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1 Introduction

Communication allows players to share information with one another and to coordinate

their actions. By doing this, in many games players can attain outcomes that are not

feasible otherwise. In this paper, we study the effects of adding communication to static,

finite games of complete and incomplete information.

A system of communication specifies the rules according to which players communicate.

Adding one to a game defines a new, extended game. In a game with communication

players exchange messages before choosing their actions. The notions of correlated equilib-

rium (Aumann (1974)), communication equilibrium and the revelation principle (see Forges

(1986) and Myerson (1982)) characterize the set of outcomes that players can achieve in

games with communication. In particular, this set of outcomes coincides with the set of

correlated equilibria if the game is one of complete information, and with the set of com-

munication equilibria if the game is one of incomplete information. This is a very powerful

and useful result. Although there are infinitely many ways in which players can exchange

messages, it is very easy to characterize what they can achieve with communication. In

fact, correlated and communication equilibria are simply defined by a number of linear

inequalities. Therefore, the set of correlated or communication equilibria has a simple and

tractable mathematical structure (it is a convex polyhedron). Consider, for example, a

game of complete information, and suppose that we are interested in finding the highest

payoff that a given player can achieve with communication. In principle, there are infinitely

many games with communication to consider. However, given the characterization above,

it is enough to find the best correlated equilibrium for that player. This simply involves

maximizing a linear function over a convex polyhedron.

Since correlated and communication equilibria are important and commonly used solu-

tion concepts, it is worthwhile to examine carefully the conditions under which they can

be applied. Forges (1986) and Myerson (1982) show that the set of correlated or commu-
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nication equilibria coincides with the set of outcomes that players can achieve with com-

munication under two critical assumptions. First, not only do players exchange messages

with one another, but they can also communicate with a reliable and impartial mediator

(mediated communication). Secondly, the Nash equilibrium concept is used to analyze the

games with communication.

In many situations, however, the assumption that there is a reliable mediator is too

strong, and players are restricted to exchange messages among themselves. In a bargaining

setting, for example, the buyer and the seller usually undergo a number of rounds of direct

conversations before reaching a final agreement, and no third party mediates their positions

or filters their messages. Similarly, political leaders often communicate directly with their

advisors. It is true that the mediator could be considered a machine that is programmed

to perform a certain number of operations. Still, one has to assume that an impartial

individual, different from the players, is available to program the machine. We cannot

rely on the players, who would take advantage of the opportunity, and would program the

machine in their best interest. When a mediator is not available, and players can only

communicate with one another, we say that communication is direct or unmediated.

As far as the solution concept is concerned, Nash equilibrium is a legitimate candidate.

However, a game with communication is an extensive-form game, and Nash equilibrium

does not prevent players from using non credible threats and behaving irrationally in events

that are reached with probability zero. In a game with communication, it is therefore

appropriate to use a stronger solution concept, such as sequential equilibrium (Kreps and

Wilson (1982)), which requires players to behave optimally on and off the equilibrium path.

The goal of this paper is to characterize the outcomes that players can achieve when

an impartial mediator is not available and we adopt a solution concept stronger than

Nash equilibrium. We further address the related question of whether it is possible to use

correlated and communication equilibria when the assumptions made by Forges (1986) and

Myerson (1982) are not satisfied.
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Depending on the presence of a mediator and on the adopted solution concept, the

existing literature on games with communication can be classified into four categories:

(i) mediated communication, Nash equilibrium; (ii) mediated communication, sequential

equilibrium; (iii) unmediated communication, Nash equilibrium; (iv) unmediated commu-

nication, sequential equilibrium. To illustrate our results in more details, and to describe

how our findings contribute to the existing body of work, we now discuss these categories.

We have already mentioned that in case (i) the set of correlated or communication equi-

libria describes the outcomes that players can achieve with communication. To implement

a correlated or communication equilibrium, a mediator usually performs lotteries and sends

players private messages. However, Lehrer and Sorin (1997) show that correlated and com-

munication equilibria can be implemented in communication systems in which the mediator

behaves deterministically and sends only public messages (see also Lehrer (1996)).

