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SUMMARY

Hypoxic tumor-associated macrophages (TAMs) ac-
quire angiogenic and immunosuppressive proper-
ties. Yet it remains unknown if metabolic changes
influence these functions. Here, we argue that
hypoxic TAMs strongly upregulate the expression
of REDD1, a negative regulator of mTOR. REDD1-
mediated mTOR inhibition hinders glycolysis in
TAMs and curtails their excessive angiogenic
response, with consequent formation of abnormal
blood vessels. Accordingly, REDD1 deficiency in
TAMs leads to the formation of smoothly aligned,
pericyte-covered, functional vessels, which prevents
vessel leakiness, hypoxia, and metastases. Mecha-
nistically, highly glycolytic REDD1-deficient TAMs
outcompete endothelial cells for glucose usage that
thwarts vascular hyperactivation and promotes the
formation of quiescent vascular junctions. Tuning
down glycolysis in REDD1 knockout TAMs re-estab-
lishes abnormal angiogenesis and metastases. On
this basis, we prove that the anti-tumor effect of
mTOR inhibitors is partly countered by the delete-
rious outcome of these drugs on TAMs. Our data pro-
vide a functional link between TAM metabolism and
tumor angiogenesis.

INTRODUCTION

Heterogeneity of macrophages has been long recognized as

the result of the plasticity and versatility of these cells to different

microenvironmental stimuli. In tumors, macrophages are in-

volved in blood and lymphatic vessel formation, cancer cell inva-

sion and distal dissemination, as well as immune suppression

(Mantovani and Allavena, 2015). Recently, we have proved that

tumor-associated macrophages (TAMs) within hypoxic niches

of the tumor acquire a pro-angiogenic, pro-invasive, and tolero-

genic phenotype (Casazza et al., 2013).
C

Hypoxic TAMs display strong alterations in the expression of

several metabolic genes as they are forced to adapt their

metabolism to low oxygen tension in order to meet their energy

requirements (Laoui et al., 2014). Besides oxygen availability,

cytokines also have an impact on macrophage metabolism,

and different activation stimuli can drive opposing metabolic

changes. For example, in vitro classically activated, pro-inflam-

matory M1 macrophages switch their metabolism toward

enhanced anaerobic glycolysis, pentose phosphate pathway

activation, and protein and fatty acid synthesis (Tannahill

et al., 2013). On the other hand, alternative activation of

macrophages by M2-inducing stimuli such as IL-4, IL-10, and

IL-13 leads to a phenotype that more closely resembles the fea-

tures of protumoral TAMs and is associated with enhanced

oxidative phosphorylation, with no changes in glycolysis (Vats

et al., 2006). Intriguingly, the metabolic characteristics of mac-

rophages in the context of cancer have never been investi-

gated, so it remains unknown if a change in TAM metabolism

could influence their phenotype and thus affect cancer growth

and metastasis.

The mechanistic target of rapamycin (mTOR) is a key nutrient

and energy sensor that, on the basis of nutrient availability, reg-

ulates downstream metabolic processes such as glycolysis, de

novo lipogenesis, protein synthesis, and transcription (Laplante

and Sabatini, 2012). Hypoxia blocks mTOR function through

HIF-mediated transcriptional induction of the mTOR complex

1 (mTORC1) inhibitor REDD1 (regulated in development and

DNA damage response 1; otherwise known as RTP801 or

DDIT4) (Brugarolas et al., 2004). Other than hypoxia, REDD1

is also induced by a variety of other stress conditions which

are major features in cancer, including endoplasmic reticular

stress (Wang et al., 2003), oxidative stress (Lin et al., 2005), os-

motic stress (Wang et al., 2003), DNA-damaging agents (Ellisen

et al., 2002), and cytokine stimulation such as IL-6 (Song et al.,

2011).

Recent studies have shown that constitutive mTOR activation

renders macrophages refractory to IL-4-induced M2 polariza-

tion, but increases inflammatory responses upon M1 stimuli (By-

les et al., 2013). On the basis of the knowledge that hypoxia and

stress conditions specifically control mTOR activity through

REDD1 regulation, we hypothesized that the REDD1/mTOR
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axis is a central homeostatic relay that links macrophage meta-

bolism to the immunosuppressive and/or pro-angiogenic prop-

erties of hypoxic TAMs. Here, we studied the role of REDD1/

mTOR in the control of macrophage and TAM metabolism in

hypoxia and how this induces phenotypic changes that influence

cancer progression.

RESULTS

REDD1 Is Upregulated in Hypoxic TAMs
A large body of evidence in several tumor types has proved that

