit

ith the ilastik semi-automated segmentation module called carv-

ng, which was accordingly refactored [47] . The semiautomatic seg-

entation method was used to label EM images, while surface re-

onstruction was performed on labelled masks by using marching

etrahedra [48] . Finally, for each reconstructed nuclear envelope

urface, the vertices were collected as input point clouds for the

hape analysis framework. 

.2. Problem statement 

Given a 3D point cloud representing a closed shape of a cell nu-

leus, we can define our fitting/analysis problem as finding the pa-

ameters of a surface model which better approximates the point

loud. In general, the fitting/analysis method is composed of three

asks: 

• define and compute the parameters of the chosen representa-

tion; 
• evaluate fitting by tessellating the fitting surface through an ex-

plicit representation; 
• use the extracted parameters for statistical computations and

analysis, and create a predictive model for classifying different
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Fig. 2. Reconstruction workflow: from brain samples, high resolution micrographs are acquired through automatic cutting, aligned, and labelled through manual or semi- 

automatic segmentation techniques. Finally, high resolution surfaces are reconstructed from labelled volumes and used for visualization and analysis. 

Fig. 3. Hyperquadrics examples: at varying of parameters of Eq. (1) , various surfaces 

can be represented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Hyperquadric definition: for each component, all points of the surface are 

contained between the plane strip represented by equations H i (x, y, z) = 1 and 

H i (x, y, z) = −1 . 

Fig. 5. Spherical harmonics: they are complex functions depending on order l 

and degree m, and they represent an orthonormal basis for decomposing radial 

functions. 
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3.3. Shape modeling 

In this work we considered two different parameterizations of

nuclear shapes: the first one was chosen starting from qualitative

assessment of nuclear shapes performed by domain scientists, that

led to the hypothesis that implicit closed hyperquadrics [6] could

provide effective representations of convex nuclear envelopes. In

addition, a more general explicit parameterization was derived by

considering the general spherical harmonics decomposition to rep-

resent the radial surface ρ = ρ(θ, φ) in spherical coordinates. The

latter has been chosen since it has the advantage that the vari-

ous components form an orthonormal basis for functions defined

on the unit sphere, and in theory they should provide a compact

description of shapes with fewer coefficients. 

3.3.1. Hyperquadrics representation 

Given a 3D surface, a surface representation can be defined

implicitly as the function H ( x , y , z ) such that the points of the

surface respect the equation H(x, y, z) = 1 . Hyperquadrics are im-

plicit models defined by a sum of an arbitrary number of lin-

ear terms raised to powers, generating shapes whose bounding

polytopes have an arbitrary number of faces [49] . 

A hyperquadric model is thus defined by the set of points

satisfying: 

H(x, y, z) = 

n ∑ 

i =1 

‖ H i (x, y, z) ‖ 

γi = 1 , (1)

where H i (x, y, z) = a i x + b i y + c i z + d i . 

At varying of parameters defining the individual components,

different convex shapes can be represented (see Fig. 3 ). The re-

quirements for having closed surfaces are that the exponents γ i 

are positive, and that ‖ H i ( x , y , z ) ‖ ≤ 1. The geometric meaning is

that for each component, all points of the surface are contained be-

tween the plane strip represented by equations H i (x, y, z) = 1 and

H i (x, y, z) = −1 (see Fig. 4 ). 

3.3.2. Spherical harmonics decomposition 

Spherical harmonics are a natural choice of basis functions for

representing any twice-differentiable spherical functions [34] . They

are an infinite set of complex functions that are single-valued, con-

tinuous, orthonormal, and complete on the sphere. They are de-

fined as complex functions with respect to the order l and degree
 in the following way: 

 

m 

l (θ, φ) = 

√ 

2 l + 1 

4 π

(lm )! 