What happens when communication is mediated and the solution concept is stronger

than Nash equilibrium? For static games of complete information, the characterization

of the outcomes attainable with communication in terms of correlated equilibria trivially

extends to the case in which the sequential equilibrium concept is used.1 A similar result

can be derived for games of incomplete information with full support (i.e. games in which

all profiles of players’ types have positive probability). In this case, the set of outcomes that

players can achieve with mediated communication and the sequential equilibrium concept

coincides with the set of communication equilibria. This result does not hold in games

without full support. In Section 3, we show that there exist communication equilibria of

games without full support that cannot be implemented. We also demonstrate the failure

of the revelation principle in games that do not have full support.

There is an extensive literature on games with unmediated communication. Aumann
1However, Dhillon and Mertens (1996) show that the outcomes achievable with communication cannot

be described by correlated equilibria when the perfect equilibrium concept is used to analyze the extended
games with communication. They demonstrate the failure of the revelation principle in this context, and
provide a characterization of the outcomes achievable with mediated communication only in two-player
games.

3



and Hart (1999) use the Nash equilibrium concept and characterize the set of outcomes

implementable for two-player games in which only one player has private information.

Amitai (1996) generalizes2 Aumann and Hart’s (1999) results to two-player games in which

both sides have private information. Urbano and Vila (1997, 2001) demonstrate that if the

two players have bounded rationality and can solve only problems of limited computational

complexity, then it is possible to implement all correlated equilibria and all communication

equilibria without mediation. Results have also been obtained for specific games with two

players, like double auctions (Matthews and Postlewaite (1989)) and the “battle of the

sexes” (Banks and Calvert (1992)).

For games with four or more players, Barany (1992) and Forges (1990) provide a com-

plete characterization of the effects of unmediated communication when the solution con-

cept is Nash equilibrium. Barany (1992) considers static games of complete information

and shows that any rational correlated equilibrium (i.e. any correlated equilibrium with

rational components) can be implemented. Moreover, if a game also has rational parame-

ters, then the set of outcomes attainable with unmediated communication coincides with

the set of correlated equilibria (see Forges (1990)). Games of incomplete information are

considered by Forges (1990). She demonstrates that if a game has four or more players and

rational parameters, then the set of communication equilibria completely characterizes the

outcomes achievable with unmediated communication.3

To implement a correlated equilibrium, Barany (1992) constructs a scheme of unmedi-

ated communication such that an action profile is chosen according to the correlated equi-

librium distribution, and each player learns only her own action. Each message is sent by

two players to a third one, and public verification of the past record is possible. To prevent
2The first version of Aumann and Hart (1999) dates from 1993.
3Forges (1990) proposes a mechanism of communication in which players exchange messages at the

ex-ante stage (before they learn their types) and at the interim stage (after each player learns her own
type). However, Gerardi (2000) shows that in games with four or more players and rational parameters, it
is possible to implement all communication equilibria even if communication takes place only at the interim
stage.
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unilateral deviations in the communication phase, Barany (1992) assumes that a player who

receives two different messages stops the communication process and reports that cheating

has occurred. Then messages are verified, and the deviator is identified and punished by

the opponents who play a “minmax” strategy against her in the original game. If a receiver

deviates and reports that cheating has occurred when it has not, then she is punished at

her “minmax” level. Note that there are two situations in which Barany’s (1992) equilib-

rium fails to satisfy the sequential rationality criterion (Ben-Porath (1998, 2000)). First,

the strategy profile that minmaxes a deviator is not necessarily a Nash equilibrium of the

original game. Second, a receiver who observes a deviation may not have an incentive to

report that cheating has occurred. These problems extend to Forges (1990), since she uses

the communication scheme proposed by Barany (1992) to prove her result.

