
Evaluating Speech Synthesis on Mathematical Sentences

Alessandro Mazzei
Università degli Studi di Torino

alessandro.mazzei@unito.it

Michele Monticone
Università degli Studi di Torino

michele.monticone@edu.unito.it

Cristian Bernareggi
Università degli Studi di Torino

cristian.bernareggi@google.com

Abstract

English. In this paper we present the
main features of a rule-based architecture
to transform a LATEX encoded mathemat-
ical expression into its equivalent mathe-
matical sentence form, i.e. a natural lan-
guage sentence expressing the semantics
of the mathematical expression. More-
over, we describe the main results of a first
human based evaluation of the system for
Italian language focusing on speech syn-
thesis engines.

Italiano. In questo lavoro presen-
tiamo le caratteristiche principali di
un’architettura software a regole per
trasformare un’espressione matematica,
codificata in LATEX, nella sua equivalente
frase matematica, cioè una frase del lin-
guaggio naturale che esprima la stessa
semantica dell’espressione originale. In-
oltre, descriviamo i primi risultati di una
valutazione del sistema fatta da esseri
umani per la lingua italiana riguardante
principalmente i motori di sintesi del par-
lato.

1 Introduction

Computational linguistics can help people in many
ways, especially in the field of assistive technolo-
gies. In the case of mathematical domain, blind
people can access to a mathematical expression
by listening its LATEX source. However, this pro-
cess has several drawbacks. First of all, it assumes
the knowledge of the LATEX. Second, listening
LATEX is slow and error-prone, since LATEX is a ty-
pographical language, that is a language designed

Copyright c© 2019 for this paper by its authors. Use
permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

for specifying the details of typographical visual-
ization rather than for efficiently communicate the
semantics of a mathematical expression. For in-
stance, the simple LATEX expression f(x) is a typo-
graphical description and so it represents both the
function application of f to x, and the multiplica-
tion of the variable f for the variable x surrounded
by parenthesis.

There are many lines of research to enable peo-
ple with sight impairments to access mathemati-
cal contents. It is possible to embed mathemat-
ical expressions in web pages not only as im-
ages but through MathML or MathJax (Cervone,
2012) and in PDF documents produced from La-
TeX (Ahmetovic et al., 2018). Other research di-
rections concern conversion into Braille (Soiffer,
2016) and speech reading (Raman, 1996; Wal-
traud Schweikhardt, 2006; Sorge et al., 2014).

In this paper we follow another direction: we
consider the possibility to produce a mathemati-
cal sentence, i.e. a natural language sentence ex-
pressing the semantics of a mathematical expres-
sion. Indeed, the idea to use mathematical sen-
tences for improving the accessibility of math-
ematical expressions has been previously pre-
sented and experimented for Spanish in (Ferres
and Fuentes Sepúlveda, 2011; Fuentes Sepúlveda
and Ferres, 2012). However, in contrast to previ-
ous work on mathematical sentences, in this work
we use a natural language generation (NLG) archi-
tecture rather than a template-based one for gener-
ating sentences. By using NLG architecture we
obtain (i) more portability, and (ii) a major and
simple customization of the output.

We have two research goals in this paper. The
first goal is to describe a system for transform-
ing a mathematical expression natively encoded
in LATEX in its equivalent mathematical sentence
(cf. Figure 1). The processing flow follows a well-
known approach, called interlingua in the field of
machine translation (Hutchins and Somer, 1992).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302359277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PostProcessor

LatexML

S2S

SynthCaller

LATEX
mathematical

expression

CM
M

L

Enhanced CMML
writtenmath.

sentence audio
math.

sentence

Figure 1: The software architecture for the generation of mathematical sentences. The process starts from (1) the LATEX
representation of the expression, (2) its translation in CMML, (3) enhancement of CMML, (4) generation of the written form
of the mathematical sentence, (5) production of the audio form of the mathematical sentence.

Indeed, the process of generating a mathematical
expression from its LATEX source is a two-step al-
gorithm. In the first step the LATEX is analyzed and
its semantics is represented in Content MathML
(CMML henceforth), a W3C standard for express-
ing the syntax and the semantics of mathematical
expressions1. In the second step, the CMML rep-
resentation is used as input of the S2S (Semantics
to Speech) module, that is a NLG module gen-
erating the mathematical sentence. Note that the
S2S module inserts in the sentence parenthesis and
pauses too. The sentence will finally be trans-
formed in audio format encoding by an external
synthesis engine.