the induction of the hypoxia-responsive glucose transporter

GLUT1 strongly and unequivocally correlates with oxygen

shortage (Airley et al., 2003; Rademakers et al., 2011; Sennino

et al., 2012). By looking at the pattern of GLUT1 and the hypox-

ia-probe pimonidazole in subcutaneous Lewis lung carcinomas

(LLC), orthotopic E0771 breast cancer, and spontaneous PyMT

mammary tumors, we confirmed that these two markers

strongly overlapped and GLUT1+ TAMs were always positive

for pimonidazole (Figures 1A and 1B). Thus, we sorted GLU-

T1high (hypoxic) macrophages and GLUT1low/� (normoxic) mac-

rophages from LLC, E0771, and PyMT tumors and healthy

tissues (i.e., bone marrow [BM] or lung). Strikingly, the mRNA

levels of Redd1 were significantly higher in GLUT1high versus

GLUT1low/� tissue macrophages, while TAMs showed overall

greater levels of Redd1, which was the highest in GLUT1high

TAMs (Figure 1C). In line, REDD1 staining in TAMs residing in-

side the hypoxic areas was much higher than in TAMs from

the normoxic niches (Figure 1D). To dissect the contribution

of hypoxia versus tumor-specific stimuli, we built an in vitro sys-

tem in which BM-derived macrophages (BMDMs) were stimu-

lated with LLC tumor-conditioned medium (TCM) as previously

shown (Colegio et al., 2014; Finisguerra et al., 2015) and thus

generated TAM-like macrophages (TAMs-L) that were exposed

to normoxia or hypoxia. In this setting, several typical TAM

markers followed a similar expression profile as LLC tumor-

sorted TAMs (Figures S1A–S1J, available online). As in vivo,

Redd1 transcript and protein levels were both synergically

increased when TAMs-L were cultured in hypoxia (Figures 1G

and 1H). Overall, REDD1 is induced in TAMs (compared

with normal macrophages) and gets strongly upregulated in

hypoxia.
Figure 1. REDD1 Upregulation in Hypoxic TAMs Suppresses mTOR Ac

(A) Representative images of GLUT1, pimonidazole (PIMO), and F4/80 staining (T

(B) Histological analysis indicating the percentage of F4/80+ TAMs that are either G

and hypoxic (PIMO+) areas of LLC, E0771, or PyMT tumors. Total mice ten per t

(C) Redd1 expression in CD11b+ F4/80+ macrophages sorted from normoxic (GL

mice or tumors. Pooled data from two independent experiments, total mice four

(D) Histological analysis of the percentage of REDD1 and F4/80-double positive

(E and F) Histological analysis and representative images of the percentage of pho

hypoxic regions of LLC tumors from lethally irradiatedWTmice, transplanted with

from two independent experiments, total mice ten per genotype.

(G and H) qRT-PCR (G) and western blot (H) for REDD1 on BMDMs treated for 18

conditioned medium (TCM).

(I) Western blot in BMDMs treated for 18 hr with TCM in normoxia (TCM) or hypoxi

is unable to bind and inhibit the translation initiation factor eIF4E.

(J) Western blot in hypoxic WT and REDD1 KO TAMs-L, treated with or without

*p < 0.05 versus NRX (C and G), PIMOneg (D), or WT/WT (E and F); #p < 0.05 vers

and BM macrophages. The scale bars represent 50 mm. All graphs show mean ±
REDD1 Deletion in TAMs Promotes Tumor Vessel
Normalization and Inhibits Metastasis
To understand the role of exacerbated REDD1 induction in hyp-

oxic TAMs, we deleted Redd1 in macrophages by transplanting

wild-type (WT) recipient mice with REDD1 knockout (KO) BM

cells (KO/WT). Upon reconstitution, KO/WT chimeras dis-

played normal blood counts, comparable with those of WT/

WT mice (Table S1). We then implanted LLC tumors subcutane-

ously. Consistent with the inhibitory role of REDD1 on mTORC1,

genetic deletion of Redd1 re-established the phosphorylation of

4E-BP1 and S6 (respectively a direct and indirect mTOR target)

in hypoxic TAMs (Figures 1E and 1F). In vitro, hypoxic, but not

normoxic, REDD1 KO TAMs-L displayed also increased phos-

phorylation of 4E-BP1 and S6 (Figure 1I), and this induction

was mTOR dependent (Figure 1J).

As an alternative to subcutaneous LLC tumors, we injected

E0771 breast cancer cells orthotopically or we reconstituted

4-week-old PyMT mice in a C57BL/6 background with WT and

REDD1 KO BM cells. In all three tumor models, Redd1 deletion

did not alter TAM accumulation nor their distribution in normoxic

versus hypoxic niches (Figures S2A–S2C). Although tumor

growth remained unchanged, the number of metastases in KO

versus WT chimeric mice was decreased (Figures 2A–2I).

Consistently, shedding of cancer cells from the primary tumor

to the circulation was significantly impaired in KO/WT versus

WT/WT LLC tumor-bearing mice (Figure 2J).

Hypoxic TAMs promote metastasis by influencing cancer cell

motility and invasion and by facilitating cancer cell extravasation,

survival, and growth at the metastatic site (Chen et al., 2011;

Qian et al., 2011). However, LLCmigration and collagen invasion

in vitro were equally promoted by hypoxic WT and REDD1 KO

TAMs (Figures S2D and S2E), and pulmonary lodging of cancer

cells systemically injected into the bloodstream did not differ

(Figure S2F). These data indicate that indirectmechanismsmight

be responsible for the reduced metastatic burden in tumor-

bearing KO/WT mice.

Hypoxic TAMs repress T cells and sustain aberrant and

dysfunctional tumor blood vessels (Henze and Mazzone,

2016). Although the numbers of tumor-infiltrating CD3+CD4+

T-BET+ TH1 cells, CD3+CD4+GATA3+ TH2 cells, and CD3+

CD8+ T cells were comparable in both chimeras (Figures

S2G–S2I), the tumor vascular trees were overtly different. As
tivity

AMs) in LLC tumors.

LUT1 negative (GLUT1neg) or GLUT1 positive (GLUT1+) in normoxic (PIMOneg)

umor model.

UT1low/�, NRX) and hypoxic (GLUT1high, HPX) regions of organs from healthy

to seven per condition.

area in normoxic PIMOneg or hypoxic PIMO+ regions in LLC tumors.

spho-4E-BP1-positive (E) and phospho-S6-positive (F) F4/80+ TAMs in PIMO+

WT or REDD1 KOBM cells (WT/WT and KO/WT, respectively). Pooled data

hr in normoxia (21% O2, NRX) or hypoxia (1% O2, HPX) with or without tumor-

a (HPX + TCM). The hyperphosphorylated g-form of 4E-BP1 is indicated, which

500 nM of the mTOR inhibitor Torin2.

us NRX lung and BMmacrophages (C) or BMDM (G); xp < 0.05 versus HPX lung

SEM. See also Figure S1.
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Figure 2. REDD1 Deletion in TAMs Inhibits Metastasis in Multiple Tumor Models

(A–F) Tumor growth (A, C, and E) and weight (B, D, and F) in the indicated tumor models.