Ben-Porath (2000) uses the solution concept of sequential equilibrium. He provides

sufficient conditions for a communication equilibrium to be implemented with unmediated

communication in games with three or more players. Specifically, Ben-Porath (2000) shows

that a communication equilibrium can be implemented provided that the game admits

a Bayesian-Nash equilibrium in which the payoff of every type of each player is lower

than the communication equilibrium payoff. The basic idea is that if a player deviates

during the communication phase, then she is punished by her opponents, who play the

Bayesian-Nash equilibrium. Using this approach one cannot implement, for example, a

communication equilibrium in which the payoff of a player is lower than all Bayesian-Nash

equilibrium payoffs: no punishment is available to prevent the player from deviating in the

communication phase.

We propose a different system of communication that avoids this problem. We provide

a complete characterization of the set of outcomes that can be implemented with unmedi-

ated communication in games with five or more players and rational parameters. Our

solution concept in the extended games with communication is sequential equilibrium. We

show that in games of complete information an outcome can be implemented with direct
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communication if and only if it is a correlated equilibrium. For games with incomplete

information and full support, we demonstrate that the set of outcomes achievable with

unmediated communication coincides with the set of communication equilibria.

Our results provide support for the use of correlated and communication equilibria

to describe the effects of communication. If a game has at least five players, rational

parameters and full support, one can use the simple structure of the set of correlated or

communication equilibria even if an impartial mediator is not available and players are

sequentially rational.

The rest of the paper is organized as follows. In Section 2 we analyze games with

complete information and in Section 3 we study games with incomplete information. In

Section 4 we illustrate an application of our results in the context of mechanism design.

Section 5 contains the proof of the main theorem and Section 6 concludes.

2 Games with Complete Information

In this section we restrict attention to games of complete information, and characterize the

set of outcomes that players can achieve with unmediated communication.

Let Γ = hP1, ..., PI , S1, ..., SI , u1, ..., uIi be a finite normal-form game, where P1, ..., PI

are the players, Si is the set of actions available to player Pi, S =
QI
i=1 Si is the set of

action profiles, and ui : S → R is the payoff function of player Pi. We let S−i =
Q
j 6=i Sj

denote the set of profiles of actions of players different from Pi. The set of probability

distributions over S is denoted by ∆ (S) .

We extend Γ by allowing players to communicate before they choose their actions. A

cheap talk extension of Γ is an extensive-form game that consists of a communication phase

and an action phase. During the communication phase, players exchange “cheap” messages,

i.e. messages that do not affect directly their payoffs. Then, in the action phase, the original

game Γ is played.

To describe our results on unmediated communication, it is convenient first to recapitu-
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late the more general case of mediated communication. We consider cheap talk extensions

in which players exchange messages among themselves and communicate with an impartial

mediator (see, for example, Myerson (1991)).

A strategy profile in a cheap talk extension of Γ induces an outcome in Γ, i.e. a

probability distribution over S. Let N (Γ) denote the set of outcomes in Γ induced by

Nash equilibria of cheap talk extensions of Γ (where mediated communication is allowed),

and S (Γ) denote the set of outcomes induced by sequential equilibria. In other words, a

probability distribution r ∈ ∆ (S) is in N (Γ) (respectively, S (Γ)) if and only if there exists

a cheap talk extension of Γ and a Nash equilibrium (respectively, sequential equilibrium)

of that extension that induces r.

To characterize the sets N (Γ) and S (Γ) , we need to introduce the notion of correlated

equilibrium. A probability distribution r ∈ ∆ (S) is a correlated equilibrium of Γ if and

only if: P
s∈S
r (s) (ui (s)− ui (s−i, δi (si))) > 0, i = 1, ..., I, ∀δi : Si → Si. (1)

We let C (Γ) denote the set of correlated equilibria of Γ. Being defined by finitely many

linear inequalities, C (Γ) is a convex polyhedron.

In the analysis below, we shall devote special attention to the class of correlated equi-

libria with rational components. We say that a correlated equilibrium r is rational if for

every action profile in S, the probability r (s) is a rational number.

