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Why do no specialized necrophagous species exist
among aquatic insects?
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Abstract: Among terrestrial insects, there is a rich guild of specialized necrophagous taxa, i.e., that feed directly
on carrion. These organisms constitute a significant functional component of terrestrial ecosystems, and have
recently been extensively studied because of their importance in forensic entomology. Nothing similar exists in
lotic environments, although paradoxically, insects are the most important group of invertebrates in streams and
rivers, where they constitute up to 70 to 90% of benthic communities. We present some hypotheses as to why
specialized necrophagous taxa have evolved among terrestrial, but not among aquatic insects. We suppose that
the lack of specialized necrophagous aquatic insects was the result of many synergic evolutionary pressures,
partly related to the distinctive physical features of lotic environments and partly to processes of competitive
exclusion with other closely related arthropods.
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A rich and diverse fauna of specialized necrophagous or
scavenger (i.e., feeding on carcasses) insects lives in ter-
restrial environments. These organisms mostly belong to
the orders Diptera and Coleoptera. They constitute an
important functional component of terrestrial ecosystems
and have been studied extensively because of their impor-
tance in forensic entomology (Castner and Byrd 2009).
Members of the families Calliphoridae, Sarcophagidae
(Diptera), and Silphidae (Coleoptera), among others, are
the result of a long evolutionary process that selected
specialists in the detection and consumption of nonliving
animal organic matter. Only a few examples exist (e.g.,
caddis larvae feeding on salmon carcasses) in lotic envi-
ronments, although insects are the most important group
of benthic invertebrates in streams and rivers (Merritt
et al. 2008). Thirteen orders, almost ½ of those in the
class Insecta, include species with aquatic or semiaquatic
habits. In 5 of these orders, all taxa are aquatic (Merritt
and Wallace 2009) with only terrestrial adults. In fact,
aquatic insects exhibit high diversity and abundance, a

broad distribution, and play a key role in the functional
structure of running water ecosystems, where they oc-
cupy almost all trophic niches (Giller and Malmqvist
1988) except one: no truly necrophagous aquatic insects
have evolved functionally to feed entirely on carrion (Cast-
ner and Byrd 2009).

Compared to the large number of studies published in
aquatic entomology in recent decades, the number of stud-
ies dedicated to freshwater insects associated with animal
carcasses is small (Merritt and Wallace 2010). Some in-
vestigators have focused on the decomposition of salmo-
nid carcasses primarily from Nearctic rivers with spawn-
ing migrations of anadromous salmonids (Elliott 1997,
Monaghan and Milner 2008a, b, c, Hocking et al. 2013).
These carcasses are a significant source of organic mate-
rial and inorganic nutrients in such streams (Wipfli et al.
1998, Chaloner and Wipfli 2002, Wipfli et al. 2003). Stud-
ies of the decomposition process of trout carcasses in
northern Italy were done by analyzing mass loss, coloniz-
ing assemblages, and the importance of macro- and mi-
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croconsumers (Fenoglio et al. 2005, 2010a). Other inves-
tigators have focused on the forensic aspects of aquatic
insect–carrion associations (Merritt and Wallace 2010).
For example, aquatic insects have been used as indicators
of postmortem submersion intervals (Haskell et al. 1989,
Keiper et al. 1997, Wallace et al. 2008). Numerous aquatic
insects are usually found in association with carrion, and a
summary of taxa was reported by Keiper and Casamatta
(2001). Studies have been done on types of carrion, such
as fish (Chaloner and Wipfli 2002, Fenoglio et al. 2005,
2010a), pigs (Vance et al. 1995), rats (Keiper et al. 1997,
Tomberlin and Adler 1998), and humans (Merritt and
Wallace 2010), but specialized necrophagous aquatic in-
sect taxa have never been found. Here we present 6 hypoth-
eses regarding why specialized necrophagous taxa have
evolved among terrestrial but not among aquatic insects.
For each hypothesis, we present and compare evolutionary
and ecological drivers that could explain the absence of
specialized necrophagous insects in aquatic habitats.

HYPOTHESES
Specialized necrophagous taxa constitute a relatively
small proportion of all terrestrial insects, so the
probability of finding necrophagy among aquatic
lineages may be low

This hypothesis may be phylogenetic and related to the
presence of evolutionary constraints that prevented the
colonization of freshwater environments by some lineages
of Insecta. Both fossil records and morphological evidence
(such as the presence of tracheal systems in nearly all
aquatic insects) support the hypothesis that insects are a
terrestrial group secondarily adapted to living in freshwa-
ter (Pritchard et al. 1993, Chapman 2013). Several groups
of insects independently invaded aquatic habitats during
various geological eras (Wichard et al. 2002). Both Cole-
optera and Diptera colonized freshwaters, but the main
necrophagous phylogenetic lineages among these groups
have no aquatic representatives, except for some cases,
such as Syrphidae (Diptera; Wagner et al. 2008). This no-
tion of phylogenetic constraint is supported by the follow-
ing ecological arguments.

