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Abstract: Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of
the cell of origin, which may modify the functions and phenotype of proximal and distant cells.
Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by
acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained
in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling
in patient bio-fluids, such as blood and urine, was performed to identify molecular features with
potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are
particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection
of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the
available studies on the diagnostic potential of exRNA profiling in salivary EVs.
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1. Introduction

The aim of liquid biopsy is to identify biomarkers with diagnostic, predictive and prognostic
values in bio-fluids, to avoid more invasive approaches. Researchers focused on different types
of biomarkers, including proteins, circulating DNA fragments and cells, and extracellular RNAs
(exRNAs). ExRNAs are more sensitive and specific biomarkers than proteins and better reflect the cell
dynamic than DNA does [1]. However, several limitations in the use of exRNA as biomarkers still
remain, related to their heterogeneity, the incomplete definition of their multiple targets and functions,
and their stability in different biological fluids [2].

Nowadays, the recently developed techniques of sequencing allow for an accurate evaluation
of RNA expression, which reflects cellular genetic and functional states. Different types of RNA
biomarkers have been considered in cancer. Differential mRNA expression profiles may reflect the
positive and negative regulation of tumor-associated genes in several cancers and may provide
suitable biomarkers for monitoring the clinical outcome of patients [3–5]. Non-coding RNAs, such as
microRNAs (miRNAs), piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA), circular
RNA (circRNA) and long non-coding RNAs (lncRNAs), have also been investigated as potential
biomarkers in cancer [1]. Moreover, the detection of chimeric RNAs may allow for the identification of
chromosomal aberrations [6,7]. The stability of different exRNAs in the biological fluids depends on
protection from exonucleases, provided either by RNA binding proteins, such as those of the Argonaute
family, and high- and low-density lipoproteins, and by encapsulation in membrane vesicles [8–10].

Membrane vesicles released by cells in the extracellular space have recently emerged as a good
evolutionarily preserved mechanism of inter-cellular communication. The vesicles are able to share
genetic information among cells by delivering proteins, bio-active lipids and nucleic acids protected
from degrading enzymes [11–13]. These vesicles, termed extracellular vesicles (EVs), are abundant
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in all biological fluids and can be exploited for searching biomarkers since they retain the molecular
signature of the cell of origin.

One challenge of liquid biopsy is the choice of the bio-fluid that better reflects the occurrence of
cancer. Most studies have focused on blood, but several other bio-fluids are now gaining attention,
including saliva. Saliva is enriched in EVs and may represent a bio-fluid suitable for searching for
markers of oral and systemic diseases.

2. EVs as Carriers of exRNA

EVs are a heterogeneous population, which includes membrane vesicles of different sizes and
biogenesis. The three main categories of EVs include exosomes, ectosomes, and apoptotic bodies [14–17].
Exosomes are nano-sized vesicles (35–100 nm), which originate from the multivesicular bodies and
are secreted by a process of exocytosis. This process requires the inward budding of multivesicular
bodies-membrane, followed by fusion with plasma membrane and release in the extracellular space.
The endosomal sorting complex required for transport (ESCRT) machinery, and several components of
the Ras GTPases (RAB) family [18,19] and of the tetraspanin family [18], are involved in such processes.
Vesicles generated by the budding of surface plasma membrane with the inclusion of cytoplasmic
constituents have been termed microvesicles. This term is misleading as these vesicles include a
large population of vesicles within the nano-range (60–250 nm), such as those released from healthy
cells. It has been therefore suggested that one should name these vesicles ectosomes or shedding
vesicles [14]. Shedding vesicles also include larger vesicles that may reach 1000 nm, and some of them
may derive from cells in a pre-apoptotic phase. Microvesicle formation is related to the modification of
plasma membrane curvature due to changes in lipid and protein interactions involving the arrestin
domain-containing protein-1 (ARRDC1) and the late endosomal protein tumor susceptibility gene 101
(TSG101). The cytoskeleton rearrangements controlled by the signaling cascade of Ras-related GTPase
ADP-ribosylation factor 6 (ARF6) promote vesiculation and release [20]. The apoptotic bodies released
by cells undergoing programmed death are vesicles with a diameter of 1000–5000 nm and may contain
nuclear fragments and intact chromosomes [21].