(G–I) Lung metastatic nodules in LLC (G) (and representative H&E-stained lungs), E0771 (H), and PyMT (I) tumor-bearing mice. Data are pooled from three in-

dependent experiments, total mice 28 per genotype (LLC); from two independent experiments, total mice 18 per genotype (E0771); or from eight independent

experiments, total mice 15 per genotype (PyVT).

(J) Circulating LLC cells, quantified by Krt14 mRNA expression in the blood. Total mice 10 per genotype.

*p < 0.05 versus WT/WT. The scale bars represent 2 mm. All graphs show mean ± SEM. See also Figure S2 and Table S1.
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expected, LLC tumor blood vessels in WT/WT mice had a

disorganized, dilated appearance, with many protrusions. In

contrast, the tumor vasculature in KO/WT mice displayed a

smooth endothelial alignment and reduced vessel diameter

(Figure 3A). Similar features of vascular normalization were

found in the orthotopic E0771 breast cancer model as well as

in the PyMT-driven spontaneous breast cancer model (Figures

3B and 3C). Tumor vessels of KO/WT mice were more

covered with pericytes (Figures 3D–3F) and hadmore abundant

vascular endothelial (VE)-cadherin junctions (Figure 3G), which

together provide stability and tightness to the blood vessel bar-

rier (Mazzone et al., 2009; Xian et al., 2006). Functionally, this re-

sulted in improved perfusion, lower vascular permeability, and

reduced tumor hypoxia (Figures 3H–3N) despite comparable

vessel density (Figures S2J–S2L). These morphological and

functional tumor vascular changes have been already shown

to reduce metastasis (Maes et al., 2014; Mazzone et al., 2009;

Rolny et al., 2011).

To reinforce the evidence that REDD1-deficient TAMs were

the main contributors to the observed phenotype, we depleted

macrophages in WT/WT and KO/WT mice by intraperitoneal

(i.p.) administration of an anti-CSF-1R blocking antibody (clone
4 Cell Metabolism 24, 1–15, November 8, 2016
AFS98), which resulted in about 90% reduction in TAM density

in both genotypes (Figure 4A). As expected (Rolny et al., 2011),

TAM depletion reduced both tumor growth and metastasis in a

WT context, but this treatment did not further reduce metastatic

growth in REDD1 KO chimeras compared with mice treated with

an IgG control (Figures 4B and 4C). Following anti-CSF-1R treat-

ment, the tumor vasculature in WT chimeric mice resembled the

same features observed in REDD1KO/WTmice, whereas TAM

depletion in the latter mice did not further impinge on tumor ves-

sels (Figures 4D–4G), altogether arguing that the effect of he-

matopoietic REDD1 deletion on metastasis and blood vessels

reflects mostly a change in TAMs and not in other hematopoietic

cells.

Metastases were also prevented when LLC tumors were

grown in non-transplanted REDD1 KO mice (in which all stromal

cells including the endothelium itself are deficient for Redd1)

(Figure 4H), with increased vessel functionality (Figures 4I and

4J). These data exclude the possibility that all the aforemen-

tioned data are related to a specific condition triggered by

whole-body irradiation prior to transplantation (Ahn and Brown,

2008) and further support the prominent role of REDD1 in in-

flammatory cells, rather than in other stromal components. In
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conclusion, deficiency of REDD1 in TAMs promotes vessel nor-

malization and reduces metastasis in several tumor types.

REDD1 Deletion in Hypoxic TAMs Reinforces Glycolysis
By performing metabolic assays, we observed that hypoxic

TAMs showed an increase in glycolysis (Figure 5A). However,

upon Redd1 deletion, the glycolytic flux was further increased

in an mTOR-dependent manner (Figure 5A).

In turn, fatty acid oxidation (FAO) was decreased in hypoxic

REDD1 KO TAMs, while glucose and glutamine oxidation re-

mained unchanged (Figures 5B–5D). When this was translated

in terms of ATP production, we observed an equal balance in

glycolytic versus mitochondrial contribution to the ATP pool in

hypoxic WT TAMs (Figure 5E). Differently, in hypoxic REDD1

KO TAMs, glycolysis was the main contributor to the ATP pool,

a characteristic of in vitro polarized M1 macrophages (Rodrı́-

guez-Prados et al., 2010), whereas the percentage of ATP mole-

cules from fatty acid oxidation, a characteristic of M2 macro-

phages, was reduced so that the total ATP levels and energy

charge remained unchanged (Figures 5F and 5G). Although

also reduced in hypoxic versus normoxic WT cells, ATP-linked

mitochondrial oxygen consumption reached the lowest levels

in hypoxic (GLUT1high) REDD1 KO TAMs, and this difference

was mTOR dependent (Figure 5H). In vitro analysis showed

that only the combined induction of REDD1 by hypoxia and tu-

mor-derived stimuli in the TCM (but not each in condition alone)

was able to effectively brake glycolytic metabolism (Figures 5I

and 5J).

When looking at normoxic TAMs, Redd1 deficiency did not

alter either glycolysis or the contribution of the four major fluxes

(glycolysis, glucose oxidation, glutamine oxidation, and FAO) to

the ATP pool (Figures 5A and 5K) opening the question if REDD1

in the more oxidative (GLUT1low/�) TAM fraction might play a role

in the control of mitochondrial ROS formation (Horak et al.,

2010).

In line with the observed increase in glycolysis, hypoxic

REDD1 KO TAMs (but not the normoxic ones) showed the high-

est levels of GLUT1, which was accompanied by a strong in-

crease in glucose uptake (Figures 5L–5N). Similarly, GLUT1

expression and glucose uptake was enhanced in hypoxic

REDD1 KO TAMs-L when compared with hypoxic WT TAMs-L

(Figures 5O and 5P). Both in TAMs and in TAMs-L, this induction

was dependent on mTOR (Figures 5N and 5O).

Altogether, REDD1 deletion in hypoxic TAMs reinforces their

glycolytic phenotype at the expense of oxidative pathways,

and in particular of FAO, via mTOR activation.