Aquatic insects have significant trophic plasticity,
including consumption of carrion, without
functioning as specialists

Most of the energetic support for lotic food webs in small
(low-order) streams originates from riparian terrestrial-
plant organic matter, such as dead leaves introduced dur-
ing autumn abscission (e.g., Petersen and Cummins 1974,
Vannote et al. 1980, Merritt et. al. 2008). This dead organic
matter, in combination with stream microbes, constitutes
the primary food resource for detritivores (shredders and
collectors; Merritt et al. 2008). Thus, in small streams, de-
tritus rather than living plant material is the base of most
invertebrate food chains (e.g., Allan and Castillo 2007).

In general, aquatic insects have considerable plasticity
in the foods they ingest (e.g., Cummins and Klug 1979,
Clifford and Hamilton 1987). As pointed out by Merritt
et al. (2008), based on food ingested, all aquatic insects are
omnivores, at least in their early instars. For this reason,
lotic insects have been grouped into functional feeding
groups (FFG) according to morphological and behavioral
mechanisms associated with food acquisition: shredders,
scrapers, collectors, and predators (Cummins 1974, Cum-
mins and Klug 1979, Merritt et al. 2008). Ingestion var-
ies substantially within FFG categories, and large trophic
differences can exist among these categories, depending
on possible variations in food availability or ontogenetic
shifts in diet (Malmqvist et al. 1991, Fenoglio et al. 2010b).
For example, in a laboratory experiment, a terminal-instar
limnephilid (Trichoptera) shredder shifted to a carnivo-
rous diet (Anderson 1976). In other studies, some func-
tional predators were able to ingest differing amounts of
live plant material (Lucy et al. 1990, López-Rodríguez
et al. 2009). Some limnephilid shredders can burrow into
and ingest dead salmonid flesh (Minshall et al. 1991, Wal-
lace et al. 2008). Fenoglio et al. (2010a) found shredders,
mainly limnephilids and nemourids (Plecoptera), burrow-
ing, residing in, and ingesting tissue of trout carcasses.
Apart from the direct ingestion of fish tissue, these aquatic
insects indirectly increase carrion breakdown rates by frag-
mentation and increased action of flows, and can produce
large quantities of fine organic particles. Fine particulate
organic matter (FPOM) attracts many gathering collec-
tors, in particular Chironomidae (Diptera), Baetidae, Cae-
nidae, and Ephemerellidae (Ephemeroptera) (Wipfli et al.
1998, Chaloner andWipfli 2002, Fenoglio et al. 2005, Mer-
ritt and Wallace 2010). Filtering collectors, such as Simu-
liidae (Diptera), Hydropsychidae, and Philopotamidae (Tri-
choptera), can use carrion as shelter and as a food source,
collecting FPOM derived from the carcasses (Minakawa
et al. 2002). Some predators, such as Chloroperlidae (Ple-
coptera), scavenge on dead fish (Nicola 1968, Ellis 1970),
whereas others, such as Gomphidae, Calopterygidae (Odo-
nata), Perlidae, and Perlodidae (Plecoptera), probably are
attracted by the high concentration of prey associated with
carrion (Fenoglio et al. 2005, Merritt and Wallace 2010).
Chaloner and Wipfli (2002) suggested that the use of non-
living animal material by aquatic insects can vary by spe-
cies, with a main role played by collector–gatherers and
shredders.