Most of the studies on the use of EVs as potential biomarkers have been performed on exosomes
and microvesicles, as both types of vesicles may encapsulate fragments of genomic and mitochondrial
DNA origin [22–25], and different classes of RNA, such as mRNA, miRNA, lncRNA, mitochondrial
RNA, transfer RNA, and ribosomal RNA [26–29]. Furthermore, nano-sized vesicles may be released
by the same cell by exocytosis or by surface membrane budding, and it may be difficult to discriminate
vesicles discharged by non-apoptotic cells on the basis of mechanisms of origin. In fact, some molecules
constituent of the endosomal sorting complex required for transport (ESCRT) and some ancillary
proteins such as TSG101, Alix and Vacuolar protein sorting-associated protein 4 (VPS4) implicated in
the formation of exosomes, are also reported in the literature to also be shared by shedding vesicles [30].
The discharge of exosomes may involve some constituents of the RAB family of GTPase proteins
implicated in the MVBs/plasma membrane interaction [31,32]. Furthermore, the biogenesis of shedding
vesicles may depend on a reorganization of the proteins of the cytoskeleton myosin and actin under
the control of the ARF6 signaling [30]. Some tetraspanins and some ESCRT proteins are often reported
as common exosome and shedding vesicle markers and cannot represent a peculiarity principle [33].
However, CD9, CD63 and CD81 tetraspanins are reported to be enhanced in exosomes [18], while
annexin A1 is considered a marker for microvesicles [34]. Due to the heterogeneity of EVs produced
by different cell types and present in the biological fluids, the protocols used for EV purification
assume a critical relevance. For this reason, the public available databases [35–37] take into account
the procedures used for the purification of EVs when describing the lipid, protein and nucleic acid
composition. Of interest, the comparative lipidomic, proteomic and genomic analyses between the cells
of origin and their released EVs highlight the presence of qualitative and quantitative differences, in both
basal and stimulated condition. These data suggest that the EV cargo is actively modulated [38–40].
The EV mediated transfer of their cargo into recipient cells can induce epigenetic and functional
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changes into the recipient cells [41]. Some studies indicate that genetic materials encapsulated in
EV include mitochondrial [24,42] and genomic [22] DNAs. Other studies performed on exosomal
sub-fractions of EVs suggest that the DNA release is not related to the small vesicle release but to
the autophagy- and multivesicular-endosome-dependent mechanism [34]. Several RNA species were
found to be associated with EVs. EVs contain intact mRNA that can be translated into proteins in the
recipient cells [27,28], but also many fragments of 200 nucleotides [43] that may have a biological role
as scavengers and/or values as biomarkers. The exRNA enriched in EVs include miRNAs, ribosomal
RNAs, tRNA fragments piRNA, snoRNA, Y-RNA, circRNA and lncRNAs [44–48].

Little is known about the process of nucleic acid compartimentalization into EVs [39,49–52].
Some proteins involved in EV biogenesis are potential candidates for RNA encapsulation in EVs.
For instance, it has been shown that in EVs purified by differential ultracentrifugation from liver stem
cells, Alix coprecipitate with Argonate 2 (Ago2) protein and miRNAs. The significant reduction of
EV-associated miRNAs in Alix knock-down cells suggests that Alix can have a role as a component of
ESCRT in the export of the Ago2-miRNA complex [53]. Through a high-resolution density gradient
fractionation coupled with an immunoaffinity capture of exosomes, Argonaute proteins were detected
in the non-vesicular compartment [34], which may contain components of the multivesicular body
membranes. In breast cancer-derived EVs, miRNAs associated with Ago2 were shown to induce
an alteration in the transcriptome of the recipient cells [54]. By regulating the Ago2 secretion [55],
GTPase KRas (KRAS) has been involved in the miRNA compartmentalization into EVs released by
colorectal cancer cells [56]. Moreover, miRNA packing into EVs depends on the interaction with the
heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) [57] and with the RNA-binding protein
Y-box protein I (YBX1) [58].

3. EVs in Cancer Biology

EVs released by cancer cells may act both locally, contributing to create a favorable microenvironment
for cancer growth, and at distance, promoting the metastatic niche formation. Several studies have shown
that cancer EVs contribute to the induction of chemo-resistance [59–63], to the remodeling of extracellular
matrix [64,65], to tumor vascularization [66] and to epithelial-mesenchymal transition with a consequent
enhanced migration/invasion and metastasis formation [67–69]. EVs also participate as active players
in the bi-directional crosstalk between cancer cells and cells present in the microenvironment, such as
fibroblasts [70,71], which may secrete EVs conferring chemo-resistance [72–74] and invasiveness to
cancer cells [70,71].

