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KEY POINTS 

Question: 

Does blood leukocyte DNA methylation predict risk of coronary heart disease (CHD) and myocardial 

infarction (MI)?  

 

Finding:  

In this large-scale study of more than 11,000 participants, we assessed blood DNA methylation at more 

than 400,000 cytosine-phosphate-guanine (CpG) dinucleotide across the genome and identified 52 CpG 

sites at which DNA methylation levels are associated with risk of CHD and MI. Several of these CpGs 

localize to genes that implicate biological function related to calcium regulation, among others. The 

addition of CHD-associated CpGs to traditional CHD risk factors improved CHD risk prediction, and two 

CpGs showed evidence of a causal effect of DNA methylation on incident CHD.  

 

Meaning 

Our findings demonstrate a robust link between blood-derived DNA methylation markers and risk of 

future CHD, supporting the role of DNA methylation as a potential molecular biomarker to inform CHD 

risk. 
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ABSTRACT (word count 347, limit 350) 

IMPORTANCE: Epigenetic modifications such as DNA methylation have been implicated in coronary 

heart disease (CHD), but prior evidence in humans is based on small, cross-sectional studies. Whether 

DNA methylation is associated with risk of future CHD remains undetermined. 

OBJECTIVE: We examined whether blood DNA methylation is associated with incident CHD across 

large observational studies, and whether DNA methylation improves CHD risk prediction beyond 

traditional CHD risk factors. 

DESIGN/SETTING: Nine population-based cohorts from the United States and Europe obtained 

genome-wide DNA methylation data via the Illumina Infinium 450k microarray, and prospectively 

ascertained new-onset CHD events. Each cohort conducted race-specific analyses adjusted for age, sex, 

smoking status, education, body mass index, differential blood cell counts, and technical variables. We 

then conducted fixed-effect meta-analyses across cohorts. 

PARTICIPANTS: A total of 11,461 individuals (mean age 64 years, 67% women, 35% African-

American) who were free of CHD at baseline 

EXPOSURE: Blood leukocyte DNA methylation levels across 442,192 cytosine-phosphate-guanine 

(CpG) sites.  

OUTCOME(S): Incident CHD including coronary insufficiency/unstable angina, recognized myocardial 

infarction (MI), coronary revascularization, and coronary death. Recognized nonfatal and fatal MI was 

examined as a secondary outcome. 

RESULTS: During a mean follow-up of 11.2 years, 1,895 individuals developed new-onset CHD. 

Methylation levels at 52 CpG sites were associated with incident CHD or MI (false discovery rate<0.05); 

these sites were not previously identified in genomic or DNA methylation studies of CHD.  

Several of these CpGs map to genes involved in serum calcium regulation (ATP2B2, CASR, GUCA1B, 

HPCAL1) or kidney function decline (CDH23, HPCAL1). Mendelian randomization analyses revealed 

that DNA methylation at two CpGs is causally associated with incident CHD; these CpGs map to active 

regulatory regions proximal to long non-coding RNA transcripts. 
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Analyses restricted to participants of African-American or European ancestry demonstrated concordant 

results with analysis of the combined group. In an independent discovery and test-set design, adding 

CHD-associated CpGs to established CHD risk factors improved the risk prediction model performance 

(c-statistic increased from 0.735 to 0.766 [p=0.04]). 

CONCLUSION/RELEVANCE: Methylation of blood-derived DNA is associated with risk of future 

CHD across diverse populations, and may serve as an informative biomarker for prediction of CHD. 
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INTRODUCTION 

Coronary heart disease (CHD) is a major contributor to global morbidity and mortality.
1
  Despite 

substantial progress in CHD prevention, more-targeted approaches are needed to further reduce the 

persistent burden due to high incidence of CHD. Methylation of DNA at cytosine-phosphate-guanine 