Any correlated equilibrium is in the set S (Γ) (and therefore in N (Γ)). Let r be a

correlated equilibrium, and consider the following cheap talk extension of Γ. The mediator

randomly selects an action profile in S according to r, and informs each player Pi only of

the ith component of the chosen action profile. Then the players simultaneously choose

their actions. Inequality (1) guarantees the existence of a sequential equilibrium in which

each player follows the mediator’s recommendation. Clearly, the induced outcome in Γ is

the correlated equilibrium r.

The revelation principle for normal-form games states that any probability distribution
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in N (Γ) is a correlated equilibrium of Γ (Forges (1986) and Myerson (1982)). Thus, it

follows that both N (Γ) and S (Γ) coincide with C (Γ) , the set of correlated equilibria of Γ.

We now consider unmediated communication. We assume that a reliable mediator is

not available, and consider cheap talk extensions defined as follow. We start by introducing

plain cheap talk extensions. Given a normal-form game Γ, a plain cheap talk extension of

Γ consists of a finite number of steps of communication, at the end of which Γ is played.

For each step, the plain cheap talk extension specifies the senders, that is, the players who

are allowed to send a message. Further, for each sender, it specifies the receivers and the

set of messages. Plain cheap talk extensions allow for simultaneous messages (if the sets

of senders contain more than one player) and sequential messages (if the sets of senders

are singleton). Further, we can have private messages, public messages, and intermediate

situations in which a sender sends a message to a subset of her opponents.

We are ready to define a cheap talk extension with unmediated communication. In the

first step, a number of players (possibly zero) sends public messages. To each vector of

messages the cheap talk extension associates a plain cheap talk extension.

In a plain cheap talk extension, the identity of senders and receivers and the set of

messages of each step are predetermined and do not depend on previous messages. In

contrast, in a cheap talk extension, the public messages sent in the first step may affect the

set of messages and the identity of senders and receivers of subsequent steps. Of course, if

the number of players sending public messages in the first step is zero, then the cheap talk

extension is plain. In other words, plain cheap talk extensions are a special case of cheap

talk extensions with unmediated communication.

Let SU (Γ) denote the set of outcomes of Γ induced by a sequential equilibrium of some

cheap talk extension with unmediated communication. Clearly, since mediated communi-

cation is more general than unmediated communication, SU (Γ) is included in S (Γ) (and,

therefore, in N (Γ) and C (Γ)).

Our first result shows that, if there are at least five players, the set SU (Γ) contains all
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rational correlated equilibria of Γ (i.e. all correlated equilibria with rational components).

When a correlated equilibrium r belongs to SU (Γ) , we say that r can be implemented.

Theorem 1 Let Γ be a finite normal-form game with five or more players, and let r be a

rational correlated equilibrium of Γ. Then r ∈ SU (Γ) .

A formal proof of Theorem 1 is in Section 5, where we construct Γ̄ (r) , a finite plain

cheap talk extension of Γ with unmediated communication, and a sequential equilibrium

Ψ (r) of Γ̄ (r) that induces the distribution r on S.

To implement a rational correlated equilibrium r, we propose a scheme of communi-

cation such that, if all players follow it, an action profile in S is chosen according to the

distribution r.Moreover, when the communication phase ends, player Pi, i = 1, ..., I, learns

only which action in Si she has to play. Therefore, each player has an incentive to play the

action that she learns, provided that her opponents behave likewise.

To give an intuition of our proof and explain how players learn their actions, let us

consider the following simple example. There are three players, P1, P2, and P3, and three

action profiles, s, s0, and s00. Given an action profile, say s, let pr3 (s) denote the action

of P3 in s. We assume pr3 (s) = pr3 (s0) , and pr3 (s) 6= pr3 (s00) . The action profiles s and
s0 specify the same action for P3, while s00 specifies a different action. Suppose we want

the players to select an action profile at random, according to the uniform distribution.