Several mechanisms of action involving the EV-mediated transfer of proteins and exRNA have
been described and exploited as diagnostic markers. In particular, the miRNA-mediated effects have
been extensively studied. Several miRNAs present in EVs released from breast cancer (miR-100,
miR-222, miR30a and miR-17), lung cancer (miR-100-5p), and ovarian cancer (miR-21) or released from
stromal cells (miR-21 and miR-146a) were shown to confer chemo-resistance [60–62,73,74] (Table 1).
Cancer EVs may contribute to new blood vessel formation by transferring to recipient fibroblasts and
endothelial cells pro-angiogenic miRNAs such as miR-155, miR-210 and miR-494, which are under the
regulation of the hypoxia-inducible factor (HIF) 1α [75–79] (Table 2). Moreover, several studies on
EVs released by cancer cells indicate that they promote the development of a pre-metastatic niche by
transferring either proteins or oncogenic miRNAs [80–83]. For instance, some miRNAs (miR-125b,
miR-130b and miR-155) present in prostate cancer and released by EVs have been shown to confer a
protumorigenic phenotype to adipose-derived mesenchymal stem cells [84].
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Table 1. The role of EVs in chemo-resistance and immune-modulation. Several proteins and exRNAs have been described to be involved in tumor chemo-resistance
and immune-modulation.

Biological Effect Mechanism of Action Cell Source Target References

Resistance to
chemotherapy

Transfer of MDR-1/P-gp Docetaxel-resistant prostate cancer Docetaxel-sensitive prostate cancer [59]

Transfer of miR-100, miR-222, miR-30a and miR-17 Adriamycin and docetaxel-resistant
breast cancer

Adriamycin and docetaxel-sensitive
breast cancer [60]

Transfer of miR-21 Platinum-resistant ovarian cancer Platinum-sensitive ovarian cancer [61]

Transfer of miR-100-5p, miR-21 and miR-133b Cisplatin-resistant lung cancer Cisplatin-sensitive lung cancer [62,63]

Transfer of miR-21, which downregulates APAF1 Stroma Ovarian cancer [74]

Transfer of miR-146a with Snail mRNA Cancer-Associated Fibroblasts Pancreatic cancer [73]

Activation of the antiviral/ NOTCH3 signaling pathway Stroma Breast cancer [72]

Tumor
immune-escape

Release of pro-inflammatory cytokines by macrophages,
possibly mediated by miR-21 and miR-29a Breast and lung cancer, melanoma Tumor cells, fibroblasts, endothelial

cells, and immune cells [85–87]

Inhibition of dendritic cell maturation and functions, by
delivering specific miRNAs (e.g., miR-203, miR-212-3p)

Renal carcinoma, pancreatic cancer,
melanoma Dendritic and T cells [87–89]

MDSCs activation, which leads to TGF-β-mediated
suppression of T cell activity Melanoma and colorectal carcinoma CD14+ monocytes [90,91]

Suppression of the T-cell activity mediated by PDL-1,
TGF-β, Fas ligand and TRAIL

Melanoma, colorectal, gastric and
prostate cancer, head and neck

squamous cell carcinoma
CD8+T cells [92–96]

Inhibition of NK cell cytotoxic activity, possibly
mediated by MIC A ligand of NKG2D receptor

Mammary carcinoma, melanoma,
cervical, head and neck, liver cancer NK cells [97–99]

Enhancement of
immune response

Activation of a tumor antigen-specific immune response
in humans

Melanoma and non-small cell lung
cancer patients-derived dendritic cells systemic administration [100,101]

EVs: extracellular vesicles, MDR: multidrug resistance protein, APAF1: apoptotic protease-activating factor 1, MDSCs: myeloid-derived suppressor cells, TGF-β: trasforming growth
factor-β, PDL-1: programmed death-ligand 1, TRAIL: tumor necrosis factor-related apoptosis-inducing ligand, NK: natural killer, MIC: MHC class I–related chain, NKG2D: NKG2-D type
II integral membrane protein.



Cancers 2019, 11, 891 5 of 21

Table 2. Role of EVs as biomarkers of tumor progression. Cancer-derived EV content has been proposed as a tumor biomarker and has been related to several
processes involved in tumor aggressiveness.

