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Abstract 13 

The exceptional eggshell assemblage from Çatalhöyük was studied using an integrated approach 14 

combining morphology (by optical and scanning electron microscopy) and palaeoproteomics (by 15 

mass spectrometry). We provide taxonomic classification for 90 fragments, of which only 11 16 

remain undetermined. The striking predominance of Anseriformes (probably including greylag 17 

geese, as well as ducks and swans) in all types of deposits examined, including middens and 18 

burial fills, suggests that these eggs were exploited as food and, at the same time, had a special 19 

significance for the inhabitants of the site. We detected the presence of crane eggshell in contexts 20 

associated with both the world of the living and the world of the dead (consistent with the well-21 

known importance of this bird at Çatalhöyük), as well as the possible but infrequent occurrence 22 

of bustards and herons. Overall, we suggest that eggshell analysis, together with osteological 23 

data and the archaeological context, can provide the basis for a nuanced understanding of the 24 

relationship between humans and birds in the past.  25 
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1. Introduction 29 

The role of birds in the lives of human beings can vary widely: from  food resource including meat 30 

and eggs (but not necessarily both at the same time and in all cultures), to source of ornamental 31 

“goods” (feathers, talons (Romandini et al., 2014; Blasco et al., 2019; Finlayson et al., 2019)) or 32 

even objects of cult (Russell and McGowan, 2003; Russell, 2018a). Birds also have a parallel role 33 

beyond death: ritual food offerings, symbols of rebirth, active subjects in funerary rituals (for 34 
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example, defleshing by vultures (Pilloud et al., 2016)). In some instances, birds may be thought 35 

of as the link between the world of the living and that of the dead (e.g. Best and Mulville, 2017). 36 

Active behaviours of humans towards birds include observing, fearing, worshipping, catching, 37 

managing in captivity, taming, mimicking, domesticating, feeding, killing, butchering, selecting any 38 

desired anatomical parts, and disposing of the remains (Serjeantson, 2009). The relationship 39 

between birds and their human counterparts can vary dramatically, not only by species, but also 40 

by the lifestage of the bird. 41 

 42 

The study of archaeological avian bone assemblages is crucial in order to unpick these different 43 

strands. For example, the bird bones at Çatalhöyük suggest that cranes had ritual significance, 44 

but also were a food item (Best et al in prep; Russell 2018a; 2018b). Complementary information 45 

on bird-human relationships can also be obtained through the analysis of eggshell assemblages. 46 

Fragments of avian eggshell can be studied and identified morphologically (Keepax, 1981; Sidell, 47 

1993) or using mass-spectrometry-based proteomic analyses (Stewart et al., 2013/4; Presslee et 48 

al., 2017). The extent of resorption of the mammillae can potentially provide information on 49 

incubation stage and hatching (Chien et al., 2009), although taphonomy plays an important and 50 

yet poorly understood role (Sichert et al., 2019). For example, the ritual role of (possibly fertilised) 51 

chicken eggshell has been recently highlighted in conversion period (12th–13th century AD) graves 52 

from Kukruse in Estonia (Jonuks et al., 2016), as well as Late Roman burials from Ober-Olm 53 

(Sichert et al., 2019). Lack of interactions between humans and avifauna can also be inferred 54 

from the eggshell record; e.g. the excellent preservation of proteins in Accipitridae eggshell at the 55 

Palaeolithic cave of El Mirón (northern Spain) allowed us to infer that bearded vultures and 56 

humans probably did not occupy the site at the same time (Demarchi et al., 2019).   57 

 58 

The largest-known Neolithic proto-city of Çatalhöyük (Figure 1) in modern-day Turkey (7100–59 

6000 cal BC), is an exceptional site in its own right, but also because the (relatively small (Mulville, 60 

2014)) assemblage of bird bones has been thoroughly studied and recently published (Russell 61 

and McGowan, 2003; Russell, 2018a; 2018b). Russell’s work highlights a striking pattern whereby 62 

birds at Çatalhöyük were obviously valued for their feathers, clearly had a symbolic role (notably 63 

cranes, vultures, crows, and spoonbills), but were not necessarily an important food resource. 64 