The second goal of this paper is to give a first
evaluation of the performance of two distinct syn-
thesis engines in the domain of mathematical sen-
tence. With a pilot experimentation conducted
with four blind people, we will compare the per-
ception of the mathematical sentences of a neural-
network based speech engine and of a formant-
based speech engine.

In Section 2 we will describe the main features
of the developed system, in Section 3 we will de-
scribe the experimentation and finally in Section 4
we end the paper with some conclusions and in-
troducing future work.

2 Building Mathematical Sentences

The first step of our algorithm is the generation
of CMML associated to a LATEX formula. We
based this step on an external tool named La-
texML (Miller, 2007). However, the CMML ob-
tained from this tool needed to be enhanced by
a post-processing procedure for (1) uniform them

1https://www.w3.org/TR/MathML3/
chapter4.html

to CMML standard and (2) to remove ambiguity
as for the case y = f(x). In Figure 2 we re-
port the CMML representation for the mathemati-
cal expression x > b =⇒ |f(x)| < M .

Mathematical notation has been conceived with
the aim of representing mathematical concepts us-
ing a specific written symbolic language. As
working hypothesis, we decided to assume a “spe-
cialized” syntactic analysis for a number of math-
ematical objects. For instance, x plus three
indicates the action of adding one quantity to an-
other, so it can be represented as a declarative
structure. As a consequence, plus can be anal-
ysed as verb and this assumption can be extended
to all the mathematical sentences. In this paper we
considered only the mathematical structures be-
longing to the subfield of the mathematical anal-
ysis. In particular, we considered all the expres-
sions in an Italian analysis book (Pandolfi, 2013).
By using this corpus of expressions and by assum-
ing that all numbers and variables can be treated
as nouns and that all arithmetic operators can be
treated as verbs, we found eight additional cat-
egories for representing all complex mathemati-
cal expressions and we defined a specific syntactic
construction for each category.

In Table 1, we reported some examples of
syntactic constructions for mathematical expres-
sions. We decided to analyse and represent the
mathematical sentences of relational operators as
copula sentences (a è maggiore di b, a is
greater than b), algebraic operators as declarative
sentences (a prodotto cartesiano b, a
cartesian product b), logical operators as con-
junctions (a o b, a or b), elementary oper-
ators (e.g. radice, radical), sequence (e.g.
limite, limit), calculus (e.g. integrale, inte-

https://www.w3.org/TR/MathML3/chapter4.html
https://www.w3.org/TR/MathML3/chapter4.html

<apply>
<implies/>
<apply>

<gt/>
<ci>x</ci>
<ci>b</ci>

</apply>
<apply>

<lt/>
<apply>

<abs/>
<apply>

<ci>f</ci>
<ci>x</ci>

</apply>
</apply>
<ci>M</ci>

</apply>
</apply>

Figure 2: The CMML representation of the mathematical
expression x > b =⇒ |f(x)| < M .

Mathematical Expression Construction

>, ≥,�, . . . Copula

+, −, ∗, . . . Declarative

∧, ∨, ¬, . . . Coordination

sin, cos, tan, . . . Noun Phrase
[b]∑

[x=a]

[f(x)], . . . Noun Phrase∫ [b]

[a]

f(x) dx Noun Phrase

{
[vars] | conditions

}
Reduced Relative

([x], [y]) Reduced Relative

Table 1: Mathematical expressions and their linguistic con-
structions.

gral) as noun phrases (La radice quadrata
di x, the square root of x), pairs and conditional
sets as reduced relatives (L’insieme delle
x tali che x è minore di 3, the set of
x such that x is less than 3). Our syntactic repre-
sentations for mathematical operators in the anal-
ysis domain could have alternative representations
or could be specialized in a more refined classifi-
cation (c.f. (Chang, 1983)), but we decided to use
only eight category for sake of simplicity.

Traditional NLG architectures split the genera-
tion process into three distinct phases, that are doc-
ument planning, sentence planning and realization
(Reiter and Dale, 2000; Gatt and Krahmer, 2018).
In particular document planning decides what to
say and sentence planning and realization decides
how to say it. In the system architecture depicted
in Figure 1, the content of the communication is

specified by the input mathematical expression, so
the content selection phase is not necessary at all.
In Section 2.1 we will give some details on the
rule-based sentence planner designed for manag-
ing mathematical sentences and in Section 2.2 we
will describe the use of the SimpleNLG-it realizer
for the case of mathematical domain.