Biological Effect Mechanism of Action Cell Source Target References

Tumor biomarkers

Transfer of miR-21, miR-141, miR-200a, miR-200b,
miR-200c, miR-203, miR-205 and miR-214 Ovarian cancer Serum [102]

Transfer of miR-17-3p, miR-21, miR-29a, miR-106a,
miR-146 miR-155, miR-191, miR-192, miR-203, miR-205,

miR-210, miR-212 and miR-214
Lung cancer Serum [85,103]

Transfer of miR-18a, miR-221 and miR-224 Hepatocellular carcinoma Serum [104]

Pro-angiogenic effect Transfer of proangiogenic miRNAs, mostly regulated by
HIF-1α (miR-155-5p, miR-210 and miR-494)

Melanoma, hepatocellular, lung and renal
adenocarcinoma CAFs and endothelial cells [75,77–79,81]

Decrease cell-to-cell
adhesion

Reduction of E-cadherin, let-7i and β-catenin expression,
and increase of Snail1-2, Twist1-2, Sip1, vimentin, ZEB2

and N-cadherin expression, activation of MAPK
pathway

Breast and bladder cancer, melanoma
Mammary and urothelial

cells epithelial cells,
primary melanocytes

[67–69]

Increase in cell
migration/invasion

Lipids and proteins (e.g., CD81)-dependent stimulation
of the cancer cell motility via Wnt signaling Cancer Associated Fibroblasts Melanoma, breast and

prostate cancer [70,71]

Development of
premetastatic niche

Delivery of TYRP2, VLA4, HSP70, an HSP90 isoform
and the MET oncoprotein Melanoma Bone marrow

progenitor cell [83]

Exosomal expression of tumor-specific integrin patterns
Osteosarcoma, rhabdomyosarcoma, Wilms
tumor, skin and uveal melanoma, breast,
colorectal, pancreatic and gastric cancer

Brain, lung and liver
epithelium [82]

Delivery of MIF Pancreatic ductal adenocarcinoma Kupffer cell [80]

Delivery of specific oncogenic miRNAs, e.g., miR-125b,
miR-130b and miR-155, which induce a neoplastic

reprogramming of recipient cells
Prostate, renal cancer Adipose-derived stem

cells, lung epithelium [81,84]

HIF-1a: hypoxia inducible factor 1α, HSP90: heat shock protein 90, MET: hepatocyte growth factor receptor., TYRP2: tyrosinase-related protein-2, VLA4: very late antigen 4, HSP70: heat
shock protein 70, MIF: macrophage migration inhibitory factor.
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A contribution in favoring the tumor immune-escape of EVs released by cancer cells has been
also suggested [105,106] (Table 1). The mechanisms involved the activation of tumor-associated
macrophages [85–87], suppressor myeloid cells [90,91] and the inhibition of NK cell activity [97–99].
By expressing PDL1 [92,93], the transforming growth factor (TGF) beta [94], the tumor necrosis
factor–related apoptosis-inducing ligand (TRAIL) and the Fas ligand [95,96], cancer EVs exhibit an
immunosuppressive activity on T cells. Moreover, cancer EVs inhibit the maturation of dendritic cells
through a mechanism involving the expression of HLA-G [88] and specific miRNAs, such as miR-203
and miR-212-3p [89]. Despite tumor EVs have been mainly implicated in the tumor immune escape,
they can also be exploited to cross-present tumor antigens to the antigen presenting cells eliciting an
antigen-specific cytotoxic lymphocyte anti-tumoral response [100,101]. However, clinical trials based
on this assumption have provided conflicting results [107–109].

At present, most of the studies looking for exRNAs as cancer biomarkers have been performed on
whole blood, urine and cerebrospinal fluids. Recently, several studies have explored the detection of
exRNAs associated with the EVs. Despite the fact that the quantitative and stoichiometric analyses
revealed that many miRNAs are present in less than one single copy per single exosome [110], several
studies indicate a potential utility as cancer biomarkers [102,103]. For instance, in hepatocellular
carcinoma, the expression by serum EVs of miR-18a, miR-221and miR-224 has been suggested as
potential diagnostic biomarkers [104]. Fabbri et al. demonstrated that EV-associated miR-21 and
miR-29a bound to a Toll-like receptor family favoring an inflammatory pro-metastatic response in
lung [85]. On the other hand, the expression of miR-21 in serum EVs in patients with breast cancer
correlates with a favorable outcome [111]. By comparing the miRNA signature of ovarian cancer EVs
with that of EVs from normal subjects, Taylor and colleagues suggested a potential utility to screening
asymptomatic patients [102]. A significant similarity of EV-associated miRNAs was observed with
tumor-derived miRNAs in lung adenocarcinoma [103]. Moreover, the miRNA patterns of patients
were clearly distinct from those of normal controls, suggesting that circulating EV-associated miRNAs
might be useful as a non-invasive screening test [103].