Increased Glycolysis in REDD1 KO TAMs Causes Tumor
Vessel Normalization by Competing for Glucose with
Endothelial Cells
In the attempt to understand how the metabolic changes

observed in hypoxic (GLUT1high) TAMs could influence their

phenotype, we performed RNA sequencing on WT and

REDD1 KO CD11b+ F4/80+ GLUT1high macrophages sorted us-

ing fluorescence-activated cell sorting (FACS) from LLC tumors

(ArrayExpress: E-MTAB-5032). In general, only five genes

were differentially expressed (Benjamini-Hochberg adjusted

p < 0.05) (Table S2). Heatmap analysis of M1 and M2 gene

expression (Mantovani et al., 2002; Mosser and Edwards,
2008; Sica and Mantovani, 2012) did not reveal distinct signa-

tures in WT versus REDD1 KO GLUT1high TAMs or in WT versus

REDD1 KO GLUT1low/� TAMs (Figures S3A and S3B). Accord-

ingly, histological analysis and FACS quantifications could

not uncover an imbalance in TAM subsets (Figures S3C–S3F).

In a similar fashion, while self-contained gene set enrichment

analysis showed that a predefined angiogenic gene sig-

nature (Mazzieri et al., 2011; Murdoch et al., 2008) was signifi-

cantly upregulated in GLUT1high TAMs as compared with

Glut1low/� TAMs (p = 0.0001), GLUT1high and Glut1low/� KO

TAMs did not differ from their WT counterparts (Figure S3G).

We then hypothesized that enhanced glucose uptake and con-

sumption by REDD1KOGLUT1high TAMs could install a compe-

tition with tumor endothelial cells (tECs) for their more important

fuel (De Bock et al., 2013). Of relevance, in a tumor, per each

endothelial cell (EC), there are about 20 TAMs, so that the

weight of metabolic differences in TAMs is suddenly increased

by the large representation of these cells (our data in LLC

tumors, Figure S4A; Shigeoka et al., 2013; Takeuchi et al.,

2016). Interestingly, in WT/WT mice, glucose uptake by

tECs was twice the uptake measured in TAMs (Figure 6A). In

contrast, in KO/WTmice, TAMs and tECs had similar glucose

uptake, reflecting stronger glucose uptake by REDD1 KO

versus WT TAMs, which goes at the expense of endothelial

glucose consumption, as proved by the fact that TAM depletion

abolished this trend (Figure 6A).

Previous data have shown that glycolysis blockade renders

ECs more quiescent, and this is due mostly to the influence of

cytosolic ATP on cytoskeleton rearrangements that in turn are

associated with the redistribution of cell-cell contacts (De Bock

et al., 2013). Because the in vivo data showed an alteration in

endothelial junctions without a difference in vessel numbers

(nor in EC survival or apoptosis; Figures S4B and S4C), we

focused our attention on this parameter by using in vitro assays.

We first seededWT and REDD1 KO TAMs-L in the lower part of a

Boyden chamber and placed a confluent layer of human umbil-

ical vein ECs (HUVECs) on the upper side of a 0.4-mm-pore filter

(that allows molecule exchange but impedes cell migration). In

the presence of WT TAMs-L, VE-cadherin junctions displayed

a rope ladder-like pattern (which is typical of an activated endo-

thelium; Bentley et al., 2014), while in presence of REDD1 KO

TAMs-L, VE-cadherin was linearly distributed along the cell-

cell junction, which is a sign of stability (Figures 6B and 6C). In

the presence of higher glucose (5.5 mM instead of 0.6 mM,

roughly corresponding to the concentrations of glucose in circu-

lation and in the tumor; Ho et al., 2015), VE-cadherin junctions

were activated independently of the presence of WT or REDD1

KO TAMs-L (Figures 6B and 6C). Functionally, only in low

glucose, the presence of REDD1 KO TAMs-L was associated

with increased transendothelial electrical resistance (TEER),

which is in linewith the tighter endothelial barrier observed in vivo

(Figure 6D).

To verify if the increase in glycolysis or glucose uptake in

REDD1 KO TAMs was the underlying cause of the observed

phenotype, we sought to delete in macrophages only, both

Redd1 and Pfkfb3, a key glycolytic activator responsible for

enhanced glycolysis and reduced oxygen consumption in

REDD1 KO TAMs (Figures S4D and S4E). Therefore, we inter-

crossed REDD1 KO mice with Pfkfb3lox/loxxCsf1r.Mer2.Cre
Cell Metabolism 24, 1–15, November 8, 2016 5
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Figure 4. Macrophage Depletion Abrogates the Vascular and Metastatic Differences Induced by REDD1 Deletion in TAMs

(A) F4/80+ macrophage accumulation in LLC tumors of mice treated with control IgG isotype or TAM-depleting anti-CSF-1R monoclonal antibodies.

(B and C) LLC tumor growth (B) and metastatic index (C).

(D) Representative confocal images of CD31+ blood vessel morphology.

(E–G) Pericyte coverage (E), blood vessel perfusion (F), and tumor hypoxia (G). Total mice 8–10 per condition.

(H) Metastatic nodules in lungs of non-transplanted LLC tumor-bearing mice.

(I and J) Blood vessel perfusion (I) and tumor hypoxia (J) in non-transplanted LLC tumor-bearing mice. Total mice 7 per genotype.

*p < 0.05 versus WT/WT or WT; #p < 0.05 versus IgG. The scale bars represent 50 mm. All graphs show mean ± SEM.
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mice, the latter enabling tamoxifen-inducible, macrophage-spe-

cific deletion of Pfkfb3 (Figure S4F; Chesney et al., 2005; Qian

et al., 2011). In subcutaneously grown LLC tumors, PFKFB3dele-

tion in REDD1 KO TAMs (REDD1bmDPFKmoD) resulted in an

abnormal vasculature, similar to that found in tumors in which

TAMs were WT for both genes (Figure 6E). Indeed, tumor blood
Figure 3. REDD1 Deletion in TAMs Promotes Tumor Blood Vessel Nor

(A–C) CD31+ blood vessel morphology in the indicated tumor models, quantificatio

from confocal Z-stacks acquired on 80-mm-thick sections.