2.1 Building a Sentence Planner for
Mathematical Sentences

The input of the sentence planner is a mathemati-
cal expression in the form of enhanced CMML. In
order to associate a sentence plan, that is a a sort of
under-specified tree-based syntactic structure, we
devised a recursive algorithm that traverses top-
down the CMML structure.

By considering the eight categories used to clas-
sify all mathematical expressions, for each cate-
gory we designed a prototypical sentence plan that
will be used in the recursive process. Each proto-
type builds a specific linguistic construction (e.g.
copula, reduced relative etc.), that is designed for
giving syntactic roles to the arguments of the spe-
cific mathematical construction. For instance, on
the left of the Figure 3, we reported the prototyp-
ical sentence plan for the conditional set mathe-
matical structure and on the right of we reported
an example of its instantiation. In the final pro-
duced structures we have that, (1) the leaves of
the sentence plan are lemmas rather than words,
(2) the syntactic relations among the nodes are
expressed using both dependency relations (e.g.
subj, complement) as well as constituency nodes
(e.g. Prepositional Phrase, PP). Note that this is
the input format for sentence plan required by the
SimpleNLG realizer (see Section 2.2).

In order to build a complete sentence plan for
a mathematical sentence by using the eight cate-
gories for mathematical expressions, there are two
important issues.

The first issue concerns the perception of prece-
dence of the arithmetic operator. Listening mathe-
matics has some peculiarities with respect to read-
ing it. For instance, division is granted a higher
precedence than addition, and during the reading
process the expression a + b/c is parsed as a + b

c
without ambiguities. A different result arises if
one listens the equivalent mathematical sentence a
plus b divided by c without reading the
expression: we experimented that the most fre-
quent perceived parse is a+b

c . After a limited num-

insieme

il op1

di

op2

tali che

det compl

prep

compl

prep

NP

il insieme PP

di NP

il x

PP

tale che Clause

NP

x

V

essere

AdjP

minore

PP

di NP

0

complement complement

subj obj complement

Figure 3: The prototypical sentence plan for the conditional set mathematical structure (left), and its fulfillment producing the
sentence L’insieme degli x tali che x è minore di 0 (rigth, the set of all x such that x is lesser than 0).

ber of experiments in listening arithmetic expres-
sions with distinct (blind and not blind) people,
we decided to state as working hypothesis that the
precedence of the arithmetic operators are per-
ceived in the reverse order when one listens a
mathematical expressions without reading it2.

A second issue is how to represent the correct
structures of the operators. In other words,
how we can build a mathematical sentence
unambiguously equivalent to a+b

c ? A trivial
but effective solution is to use parenthesis,
that is to produce the mathematical sentence
open parenthesis a plus b close
parenthesis divided by c. However,
the drawback of this solution is the length of the
sentence that, for very complex expressions, can
augment substantially.

In order to account for both the issues, we
modified the sentence planner in two ways.
First, we decided to model parenthesis as lexi-
cal items, that is we considered open-parenthesis
and closed-parenthesis as two new lexical items
of the SimpleNLG lexicon which can be used
as pre-modifier and post-modifier of a mathe-
matical sentence respectively. Second, similar
to (Fuentes Sepúlveda and Ferres, 2012), we al-
lowed to use a speech pause as a synonymous of
open/closed-parenthesis items. Moreover, in order
to experiment both with parentheses and pauses
in the understanding of a mathematical sentence,
we decided to implement three distinct parenthe-
sization strategies, called parenthesis, pause, and
smart. In the parenthesis strategy, all the neces-
sary parentheses are inserted in the sentence plan.

2We have not been able to find any scientific reference on
this point.

Note that a parenthesis has to be considered nec-
essary with respect to the inverted precedence or-
der hypothesis stated above. In the pause strategy,
all the necessary pauses are inserted in the sen-
tence plan. In the smart strategy, all the neces-
sary parentheses are inserted in the higher nodes
of the sentence plan, and the necessary pauses are
inserted close to the leaves of the sentence plan.
This is a hybrid strategy that combines parentheses
and pauses in order to have a less verbose mathe-
matical sentence.