(l + m )! 
P m 

l ( cos θ ) exp im φ (2)

here l and m are integers such that | m | ≤ l , and P m 

l 
are associated

egendre polynomials [9] . In Fig. 5 the 3D graphic representations

f spherical harmonics up to order l = 3 are shown. Any spheri-

al function f ( θ , φ) can be represented by a linear combination of

pherical harmonics Y m 

l 
(θ, φ) as follows: 

f (θ, φ) = 

∞ ∑ 

l=0 

l ∑ 

m = −l 

a m 

l Y m 

l (θ, φ) . (3)

This spherical harmonic expansion can be interpreted as the

ourier transform for functions defined on the sphere, convert-

ng spherical scalar signals into their frequency spectrum. Spheri-

al harmonics have several interesting properties such as orthonor-

ality, completeness, and coarse-to-fine hierarchy, which make

hem an effective choice of basis functions to represent radial

urfaces ρ( θ , φ) [34] . 
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Fig. 6. Hyperquadric parameterization: the center of mass of the point cloud C 

is the origin of the reference system. For each patch H i , plane strip width r i is 

parametrized by applying a scale factor σ i to the bounding distance ρ i which is 

computed by projecting the point cloud with respect to the plane normal n i . 
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Fig. 7. Least-squares problem: the optimal implicit parameterization is found by 

minimizing the square distance of the input points with respect to the algebraic 

surface. Euclidean distance is approximated by using first order Taylor expansion. 
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. Point cloud fitting 

Point cloud fitting consists of finding the optimal values for the

arameters of a given model, which better approximate a set of

oints known to be on its boundary. In this section, we describe

ur approach to efficiently perform this task, on both the implicit

yperquadrics model and the radial explicit spherical harmonics

ecomposition. 

.1. Hyperquadrics fitting 

Given the equation of the hyperquadrics, each component can

e parametrized with respect to the point cloud to fit. The origi-

al formulation (see Eq. (1) ) describes each component as a plane

quation represented by coefficients ( a i , b i , c i , d i ), which are diffi-

ult to manage since they can vary indefinitely and they have no

pecific physical meaning. Hence, in order to reduce the number of

arameters and to have better control of constraints, we derived a

pecific parameterization. We considered the center of mass of the

oint cloud C as origin of the reference system (see Fig. 6 ). Thus,

he components H i ( x , y , z ) can be written as 

 xi x + n yi y + n zi z = r i , (4)

here n i = (n xi , n yi , n zi ) = ( cos φi cos θi , sin φi cos θi , sin θi ) is the

nit vector representing the plane normal, and r i is the plane

istance from the center of mass. The latter can be further

arametrized as r i = ρi (1 + σi ) , where ρ i is the bounding distance

or the point cloud with respect to the normal n i , and σ i is a scale

actor for stretching or compressing the plane strip (see Fig. 6 ).

iven that the bounding distance ρ i can be computed for each

lane with respect to the point cloud, for each patch H i of the

yperquadrics we can control the width of the plane strip just

y modifying the scale factor σ i . Finally, the exponent factor can

e written as γi = 2 εi in order to remove the norm operation.

n this way, each component H i ( x , y , z ) can be represented by four

arameters: 

(H i ) = (φi , θi , σi , εi ) (5)

.1.1. Least-squares problem 

Given a point cloud (p 1 , p 2 , . . . , p K ) , the problem of fitting an

yperquadric surface can be expressed as a non-linear optimiza-

ion problem where the target is to find the optimal parameteri-

ation 	(H) = (π(H 1 ) , π(H 2 ) , . . . , π(H N )) that minimizes the dis-

ance of the samples with respect to the surface represented by

mplicit function H ( x , y , z ): 

(H) = arg min 

	

K ∑ 

k =1 

d 2 (p k , H) , (6)

here the distance between a given sample p k and the surface can

e computed algebraically, 

 

2 
a (p k , H) = (H(x k , y k , z k ) − 1) 2 , (7)
o

ut better accuracy can be obtained by estimating the Euclidean

istance between the sample p k and the hyperquadric surface (see

ig. 7 ). Specifically, considering the first-order Taylor expansion of

he hyperquadric function, we have 

(x ) ≈ H(p k ) + ∇H(p k ) · (x − p k ) , (8)

nd imposing H(x ) = 1 , we get 

 

2 (p k , H) = ‖ x − p k ‖ 

2 ≈ d 2 a (p k , H) 

‖∇H(p k ) ‖ 

2 
, (9)

hat can be used for computing the cost function. To this end, we

ote that the gradient operator can be computed in analytic form

rom the hyperquadric definition: 

H(x, y, z) = 

∑ 

i 

γi (a i x + b i y + c i z + d i ) 
γi −1 (a i , b i , c i ) . (10)

or solving the constrained minimization problem, we consider the

evenberg–Marquardt method [50] , using as a first guess an ellip-

oid approximation with the plane normals and distances com-

uted with respect to the oriented bounding box of the input

oint cloud [51] . For each iteration, bounding distances of plane

trips are computed with respect to the plane normals defined by

arameters φi , θ i , and the scale factors σ i are applied over it. 