Carrion is more difficult to locate in lotic than
in terrestrial environments

Evolutionary pressures to select specialized necropha-
gous taxa may have been stronger in terrestrial than in flu-
vial environments because of the different physical char-
acteristics of these habitats. Carrion begins to decompose
immediately after the death of the animal, and undergoes
a complex transformation that includes emission of gases
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and volatile organic compounds (Paczkowski and Schütz
2011). In terrestrial systems, these chemicals spread in all
directions by diffusion and long-distance transport by the
wind. Chemoreception, and in particular olfaction (sensu
Chapman 2013), enables terrestrial necrophagous insects
to detect these chemical stimuli even at great distances
and to locate the carrion rapidly by flying along a plume
of odor. Chemoreception and olfaction (i.e., the ability to
detect compounds in the gaseous state), in particular, has
been widely studied in terrestrial insects, but this topic has
been investigated to a much lesser extent in aquatic in-
sects (Motyka et al. 1985, Crespo 2011). Aquatic insects
are secondarily adapted to living in water (Pritchard et al.
1993), and their chemoreception is likely to depend mostly
on contact chemoreception (i.e., the ability to detect com-
pound in solutions) (Motyka et al. 1985, Chapman 2013).
The diffusion of chemicals can be much more rapid, wide-
spread, and multidirectional in terrestrial than in lotic en-
vironments because the diffusion coefficients of chemicals
in water are much lower than in air (Denny 1993). More-
over, in streams and rivers, the unidirectional flow of wa-
ter strongly influences the diffusion of chemicals, creating
chemical plumes that originate from the carrion and dis-
perse in only one direction. Unidirectional flow implies
that only downstream insects can intercept this cue and
locate its source, thereby severely limiting the access to
and the importance of carrion as a food source. Moreover,
the differences in carrion detection between terrestrial and
lotic environments influence the relative importance of
this resource for adult and larval consumption by aquatic
insects. In addition to direct consumption by adults, a sig-
nificant part of carrion consumption in terrestrial envi-
ronments is through the activity of larval stages (especially
among Diptera: Castner and Byrd 2009). Maggots hatch
from eggs that are directly laid on carrion by females,
which identify and reach the resource by flying, This re-
quires a precision that is not often possible in lotic envi-
ronments for the above-mentioned reasons.

Greater diversity in the availability of animal wastes
exists in terrestrial vs lotic systems

Dung (i.e., animal excrement) and carrion share some
important characteristics: both are discrete, patchily dis-
tributed, ephemeral trophic resources, and serve as tem-
porary microhabitats for many insect species (Hanski
1987). Terrestrial insects find both food sources by mov-
ing along a chemical plume of odor, and both are rapidly
colonized and used. Both are affected by direct consump-
tion by adult insects, egg-laying, and consumption by pre-
imaginal stages. These similarities suggest that similar evo-
lutionary pressures selected specialists in the consumption
of carrion and fecal material. In terrestrial systems, dung
and carrion are the main trophic resources for some fami-
lies in the same 2 orders: Diptera and Coleoptera (Putman
1983). For example, among Sarcophagidae, some species

consume dung, whereas others prefer nonliving animal
matter, and some Calliphoridae and Silphidae larvae feed
indiscriminately on dung or carrion. The evolution of ne-
crophagous specialists may have occurred or otherwise
been enhanced within lineages that included dung con-
sumption. Thus, evolutionary pressures for the trophic use
of animal wastes (dung or carrion) have been very differ-
ent in terrestrial and in lotic systems. Terrestrial ecosys-
tems usually have large numbers of herbivorous mammals
and their predators that produce large amounts of feces, a
rich and widespread trophic resource. Terrestrial herbi-
vores also are generally larger and produce larger localized
fecal masses than aquatic ones, such as fish. A different
situation occurs in rivers and streams, where large pri-
mary consumers are usually lacking. For this reason, evo-
lutionary pressures for the selection of taxa specialized
in the consumption of animal wastes (including both car-
casses and dung) were certainly stronger in terrestrial than
in lotic systems.

The permanence and availability of carrion is shorter
in lotic than in terrestrial environments

Another secondary aspect is that carrion in lotic envi-
ronments is subject to physical fragmentation and chemi-
cal degradation to a much greater extent than in terrestrial
systems. Organic detritus in streams is subject to impor-
tant physical forces, such as fragmentation and abrasion
by current (Paul et al. 2006). This process reduces the tem-
poral persistence of the resource and its importance for po-
tential specialized consumers.

Exclusive competition with Crustacea may have occurred
in aquatic environments

In aquatic environments, scavenger insects would have
to compete with other arthropods for carrion. Very few
crustaceans live in terrestrial environments, so that insects
evolving on land were able to occupy almost all the avail-
able ecological niches, including those based on carrion
consumption. In contrast, Crustacea are diverse and com-
petitive in aquatic environments, where they have evolved
as nonspecialized scavengers (Dauby et al. 2001, de Broyer
et al. 2004). With their prior invasion of freshwaters, crus-
taceans were easily able to occupy the scavenger ecolog-
ical niche, thereby limiting or excluding insects. In fact,
where they are present, freshwater crustaceans (e.g., cray-
fish) are an important nonspecialized group of necropha-
gous invertebrates (Davis and Huber 2007, Gherardi 2007,
Vanin and Zancaner 2011)

CONCLUSION
We hypothesize that the lack of specialized necropha-

gous aquatic insects was the result of many synergic evo-
lutionary and ecological pressures, partly related to the
unique physical and functional features of lotic systems and
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partly to processes of competitive exclusion with nonin-
sect arthropods.
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