(CpG) dinucleotides is a widely-characterized epigenetic regulatory mechanism that is stable, but is 

modifiable and thus can be environmentally responsive. DNA methylation marks at a CpG site can thus 

reflect both underlying genetic variation as well as exposures to external environmental factors.
2
 In vitro 

and animal-based studies provide evidence that DNA methylation changes are involved in the 

development of CHD,
3
 and large-scale population-based studies have more recently shown that risk 

factors for CHD including smoking,
4
 obesity,

5
 and hypertension

6,7
 are linked to persistent DNA 

methylation marks in blood. Hence DNA methylation, as a molecular bio-archive integrating genetic 

predisposition and exposure to risk factor exposures, may serve as a predictor of CHD and identify 

potentially modifiable pathways related to CHD. Prior studies of DNA methylation and CHD in humans
8-

12
 have generally been small in sample size (n < 300), focused on repetitive elements

8,10
 or selective 

genomic regions,
12

 or have been cross-sectional or case-control in design.
.8,10-12

 However, whether blood 

DNA methylation predicts future CHD has not been comprehensively investigated to date.  

 

We conducted a longitudinal, large-scale, multi-cohort, epigenome-wide investigation of incident CHD 

among 11,461 participants in the Cohorts for Heart and Aging Genetic Epidemiology (CHARGE) 

consortium,
13

 an international consortium formed to conduct large-scale genome-wide research across 

population-based cohort studies worldwide. We first assessed whether leukocyte DNA methylation was 

associated with risk of CHD, and further combined knowledge of CHD-associated methylation changes 

with genetic sequence variation to assess causality between DNA methylation and incident CHD. We 

further assessed whether DNA methylation could improve CHD risk prediction beyond traditional CHD 

risk factors.  
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METHODS 

 

Study design and population 

We selected cohorts participating in the CHARGE Consortium who assayed  

genome-wide leukocyte DNA methylation using an Infinium 450k microarray, and prospectively 

ascertained CHD events thereafter. Nine population-based cohorts comprising a total of 11,461 

participants from  the United States and Europe were included: the Atherosclerosis Risk in Communities 

Study (ARIC), Cardiovascular Health Study (CHS), long-tErm follow-up of antithrombotic management 

Patterns In acute CORonary syndrome patients (EPICOR), the Framingham Heart Study (FHS), the 

Invecchiare in Chianti study (InCHIANTI), the Kooperative Gesundheitsforschung in der Region 

Augsburg study (KORA), the Normative Aging Study (NAS), the Women’s Health Initiative "Epigenetic 

Mechanisms of Particulate Matter-Mediated CVD" (WHI-EMPC) ancillary study, and the "Integrative 

genomics and risk of CHD and related phenotypes in the Women’s Health Initiative" (WHI-BAA23) 

Ancillary study (Detailed information on each cohort’s methods in Cohort Supplementary info). Each 

cohort study obtained informed consent from participants and ethics approval from its respective 

institutional review board and ethics committee. Cohorts comprising participants of both African-

American and European Ancestry were separated into race-specific samples for analyses. Accordingly, 

we performed an epigenome-wide analysis for each of 12 study samples, and then meta-analyzed the 

resulting summary statistics from the 12 analyses. We also examined the association between DNA 

methylation and cis-genetic variants (±500 KB) in a subset of the cohorts (with available genomic data) 

and conducted Mendelian Randomization to evaluate potential causal relations between DNA methylation 

and incident CHD. We further applied an independent discovery and test set design to evaluate the CHD 

prediction model performance with the addition of DNA methylation information to clinical CHD risk 

factors (complete study workflow depicted in eFigure 1). 
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Measurement of DNA methylation 

For all cohorts, DNA was extracted from whole blood samples and bisulfite-converted using a Zymo EZ 

DNA methylation kit. The Illumina Infinium Human Methylation450K BeadChip (Illumina Inc, San 

Diego, CA, USA) was used to measure DNA methylation. Following standard practice,
4,6

 quality control, 

filtering, and normalization of the methylation data were independently conducted for each cohort 

according to standard criteria and other diagnostics unique to the cohort (details in Cohort 

Supplementary info). For each CpG, methylation = M/(M+U+ε), where M and U are the average 

fluorescence intensity from the probe (i.e., the oligonucleotide that hybridizes to the target CpG) 

corresponding to the methylated (M) and unmethylated (U) target CpG, respectively, and ε=100 to protect 

against division by zero. Therefore, the methylation at each CpG is contained in the interval 0-1, with 0 

indicating no methylation and 1 indicating 100% methylation across DNA from blood cells in the sample.  