.1.2. Explicit radial representation 

While the implicit representation recovered in the previous

arts provides a very good shape descriptor, for a number of

asks, e.g., tessellation, it is handy to also have an equivalent

xplicit representation, capable to generate 3D points given a

ew parameters. However, given an implicit representation of an

yperquadric, there is no way to recover an explicit representation

n closed form. We thus compute, through numerical optimization,

 best fit spherical coordinates formulation 

 

x = ρ(θ, φ) sin θ cos φ
y = ρ(θ, φ) sin θ sin φ
z = ρ(θ, φ) cos θ

(11) 

here the function ρ( θ , φ) varies according to the angles, and

eeds to be computed for a given sampling of the unit sphere.

n our case, we consider a regular sampling, and for each pair of

ngles ( θ , φ) we solve an optimization problem with Levenberg–

arquardt to find the optimal radius ρ such that the algebraic

istance from the implicit function is minimal: 

(θ, φ) = arg min 

ρ
(H(x, y, z) − 1) 2 . (12)

ig. 8 shows a schematic representation of the optimization

rocess and the graphic representation of the explicit parameter-

zation of an hyperquadric implicit function. The created samples

re used for tessellating the hyperquadrics surface, for evaluating

he fitting errors, and for visual comparisons with respect to the

riginal shape. 
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Fig. 8. Explicit radial representation: given the implicit representation of an hyper- 

quadric, the explicit representation is computed by using spherical coordinates and 

computing radii on a regular sampling basis. 
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Fig. 9. Input nuclei envelopes: the analysis framework was tested on a collection 

of 97 3D reconstructions of brain cell nuclei extracted from a sample of layer VI 

somatosensory cortex of a juvenile rat ( Fig. 10 ). 
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4.2. Spherical harmonics fitting 

In the case of fitting a point cloud to a spherical harmonic de-

composition, we define a radial surface representation ρL max 
(θ, φ)

in spherical coordinates as a truncated linear combination of

spherical harmonic real components, by limiting the maximum de-

gree to a specific value L max , in a way to have a fixed number of

coefficients k = (L max + 1) 2 : 

ρ(θ, φ) ≈ ρL max 
(θ, φ) = 

L max ∑ 

l=0 

l ∑ 

m = −l 

a m 

l � 

(
Y m 

l (θ, φ) 
)
, (13)

where � 

(
Y m 

l 
(θ, φ) 

)
is the real part of the harmonic function.

In order to obtain the SH coefficients a m 

l 
from the point cloud

(p 1 , p 2 , . . . , p n ) , we convert the point samples in spherical coor-

dinates ( ρ i , θ i , φi ) by using the inverse spherical transform ⎧ ⎨ 

⎩ 

ρi = 

√ 

x 2 
i 

+ y 2 
i 

+ z 2 
i 

θi = arctan ( 
√ 

x 2 
i 
+ y 2 

i 

z i 
) 

φi = arctan ( y i 
x i 
) , 

(14)

4.2.1. Least-squares problem 

The least-squares problem that we need to solve for fitting

should minimize the squared distance between the points and

the SH decomposition [34] . We can write Eq. (13) in matrix form

a = R : ⎡ 

⎢ ⎣ 

y 1 , 1 y 1 , 2 .. .. y 1 ,n 
y 2 , 1 y 2 , 2 .. .. y 2 ,n 
.. .. .. .. .. 

y k, 1 y k, 2 .. .. y k,n 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

a 1 
a 2 
.. 

a k 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

ρ1 

ρ2 

.. 