4. Salivary EVs as Biomarkers

EVs are particularly enriched in saliva, which in respect to blood does not undergo coagulation.
This is an important issue because many studies have been performed on serum. Coagulation induces
a consistent release of EVs from platelets, thus modifying the composition of circulating EVs [112].
Salivary EVs should derive in part from salivary glands and in part from circulation: indeed, about
a 30% similarity of salivary and plasma proteome has been described by a few studies [113–115].
In particular, using liquid chromatography and mass spectrometry, 19,474 unique peptides have been
isolated from whole saliva in a multicenter study [113]. Protein annotation was assessed by matching
the identified peptides with a recently published dataset of the human plasma proteome [116], and 1939
different proteins were identified as commonly expressed in blood and saliva. However, a puzzling
aspect is the expression of neuronal markers in salivary EVs with significant changes in the miRNA
pattern and in the proteomic profile after a head concussion [117] and in neurological diseases [118,119].
Moreover, the EV composition may be affected by the presence in saliva of viruses, including the
human papillomavirus (HPV) [120–124] and the neurotropic human herpesviruses (e.g., HHV-6),
which are detectable in the saliva of infected subjects [125].

A critical aspect in the use of salivary EVs as biomarkers is the purification technique that is used
(Table 3). In fact, results may vary depending on the purified subpopulations and the presence of
contaminants, such as bacterial flora. Therefore, accurate mouth washing, careful standardization on
saliva collection and sample filtration are recommended to abate the bacterial load.
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Table 3. Biomarkers detected in salivary EVs. Salivary EVs can be purified using different EV isolation techniques and can be exploited as biomarkers because they
contain disease-related proteins and exRNA.

Disease Isolation Method EV Biomarkers Type of Biomarker References

Brain injury and
neurological disorders

Differential ultracentrifugation CDC2, CSNK1A1, and CTSD mRNA [117]

XYCQ EV Enrichment KIT α-synuclein protein [119]

Oral squamous cell carcinoma

Differential ultracentrifugation CD63 protein [126,127]

Differential ultracentrifugation PPIA protein [128]

Charge-based precipitation miR-412-3p, miR-512-3p, miR-27a-3p,
miR-494-3p, miR-302b-3p, miR-517b-3p miRNA [129]

Lung cancer

Affinity chromatography column
combined with filter system (ACCF)

Annexin A1, A2, A3, A5, A6, A11;
NPRL2; CEACAM1; MUC1; PROM1;

HIST1H4A; TNFAIP3
protein [130]

Affinity chromatography column
combined with filter system (ACCF) BPIFA1, CRNN, MUC5B, IQGAP protein [131]

Head and neck carcinoma Differential ultracentrifugation miR-486-5p, miR-486-3p, miR-10b-5p,
miR-122 miRNA [132]

Pancreatic cancer

Total Exosome Isolation Reagent
(Invitrogen) miR-1246, miR-4644 miRNA [133]

Differential ultracentrifugation Apbb1ip, Aspn, BCO31781, Daf2, Foxp1,
Gng2, Incenp mRNA [134]