Moreover, P3 has to learn her action in the chosen profile, while P1 and P2 do not have

to learn anything.4 This can be accomplished in the following way. P1 selects α and σ,

two permutations on {s, s0, s00} , at random, according to the uniform distribution, and

independently of each other. P2 selects x, an element of {s, s0, s00} , at random, according
to the uniform distribution. The chosen profile is σ (x) . Clearly, σ (x) has a uniform

distribution and is unknown to all players. We require P1 to send the permutation ασ to
4To keep the example as simple as possible, we require that only P3 learns her action. Obviously, to

implement a correlated equilibrium, each player has to learn her action in the chosen profile (see Section 5
for details).
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P2. Since α and σ are independent of each other and uniformly distributed, P2 does not

learn anything about σ (the conditional distribution of σ, given ασ, is uniform). Then P2

sends the element ασ (x) to P3. Finally, P1 sends pr3 ◦ α−1 (a mapping from {s, s0, s00} to
P3’s set of actions) to P3. At this point P3 computes pr3 ◦ α−1 (ασ (x)) = pr3 (σ (x)) and
learns her action in the chosen profile.

This system of communication, although simple, presents a serious problem: P1 and P2

might have an incentive to deviate from it. If, for example, P2 sends P3 a message different

from ασ (x) , P3 will not learn the correct action. Clearly, in a game P2 might prefer to

induce P3 not to learn the correct action.

We construct a more complex communication scheme that solves this problem and gives

all players an incentive to follow it. We require that a message is sent by three different

players to a fourth one. In equilibrium, all senders report the correct message. Moreover,

we show that it is sequentially rational for a receiver to follow the message sent by the

majority of the senders. This implies that a sender does not have profitable deviations

during the communication stage. Even if she deviates, the receiver will receive the correct

message from the other two senders.

Our communication scheme differs from the systems of communication proposed by

Barany (1992) and Ben-Porath (1998, 2000) in other important aspects. In fact, the idea

of using the majority rule to prevent unilateral deviations in the conversation phase cannot

be applied to their communication schemes if there are only five players. Similarly to

the example above, in Barany (1992) and Ben-Porath (1998, 2000), a combination of two

random variables determines the action profile in S that players play once communication is

over (in our example the two variables are σ and x). Clearly, it is crucial that a player does

not know both random variables, otherwise she learns her opponents’ actions. However,

this requirement cannot be satisfied if there are five players and every message is sent by

three different players. In this case, at least one player must know both random variables.

In our communication scheme, the action profile chosen depends on four random variables.
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In this way, we are able to construct a communication scheme in which every message is

sent by three players and no player learns her opponents’ actions.

This also explains our need for at least five players. A message goes from three players

to a fourth one. This already requires four players. But if there are only four players all

messages are public, and all players can learn the chosen action profile. At least another

player is needed to generate private messages. Thus five is the smallest number of players

that we need to use our communication scheme.

Finally, in contrast to Barany (1992) and Ben-Porath (1998), our system of communi-

cation does not require public verification of past messages. In the game that we present

is Section 5, players can exchange oral messages.

Theorem 1 considers only rational correlated equilibria. An obvious question is whether

players can implement correlated equilibria that involve probabilities which are irrational

numbers. We now show that a correlated equilibrium with irrational components can

be implemented provided that it can be expressed as a convex combination of rational

correlated equilibria. Let r1, ..., rK be K rational correlated equilibria of a game, Γ, with

five or more players. Consider the correlated equilibrium r =
PK

k=1 ρkrk, where ρ1, ..., ρK

are positive numbers (rational or irrational) such that
PK

k=1 ρk = 1. Theorem 1 guarantees

that for every rational correlated equilibrium rk, k = 1, ...,K, there exists a plain cheap talk

extension Γ̄ (rk) , and a sequential equilibrium Ψ (rk) of Γ̄ (rk) that induces the distribution

rk on S.