ρn 

⎤ 

⎥ ⎦ 

, (15)

where y i, j = � 

(
Y m 

l 
(θi , φi ) 

)
, a j = a m 

l 
, with j = l 2 + l + m + 1 , k =

(L max + 1) 2 , and ρi = ρ(θi , φi ) . For smoothing the solution, we also

added a Tikhonov regularization term 
 [52] , increasingly penaliz-

ing the coefficients as long as the order l increases, in a way that

the least square problem is defined as: 

a = arg min 

a 
(‖ Ya − R ‖ 

2 + ν‖ 
‖ 

2 ) , (16)

leading to the following linear system 

(Y T Y + νC) a = Y T R, (17)

where C = 
T 
: 

 = 

⎡ 

⎢ ⎣ 

l 2 
j 
(l 2 

j 
+ 1) 2 

.. 

.. 

l 2 max (l 2 max + 1) 2 

⎤ 

⎥ ⎦ 

, (18)

where l j is the spherical harmonics order associated with the coef-

ficient j . In all results of this paper, we used a small regularization

value ( ν = 10 −5 ) . 

s  
.2.2. Explicit radial representation 

For tessellating, as opposed to the hyperquadric representation,

he Spherical Harmonic decomposition has the advantage of pro-

iding directly an explicit representation which can be directly

sed for sampling the approximating shape. 

. Implementation and results 

Implementation. Our framework was implemented in C ++ , by

dapting the levmar implementation of the Levenberg–Marquardt

lgorithm as iterative solver [50] for computing hyperquadrics pa-

ameters (we used OpenMP for parallelizing the projection com-

utation), and by using eigen library [53] for linear least square

ptimization in the case of spherical harmonics parameters. For

he fitting procedure we used the following constraints for the hy-

erquadrics patch parameters: −π ≤ φi ≤ π −π
2 ≤ θi ≤ π

2 , −0 . 1 ≤
i ≤ 0 . 5 , 0.75 ≤ ε i ≤ 2.5. On the other side, the coefficients of spher-

cal harmonics components were found by solving the linear sys-

em in Eq. (17) (with regularization factor ν = 10 −5 ). All fitting

essions were performed on a PC equipped with two CPU Intel

eon 2,3 GHz and 128 GB RAM and running Windows 8. We also

sed the parameters derived from the explicit and implicit model

or classifying the nuclei according to standard machine learning

ethods, that we implemented using Jupyter notebooks [54] and

he scikit-learn [55] Python library. 

Biologic material. Our test set was a collection of 121 3D recon-

tructions of brain cells nuclei. Of these, 97 were extracted from

ense reconstructions coming from a semiautomatic segmenta-

ion of nanometric scale electron microscopy stacks, obtained after

maging a volume of brain parenchyma from layer VI somatosen-

ory cortex of a P14 rat using a serial block-face scanning electron

icroscopy (SBEM) with a 3View module ( Fig. 10 left). They were

anually assigned to known cell types ( Fig. 9 ). The additional two

roups of 16 and 8 nuclear envelopes were instead extracted af-

er imaging two different volumes of somatosensory cortex of the

ame rat. In these cases, the blocks were extracted from layer II/III.

e used them as testing data for assessing the classifiers built

n top of the shape parameterizations. In the following these nu-

lear envelope groups will be indicated as void and unknown. The

able 1 lists further details about this collection of nuclear shapes.

.1. Fitting evaluation 

Given the collection of nuclear point clouds, we evaluated

he quality of fitting by considering a hyperquadrics implicit

epresentation containing various number of patches ( N =
 , 4 , 5 , 6 ), and various explicit spherical harmonics decompo-

itions ( L max = 2 , 3 , 5 , 10 , 20 ). In the following, we will denote the
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Fig. 10. Dataset acquisition. Left: dataset obtained by imaging a sample from the 

somatosensory cortex of a juvenile rat, using a serial block-face scanning electron 

microscopy (SBEM) with a 3View module. Right: neuronal nuclei present the dark 

artifact typical of electrons accumulating in portions of the sample where there is 

low density of biological material. 

Table 1 

Nuclei statistics: listing showing the number of nuclear envelopes, the aver- 

age number of vertices, the volume size in μm 

3 with the standard deviation, 

and the surface size in μm 

2 with the standard deviation. 