2.2 NLG for spoken mathematics
In order to produce a spoken mathematical sen-
tences in Italian with the SimpleNLG-it realizer
(Mazzei et al., 2016), we needed to account for the
construction of a domain specific lexicon for the
field of the mathematical analysis. SimpleNLG-
it is the Italian porting of the SimpleNLG real-
izer, that was originally designed only for English
(Gatt and Reiter, 2009). As default Italian lex-
icon, SimpleNLG-it uses a basic vocabulary of
around 7000 words, that is a simple lexicon stud-
ied to be perfectly understood by most Italian peo-
ple (Mazzei, 2016; Conte et al., 2017; Ghezzi et
al., 2018). However, for this specific project we
needed to augment the basic lexicon with both (i)
a mathematical specialized lexicon, that contains
both new lexical entries (as arcotangente,
arctangent), and (ii) new values for lexical en-
tries which are yet in the basic lexicon (as the
value noun for the part of speech of the lemma
integrale, integral). This specialized lexicon
contains 113 entries which are mostly categorized
as nouns (e.g. logaritmo, logarithm), verbs
(e.g. intersecare, intersect), adjective (e.g.
iperbolico, hyperbolic). In the lexicon, there

are only two new instances of adverbs (that are
relativamente and propriamente, rela-
tive, properly), and only one instance of “prepo-
sitional locution” (that is tale che, such that).
Finally, we added specific lexical items to realize
both parenthesis (that are parentesi aperta
and parentesi chiusa, open/closed paren-
thesis) and speech pause. This latter item will be
finally realized by using the SSML (Speech Syn-
thesis Markup Language) tag <break/>, that
can be processed by many speech synthesis en-
gines3.

The actual version of the mathematical sen-
tence generator has been interfaced with two
speech synthesis engines, that are the web ser-
vice provided by the IBM-Watson framework4

(W-engine henceforth), and the Espeak API5 (E-
engine henceforth). W-engine is a commercial,
closed software based on deep learning, while E-
engine is a free, open-source software based on
formant synthesis algorithms. Note that for not vi-
sual impaired people W-engine sounds more flu-
ent but, in contrast, for visual impaired people E-
engine sounds more familiar since it is used by a
widespread free screen reader.

3 Evaluation

In order to have a first evaluation of the generation
system, we built a web-based test explicitly de-
signed for visually impaired people. We designed
a questionnaire composed by a 6 multiple choices
questions concerning personal data, a core of 25
open questions each one concerning the listening
of a mathematical sentence and its comprehensi-
bility, 1 Likert-scale question globally comparing
LATEX and system comprehensibility, 1 open ques-
tion for free comments.

The 25 core questions have a all the same
schema: there is a audio file encoding a math-
ematical sentence and there is a open form for
transcribing it. In the compilation instructions,
we asked the users to fill this section by using
“LATEX or with other non ambiguous formal rep-
resentation”. The mathematical expressions ob-
tained have been manually translated to CMML
for evaluation. We implemented the questionnaire
by using the Google Form framework, that was

3https://www.w3.org/TR/
speech-synthesis11/

4https://www.ibm.com/watson/services/
text-to-speech/

5http://espeak.sourceforge.net

ID Formula
E1 A×B = {(x, y) | x ∈ A, y ∈ B}
E4 x > b =⇒ |f(x)| < M

E6 lim
x→x0

{
f(x)− f(x0)

x− x0
− f ′(x0)

}
= 0

E8

∫
1√

m2 − x2
dx = arcsin

x

m
+ c

E10 lim

(
1 +

1

n

)n

= e

Table 2: The five mathematical expressions used for experi-
mentation.

preliminarily judged accessible by a blind person.
In this paper we discuss the results of 10 core

questions of the questionnaire that have been cre-
ated by using the 5 mathematical expressions be-
longing to the Table 2. We use the W-engine to
build 5 mathematical sentences and the E-engine
to build other 5 mathematical sentences. Note that
we change the names of the variables in the two
set of sentences.

In order to score the comprehension of the
user we decided to use the SPICE (Anderson et
al., 2016) metric. SPICE is obtained by com-
puting the F-score of the overlap between two
trees: the overlap is measured by decomposing
trees in typed elementary substructures, that
are operands, operators and their relations. For
instance, the expression x − 1 is decomposed as{
1, x,minus, (op: minus, first: x), (op: minus, second: 1)

}
(cf. (Anderson et al., 2016) for more details).
For the experimentation, we recruited 4 visually
impaired people with personal invitation without
any rewards. All users are Italian mother tongue,
have a good knowledge of mathematical analysis
and have a bachelor degree (only one related to
mathematics).