 

Definition of coronary heart disease (CHD) and myocardial infarction (MI) events 

Our primary outcome of interest was incident CHD, defined as any of the following: recognized nonfatal 

or fatal MI (hospitalization with diagnostic electrocardiographic (ECG) changes and/or biomarkers of 

MI), coronary insufficiency/unstable angina, coronary revascularization, or coronary death. We also 

conducted a secondary meta-analyses restricted to incident MI-only (recognized nonfatal or fatal MI), in 

order to evaluate whether analysis with this more homogenous outcome measure altered the results. 

 

Individual study epigenome-wide analyses 

Baseline was defined as the time of blood sampling for DNA methylation assays, and all cohorts excluded 

individuals with prevalent CHD at baseline. Seven cohorts conducted time-to-event analyses using Cox 

proportional hazard models, and three of these adapted Firth’s penalized Cox regression
14

 due to a low 

number of CHD events. Two prospective cohorts, EPICOR and WHI-BAA23, employed a nested case-

control design with incident CHD events and performed logistic regression analyses, which—under 
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specific assumptions—provide risk estimates that are unbiased in relation to the estimates derived from 

Cox regression. We conducted a sensitivity meta-analysis that excluded these two cohorts and evaluated 

the concordance with the meta-analysis that included all cohorts. All analyses were race-specific,  

and adjusted for age, sex, body mass index (kg/m2), smoking status (current, former, never), education 

(as years of education or categorical levels of school degrees completed), differential cell counts,
15

 family 

structure (if present), and batch-related technical variables (Cohort Supplementary info).  

 

Meta-analysis 

We performed an inverse-variance-weighted fixed-effects meta-analysis using the metafor package in R. 

We accounted for multiple-testing by controlling the false discovery rate (FDR) at 5%. Of the CpGs that 

exceeded this a priori multiple-testing threshold, we excluded CpGs harboring a single nucleotide 

polymorphism [SNP] assayed in the 1000 Genomes Project with an ancestry-specific minor allele 

frequency >0.01, and CpGs that had high inter-study heterogeneity assessed using Cochran’s Q test (Q 

<0.05/ number of significant CpGs).  

 

Identification of associated genetic variants and Mendelian Randomization analyses 

We investigated whether genetic variants within ±500 kb (cis) of the incident CHD- and MI-associated 

CpGs contributed to variation in methylation levels, i.e., were methylation-quantitative trait loci 

(meQTLs). The discovery analysis was conducted on 3868 individuals from the FHS, followed by 

replication in KORA. Genotyping was conducted with the Affymetrix 500K and MIPs 50K platforms in 

FHS, and the Affymetrix Axiom array in KORA, and imputation was performed using the 1000 Genomes 

reference panel in both cohorts. meQTLs with P <1x10
-4

 at the discovery stage, followed by P<bonferroni 

threshold (i.e. P<0.05/number of significant discovery stage meQTLs) at the replication stage were 

selected. Using these selected meQTLs, we then implemented a two-sample instrumental variable 

approach as implemented in MRbase (http://www.mrbase.org/) to infer causal relations between DNA 

http://www.mrbase.org/
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methylation and incident CHD. Genotype associations for CHD and MI were obtained from the 

CARDIoGRAMplusC4D 2015 GWAS (n= 60,801 cases and n= 123,504 controls).
16

  

 

Improvement in risk prediction metrics 

We conducted an additional discovery meta-analysis that included all cohorts except the FHS. We used 

CpGs associated with incident CHD at an FDR < 0.05 to test for improvement in the Cox proportional 

hazard model performance in the FHS. We tested for improvement in the c-statistic compared to a base 

model of clinical CHD variables in the American College of Cardiology / American Heart Association 

(ACC/AHA) Pooled Cohort Atherosclerotic Cardiovascular Disease (ASCVD) Risk Calculator: age, sex, 

total cholesterol, high density lipoprotein cholesterol, systolic blood pressure, diastolic blood pressure, 

hypertension treatment, diabetes, and current cigarette smoking. 