Type # Cells # Vertices Volume(μm 

3 ) Surface(μm 

2 ) 

Neurons 58 9262 715.7 ± 102.5 408 ± 34.5 

Astrocytes 10 9519 354.29 ± 63.7 270.8 ± 25.8 

Endothelium 4 9235 67.08 ± 21.5 168.2 ± 41.9 

Microglia 12 7780 185.5 ± 64.8 194.5 ± 42.1 

Oligodend. 4 7225 427 ± 49.8 288 ± 24.1 

Pericytes 10 10085 107.2 ± 39.3 159.9 ± 28.8 

Void(LII/III) 16 771 440.1 ± 253.4 363.8 ± 101.7 

Unkn(LII/III) 8 658 297 ± 264 250 ± 110.2 
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arious cases with HQ N , C , and SH L , C , where C is the number of

oefficients. 

Table 2 shows the statistics about the nuclear envelopes which

ere fitted. Specifically, we compare the two parameterizations in

wo situations: a case with the same number of coefficients ( HQ 4,16 

nd SH 3,16 ), and a case with the same average accuracy ( HQ 5,20 and

H 20,441 ). For the various cell categories, we report on the average

ean error and on the fitting time. For each nuclear envelope, we

sed two evaluation metrics: the average error for the points in

he shape (computed by using Eq. (9) ), and the percent of points

hose distance error is below 0.5μm. Fig. 11 shows boxplots of

hese error metrics for the various cell categories using same pa-

ameter configurations in Table 2 : in the top two graphs, the two

arameterizations use the same number of coefficients ( HQ 4,16 and

H 3,16 ), while in the bottom graphs the two models have similar

verage accuracy. From Table 2 and Fig. 11 , it appears that, for

oth representations, the fitting is more accurate for neuron nuclei,

hile it is less accurate for shapes with irregular surface like mi-

roglia or pericytes. In general, we can also see that if we use rep-

esentations with same number of coefficients, the hyperquadrics

arameterization is generally more accurate. 

For visual reference, Fig. 12 shows some examples of fitting

btained with the implicit and explicit model for various kinds

f nuclear shapes. For each original input shape, we show tes-

ellations of various fitted representations (either hyperquadrics

nd spherical harmonics), as well as their fitting errors, col-

rmapped over the original shape through the BuPu colorbrewer

cheme [56] (color scale from 0 to 0.5 μm). From Fig. 12 , it appears

hat both parametric models are accurate for convex shapes, like

eurons, or astrocytes cells (see on the left in Fig. 12 ), while they

uffer in cases where the original shapes are irregular, like mi-

roglia or pericytes (see on the right in Fig. 12 ). Finally, in Fig. 13 ,

e compare the mean fitting error and the processing time of the

wo parameterizations, at varying number of coefficients. We can

ee that, when using the same number of coefficients used for
enerating the parametric description, the implicit hyperquadrics

ormulation appears to be slightly more accurate than the spheri-

al harmonics decomposition. On the other hand, the orthonormal

asis definition of spherical harmonics decomposition leads to

 linear least square optimization method, which is an order

f magnitude faster than the non-linear Levenberg–Marquardt

ethod used for fitting hyperquadrics representations. 

We can also notice that increasing the order of the spherical

armonics decomposition has diminishing returns, due to the stan-

ard spherical parameterization used in this work. To overcome

his issue, we plan in future to explore more sophisticated repa-

ameterizations involving connectivity and preserving lengths and

urface areas. 

.2. Nuclei analysis 

In addition to providing compact models usable for visualiza-

ion, one of the main motivations of our fitted representations was

hat they may be helpful to directly and efficiently support various

nalysis tasks. In the following, we describe how our fitted repre-

entations were applied for the classification of nuclear shapes to

ell types. 

.2.1. Preliminary classification 

Domain scientists traditionally classify cells and their nuclear

nvelopes through visual assessment of morphological features vis-

ble in electron micrographs. Even when cell morphology is not

isible, the plain nuclei have characteristic features that indicate

he probable cell type. The nuclei of neurons tend to be almost

pherical and are typically largest among all brains cells. 

Interestingly, all neuronal nuclei in our sample showed a dark

rtifact that is typical of electron accumulation to areas of poor

onductivity that comes from the lack of biological material, an ef-

ect that is also true for lumen of blood vessels ( Fig. 10 right). 

On the other hand, astrocyte nuclei have a more irregular

hape, and are smaller than in neurons. The microglial nuclei are

gain smaller than in neurons and tend to be heavily squashed. 