This is in contrast to other sites in the same region (Baird et al., 2018), despite the extensive 65 

presence of marshes and wetlands around the site (Charles et al., 2000).  66 

 67 

Extensive recovery by flotation and hand-collection during Ian Hodder’s excavations at the site 68 

has resulted in an assemblage of unparalleled size and preservation; over 940 units produced 69 

eggshell, equivalent to at least 5kg of material (Sidell and Scudder, 2004; Mulville, 2014). 70 

Preliminary analysis on a subsample of eggshells (n fragments = 40) in 2015 showed that the 71 

assemblage was dominated by Anseriformes species, probably more than one on the basis of 72 

the surface morphologies (Best et al., 2015). Here we analyse a further sample (n fragments = 73 

50) of eggshells, selected on the basis of their morphology and archaeological context, in order 74 

to have a representative sample from midden layers, burial infills, floors and activity areas. We 75 

also reconsider the 2015 results in response to updated analysis techniques. By combining the 76 

results from the 2015 and 2019 studies we aim to:  77 

 78 
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1) Identify and characterise the 90 fragments of eggshells from the site, using a combination 79 

of morphological observations (by optical and scanning electron microscopy) and protein 80 

analyses (MALDI-MS and LC-MS/MS)  81 

2) Highlight any patterns in avian eggshell representation in living areas (floors, middens) vs 82 

areas pertaining to the world of the dead (burial fills) 83 

3) Compare the information obtained by analysing eggshell with that obtained by osteological 84 

studies of the Çatalhöyük material.  85 

 86 

 87 

Approximate location of Figure 1 88 

2. Materials and methods 89 

2.1 Samples analysed 90 

Permission was obtained to export eggshell for analysis in 2014 and in 2018. The material was 91 

selected to encompass the temporal breadth of the site, and to represent different areas of the 92 

settlement. A first batch of 40 samples was selected randomly and analysed in 2015 (hereafter 93 

“2015 batch”), in order to assess which birds dominated the eggshell assemblage, and 94 

characterise the protein preservation. A further 50 samples were deliberately selected in order to 95 

obtain identification of morphologically distinct eggshell fragments (hereafter “2019 batch”). Table 96 

1 shows the details of the 90 samples analysed, including the archaeological unit, the Hodder 97 

level, the deposit categories inferred from the Çatalhöyük project database (midden, floors, burial 98 

fill, fill, activity and midden activity). We also report the identification obtained by morphological 99 

observation and protein analysis, the inference derived from the combination of the two methods, 100 

any signal relative to developmental stage and/or taphonomy, and the eggshell’s thickness.   101 

 102 

2.2. Microscopy 103 

All specimens were examined by optical microscopy and Keyence Digital Microscope (VHX 5000 104 

series). Where detailed morphological features of the mammillae were present (and were not too 105 

damaged by taphonomy or chick development) SEM analysis was employed. For all specimens 106 

measurements were taken of the mean number of pores and mammillae per mm², the ratio of the 107 

mammillae to palisade layer, and eggshell thickness (following Sidell (1993) and Keepax (1981)). 108 

The eggshell thickness is averaged from 10 measurements for each specimen and considered a 109 

useful but rough indicator for establishing size groupings, since Maurer (Maurer et al., 2012) has 110 

demonstrated that thickness can vary significantly within an individual egg. Where SEM analysis 111 

took place the internal surface of each sample was then examined and described following set 112 

criteria to aid taxonomic identification, including: 113 

1. The regularity, size, shape and spacing of the mammillae; 114 

2. The depth of fissuring and the sutures form and depth; 115 

3. Fiber trails and struts; 116 

Examination of the internal surface was conducted at 300x, 800x and 1000x magnification to allow 117 

further comparison with reference materials. 118 

 119 
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Changes to the surface of the mammillae were also recorded for all specimens (Table 1). This 120 

can be caused by both chick development (resorption caused by the chick mobilising calcium 121 

from the eggshell), or by taphonomic processes (such as acidic corrosion) - these markers can 122 

be very difficult to separate morphologically and terminology for recording this is often used 123 

interchangeably. However, no evidence for damage indicates that the egg was freshly laid or 124 

infertile. Meanwhile, changes in the mammillae surface may either indicate stage of chick 125 