 

 

RESULTS 

Participant characteristics 

Among the 11,461 participants included, mean age at baseline was 64 years, 67% were female, and 35% 

were of African-American ancestry (Table 1). During a mean follow-up of 11.2 years, a total of 1,895 

CHD events occurred, and 1,183 of these were MI events. 

 

Association of DNA methylation with risk of Coronary heart disease (CHD) and myocardial 

infarction (MI) 

Among 442,192 CpGs analyzed, methylation levels at 30 CpGs were associated with incident CHD 

(multiple testing-adjusted FDR p-value <0.05; Table 2 and eFigure 2). Methylation levels at 29 CpGs 

were associated with our secondary outcome of incident MI at a FDR p-value <0.05 (Table 3 and 

eFigure 3). Among these 30 and 29 CpGs identified in the incident CHD and incident MI-only meta-

analyses, respectively, seven CpGs met the FDR<0.05 threshold in both analyses and thus overlapped, 
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meaning that there were 52 unique CpGs identified across the two meta-analyses. When we compared 

results for these 52 CpGs, we found that the direction, magnitude, and precision of estimated effects were 

highly concordant when comparing results from these two meta-analyses (Figure 1). Manhattan plots 

indicated that significant associations were distributed across the genome (Figure 2). Neither meta-

analysis was strongly influenced by inflation from technical or batch effects. In addition, both had a 

uniform distribution of p-values and symmetry in the coefficient direction of effect (Figure 2). Therefore, 

we concluded that results obtained from the secondary, incident MI-only meta-analysis did not materially 

differ from the primary, CHD meta-analysis, and henceforth combined the results from the two meta-

analyses and simply refer to all 52 CpGs as CHD-associated CpGs. 

 

Additional sensitivity-analyses and race-specific meta-analyses 

Our findings for the 52 CHD-associated CpGs were highly consistent when we compared results obtained 

from the meta-analysis of all nine cohorts as described above (n=11,461) with results from a meta-

analysis on only the 7 cohorts that performed Cox regression (n=9,255) (eFigure 4). Similarly, we 

performed four additional meta-analyses, each time excluding one of the four largest cohorts (FHS, NAS, 

ARIC, KORA), and found similar results across these meta-analyses for the 52 CHD-associated CpGs 

(eFigure 5). In race-specific meta-analyses, the effect size and direction of effects for the majority of the 

CHD-associated CpGs were similar when comparing those of European ancestry with African-American 

ancestry (eFigure 6). However, 11 of the 52 CpGs showed race-specific differences in the association of 

DNA methylation with incident CHD (p-value <0.05 for difference in t-statistic; eTable 1). 

 

 

Mendelian Randomization for identifying causal associations between DNA methylation and 

incident CHD 

We identified and replicated an association between DNA methylation and cis genetic variation (i.e. 

meQTLs) for 10 of the 52 CHD-associated CpGs, and used these meQTLs in a two-step Mendelian 
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Randomization analysis (eTable 2). For two of the 10 CpGs with replicated meQTLs, we observed a 

causal effect of DNA methylation on incident CHD: cg26470101 (β [95% CI] for 1% increase in DNA 

methylation = 0.042 [0.002, 0.08]; P = 0.037) and cg07289306 (β [95% CI] for 1% = -0.148 [-0.288, -

0.009]; P = 0.04) on CHD (Table 4). Both CpGs map to regulatory active intergenic regions within CpG 

islands (i.e. regions important for transcription regulation), and cg07289306 is located proximal to two 

long non-coding RNA transcripts (eFigure 7).  