CDC2: Cyclin-dependent kinase A-1, CSNK1A1: Casein Kinase 1 Alpha 1, CTSD: Cathepsin D, PPIA: Peptidyl-prolyl cis-trans isomerase A, NPRL2: GATOR complex protein NPRL2,
CEACAM1: Carcinoembryonic antigen-related cell adhesion molecule 1, MUC1: Mucin 1, PROM1: Prominin 1, HIST1H4A: Histone H4, TNFAIP3: Tumor necrosis factor alpha-induced
protein 3, BPIFA1: BPI fold-containing family A member 1, CRNN: Cornulin, MUC5B: Mucin 5b, IQGAP: Ras GTPase-activating-like protein IQGAP1.
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Differential ultracentrifugation or density gradient ultracentrifugation are considered the gold
standard for the purification of EV subpopulations. These techniques have been further implemented
with the combined use of the immune-affinity capture of exosomes [34]. To improve the separation
of vesicles from non-vesicular components a floating technique has been proposed, based on
gradient fractioning centrifugation, with samples applied to the bottom of tubes [135]. However,
the standardization of these techniques may be difficult, as the results are influenced not only by
the centrifugal radius of the rotor and g force type, but also by the viscosity of the starting solution.
In addition, due to mechanical damage, membrane debris are generated, as seen by electron microscopy.
Moreover, the difficult detection of proteins and RNAs has been described [136–139]. To avoid shear
stress due to ultracentrifugation, size exclusion chromatography has been employed with the aim
to separate small vesicles from protein contaminants [140–142]. Immuno-affinity purification allows
for the recovery of sub fractions of EVs based on the expression of surface markers [139,143–145],
and several kits are commercially available. Microfiltration has also been used with membranes with
appropriate pore sizes to remove cell debris and apoptotic bodies [143]. However, this technique
is limited by EV adhesion to membranes and pore clogging. In addition, to isolate small biological
samples, all these techniques may have a low efficient recovery of EVs. Another approach for isolating
EVs from biological liquids is based on polymeric precipitation [146–151]. This approach allows for
a rapid precipitation of EVs, but it is limited by the co-precipitation of proteins of a non-vesicular
origin such as lipoproteins [136,152,153]. Recently, a new technique based on electric field-induced
release and measurement has been successfully applied to liquid biopsy in saliva [154]. Using this
technique, the mutation of epidermal growth factor receptor (EGFR) in patients with lung cancers was
detected and matched with biopsy genotyping [154,155]. Moreover, the electric field-induced release
has been combined with the magnetic beads immune-capturing of exosomes [156,157], resulting in
a highly sensitive and specific method of exRNA extraction and analysis. Compared to polymeric
precipitation and differential centrifugation, this approach is less time consuming, requires smaller
sample volumes and does not involve sample lysis that may reduce exRNA yield. However, for each
EV extraction, the capture probe that is attached to the magnetic beads allows for the isolation of
only those EVs containing the exosome-specific surface marker used for capturing EVs [156]. In fact,
EVs are a heterogeneous population of vesicles, and individual EV analyses show that not all EVs
co-express the same tetraspanin. Therefore, this technique may not include the whole pattern of
EV-associated exRNA.

By quantitative nano-structural and single molecule force spectroscopy, Sharma et al. [126]
performed a bio-molecular analysis of exosomes present in the saliva from patients with oral cancer.
They demonstrated that exosomes were augmented in number and size, displayed a dissimilar
morphology and showed an increased expression of CD63. Similarly, Zlotogorski-Hurvitz et al. [127]
described a bigger salivary exosome concentration and size in patients with oral cancers in comparison
with healthy subjects, a higher expression of CD63 and a decreased expression of CD9 and CD81.
Few other studies performed a proteomic analysis of salivary exosomes in search of potential biomarkers
of oral [128] and lung carcinomas [130]. A higher expression of the CD63 molecule was observed in EVs
from the saliva of patients with oral cancers in respect to normal subjects [126]. Sun et al. performed
a comparative proteomic analysis of salivary EVs in normal subjects and lung cancer patients [131].
In this study, several proteins were found to be dysregulated, and four of them were present in both
salivary microvesicles and exosomes, suggesting their potential use for the detection of lung cancer.

It has been reported that in saliva, the bulk of miRNAs is packaged in exosomes [13]. In fact,
miRNAs are easily detectable in EVs present in saliva [158,159]. Several studies focused on the
possibility of exRNA isolation from saliva and oral samples [160–162] and in particular on salivary EV
associated miRNAs in patients with oral cancer [160–164].

Langevin et al. performed a comprehensive miRNA sequence analysis of EVs derived from
the saliva of patients with head and neck carcinomas and identified a distinct pattern of secretion
and, in particular, miRNAs secreted only by cancer cells [132]. Some miRNAs, such as miR-486-5p,
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miR-486-3p and miR-10b-5p, were specifically overexpressed in the EVs of a subset of head and neck
carcinomas. Machida and colleagues showed that miR-1246 and miR-4644 present in salivary EVs are
potential biomarkers of cancers of the pancreato-biliary tract [133]. Taken together, these analyses may
provide the bases for the development of new tumor biomarkers (Table 3).