development/hatching (Bradley Beacham and Durand, 2007) or inform on taphonomic processes 126 

in the burial environment (Sichert et al., 2019). In this paper we used “no resorption” to indicate a 127 

lack of developmental activity, and we use “corrosion” where developmental and taphonomic 128 

signals cannot be conclusively separated. Corrosion is described by its regularity/irregularity, and 129 

intensity of mammillae destruction (minimal, moderate, high, very high). Where corrosion is very 130 

regular, it is more likely to result from chick development, whereas patchy, irregular corrosion is 131 

often taphonomic in nature (Morel 1990; Sichert et al., 2019).  132 

 133 

 134 

Approximate location of Table 1 135 

 136 

2.3 Palaeoproteomics 137 

Samples for ancient protein analyses were prepared according to published protocols (Presslee 138 

et al., 2017). In brief, eggshell fragments were weighed (5-40 mg), powdered using clean micro-139 

pestles directly in eppendorf tubes, exposed to bleach (NaOCl, 12% w/v for 72 hours) in order to 140 

isolate the intracrystalline fraction (Stewart et al., 2013/4; Crisp et al., 2013; Demarchi et al., 2016; 141 

Presslee et al., 2017). Bleached powders were demineralised in cold 0.6M hydrochloridric acid 142 

(HCl), the solutions neutralised, lyophilised and resuspended in ammonium bicarbonate (50 mM). 143 

Alkylation / reduction of disulphide bonds was carried out using dithiothreitol (65°C, 60 min; Sigma 144 

Aldrich) and iodoacetamide (room temperature, 45 min; Sigma Aldrich). After overnight digestion 145 

at 37°C with trypsin (0.5 μg/μL), samples were acidified and purified using C18 solid-phase 146 

extraction (Pierce zip-tip) according to the manufacturer’s instructions. Eluted peptides were 147 

spotted directly on a MALDI plate (see below) and the remaining volume evaporated to dryness 148 

using a centrifugal evaporator before LC-MS/MS analyses. 149 

 150 

All samples were analysed in triplicate by MALDI-MS (Bruker Ultraflex III MALDI-ToF mass 151 

spectrometer). 1 µl of sample was spotted onto an MTP384 Bruker ground steel MALDI target 152 

plate and 1 µl of α-cyano-4-hydroxycinnamic acid matrix solution (1% in 50% Acetonitrile/0.1% 153 

Trifluoroacetic acid (v/v/v)) was added and mixed. Samples were analysed using the following 154 

parameter settings: ion source, 25 kV; ion source, 21.4 kV; lens voltage, 9 kV, laser intensity 40–155 

55% and mass range 800–4000 Da. Peptide masses below 650 Da were suppressed. Each 156 

sample was externally calibrated against an adjacent spot containing a mixture of six peptides 157 

(des-Arg1 Bradykin m/z = 904.681, Angiotensin I m/z = 1295.685, Glu1-Fibrinopeptide B 158 

m/z = 1750.677, ACTH (1–17 clip) m/z = 2093.086, ACTH (18–39 clip) m/z = 2465.198 and ACTH 159 

(7–38 clip) m/z = 3657.929). Data analysis was performed using the open-source software mMass 160 

(Strohalm et al., 2010): three replicates were averaged for each sample, then peaks with signal-161 

to-noise ratios > 6 and height > 62% were considered and matched to a list of taxon-specific m/z 162 

values (Presslee et al., 2017). All spectra are reported in Supplementary Information 2.  163 
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 164 

Five samples (CH15_7, CH15_12, CH15_34, CH19_21, CH19_38) were also analysed by LC-165 

MS/MS as described in Fischer and Kessler (2015) and following the guidelines for 166 

palaeoproteomics detailed in Demarchi et al. (2016) and Hendy et al. (2018). Briefly, peptides 167 

were separated on a PepMAP C18 column (75 μm × 500 mm, 2 μm particle size, Thermo) using 168 

a Dionex Ultimate 3000 UPLC at 250 nL/min and acetonitrile gradient from 2% to 35% in 5% 169 

dimethyl sulfoxide/0.1% formic acid. Blanks were analysed between each sample. Peptides were 170 

detected with a Q-Exactive mass spectrometer (Thermo) at a resolution of 70,000 @ 200 m/z. Up 171 

to 15 precursors were selected for High-energy Collision Dissociation (HCD) fragmentation. 172 