Statistical analysis is usually applied to the volume and the sur-

ace area of nuclei. For our sample set, the volume size compu-

ation showed that neurons had the biggest nuclei, followed by

strocytes and oligodendrocytes (see Fig. 14 and Table 1 ). 

.2.2. Classification using parametric representations 

We hoped to improve these approximate classifications by ap-

lying our hyperquadrics and spherical harmonics fitting to nuclear

nvelope shapes. We used the classical support vector machine

SVM) [58,59] with radial basis function for deriving predictive

odels. We performed transformation of coefficients to remove

ependencies arising from different orientations. For hyperquadrics

tting, we first ordered the components according to the exponent

alue, then aligned the plane normal components with respect to

he first planar patch, and finally converted the angular values

o normalized vector coefficients. After transformation, for hyper-

uadric representations composed of N patches, we obtained C =
 N + 3(N − 1) = 5 N − 3 rotation-invariant coefficients. For spheri-

al harmonics parameterization, we applied the rotation-invariant

nergy descriptors proposed by Kazhdan et al. [7] . For each fre-

uency l of the spherical harmonics decomposition, we com-

uted rotation-invariant energies { εl , l = 0 , . . . , L max } starting from

oefficients: 

l = 

l ∑ 

m = −l 

‖ a m 

l ‖ 

2 . (19)

or a spherical harmonics decomposition of order L max we cre-

ted C = L max + 1 rotation-invariant coefficients. In the following
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Table 2 

Nuclei fitting statistics: we compare hyperquadrics and spherical harmonics in two situations: a cases with the same number of coefficients ( HQ 4,16 and SH 3,16 ), and 

a case with the same average accuracy ( HQ 5,20 and SH 20,441 ). For various cell categories, we list the mean accuracy error per vertex and the average processing time. 

Type HQ 4,16 Err(μm) SH 3,16 Err(μm) HQ 4,16 Time(s) SH 3,16 Time(s) HQ 5,20 Err(μm) SH 20,441 Err(μm) HQ 5,20 Time(s) SH 20,441 Time(s) 

All 0.353 0.437 57.43 0.021 0.338 0.338 64.53 0.672 

Neurons 0.203 0.296 67.17 0.027 0.191 0.266 66.28 0.842 

Astrocytes 0.309 0.449 51.00 0.028 0.32 0.368 101.6 0.834 

Endothelium 0.868 0.781 103.59 0.027 0.913 0.642 134.29 0.827 

Microglia 0.487 0.596 76.88 0.022 0.404 0.39 87.2 0.687 

Oligodend. 0.161 0.198 99.8 0.029 0.152 0.176 59.32 0.934 

Pericytes 0.524 0.819 74.59 0.021 0.508 0.462 103.01 0.704 

Void-LII/III 0.554 0.483 6.15 0.002 0.517 0.371 6.563 0.095 

Unkn.-LII/III 0.512 0.655 4.286 0.002 0.543 0.454 6.01 0.083 

Fig. 11. Fitting evaluation: for two different configurations of coefficients for spherical harmonics(S) and hyperquadrics (H), we provide boxplots representing two metrics 

subdivided per categories: the average distance error in μm(left), and the percent of samples with distance error below the threshold of 0.5μm(right). The bottom and 

top of each box are the first and third quartiles, the band inside the box is the second quartile (the median), and the ends of the whiskers extending vertically from the 

boxes represent the lowest datum still within 1.5 IQR (inter-quartile range) of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile. Outliers 

are indicated as small circles. Spherical harmonics are indicated with S, and Hyperquadrics are indicated with H. On top, we compare the two representations with same 

number of coefficients (16, for SH 3,16 and HQ 4,16 ), while on the bottom we compare representations with similar average accuracy ( SH 20,441 and HQ 5,20 ). 
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Fig. 12. Visual assessment of parameterizations: for nuclear shape of different categories, we show the fitting hyperquadric and spherical harmonics representations with 

different number of coefficients ( HQ 3,12 , HQ 4,16 , HQ 5,20 , and SH 3,16 , SH 5,36 , SH 10,121 ). Errors are represented through BuPu Colorbrewer scheme [56] . Models are rendered using 

MeshLab software [57] . 