A transcriptomic signature specific for pancreatic [165] and ovarian cancers [166] and proteomic
signature modifications in lung cancer [167] have been described in whole saliva. Zhang et al. [165]
demonstrated that the combination of KRAS, metyl CpG binding domain protein 3 like 2 (MBD3L2),
acrosomal vesicle 1 (ACRV1), and dolichyl-phosphate mannosyltransferase subunit 1 (DPM1) mRNAs
in saliva may differentiate patients with pancreatic carcinomas from patients with chronic pancreatitis
and healthy subjects with a high sensitivity and specificity. Moreover, a transcriptomic analysis of
salivary EVs by next generation sequencing showed the presence of many coding and non-coding RNAs,
such as mRNAs for several proteins, miRNAs, snoRNAs, piRNAs, and lncRNAs [48,168]. Palanisamy
et al. [169] found, in exosomes isolated from saliva, 509 mRNA transcripts, which once incorporated
in keratinocytes were able to modify the protein expression in these cells. Moreover, exosomes from
adenocarcinoma of the pancreatic ducts were able to modify the biology of exosomes derived from the
salivary gland and induce changes in the salivary biomarker profiles [134]. Similarly, they showed
an interaction between exosomes derived from the human metastatic mammary gland epithelial
adenocarcinoma cell line MDA-MB-231 cells and exosomes derived from the human submandibular
gland (HSG) cells. This interaction induced an activation of the HSG cell transcriptional machinery
with an increase of total cellular RNA and transcriptomic and proteomic changes [170]. Salivary
EVs derived from patients with pancreatic carcinoma were shown to inhibit NK cell activation, thus
favoring tumor immune escape [171].

We analyzed the zeta potential of salivary EVs and, based on their negative charge, we developed
a charge-based precipitation protocol. This technique allows for the efficient recovery of exRNA from a
salivary EV population with a very homogeneous size and shape [159] (Figure 1). In a recent work [129],
we used the charge-based precipitation method to isolate EVs from the saliva of patients with oral
squamous cell carcinoma (OSCC) to investigate the presence of exRNAs suitable as biomarkers.
Our aim was to assess whether this quick, simple and efficient technique could be useful for detecting
exRNA in the salivary EVs of patients with OSCC. The diagnosis of OSCC is based on oral examination
and histological analysis. However, the identification of salivary biomarkers may have potential
prognostic and therapeutic values. To exclude misleading results due to a different exposition to risk
factors, at the time of patients’ recruitment, subjects included in our study were checked for their
habits regarding smoking and alcohol consumption. In fact, smoke and alcohol consumption has
been described as potentially affecting the composition of EV-associated exRNA [172,173]. Therefore,
patients and controls were matched to obtain a similar distribution of risk factors among the two
groups to reduce this bias. Moreover, 5 out 21 patients were positive to the Human Papilloma Virus
(HPV). To avoid the detection of exRNA of viral origin, we screened EVs for the presence of about 800
miRNAs with human-specific primers. Although HPV infection may alter the EV release and cargo,
we did not observe any significant change in the size and concentration of EVs from HPV-positive
patients compared to negative patients. A differential expression of the EV miRNA signature in OSCC
cells infected or not by HPV has been previously shown [124]. In this study, the authors observed that
HPV infected cells released EVs enriched with 14 miRNAs, whereas non-infected cells overexpressed
19 miRNAs. The cohorts of patients we studied were too small to draw any conclusions. However,
we did not observe the differential expression of miRNAs, which has been previously described for
EVs released by in vitro infected OSCC cells.
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Abstract: This essay explores the contribution of two works of German literature to a decolonial 
narrative ethics. It analyzes the structures of colonialism, taking narratives as a medium of and for 
ethical reflection, and reinterprets the ethical concepts of recognition and responsibility. This essay 
examines two stories. Franz Kafka’s Report to an Academy (1917) addresses the biological racism of 
the German scientists around 1900, unmasking the racism that renders apes (or particular people) 
the pre-life of human beings (or particular human beings). It also demonstrates that the politics of 
recognition, based on conditional (mis-)recognition, must be replaced by an ethics of mutual 
recognition. Uwe Timm’s Morenga (1978) uses the cross-reference of history and fiction as aesthetic 
principle, narrating the history of the German genocide of the Nama and Herero people at the 
beginning of the 20th century. Intercultural understanding, the novel shows, is impossible when it 
is based on the conditional, colonial (mis-)recognition that echoes Kafka’s unmasking; furthermore, 
the novel illuminates the interrelation of recognition and responsibility that requires not only an 
aesthetic ethics of reading based on attentiveness and response but also a political ethics that 
confronts the (German) readers as historically situated agents who must take responsibility for their 
past. 