Resulting product ion spectra were searched against a protein database obtained from NCBI 173 

(restricting the taxonomy to “birds”, downloaded 22/02/2019) and containing common 174 

contaminants (cRAP: https://www.thegpm.org/crap/) using the software PEAKS (version 8.5). For 175 

PEAKS, FDR rate was set at 0.5%, with protein identifications accepted with −10lgp scores ≥ 40 176 

and ALC (%) ≥ 80.  177 

3. Results  178 

3.1 Representativity of the sample studied   179 

The eggshell fragments analysed were not evenly distributed among the different deposit 180 

categories (Figure 2): the majority of samples came from middens (n=51), followed by burial fills 181 

(n=18), floors (n=11), midden activity (n=4), activity (n=3), fill (n=3). As a consequence, the 182 

representativity of the sample is limited for activity areas, non burial fills and floors, and the 183 

discussion will therefore mainly focus on midden deposits and burial fills, thus comparing and 184 

contrasting the world of the living and the world of the dead.  185 

3.1 Anseriformes  186 

The identification of Anseriformes eggshell was obtained on the basis of the taxon-specific 187 

markers of Presslee et al. (2017) detected in the MALDI-ToF spectra (Figure 2, Table 2) and of 188 

eggshell morphology. In order to obtain protein sequence data, which could further confirm the 189 

attribution of the spectra to eggshells of Anseriformes birds, we performed LC-MS/MS analyses 190 

of two samples (CH15_7 and CH15_12). In both instances, the majority of the protein sequences 191 

identified (ovocleidin-116, serum albumin, ovalbumin, lactadherin, serotransferrin, BPI-fold-192 

containing family B member 4-like; Supplementary Information 1) yielded a match to sequences 193 

from Anas and Anser (as shown by the pie charts in Figure 2).  194 

It is currently not possible to discriminate between different species of Anseriformes, neither using 195 

MALDI-MS markers nor sequence data, for two main reasons:  196 

i) The majority of the MALDI-MS markers (Table 2) belong to ansocalcin, a C-type lectin 197 

originally sequenced from goose eggshell (Lakshminarayanan et al., 2003) but, as discussed 198 

elsewhere (Presslee et al., 2017) detected in both goose and duck eggshells by 199 

palaeoproteomics.  200 
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ii) Similarly, the sequences we identified by LC-MS/MS belonged to both Anser and Anas 201 

(other bird taxa also yielded a match, albeit less frequently, as seen in the pie charts reported in 202 

Figure 2).  203 

 204 

In general, the agreement between the morphological and molecular analyses was very strong 205 

(Table 1), i.e. where diagnostic features were available all eggshell identified as Anseriformes or 206 

Anseriformes-like by mass spectrometry was also independently identified as certain or potential 207 

goose, duck (and possibly swan) by microscopy. Additionally, six eggshell fragments were 208 

classified as goose (or cf. goose) by microscopy, but produced low-quality spectra; three of these 209 

were either burnt or heat-stained. A single fragment (CH19_6) identified morphologically as cf. 210 

goose yielded a spectrum that could not be determined as Anseriformes. Relatively low protein 211 

coverages in the archaeological samples (around 50-60% for the top proteins, see Table 3) and 212 

lack of high-coverage genomes of various Anseriformes species prevent complete refinement of 213 

the taxonomic determination at this stage. However, microscopy indicated that geese were more 214 

common in the eggshell assemblage than ducks, and suggested that a range of species are 215 

represented in both groups. From the shell thickness and morphology it is likely that the majority 216 

of the goose eggs belong to greylag geese (Figure 3A and Table 1). This is the only goose species 217 

that today breeds in the area, and as such the potential identification of multiple geese species is 218 

interesting (Russell (2018a). It is possible that the reference materials currently available do not 219 

cover all variations within greylag goose eggshell, or for large duck species such as shelduck 220 