(D and E) Percentage of aSMA+ pericyte-covered vessels over the total number o

images) and E0771 tumors (E).

(F) Percentage of NG2+ pericyte-covered vessels in PyMT tumors.

(G) Ratio of VE-cadherin (VEC) to CD31 staining and representative confocal ima

(H–J) Percentage of lectin-FITC+ perfused vessels in LLC (H, and representative

(K) Quantification and representative images of the percentage of 70 kDa dextra

(L–N) Percentage of pimonidazole-positive hypoxic area acquired in LLC (L, and r

three independent experiments, total mice 28 per genotype (LLC); from two ind

dependent experiments, total mice 15 per genotype (PyVT).

*p < 0.05 versus WT/WT. The scale bars represent 10 (G) or 50 mm (A–D, H, K,
vessels in REDD1bmDPFKmoD mice were sparsely covered with

pericytes and poorly perfused, leading to persistent hypoxia

(Figures 6F–6K). Of note, PFKFB3 deletion altered neither

TAM infiltration nor vessel density (Figures S4G and S4H).

Concomitant with the abnormal tumor vasculature and increased

hypoxia, PFKFB3 deletion abrogated the protective effect of
malization

n of vessel diameter, and representative maximum intensity projection images

f CD34+ vessels acquired on thin sections of LLC tumors (D, and representative

ges of thick LLC tumor sections.

images), E0771 (I), and PyMT tumors (J).

n+ leaky vessels in LLC tumors.

epresentative images), E0771 (M), and PyMT tumors (N). Data are pooled from

ependent experiments, total mice 18 per genotype (E0771); or from eight in-

and L). All graphs show mean ± SEM. See also Figure S2.
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Figure 5. REDD1 Expression in Hypoxic TAMs Limits Their Glycolytic Metabolism

(A) Glycolytic flux in GLUT1low/� (NRX) and GLUT1high (HPX) CD11b+ F4/80+ TAMs, sorted using FACS from LLC tumors treated with Torin2 or vehicle.

(B) Fatty acid oxidation in TAMs treated or not ex vivo with 100 nM Torin2.

(C and D) Glucose (C) and glutamine (D) oxidation in GLUT1high CD11b+ F4/80+ TAMs.

(E) Flux analysis showing the contribution of fatty acid oxidation (FAO), glucose oxidation (GO), glycolysis (Glyc), and glutamine oxidation (QO) in percentage of

the total cellular ATP pool in hypoxic GLUT1high CD11b+ F4/80+ TAMs.

(F and G) LC-MS measurement of total cellular ATP content (F) and energy charge ([ATP] + 1/2[ADP]/[ATP] + [ADP] + [AMP]) (G) in F4/80+ TAMs.

(A–G) Pooled data from two independent experiments, total mice six per genotype in technical triplicates.

(H) Oxygen consumption rate (OCR) in TAMs, treated or not ex vivo with Torin2. Total mice three per genotype in technical triplicates.

(I and J) Glycolysis and OCR in REDD1 WT and KO BMDMs treated for 18 hr in normoxia (21% O2, NRX) or hypoxia (1% O2, HPX) with or without TCM.

Representative graphs from two independent experiments, total mice six per genotype in technical triplicates.

(K) Flux analysis in normoxic GLUT1low/� CD11b+ F4/80+ TAMs. Total mice six per genotype in technical triplicates.

(L) FACS analysis of GLUT1 mean signal intensity in GLUT1low/� and GLUT1high F4/80+ TAMs.

(M) Glucose uptake in TAMs measured by FACS quantification of the signal intensity of a fluorescently labeled glucose analog (2NBDG) in GLUT1low/� and

GLUT1high F4/80+ macrophages, injected intratumorally. Total mice six per genotype.

(N) 14C-2-deoxyglucose uptake in TAMs, treated or not ex vivo with Torin2. Total mice three per genotype in technical triplicates.

(O) Western blot for GLUT1 in hypoxic TAMs-L treated with or without Torin2. Representative of two independent experiments.

(P) 14C-2-deoxyglucose uptake in hypoxic TAMs-L. Pooled data from three independent experiments, total mice six per genotype in technical triplicates.

*p < 0.05 versus WT/WT or WT; #p < 0.05 versus NRX or GLUT1low/�; xp < 0.05 versus HPX + vehicle or HPX untreated. All graphs show mean ± SEM.
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REDD1 deletion in TAMs on metastatic dissemination, despite

tumor growth, remained unaffected (Figures 6L–6N). Reduc-

tion of glucose consumption by REDD1bmDPFKmoD TAMs

increased endothelial glucose uptake to the same levels as in

REDD1wtPFKwtmice (Figure 6O). In conclusion, increased glycol-

ysis upondeletion of REDD1 in hypoxic TAMsbrings these cells in

competition for glucose with the tumor endothelium. As a result,

lower glucose availability in the perivascular space thwarts endo-

thelial hyperactivation, which leads to vascular stabilization and

metastasis inhibition (Figure 6P).

Opposite Role of mTOR Pathway in Cancer Cells
and TAMs
Pharmacologic inhibition of mTOR has been proposed in the

clinic because of the relevance of this pathway in boosting pro-

tein synthesis and cancer cell proliferation (Don and Zheng,

2011; Hsieh et al., 2012). According to the aforementioned

data, however, mTOR activation would unleash tumor-inhibit-

ing functions in TAMs. To validate this hypothesis, we adminis-

tered Torin2 to WT/WT and KO/WT tumor-bearing mice.