Keywords: narrative ethics; recognition; responsibility; decoloniality; Kafka; Timm; racism; 
genocide; German Empire 

 

Figure 1. Salivary EVs characterization. A representative transmission electron microscopy image of
EVs isolated by a charge-based precipitation method, showing a carpet of vesicles in the nano-range.
In the inset, the bars indicate the size of the extracellular vesicles (EVs). The preparation was stained
with NanoVan (JEOL Jem-1010 electron microscope, original magnification ×75,000; inset ×150,000).

By comparing the miRNA expression of cancer patients and matched controls, we observed an
up-regulation of miR-412-3p, miR-512-3p, miR-27a-3p and miR-494-3p in patients with oral squamous
cell carcinoma. MiR-512-3p and miR-412-3p were also potentially sensitive and specific biomarkers,
as indicated by the high AUC values (0.847 and 0.871 respectively, with p values < 0.02) and a
maximum Youden’s Index. Interestingly, we also observed an exclusive expression of miR-302b-3p and
miR-517b-3p in cancer EVs. Moreover, we performed a bio-informatic analysis to better understand
whether the tumor-enriched miRNAs could be functionally related to the tumor. We observed that
eight tumor-related pathways were potentially targeted by these miRNAs. In particular, miR-512-3p
and miR-27a-3p may target 7 and 20 genes, respectively, of the ErbB signaling pathway, which is known
to promote cell proliferation and survival in cancer [174] and is activated in oral carcinomas [175–177].
MiR-512-3p, miR-27a-3p, and miR-302b-3p could potentially target proteoglycan genes and CD44
involved in c-Fos-mediated cell invasion and migration [178], ERK1/2 phosphorylation [179] and
the phenotype of oral cancer stem cells [180]. Moreover, miR-512-3p, miR-412-3p, miR-27a-3p, and
miR-302b-3p reduced the expression of TGFβR2, frequently reduced in cancer and stroma cells in
patients with oral squamous carcinomas [181]. Increased levels of the oncogenic miR-27a-3p has also
been detected in EVs obtained from the plasma of OSCC patients [182]. In this study, a comparable
miRNA signature was observed between plasma EVs and EVs released by OSCC cells in vitro.

Recent studies have shown that EVs also contain lncRNAs [183]. The expression of lncRNAs has
not been investigated in salivary EVs. However, salivary lncRNAs may represent a potential marker
for OSSC [184]. In fact, a subset of lncRNAs was correlated with high metastatic OSCC. In particular,
the lncRNA HOTAIR was found to be highly expressed in the saliva of patients with lymph node
metastasis. Therefore, besides miRNAs, the search for lncRNAs in salivary EVs could be a valuable
diagnostic and prognostic tool for OSCC.
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5. Conclusions

Taken together, these studies suggest that EVs derived from cancer cells may modulate the
function and may induce epigenetic changes in neighboring or distant cells. These biological effects are
related to the delivery of transcripts that are specific of the originator cells. Several studies have shown
a prominent role of exRNAs associated with vesicles. Since EVs may retain the molecular signature of
the cell of origin, it has been suggested that they are a potential diagnostic exploitation. The salivary
EV composition may reflect the presence of local or systemic diseases and has been investigated as a
potential biomarker for both oral and non-oral cancers. Changes in the molecular composition of the
EVs of non-oral cancers may either depend on their derivation from blood (since salivary glands are
vascularized) or be the consequence of phenotypic changes occurring in gland cells (as the results of
the stimulation by circulating cancer EVs). However, so far, available studies are relatively few and
include a low number of patients. Further studies are necessary to optimize the protocol of EV isolation
from saliva in order to obtain reproducible results. Moreover, the use of the EV content as a biomarker
should take into account that this may be influenced by a number of cancer-associated risk factors,
such as viral infections, smoking, alcohol abuse, as well as a number of non-cancer-associated factors
related to concomitant diseases. However, these limitations in the use of EVs as biomarkers are not
restricted to saliva, but may influence EVs derived from any biological fluid. Since saliva is an easily
obtainable non-invasive bio-fluid particularly enriched in EVs, it may represent a new approach for
cancer biomarker discovery. However, to define whether salivary EVs have a real clinical diagnostic
and prognostic potential would require comparative studies between EVs derived from tumor cells,
blood and saliva, which are not at present available.
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