(Tadorna tadorna). Alternatively, this eggshell may include other species commonly identified in 221 

the bone assemblage by Best (in prep) and by Russell and McGowan (2005), such as the white-222 

fronted goose (Anser albifrons) and the lesser white-fronted goose (Anser erythropus). Although 223 

neither of these breeds in the area today, interestingly the lesser white-fronted goose does breed 224 

in Eastern Turkey, Syria, and Greece, which may suggest different breeding distributions in the 225 

past (https://www.iucnredlist.org/, accessed 03/12/2019). At present, other related birds such as 226 

black geese [Branta] cannot be eliminated using mass spectrometry or microscopy.  227 

 228 

A small number of the eggshells are above the thickness range usually assigned to geese 229 

(Keepax, 1981; Sidell, 1993; Maurer et al., 2012), and as such swan eggs may also be present 230 

in the assemblage (although none could currently be confidently identified by morphology; Figure 231 

7). Overall, it is clear that the inhabitants of Çatalhöyük consistently exploited the eggs of various 232 

Anseriformes species (especially geese). Anseriformes represented more than 50% of the whole 233 

assemblage (54 out of 90 fragments confidently identified as Anseriformes, and 61 of 90 234 

fragments when probable Anseriformes are included). Interestingly, Anseriformes represented 235 

over 75% of the fragments from the randomly-selected 2015 batch (30 out of 40 fragments), 236 

indicating that their true prevalence is probably underestimated in this small-scale analysis.  237 

 238 

Just over half of the Anseriformes and probable Anseriformes (31 of 61 samples) exhibited no 239 

resorption, indicating that the majority of eggs were taken when recently laid (Figure 3B). A further 240 

6 specimens had very patchy corrosion which is likely to be taphonomic damage. The remaining 241 

24 fragments had mostly uniform corrosion which could represent either chick development, 242 

taphonomic damage, or a combination of the two. Of these, 11 fragments had high levels of 243 

corrosion which may indicate live young hatching on site, or eggshell material collected at point 244 
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of hatch (although taphonomy cannot be eliminated here). The majority of these highly corroded 245 

fragments came from the midden, but with one from a burial fill and another from a house floor.  246 

 247 

Approximate location of Figure 2 248 

 249 

Approximate location of Table 2 250 

 251 

Approximate location of Table 3  252 

 253 

Approximate location of Figure 3 254 

 255 

3.2 Non-Anseriformes 256 

Initial microscopic identification indicated that a wide range of species were present in the 257 

assemblage, including non-anseriformes. For the CH19 batch a diverse range of morphologically 258 

distinct samples were deliberately selected by one of us (JB), in the hope of achieving accurate 259 

identification of these other taxa.  260 

 261 

The non-Anseriformes eggshell appears to be diverse, and in several instances identification is 262 

not possible. Within this, three MALDI-ToF spectral “fingerprints” could be identified, which were 263 

then associated to three broad size-categories of eggshell (not necessarily reflecting the size of 264 

the birds that they came from): small-sized (n=4; representative spectrum shown in Figure 5A), 265 

medium-sized (n=3; representative spectrum shown in Figure 5B) and large-sized (n=9; 266 

representative spectrum shown in Figure 5C). The spectra are clearly different, but we were 267 

unable to univocally identify these taxa on the basis of the published MALDI-MS markers of 268 

Presslee et al. (2017): each spectrum showed the presence of markers pertaining to different 269 

species, contrary to what was observed for the Anseriformes samples (see Figure 2). Therefore, 270 

LC-MS/MS analyses were conducted on three samples (all data are included in Supplementary 271 

Information 1): CH19_38 (small-size), CH19_21 (medium-size) and CH15_34 (large size). 272 

Bioinformatic searches of the product ion spectra against the NCBI birds proteomes did not yield 273 

straightforward identification of the three taxa: indeed, the pie charts in Figure 5 are strikingly 274 

different from those obtained for Anseriformes (Figure 2).  275 

 276 

Approximate location of Figure 4 277 

 278 

The large-size bird (eggshell) could be tentatively identified as a Gruiformes on the basis of the 279 

higher proportion of spectra that could be assigned to this order (Figure 5F), and via microscopy, 280 

which indicated that several measurements (including mammillae density, characteristics and 281 

eggshell thickness) were appropriate for crane. However, species not represented in the 282 

microscopic reference material could not be unequivocally ruled out. Of the nine fragments in this 283 

large group, six had no resorption of the shell, two had patchy, very minimal corrosion and one 284 

had minimal uniform corrosion (potentially indicating some initial chick development). 285 