Fig. 13. Comparison between spherical harmonics and hyperquadrics: we compare 

mean accuracy (in microns) and average time processing (in seconds) with re- 

spect to the number of coefficients, for hyperquadrics and spherical harmonics 

representation. 

w  

w

 

c  

n  

a  

L  

w  

t  

p  

e  

r

 

l  

U  

u  

h  

a  

t  

i  

e  

Fig. 14. Surface vs Volume: neuroscientists currently employ surface and volume 

measures to classify nuclear envelopes. 
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e will denote the various representations as HQ N , R and SH L , R ,

here R is the number of rotation invariant coefficients. 

To evaluate classification performance, we considered three

ases for hyperquadrics parameterization with number of compo-

ents varying from 3 to 5 (denoted as HQ 3,12 , HQ 4,17 , and HQ 5,22 )

nd three cases for spherical harmonics parameterization with

 max = 3 , 10 , 20 (denoted as SH 3,4 , SH 10,11 , SH 20,21 ). For each case,

e performed grid-searching for configuring two hyperparame-

ers for the support vector machine model, specifically the free

arameter γ of the Gaussian radial basis function ( K(x i , x j ) =
xp −γ ‖ x −x j ‖ 2 ), and the constant C for weighting the soft margin

egularization function. 

We carried out the model training on 97 nuclear shapes of

ayer VI, while we left out the 24 shapes of layer II/III (Void and

nknown) for testing accuracy. Table 3 shows statistics of the

sage of SVM model: for each case, we report the set of SVM

yperparameters γ and C, and three scores: the cross evaluation

ccuracy which is used for finding the best hyperparameters,

he silhouette score [60] which is calculated by using the mean

ntra-cluster distance a and the mean nearest-cluster distance b for

ach sample ( σ = 

b−a 
max (a,b) 

), and the model accuracy on test shapes.
As reference, in Fig. 15 , we show also how hyperparame-

er grid-searching performed for two cases( HQ 5,22 on the left,

nd SH 20,21 on the right). Specifically, we show cross evaluation

ccuracy for the set of parameters γ and C in the grid. From

hese accuracies we can infer that in our data the hyperquadric

epresentations HQ 4,17 and HQ 5,22 have slightly better classification

ccuracy than the low order spherical harmonics representation

H 3,4 (especially the test evaluation score). On the other hand,

hen the decomposition order increases, energy descriptors de-

ived from spherical harmonics parameterization obtain higher

cores for all metrics considered ( SH 10,11 and SH 20,21 ), leading to

 higher accuracy and a greater cluster separation. Unfortunately,

he hyperquadric formulation is limited by not being symmetry

nvariant. This probably affects its classification accuracy. 
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Table 3 

Support vector machine classification: Each representation determined specific classifier parameters during grid optimization. 

The accuracy is reported using three separate accuracy scores. 

Type SVM params Accuracy Scores 

HQ 3,12 γ = 0 . 1 C = 10 cross evaluation accuracy = 0.73 silhouette score = 0.03 test evaluation accuracy = 0.5 

HQ 4,17 γ = 0 . 1 C = 1 cross evaluation accuracy = 0.75 silhouette score = 0.24 test evaluation accuracy = 0.71 

HQ 5,22 γ = 0 . 1 C = 10 cross evaluation accuracy = 0.75 silhouette score = 0.16 test evaluation accuracy = 0.75 

SH 3,4 γ = 0 . 1 C = 1 cross evaluation accuracy = 0.73 silhouette score = 0.29 test evaluation accuracy = 0.67 

SH 10,11 γ = 10 −7 C = 10 7 cross evaluation accuracy = 0.85 silhouette score = 0.30 test evaluation accuracy = 0.67 

SH 20,21 γ = 10 −7 C = 10 7 cross evaluation accuracy = 0.84 silhouette score = 0.30 test evaluation accuracy = 0.79 

Fig. 15. SVM parameter optimization: we show cross evaluation accuracies for dif- 

ferent configuration of SVM parameters γ and C. On left for hyperquadrics param- 

eterization HQ 5,22 , on the right for spherical harmonics parameterization SH 20,21 . 
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5.2.3. Dimension reduction 

In order to provide direct visual representation of the parame-

ter data, we also considered classical dimension reduction schemes

to reduce the parameter space to 2D. We used three common di-

mension reduction approaches: 