 

Improvement in CHD risk prediction using DNA methylation 

DNA methylation at 30 CpGs was associated (FDR <0.05) with incident CHD in the discovery meta-

analyses that excluded the FHS cohort. We then tested for improvement in model performance in the FHS 

cohort: adding these 30 CpGs to a baseline model that included the same covariates as the ACC/AHA 

pooled cohort ASVCD risk calculator (except for race) increased the c-statistic from  0.735 to  0.766 

(p=0.04).  

 

 

DISCUSSION 

We conducted a large-scale analysis of DNA methylation in relation to incident CHD and MI in 11,461 

adults across multiple North American and European cohorts. Methylation levels at 52 CpGs across the 

genome were associated with risk of CHD and MI. A 5% increase in DNA methylation was related to 

differences in CHD risk of a clinically relevant magnitude, ranging from a 46% decrease in the risk of 

CHD (cg12766383) to a 65% increase in risk (cg05820312). Mendelian randomization analyses revealed 

that methylation at two CpGs had a causal effect on incident CHD. Further, the performance of a CHD 

risk model with variables from a gold-standard clinical risk calculators was improved upon addition of 

CHD-associated CpGs – and the improvements in the c-statistic were of a similar magnitude to those 

obtained when adding coronary artery calcium scores.
17,18
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Biological relevance and clinical implications 

The identified 52 CHD-associated CpGs in our study implicate calcium regulation, kidney function, and 

TGF-beta pathways in CHD risk. Specifically, CpG cg2261787 maps to the ATPase plasma membrane 

calcium transporter 2 (ATP2B2) gene, which encodes a protein in the plasma membrane calcium 

transporter (PMCA) family with critical roles in intracellular calcium homeostasis. GWAS
 19

have linked 

genes encoding PMCAs to blood pressure and hypertension, and there is evidence that PMCAs have 

therapeutic potential in novel anti-hypertensive treatments.
20

 Similarly, CpG cg06582394 maps to the 

calcium sensing receptor (CASR) gene, which encodes a protein with a key role in calcium homeostasis. 

In a recent Mendelian randomization analysis of 184,305 individuals, Larsson et al. reported that a 

genetic variant at the CASR locus showed strong associations with coronary artery disease and MI.
21

 

CpGs cg14010194 and cg03467256 map to guanylate cyclase activator 1B (GUCA1B) and hippocalcin-

like 1 (HPCAL1), respectively, which encode calcium-binding proteins with roles in calcium-dependent 

regulation.
22,23

 Observational studies and calcium supplementation randomized clinical trials provide 

evidence of associations between serum calcium levels and increased risk of CHD and MI.
24,25 

Our results 

provide the first evidence that epigenetic regulation may be involved in calcium-related CHD risk, an 

underdeveloped area of therapeutics.  

CpGs cg19227382, cg03467256, and cg25497530 map to gene loci that are potentially relevant to 

kidney function, including cadherin-related 23 (CDH23), HPCAL1, and protein tyrosine phosphatase 

receptor type N2 (PTPRN2). Both CDH23 and HPCAL1 were identified in a GWAS of kidney function in 

approximately 64,000 participants of European decent.
26

 An epigenome-wide study of 400 individuals 

showed differential blood DNA methylation at the PTPRN2 locus in chronic kidney disease cases relative 

to controls.
27 

Kidney function is a well-recognized risk factor for CVD, with a recent AHA report 

highlighting that individual with an estimated glomerular filtration rate (eGFR) of 15 to 30 mL/min per 

1.73 m
2
 have the highest adjusted relative risk of CVD mortality.