 286 



In contrast, the medium-size sample yielded a mixed signal, with roughly an equal number of 287 

peptide sequences assigned to Gruiformes, Galliformes and Passeriformes (Figure 3E). 288 

Interestingly, the top-scoring protein for this sample was ovalbumin from Chlamydotis macqueenii, 289 

a bustard. Bustards are present at the site (Russell, 2018a), and the shell thickness 290 

measurements do fall within the range of another bustard species, Otis tarda (although 291 

comparative material for detailed morphological analysis was not available at the time of analysis). 292 

Therefore, it is possible that sample CH19_21 is indeed a fragment of eggshell pertaining to this 293 

taxon. However, more reference material for both proteomics and microscopy would be needed 294 

to rule out other possibilities; this will be a priority of our future work. Two fragments in this 295 

category had no resorption and one was too abraded to determine damage to the mammillae.  296 

 297 

Sample CH19_38, representative of the small-size category, could not be clearly determined. 298 

Microscopy suggested that a large heron such as Ardea cinerea is a potential candidate, and 299 

palaeoproteomic analyses gave a mixed signal, as identified peptides/spectra were assigned to 300 

proteins from a variety of avian orders (Figure 5D), which however do include Pelecaniformes. 301 

Herons are a very common bird at Çatalhöyük and, as such, their presence in the eggshell 302 

assemblage would not be surprising, particularly given the presence of juvenile heron at the site 303 

(Best et al. in prep; Russell 2018a). We will be sourcing additional reference material and 304 

conducting a more in-depth assessment in the future, based on the results of this preliminary 305 

identification. One of the fragments in this group showed no resorption, another had minimal 306 

patchy corrosion (probably taphonomic), one moderate uniform corrosion, and one very extensive 307 

uniform corrosion. It is probable that the latter two represent eggs with developing chicks inside. 308 

 309 

Four samples were undetermined by MALDI-MS and were not subjected to further in-depth 310 

palaeoproteomic analyses. CH15_25 was not identifiable by proteomics or microscopy, but 311 

CH15_23 was suggestive of a possible vulture egg morphologically, and two Accipitriformes 312 

markers (Demarchi et al., 2019) were observed in the MALDI mass spectrum. CH19_6 and 313 

CH19_13 can be assigned very tentatively to goose and bustard respectively based on 314 

morphology.  315 

 316 

Approximate location of Figure 5 317 

3.3 Distribution of eggshell taxa  318 

Figure 6 shows the distribution of eggshell taxa (identification obtained by combining proteomics 319 

and morphology, see Table 1) in different deposit categories. Anseriformes dominate the eggshell 320 

assemblages recovered from both middens and burial fills, demonstrating the importance of these 321 

birds, and particularly geese, at the site. Both geese and ducks are found in all three of these 322 

deposit categories. The overall profile between the middens and the burial fills are very similar. 323 

This may also suggest a lack of separation between the world of the dead and the world of the 324 

living, a recurrent theme at Çatalhöyük, with birds that had significance in life also playing a role 325 

in death. It appears that the eggshell fragments were intentionally incorporated into several of the 326 

grave environments, although it cannot be ruled out that some inadvertently entered the fill. Of 327 

the 18 samples from burial fills, five (28%) produced no usable proteomic data, compared to 10% 328 
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of the samples from middens and associated activities. Given the generally excellent preservation 329 

of the proteins encountered in this study, we attribute this pattern to burning, which is supported 330 

by some of the fragments yielding low-quality spectra being from scorched layers. Several of the 331 

eggshell fragments from burial fills exhibit physical evidence of burning (for example, see Figure 332 