Although tumor growth inhibition by Torin2 was comparable in

both chimeras, metastatic index was boosted up to the same

levels so that REDD1 deficiency in TAMs was no longer benefi-

cial (Figures 7A and 7B). This phenotype was associated by

increased tumor vessel abnormalization and hypoxia in

Torin2-treated WT/WT and KO/WT mice, which were now

comparable (Figures 7C–7F). To dissect the effect of mTOR in-

hibition in cancer cells and in the tumor stroma, we compared

the outcome of mTOR silencing in LLC cells (Figure S5A) versus

systemic administration of Torin2. Torin2 decreased the volume

of LLC tumors by 30% andmTOR knockdown in cancer cells by

70% (Figure 7G). However, the effect of combined mTOR

silencing and systemic Torin2 administration was not additive

but conversely re-established tumor growth almost at the

same level as observed with Torin2 alone (Figure 7G). As ex-

pected, mTOR silencing in cancer cells reduced metastases,

whereas systemic Torin2 treatment drastically increased me-

tastases, thereby blunting the beneficial effects of mTOR

silencing in LLC cells (Figure 7H). Accordingly, normalized

blood vessels and reduced hypoxia upon mTOR silencing in

LLC cells was abrogated by systemic Torin2 treatment (Figures

7I–7L). Of note, blood vessel density was equally reduced in all

treatment groups (Figure S5B), most likely because of reduced

VEGF production after mTOR inhibition in the cancer cells, as

already described (Guba et al., 2002). To restrict the effect of

mTOR inhibition to the TAMs (and not to other stromal cells),

we proposed Torin2 administration in combination with the

TAM-depleting antibody anti-CSF-1R. In this setting, while

Torin2 and anti-CSF-1R together additively inhibited tumor

growth (Figure 7M), the metastatic boost observed with sys-

temic Torin2 alone was greatly prevented when combined

with TAM depletion (Figure 7N). Accordingly, the increase in

vessel abnormalization and tumor hypoxia upon Torin2 treat-

ment was partially reversed as well (Figures 7O–7R). Thus, the

anti-tumor effect of systemic mTOR inhibition occurs mainly

through the inhibition of this pathway in cancer cells, while it

is partly countered by the effect on TAMs in which, contrary

to REDD1 knockout and mTOR activation, mTOR blockade

further sustains tumor vessel abnormalization and metastasis.
DISCUSSION

So far, the intertwined relationship between metabolism and

macrophages in the context of cancer is completely unexplored.

Starting from our previous observations that hypoxic TAMs ac-

quire pro-angiogenic and immune suppressive features (Ca-

sazza et al., 2013), we now show that REDD1, a negative regu-

lator of mTORC1 (Brugarolas et al., 2004), reaches the highest

level of induction in response to tumor hypoxia, and we suggest

that this induction plays a key role in themetabolic switch of hyp-

oxic TAMs and in turn on tumor oxygenation and vascularization.

When preventing TAMs’ entry into the hypoxic regions of the

tumor, the contributions of these cells to cancer cell spreading,

angiogenesis, and immunosuppression are all affected (Casazza

et al., 2013; Laoui et al., 2014). The present data suggest that

metabolic changes dictated by REDD1-mediated mTOR inhibi-

tion in TAMs specifically affect vascular remodeling and oxygen

delivery without modulating the influence of TAMs on cancer cell

invasion or on the immune system. In support of this idea, spe-

cific knockout of PFKFB3 in macrophages, restoring the glyco-

lytic flow of REDD1 KO TAMs toWT levels, prevents tumor blood

vessel normalization without altering vessel density or tumor

growth. The effect of this metabolic rewiring on vessel morpho-

genesis is due mostly to enhanced glucose uptake and glycol-

ysis by the hypoxic TAMs that install a competition with tECs,

which in response to lower glucose rewire their phenotype

toward quiescence and engage stable cell-cell junctions. It re-

mains to be addressed if other tumor cells besides the endothe-

lium (e.g., pericytes or cancer cells) enter into competition with

TAMs for their fuel. Likely, glucose competition occurs also in

a WT context in which, however, the surge of TAM-derived

angiogenic cues prevails, as suggested by the fact that TAM

depletion normalizes the tumor vasculature. By genetic means,

the capacity of TAMs to compete for glucose with tECs is

enhanced to a level that it counters the overall angiogenic burst

of the tumor environment.

A possible question that derives from our work is how hypoxic

TAMs can have access to the glucose coming from the blood.

Likely, the glucose in circulation (which normally diffuses for

longer distances than oxygen; Gatenby and Gillies, 2004) can

reach the hypoxic TAMs because neoplastic cells at the vascular

rim oxidize lactate (instead of glucose) in favor of hypoxic and

glycolytic cancer cells (Allen et al., 2016).

Previous literature has shown that mTOR hyperactivation after

genetic deletion of its negative regulator TSC1 hinders M2-like

responses to IL-4 or other M2 stimuli (Byles et al., 2013; Zhu

et al., 2014), whereas pharmacologic mTOR inhibition promotes

an anti-inflammatory M2 phenotypic shift (Han et al., 2016). The

present study moves the field forward and sheds light into the

metabolic control by the REDD1-mTOR pathway in TAMs. In

line with our previous findings that hypoxia per se does not

change the ratio between different TAM subsets (Laoui et al.,

2014), a metabolic change in hypoxic TAMs only fine-tunes

the angiogenic properties of TAMs without altering the accumu-

lation of distinct M1- or M2-like subpopulations and without

altering the actual balance between pro-angiogenic (M2) versus

anti-angiogenic (M1) cytokines. Instead, mTOR activation by

REDD1 deletion enhances the expression of the main glucose

transporter GLUT1 and reinforces glucose uptake. A previous
Cell Metabolism 24, 1–15, November 8, 2016 9



Figure 6. Increased Glycolysis in REDD1 KO TAMs Causes Tumor Vessel Normalization by Competing for Glucose with ECs

(A) In vivo 2NBDG glucose uptake in F4/80+ macrophages and CD31+ ECs, in mice treated with control IgG isotype or TAM-depleting anti-CSF-1R monoclonal

antibodies. Total mice six per condition.