• Principal component analysis which uses orthogonal transforma-

tions to convert a group of possibly correlated variables into a

group of linearly uncorrelated variables called principal compo-

nents. The principal components are ordered according to the

variance [61,62] ; 
Fig. 16. Dimension reduction: we show three different different reduction methods used 

parameterization SH 20,21 (on the bottom). From left to right, Principal component anal

embedding (t-SNE). (For interpretation of the references to color in this figure, the reader
• Multidimensional scaling which positions N-dimensional objects

in a space of usually 2 or 3 dimensions by computing a square

proximity matrix and by combining the largest eigenvalues and

the correspondent eigenvectors [63] . 
• T-distributed stochastic neighbor embedding which models each

high-dimensional object by a two- or three-dimensional point

in such a way that similar objects are modeled by nearby points

and dissimilar objects are modeled by distant points. This is

obtained by constructing a probability distribution over pairs

of high-dimensional objects, so objects have a high probability

of being picked, whereas dissimilar objects have a small prob-

ability of being picked, and by defining a similar probability

distribution over the points in the low-dimensional map [64] . 

Fig. 16 shows the results of dimension reduction methods ap-

lied on hyperquadrics parameterization HQ 5,22 (on the top), and

pherical harmonics with SH 20,21 (on the bottom). Visual represen-

ation of hyperquadrics and spherical harmonics appear to clearly

iscriminate some classes of cells, while they are not reliable for

eparating some other cells. In all approaches, neurons (green)

orm a well-defined cluster which is clearly separated from all

ther classes. On the bottom part of Fig. 16 , it appears that the vi-

ual representation of spherical harmonics provides a slightly more

ccurate separation between the various nuclear envelope groups,

nd this is mostly evident when using the t-distributed stochastic

eighbor embedding (on the right). Apart from a few outliers, the

lusters representing the various brain cells are clearly separated
on hyperquadrics parameterization HQ 5,22 (on the top) and on spherical harmonics 

ysis (PCA), multidimensional scaling (MDS), and t-distributed stochastic neighbor 

 is referred to the web version of this article.) 
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ith small or negligible overlaps. These results confirm and extend

he original classification performed by domain scientists that was

ased on the volume and area of nuclear envelopes. 

. Conclusions 

We presented a framework for shape analysis of 3D nuclear

nvelopes of brain cells obtained from nanoscale digital recon-

truction of mouse brain samples imaged with face-block scanning

lectron microscope. Our method is based on implicit and explicit

arameterizations of 3D surfaces derived by adapting the clas-

ical hyperquadrics formulation [49] , and the classical spherical

armonics decomposition [7] . 

We tested our framework on a collection of 121 brain nuclear

nvelopes extracted from samples of rat brain. Our results show

hat both parametric models can accurately represent convex

eural nuclei, while the fitting performances degrade for other

nvelopes exhibiting concavities (specifically microglia, pericytes

nd endothelium). A comparison of the two parameterizations

howed that a limited number of hyperquadrics components can

rovide an adequate shape representation, and that with the

ame number of coefficients, the hyperquadrics parameterization

rovides a slightly higher average. On the other hand, spherical

armonics fitting can be implemented as a linear least square

ptimization method that is orders of magnitude faster, thus mak-

ng it usable with larger number of components. So, for situation

here memory is not critical, spherical harmonics might be a

easonable choice, providing reasonably fast fitting together with

ood representation performance. 

We also performed a preliminary evaluation of the proposed

arameterizations as predictive models by using standard machine

earning (support vector machines) and dimension reduction

ethods (principal component analysis, multidimensional scaling

nd t-distributed stochastic neighbor embedding). The preliminary

nalysis showed that both parameterizations can be considered

eliable for discriminating neural nuclei shapes, and that, with the

ame fitting accuracy, a more accurate classification is obtained by

onsidering spherical harmonics energy descriptors. In the future,

e plan to explore different surface parameterizations to provide

 better description of more complicated shapes. Furthermore,

e plan to extend the analysis to other 3D nuclear envelope

ollections from different conditions, and will try classifying

eurons into subtypes. Furthermore, since nuclear classification

s still done by domain scientists through visual assessment of

he morphology features around cells, we plan to incorporate this

omain knowledge [65,66] for creating more sophisticated and

ccurate classifiers. 
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