6) but heat exposure is known to affect protein preservation even without visible alteration of the 333 

biomineral (e.g. Crisp, 2013). The data could therefore be interpreted as evidence of ritual burning 334 

of the remains interred with the dead, or the selection of burnt material for incorporation in the 335 

burial activities. It may also simply represent waste disposal or food discard, as there are also 336 

large quantities of burnt bone found at the site. The redeposition of material certainly needs to be 337 

considered as a factor influencing distribution of eggshell and its interpretation, especially at a 338 

complex site such as Çatalhöyük. As such, although we have identified some differences between 339 

midden and burial fills material (e.g. level of burning), we stress that this cannot be automatically 340 

assigned to intentional incorporation.  341 

 342 

Approximate location of Figure 6 343 

 344 

The large quantity of eggshell recovered from midden deposits suggests that many of the eggs 345 

were food or activity waste, although their presence may also have played some role in the closing 346 

of buildings. The large number of samples with no resorption or minimal/patchy corrosion 347 

suggests that many eggs would have been used as food or in other activities where undeveloped 348 

eggs are needed, e.g. as paint binders. This hypothesis is interesting and could be potentially 349 

tested by analysing paint remains using proteomics. Although quantifying eggshell is very 350 

challenging, the quantity recovered from the site suggests that bird eggs were a more common 351 

food item than bird meat, since the avian bone assemblage is relatively small (see Best et al. in 352 

prep. and Russell, 2018a). Interestingly, 45% of the fragments from floor deposits (5 of 11 353 

specimens) produced no usable proteomic data, indicating that these eggs may have suffered 354 

more taphonomic damage.  355 

Non-Anseriformes are represented in small numbers in the three largest deposit categories 356 

(floors, midden and burial), and it is probable that additional non-Anseriformes fragments are 357 

present in the unidentified material. 358 

 359 

Approximate location of Figure 7 360 

4. Discussion and conclusions 361 

This study focussed on the multi-disciplinary analysis of 90 eggshell fragments from Çatalhöyük. 362 

Each fragment was characterised using microscopy-based morphological observations and mass 363 

spectrometry-based protein analysis. The combination of the two approaches was successful in 364 

identifying the fragments, generally at order level, and with a high level of agreement between 365 

morphological and molecular data (Table 1). By combining the methods we were able to provide 366 

higher resolution for several fragments than would have been possible using either technique in 367 

isolation. 368 

 369 

https://paperpile.com/c/kkb56U/WL9cX/?prefix=e.g.


Most fragments (68%) were determined to be Anseriformes or very probable Anseriformes, 370 

highlighting the striking prevalence of geese and ducks at the site. The highest proportion of geese 371 

and ducks were recovered from midden deposits (world of the living), but they were also well 372 

represented in burial fills (world of the dead). Anseriformes eggs are a nutritious and seasonally-373 

abundant resource, clearly linked to the local environment, and the presence of wetlands. 374 

Therefore, while the use of bird meat as a food resource is not frequent at Çatalhöyük, as 375 

highlighted by a number of studies, including the most recent reassessment by Russell (2018a; 376 

2018b) and Best (in prep.), the exploitation of eggs seemed to be a common feature. Food itself 377 

can be special, and egg consumption/use might have had symbolic resonance due to its link with 378 

the seasons’ cycle, or through association with the living birds that inhabited the landscape around 379 

Çatalhöyük and played many different roles in living at, and experiencing, the site. Seasonality 380 

and connotations of new-life may have made eggs an appropriate material for deliberate 381 

placement in graves.  382 

 383 

When combined with the proteomic analyses, the microscopy indicates that many of the 384 

Anserifomes are large geese, and the greylag goose in particular is a likely candidate for much of 385 

the eggshell material. Greylag geese still breed around the site today (Russell 2018a). These 386 

birds often gather to breed in colonies and could have radically changed the appearance and 387 

audiality of the landscape surrounding the site during their summer breeding season. It appears 388 

that Anseriformes egg collection was a key part of avian exploitation, potentially explaining why 389 

the adult birds do not seem to have been killed in large numbers, as this would have then deprived 390 

the fowlers of the valuable egg resources. It seems that life at Çatalhöyük involved an intimate 391 

knowledge of birds both in their use as food items, in their movement around the landscape and 392 

for their symbolic lives. 393 

 394 

Among non-Anseriformes, the presence of crane egg in particular should be noted. The crane 395 

seems to have been consumed as food but also played a ritual role at the side (Best et al. in prep; 396 