(legend continued on next page)

10 Cell Metabolism 24, 1–15, November 8, 2016

Please cite this article in press as: Wenes et al., Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis, Cell Meta-
bolism (2016), http://dx.doi.org/10.1016/j.cmet.2016.09.008



Please cite this article in press as: Wenes et al., Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis, Cell Meta-
bolism (2016), http://dx.doi.org/10.1016/j.cmet.2016.09.008
study has already shown that GLUT1 overexpression in macro-

phages is sufficient to enhance glycolysis (Freemerman et al.,

2014). On this basis, and given the evidence that mTORC1-

mediated phosphorylation of 4E-BP1 results in its inhibition

and consequently in the block of Glut1 mRNA translation (Taha

et al., 1999), we suppose that the observed effects on GLUT1

protein levels and glucose uptake in REDD1 KO TAMs (and

TAMs-L) are mediated, at least in part, by 4E-BP1.

During physiological processes such as embryogenesis

and organ formation, macrophages are known to display

an important pro-angiogenic function (Fantin et al., 2010;

Stefater et al., 2011). Our results suggest that hypoxic upre-

gulation of REDD1 in normal situations is dispensable as

REDD1 KO mice are normal and do not show overt patholog-

ical signs. However, under stress conditions and in combina-

tion with tumor-derived stimuli, REDD1 is induced beyond

proportions. As a consequence, deletion of REDD1 in the

hypoxic TAMs remarkably upregulates glucose competition

so that the blood vessels become smoothly aligned, tightly

connected, and well-covered by pericytes. Tumor oxygena-

tion and vessel coverage together prevent metastasis forma-

tion (Figure 6P).

Because hyperactivation of mTOR signaling is found in many

cancers and given that alterations in the mTOR pathway are

associated with cancer development and progression (Hsieh

et al., 2012; Sun et al., 2015), mTOR inhibitors provide thera-

peutic value in a number of cancers, in both preclinical and clin-

ical settings (Don and Zheng, 2011; Li et al., 2014). Interestingly,

in PTEN-deficient glioblastomas, the mTOR inhibitor rapamycin

reduces cancer cell proliferation and improves clinical out-

comes in 50% of the patients (Cloughesy et al., 2008). In those

patients who do not respond, cancer cells remain in any case

sensitive to rapamycin in vitro, suggesting that resistance is

likely due to cancer cell-extrinsic mechanisms. Following these

observations and on the basis of the present findings, a

possible future study could aim to look at REDD1+ TAMs in cor-

relation with treatment failures of rapalogs and other mTOR-tar-

geting drugs.

Altogether, our results establish a causative link between TAM

metabolism in hypoxia and tumor vessel morphogenesis.
(B and C) Percentage of continuous (quiescent) or discontinuous (remodeling

chamber with hypoxic TAMs-L in the lower compartment in either 0.6 or 5.5 mM

monolayer (C).

(D) Transendothelial electrical resistance of a HUVECmonolayer co-cultured with

independent experiments, total mice six per genotype in technical triplicates.

(E) Representative confocal images of CD31+ blood vessel morphology in tumors

in macrophages only (REDD1bmDPFKmoD) or with the relative control BM cells.

(F and G) aSMA+ pericyte coverage.

(H and I) Lectin-FITC+ perfusion.

(J and K) Pimonidazole-positive hypoxic tumor area.

(L and M) LLC tumor growth (L) and weight at the time of dissection (M).

(N) Quantification of the number of lung metastases.

(O) In vivo 2NBDG glucose uptake in TAMs and tECs. Total mice six per conditio

(P) Schematic overview of the data showing that deletion of REDD1 triggers mT

Highly glycolytic REDD1 KO TAMs enter in competition with tumor ECs for glucose

hypoxia and metastasis. In WT TAMs, massive REDD1 induction by hypoxia an

glucose competition is not installed, while their release of angiogenic factors prom

cell intravasation and metastasis.

All experiments, total mice ten per genotype. *p < 0.05 versus WT or REDD1wt; #

50 mm (E), and 100 mm (G, I, and K). All graphs show mean ± SEM. See also Figu
EXPERIMENTAL PROCEDURES

More detailed methods can be found in the Supplemental Experimental

Procedures.

Animals

REDD1KOmicewere generated by Lexicon exclusively for Quark Pharmaceu-

ticals and are the property of Quark Pharmaceuticals. Pfkfb3lox/lox were

provided by J. Chesney (University of Louisville). Csf1r.Mer2.Cre mice were

obtained from J. Pollard (University of Edinburgh). C57BL/6 and FVB MMTV-

PyMT mice were purchased from Harlan and Charles River, respectively.

FVB MMTV-PyMT mice were then backcrossed in a C57BL/6 background in

our facility. Acute deletion of PFKFB3 was obtained by i.p. injection of tamox-

ifen (1 mg/mouse/day) for 5 days before subcutaneous implantation of LLC

cancer cells. All mice used were on a C57BL/6 background and between

5 and 15 weeks old, without specific gender selection. In all experiments,

littermate controls were used.

Bone Marrow Transplantation

Five- to 6-week-old C56BL/6 or 3- to 4-week-old PyMT recipient mice were

irradiated with 9.5 Gy. Subsequently, 107 bone marrow cells from the appro-

priate genotype were injected intravenously via the tail vein. Tumor experi-

ments were initiated 5 weeks after bone marrow reconstitution.

Tumor Models

Housing and all experimental animal procedures were approved by the

Institutional Animal Care and Research Advisory Committee of the KU

Leuven. LLC cells (1 3 106) were injected subcutaneously or 5 3 105

E0771 cells were injected orthotopically in the mammary fat pad. Circu-

lating cancer cells were detected by qRT-PCR on blood for cytokeratin

14 (Krt14, not present in blood from healthy mice). Lung metastatic nodules

were contrasted after intratracheal injection of 15% India ink solution.