28
 In a study of 1.27 million individuals 

with a median follow-up for 48 months, the rate of incident MI in people with diabetes was substantially 

lower than for those with chronic kidney disease.
29
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Other gene loci identified include the insulin growth factor 1 receptor (IGF1R), transforming 

growth factor beta receptor 1 (TGFBR1), and integrin subunit beta 2 (ITGB2). The roles of IGF1R and the 

TGF-beta signaling in cardiac remodeling and function are well recognized,
30,31

 and recently TGFBR1 

gene expression levels in blood samples from acute MI patients strongly predicted left-ventricular 

dysfunction.
32

 Finally, ITGB2 encodes a leukocyte cell-surface adhesion molecule that directly facilitates 

leukocyte transendothelial migration, a key step in formation of atherosclerosis.
33

 

 

Both CpGs with evidence of a causal effect on CHD, cg20545941 and cg07289306, are located within 

active CpG islands in intergenic regions, indicating that they may be involved in important regulatory 

processes with respect to CHD. Additionally, cg07289306 is proximal to two long non-coding RNAs 

(lncRNAs), and increasing evidence indicates that lncRNAs are key components of transcriptional 

regulatory pathways that govern cardiac development and cardiovascular pathophysiology.
34,35

 

 

When we added the CHD-associated DNA methylation CpGs to traditional CVD risk factors, we 

observed a significant improvement in CHD risk prediction (according to the c-statistic) equal in 

magnitude to risk prediction improvements observed when coronary artery calcification scores, an 

established indicator of CHD risk, are added to traditional risk prediction models.
17,18

 Additional studies 

may thus benefit from comprehensively evaluating DNA methylation biomarkers for improvement in 

prediction, discrimination, and reclassification of CHD. 

 

Findings in the context of prior evidence 

Our findings did not overlap with those of previous studies, which may be because prior studies were 

individual, smaller, single-cohort studies and were often composed of select populations geographically 

and ethnically distinct from the populations in our meta-analysis. For example, Sharma et al. identified 

differentially methylated regions (DMRs) near or within genes C1QL4, CCDC47, and TGFBR3 in a study 

of 36 men (18 CAD, 18 controls) from India.
12

 Nakatochi et al. compared 192 MI cases with 192 controls 
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in an epigenome-wide whole-blood analysis on elderly Japanese individuals, and reported DNA 

methylation at two CpGs, located in the ZFHX3 and SMARCA4 genes, to be associated with MI.
11

 In the 

prospective Italian EPICOR cohort, Guarrera et al. compared 292 MI cases with 292 matched controls 

ascertained prospectively during follow-up, and reported that a differentially-methylated region (DMR), 

within the Zinc Finger And BTB Domain Containing 2 (ZBTB12) gene body was associated with MI.
9
  

 

Study limitations 

We used well-established statistical procedures to remove the effect cell-type heterogeneity, which can 

serve as a major source of confounding in epigenome-wide studies and has previously been well-

described.
15,36

 However, residual confounding is still possible. Additionally, our Mendelian randomization 

analyses provide evidence supporting a causal association but do not prove causality, and thus, follow-up 

experimental work is warranted. Another limitation is the relatively large contribution from cohorts based 

in primarily Western countries in Europe and the United States due to limited availability of DNA 

methylation and incident CHD data in more ethnically diverse cohorts.  Thus our findings have not been 

evaluated for generalizability to other populations. 

 

Study strengths 

Our study is by far the largest on the topic to date, with nearly 12,000 participants. We also made use of 

incident cases that were stringently adjudicated over a long-term follow-up, another novelty with respect 

to epigenome-wide studies. Our analysis allows for detection of effects at individual epigenetic loci that 

were potentially missed in prior smaller studies. Our longitudinal epigenome-wide approach provides 

evidence for the role of DNA methylation in determining risk of future CHD, which was not possible in 

previous studies due to their cross-sectional design. Furthermore, we used Mendelian randomization to 

build evidence regarding causal effects of DNA methylation on incident CHD, and evaluated CHD risk 

prediction improvement as compared to traditional risk factors.  
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CONCLUSION 

We present novel findings on associations of leukocyte DNA methylation with risk of CHD, with effect 

sizes and risk prediction metrics that are of a clinically relevant magnitude. In addition, our findings 

highlight known as well as under-recognized pathways to CHD, including calcium regulation, kidney 

function, and gene regulation mechanism involving non-coding RNA. Overall, the findings provide a 

deeper understanding of the molecular landscape of incident CHD and may present novel avenues for the 

development of therapeutic interventions and improvements in risk prediction. 
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