In Table 3 we reported the averaged values of
SPICE for W-engine and E-engine. A first view of
data seems suggest a preference for the E-engine,
but there is not a significant effect on the perfor-
mance of the system: by applying the t-test we ob-
tained for 0.08 (two-tailed p-value), indicating no
statistical significance. So, new experiments with
more trials and users are necessary to statistically
confirms the preference of for the E-engine.

In Table 4, we report the The distribution of
the answers in Likert scale for the question of
the web form concerning comprehensibility, that
is “Quanto sei d’accordo con la frase: - La frase
pronunciata è facile da capire -” (How much do

https://www.w3.org/TR/speech-synthesis11/
https://www.w3.org/TR/speech-synthesis11/
https://www.ibm.com/watson/services/text-to-speech/
https://www.ibm.com/watson/services/text-to-speech/
http://espeak.sourceforge.net

Engine U1 U2 U3 U4
W-engine 0.96 (0.06) 0.95 (0.12) 0.97 (0.06) 0.97 (0.06)
E-engine 0.99 (0.03) 0.99 (0.03) 0.97 (0.04) 0.97 (0.04)

Table 3: The averaged SPICE measures and standard deviations for the speech synthesis W-engine and E-engine.

Engine U1 U2 U3 U4
W-engine 4.60 (0.55) 5.20 (1.10) 4.00 (0.71) 4.00 (1.22)
E-engine 4.60 (0.89) 4.00 (1.73) 5.60 (1.14) 4.40 (1.52)

Table 4: The distribution of the answers in Likert scale (1− 7) for the question concerning comprehensibility.

you agree with the sentence: - The pronounced
sentence is easy to understand -”). The value 1
corresponds to “per nulla” (nothing), the value 7
corresponds to “completamente” (completely). It
seems from data that there is not notable differ-
ence between the perceived comprehensibility of
the W-engine with respect to the E-engine and the
t-test we obtained for the Likert score is 0.67 (two-
tailed p-value).

4 Conclusion

In this paper we have presented a study on the
generation of mathematical sentences, i.e. natu-
ral language sentences encoding mathematical ex-
pressions6. In particular, we have described the
main features of the system and the a first experi-
mentation centred on the evaluation of two distinct
speech engine. The results of the experimenta-
tion suggests a good performance of the formant-
based synthesis engine with respect to the neural-
network base synthesis engine. However, more
data is necessary to achieve statistical significance.

In future work we intend to repeat the evalua-
tion of the system for Italian with a larger number
of users and to repeat the experiment by using En-
glish lanaguage too.

References
[Ahmetovic et al.2018] Dragan Ahmetovic, Tiziana Ar-

mano, Cristian Bernareggi, Michele Berra, Anna
Capietto, Sandro Coriasco, Nadir Murru, Alice
Ruighi, and Eugenia Taranto. 2018. Axessibility:
A latex package for mathematical formulae accessi-
bility in pdf documents. In Proceedings of the 20th
International ACM SIGACCESS Conference on

6The described system can be freely
downloaded at https://bitbucket.
org/tesimagistralemonticone/
formula-to-speech/

Computers and Accessibility, ASSETS ’18, pages
352–354, New York, NY, USA. ACM.

[Anderson et al.2016] Peter Anderson, Basura Fer-
nando, Mark Johnson, and Stephen Gould. 2016.
SPICE: semantic propositional image caption evalu-
ation. CoRR, abs/1607.08822.

[Cervone2012] Davide Cervone. 2012. Mathjax: A
platform for mathematics on the web. Notices of
the American Mathematical Society, 59, 02.

[Chang1983] Lawrence A. Chang. 1983. Hand-
book for spoken mathematics (larry’s speakeasy).
Lawrence Livermore Laboratory, The Regents of the
University of California., 1.

[Conte et al.2017] Giorgia Conte, Cristina Bosco, and
Alessandro Mazzei. 2017. Dealing with ital-
ian adjectives in noun phrase: a study oriented
to natural language generation. In Proceedings
of the Fourth Italian Conference on Computational
Linguistics (CLiC-it 2017), Rome, Italy, December
11-13, 2017., December.

[Ferres and Fuentes Sepúlveda2011] Leo Ferres and
José Fuentes Sepúlveda. 2011. Improv-
ing accessibility to mathematical formulas: the
wikipedia math accessor. In Proceedings of
the International Cross-Disciplinary Conference on
Web Accessibility, W4A 2011, Hyderabad, Andhra
Pradesh, India, March 28-29, 2011, page 25.