To implement r, we let players perform a “jointly controlled lottery”5 in which every

correlated equilibrium rk is selected with probability ρk. Specifically, consider the following

cheap talk extension Γ̃ (r). Players P1 and P2 simultaneously announce (to all players) two

positive numbers in the unit interval. Let ωi denote the number announced by player Pi,
5A jointly controlled lottery (Aumann, Maschler and Stearns (1968)) is a communication scheme that

allows two or more players to randomly select an outcome. The scheme is immune against unilateral
deviations in the sense that no player can, by her own decision, influence the probability distribution.
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i = 1, 2. Let ω = χ (ω1,ω2) , where

χ
¡
ω1,ω2

¢
:=

½
ω1 + ω2 if ω1 + ω2 6 1
ω1 + ω2 − 1 if ω1 + ω2 > 1

, (2)

and define ρ0 to be equal to zero. If ω ∈
³Pk−1

j=0 ρj,
Pk

j=0 ρj

i
, for some k = 1, ..., K, then

the game Γ̄ (rk) is played.

Although Kreps and Wilson (1982) define sequential equilibria only for finite games, it

is easy to extend their definition to Γ̃ (r). Notice that after P1 and P2 announce ω1 and ω2,

respectively, a proper subgame is induced. We require that the equilibrium strategies and

beliefs of Γ̃ (r), when restricted to a subgame Γ̄ (rk), constitute a sequential equilibrium

of Γ̄ (rk) . Moreover, player Pi, i = 1, 2, chooses the number ωi to maximize her expected

payoff (given her strategy in the rest of the game and her opponents’ strategies).

Consider the following assessment. In the first step, both P1 and P2 randomly select

a number in the interval (0, 1], according to the uniform distribution. If the cheap talk

extension Γ̄ (rk) is selected, players play the sequential equilibrium Ψ (rk) . It is easy to

check that this assessment constitutes a sequential equilibrium of the game Γ̃ (r) . The only

thing to note here is that, since ω2 is independent of ω1 and uniformly distributed, ω is also

independent of ω1 and uniformly distributed. This implies that P1 is indifferent between

all possible announcements in the first step (clearly, the same argument can be applied to

P2). Therefore, we have proved that the correlated equilibrium r can be implemented.

For an important class of games, we are able to provide a complete characterization

of the set of outcomes that can be implemented. We say that a normal-form game Γ is

rational if all its parameters are rational numbers, i.e. if for every i = 1, ..., I, and for

every strategy profile s in S, the payoff ui (s) is a rational number. When Γ is rational,

any correlated equilibrium can be expressed as a convex combination of rational correlated

equilibria.6 Thus, any correlated equilibrium is in the set SU (Γ) . Since it is always the

case that SU (Γ) is contained in C (Γ) , we conclude that the two sets are identical. The
6If Γ is rational, the vertices of C (Γ) are rational correlated equilibria.
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next corollary summarizes our results.

Corollary 1 Let Γ be a finite normal-form game with five or more players. Let r be a

convex combination of rational correlated equilibria of Γ. Then r ∈ SU (Γ) . If Γ is rational,
SU (Γ) = C (Γ) .

For any two-player game Γ, it is easy to show that SU (Γ) is the convex hull of the Nash

equilibrium outcomes of Γ. Intuitively, when there are only two players, all messages are

public, and therefore only lotteries over Nash equilibria can be implemented (see Aumann

and Hart (1999)). Thus, in the class of games with rational parameters, a complete charac-

terization of the set SU (Γ) is unavailable only when Γ has three or four players. Obviously,

our communication scheme cannot be applied if there are less than five players, but this

does not rule out the possibility that all correlated equilibria can be implemented with some

other communication scheme. We do not have any example of a correlated equilibrium in

a game with three or four players that cannot be implemented. Barany (1992) provides

the example of a rational correlated equilibrium in a three-player game that cannot be im-

plemented (in Nash equilibrium) if the message spaces are finite. However, Forges (1990)

shows that the correlated equilibrium considered by Barany (1992) is induced by a Nash

equilibrium in a cheap talk extension where a continuum of messages is used. For a game

Γ with three or four players, a partial characterization of the set SU (Γ) is provided by

Ben-Porath (2000), who gives sufficient conditions for a rational correlated equilibrium to

be implemented.

We conclude this section with a comment on our definition of unmediated communica-

tion. The cheap talk extensions defined in this section are not the most general form of

unmediated communication. One could think, for example, of situations in which a sender

can choose the receivers of her message. However, Corollary 1 shows that restricting atten-

tion to our cheap talk extensions is without loss of generality in games with five or more

players and rational parameters. For these games, allowing for more general forms of un-
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mediated communication does not expand the set of outcomes that players can implement.