Macrophage depletion was achieved by daily i.p. injection of 20 mg/kg

mouse anti-CSF-1R antibodies (clone AFS98; BioXcell) or isotype IgG con-

trol (Sigma-Aldrich). Mice were pretreated for 3 days with anti-CSF-1R

before LLC tumor cell injection. Acute deletion of PFKFB3 was obtained

by i.p. injection of tamoxifen (1 mg/mouse/day) for 5 days before subcu-

taneous implantation of LLC cancer cells. Torin2 was given by daily gavage

at 20 mg/kg.

Hypoxia Assessment

Tumor hypoxia was detected 1 hr after i.p. injection of 60 mg/kg pimonidazole

hydrochloride into tumor-bearing mice. Mice were sacrificed and tumors har-

vested. To detect the formation of pimonidazole adducts, tumor cryosections

were immunostained with Hypoxyprobe-1-Mab1 (Hypoxyprobe kit; Chemi-

con) following the manufacturer’s instructions.
) VE-cadherin junctions in HUVECs co-cultured on a 0.4-mm-pore Boyden

glucose (B) and representative images of VE-cadherin staining in the HUVEC

hypoxic TAMs-L in either 0.6 or 5.5 mM glucose. Representative graphs of two

of WTmice transplanted with REDD1-deficient BM conditionally lacking Pfkfb3

n.

OR activity in hypoxic TAMs, which enhances glucose uptake and glycolysis.

, which leads to endothelial quiescence and vessel maturation, which prevents

d other tumor-related stimuli brakes their glycolytic metabolism. As a result,

otes the formation of abnormal and leaky blood vessels, overall favoring cancer

p < 0.05 versus 0.6 mM glucose or PFKwt. The scale bars represent 10 mm (C),

res S3 and S4 and Table S2.
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Figure 7. Opposing Activity of mTOR in Cancer Cells and TAMs

(A and B) LLC tumor growth (A) and metastatic index (B) in BM-transplanted mice treated with vehicle or Torin2.

(C–F) Representative images of CD31-stained thick sections (C), pericyte coverage (D), blood vessel perfusion (E), and hypoxia (F) in LLC tumors from mice

treated with vehicle or Torin2. Total mice eight per condition.

(legend continued on next page)
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Blood Vessel Perfusion and Leakiness

Perfused tumor vessels were counted on tumor sections from mice injected

intravenously with 0.05mg fluorescein isothiocyanate (FITC)-conjugated lectin

(Lycopersicon esculentum; Vector Laboratories). Leaky blood vessels were

histologically assessed upon intravenous injection of 70 kDa biotin-conjugated

dextran (Molecular Probes). After 10 min, mice were perfused by intracardiac

injection of saline for 5 min, and tumors were collection in 2% paraformalde-

hyde (PFA).

FACS of Tissue- and Tumor-Associated Macrophages

Tumor-bearing mice were sacrificed by cervical dislocation and tumors were

harvested. Tumors or other organs were minced in RPMI medium containing

0.1% collagenase type I and 0.2% dispase type I and incubated in the same

solution for 30 min at 37�C. The myeloid cell population in the tumor single

cell suspension was enriched by magnetic isolation, using CD11b-conjugated

magnetic beads, and subsequently stained for GLUT1 and the pan-macro-

phage marker F4/80.

Metabolic Assays

Glycolysis and oxidation of other substrates were determined on sorted

GLUT1low/� and GLUT1high CD11b+ F4/80+ TAMs directly or, when indicated,

after overnight incubation with or without 100 nM Torin2 in normoxia or hypox-

ia, respectively, using radioactively labeled tracers. Oxygen consumption rate

(OCR) was measured using the Seahorse XF24 analyzer. To characterize

glucose uptake in vivo, LLC tumor-bearing mice were injected intratumorally

with 2-NBDG, and F4/80+ TAMs and CD31+ ECs were analyzed using FACS.

Macrophage-EC Co-culture In Vitro

BMDMs (53 105) were seeded in a 24-well plate and differentiated to hypoxic

TAMs-L (see above). The cells were then washed and incubated in M199 me-

dium containing 5% fetal bovine serum and 0.6 or 5.5 mM glucose together

with 53 104 HUVECs seeded 2 days before on a 0.4-mm-pore Boyden cham-

ber insert (Corning). For VE-cadherin analysis, inserts containing the HUVEC

monolayer were fixed after 8 hr of co-culture with 4%PFA for 7min and stained

with goat anti-VE-cadherin (R&D Systems). Transendothelial electrical resis-

tance was measured with the EVOM2 Epithelial Voltohmeter (World Precision

Instruments) after 24 hr of co-culture.

Statistical Analysis

Data entry and all analyses were performed in a blinded fashion. All statistical

analyses were performed using GraphPad Prism software. Statistical signifi-

cance was calculated using two-tailed unpaired t tests on two experimental

conditions or two-way ANOVA when repeated measures were compared,

with p < 0.05 considered statistically significant. All graphs show mean

values ± SEM.

ACCESSION NUMBERS

The accession number for the RNA sequencing data reported in this paper is

ArrayExpress: E-MTAB-5032.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cmet.2016.09.008.
(G and H) Tumor growth (G) and metastatic index (H) in mice injected with LLC c

treated with vehicle or Torin2. shRNA, short hairpin RNA.

(I–L) Representative images of CD31-stained thick sections (I), pericyte coverage

condition.

(M and N) LLC tumor growth (M) and metastatic index (N) in mice treated with ve

(O–R) Representative images of CD31-stained thick sections (O), pericyte cov

condition.

*p < 0.05 versusWT/WT (A–F), vehicle (G–L), or vehicle and IgG (M–R); #p < 0.05

scale bars represent 50 mm. All graphs show mean ± SEM.
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