[Fuentes Sepúlveda and Ferres2012] José
Fuentes Sepúlveda and Leo Ferres. 2012. Im-
proving accessibility to mathematical formulas: The
wikipedia math accessor. New Rev. Hypermedia
Multimedia, 18(3):183–204, September.

[Gatt and Krahmer2018] Albert Gatt and Emiel Krah-
mer. 2018. Survey of the state of the art in natural
language generation: Core tasks, applications and
evaluation. J. Artif. Intell. Res., 61:65–170.

[Gatt and Reiter2009] Albert Gatt and Ehud Reiter.
2009. SimpleNLG: A Realisation Engine for
Practical Applications. In Proceedings of the
12th European Workshop on Natural Language
Generation, ENLG ’09, pages 90–93, Stroudsburg,

https://bitbucket.org/tesimagistralemonticone/formula-to-speech/
https://bitbucket.org/tesimagistralemonticone/formula-to-speech/
https://bitbucket.org/tesimagistralemonticone/formula-to-speech/

PA, USA. Association for Computational Linguis-
tics.

[Ghezzi et al.2018] Ilaria Ghezzi, Cristina Bosco, and
Alessandro Mazzei. 2018. Auxiliary selection in
italian intransitive verbs: A computational investi-
gation based on annotated corpora. In Proceedings
of the Fifth Italian Conference on Computational
Linguistics (CLiC-it 2018), pages 1–6, Berlin.
CEUR.

[Hutchins and Somer1992] W. John Hutchins and
Harold L. Somer. 1992. An Introduction to
Machine Translation. London: Academic Press.

[Mazzei et al.2016] Alessandro Mazzei, Cristina
Battaglino, and Cristina Bosco. 2016. SimpleNLG-
IT: adapting SimpleNLG to Italian. In Proceedings
of the 9th International Natural Language
Generation conference, pages 184–192, Edinburgh,
UK, September 5-8. Association for Computational
Linguistics.

[Mazzei2016] Alessandro Mazzei. 2016. Build-
ing a computational lexicon by using SQL. In
Pierpaolo Basile, Anna Corazza, Francesco Cu-
tugno, Simonetta Montemagni, Malvina Nissim,
Viviana Patti, Giovanni Semeraro, and Rachele
Sprugnoli, editors, Proceedings of Third Italian
Conference on Computational Linguistics (CLiC-it
2016) & Fifth Evaluation Campaign of Natural
Language Processing and Speech Tools for Italian.
Final Workshop (EVALITA 2016), Napoli, Italy,
December 5-7, 2016., volume 1749, pages 1–5.
CEUR-WS.org, December.

[Miller2007] Bruce Miller. 2007. LaTeXML: A LaTeX
to XML converter.

[Pandolfi2013] Luciano Pandolfi. 2013. ANALISI
MATEMATICA 1. Dipartimento di Scienze
Matematiche “Giuseppe Luigi Lagrange”, Politec-
nico di Torino.

[Raman1996] T. V. Raman. 1996. Emacs-
peak—direct speech access. In Proceedings
of the Second Annual ACM Conference on Assistive
Technologies, Assets ’96, pages 32–36, New York,
NY, USA. ACM.

[Reiter and Dale2000] Ehud Reiter and Robert Dale.
2000. Building Natural Language Generation
Systems. Studies in Natural Language Processing.
Cambridge University Press.

[Soiffer2016] Neil Soiffer. 2016. A study of speech
versus braille and large print of mathematical expre-
sisons. In Lecture Notes in Computer Science, vol-
ume 9758, Berlin. Springer.

[Sorge et al.2014] Volker Sorge, Charles Chen, T. V.
Raman, and David Tseng. 2014. Towards mak-
ing mathematics a first class citizen in general
screen readers. In Proceedings of the 11th Web for
All Conference, W4A ’14, pages 40:1–40:10, New
York, NY, USA. ACM.

[Waltraud Schweikhardt2006] Nadine Jessel Benoit
Encelle Margaret Gut Waltraud Schweikhardt,
Cristian Bernareggi. 2006. Lambda: A european
system to access mathematics with braille and audio
synthesis. In Lecture Notes in Computer Science,
volume 4061, Berlin. Springer.

	Introduction
	Building Mathematical Sentences
	Building a Sentence Planner for Mathematical Sentences
	NLG for spoken mathematics

	Evaluation
	Conclusion