Russell, 2018a, 2018b). It is possible that like the birds themselves, their eggs may have also 397 

been used in both mundane and special ways. Whilst the wetland environments around the site 398 

would have provided suitable nesting environments for Anseriformes, Gruiformes and some 399 

Pelecaniformes, it is possible that some egg resources may have been brought from further afield 400 

or traded either as food or as special items.  401 

 402 

Overall, we confirmed the importance of an integrated zooarchaeological and molecular approach 403 

for the study of ancient eggshell. We also highlighted the excellent preservation of eggshell 404 

proteins at this 8000-year-old site, despite the hot environment. Fragments which did not yield 405 

proteins are therefore likely to having been burnt, possibly during ritual activities, as a high 406 

proportion of burnt eggshell was found in burial deposits. The high presence of burning in floors, 407 

where the highest proportion of undetermined eggshell was recovered, may result from cooking 408 

activities.  409 

 410 

We have also highlighted that while deep-branching Anseriformes (Galloanserae) can be readily 411 

identified via proteomics as their protein make-up is very distinctive (Figure 2), deciphering the 412 

eggshell proteome composition of Neoaves is more challenging (Figure 5). This is consistent with 413 



the later and “sudden” evolutionary radiation of Neoaves at around 50 million years ago. 414 

Phylogenetic analyses based on the reconstructed sequences of specific proteins will be the focus 415 

of future work, in the hope that these will improve taxonomic resolution for this and other sites. 416 

We hope to assess the rest of the Çatalhöyük assemblage as soon as resources allow. In the 417 

meanwhile, we will continue producing integrated focused datasets, which can provide a baseline 418 

for obtaining more nuanced interpretations of the role of birds in the lives of humans in the past.  419 
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 545 

FIGURE CAPTIONS 546 

Figure 1: Location of Çatalhöyük in present-day Turkey.  547 

 548 

Figure 2: MALDI-TOF spectra for Anseriformes samples CH15_07 (A) and CH15_12 (B), 549 

showing the main Anseriformes markers. Pie charts represent the taxonomic composition 550 

of proteomes, calculated as the proportion of spectra assigned to different avian orders 551 

by bioinformatic analysis of LC-MS/MS data obtained on samples CH15_07 (C) and 552 

CH15_12 (D). For each protein group, only the top-scoring protein identifiers were 553 

considered. Note that Anseriformes spectra clearly dominate the composition, i.e. the 554 

majority of the product ion spectra could be unequivocally assigned to Anseriformes.  555 

 556 

Figure 3: Goose eggshell fragments. A: CH15_5 Anseriformes - goose eggshell fragment, 557 

likely Anser anser, with an average thickness of 0.6 mm. B: CH15_19 Anseriformes - goose 558 

eggshell fragment showing no resorption, indicating that minimal chick development had 559 

taken place, or that the egg was infertile. 560 

 561 

Figure 4: Eggshell thickness for three specimens from the three MALDI-ToF “fingerprints” 562 

determined by MS analysis and also recognised by microscopy. A: CH19_38 (small), B: 563 

CH19_21 (medium) and C: CH15_34 (large). 564 



 565 

Figure 5: MALDI-TOF spectra for non-Anseriformes samples CH15_38 (A), CH19_21 (B) 566 

and CH15_34 (C), showing the mixed-taxa markers. Pie charts represent the taxonomic 567 

composition of proteomes, calculated as the proportion of spectra assigned to different 568 

avian orders by bioinformatic analysis of LC-MS/MS data obtained on samples CH19_21 569 

(D), CH19_38 (E) and CH15_34 (F). For each protein group, only the top-scoring protein 570 

identifiers were considered. Note that the taxonomic signal is mixed in all instances.  571 

 572 

Figure 6: Relative abundance of avian types identified in each deposit category. Geese 573 

silhouettes highlight the dominance of this taxon in midden and burial fill deposits, while 574 

floor sediments contained a higher proportion of undetermined fragments; low sample 575 

numbers imply that this information would not be meaningful for activity, midden activity 576 

and fill deposits. 577 

 578 

Figure 7. A highly charred eggshell fragment: CH19_9 from unit 22676 - a burial fill. This 579 

fragment is damaged but is most likely to be swan. A: external surface of eggshell. B: 580 

thickness and ratio of the mammillae to palisade layer. 581 
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