3 Games with Incomplete Information

We now consider games of incomplete information and show how unmediated communica-

tion allows players to expand the set of equilibrium outcomes.

Let G = hP1, ..., PI , T1, ..., TI , S1, ..., SI , p, u1, ..., uIi be a finite Bayesian game. Players
are P1, ..., PI , and Si denotes the set of actions of Pi. As in Section 2, S denotes the set of

action profiles, S−i is the set of profiles of actions of players different from Pi, and ∆ (S)

denotes the set of probability distributions over S. In addition, Ti is the set of types of Pi,

and T =
QI
i=1 Ti is the set of type profiles. We let T−i =

Q
j 6=i Tj denote the set of profiles

of types of players different from Pi. The payoffs of Pi are described by ui : T × S → R.

Finally, p is a probability distribution over T.7 We say that game G has full support if every

profile of types occurs with positive probability, i.e. if p (t) > 0 for every t in T. Games

in which players’ types are independent constitute an obvious example of games with full

support.

We proceed as in Section 2, and extend G by introducing pre-play communication.

Although we are interested in unmediated communication, it is convenient to start our

analysis by considering first the case of mediated communication.

A strategy profile in a cheap talk extension ofG induces an outcome inG, i.e. a mapping

from T to ∆ (S) . As in the previous section, we let N (G) denote the set of outcomes in G

induced by a Bayesian-Nash equilibrium of some cheap talk extension of G (where mediated

communication is allowed). Similarly, S (G) denotes the set of outcomes in G induced by

a sequential equilibrium of some cheap talk extension of G.

The set N (G) can be easily characterized in terms of communication equilibria. A
7For notational simplicity, we assume that beliefs in G are consistent.
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function q : T → ∆ (S) is a communication equilibrium if and only if:P
t−i∈T−i

P
s∈S
p (t−i|ti) q (s| (t−i, ti))ui ((t−i, ti) , s) >P

t−i∈T−i

P
s∈S
p (t−i|ti) q (s| (t−i, t0i))ui ((t−i, ti) , (s−i, δi (si))) ,

i = 1, ..., I, ∀ (ti, t0i) ∈ T 2i ∀δi : Si → Si.

(3)

We let CE (G) denote the set of communication equilibria of G. CE (G) is defined by

finitely many linear inequalities, and therefore is a convex polyhedron. We also say that a

communication equilibrium q is rational if, for every action profile s in S and every type

profile t in T, the probability q (s|t) is a rational number.
To see that a communication equilibrium q belongs to the set N (G) , consider the fol-

lowing cheap talk extension GD (q) , usually called the canonical game. First, each player

Pi sends the mediator a message in Ti. The mediator, after receiving a vector of messages

t, randomly selects an action profile in S according to the probability distribution q (·|t)
and informs each player Pi only of the ith component of the chosen profile. Finally, all

players simultaneously choose their actions. It follows from inequality (3) that there exists

a Bayesian-Nash equilibrium of GD (q) in which every player reports her type truthfully to

the mediator, and follows the mediator’s recommendation. The notion of communication

equilibrium is a generalization of the notion of correlated equilibrium for games with in-

complete information. In a correlated equilibrium, a mediator allows players to coordinate

their actions. In a communication equilibrium, the mediator has two roles: she helps play-

ers coordinate their actions, and exchange their private information. The two notions of

equilibria coincide in games with complete information.

On the other hand, it follows from the revelation principle that any outcome in N (G) is

a communication equilibrium (see Forges (1986) and Myerson (1982)). Therefore, for any

finite Bayesian game G, the sets N (G) and CE (G) coincide.

The characterization of the set S (G) is, in general, less immediate. Clearly, for any

game G, S (G) is included in CE (G) . Further, the set S (G) is non-empty (sequential

equilibria exist in any extension of G) and convex (the mediator conducts a lottery among
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different extensions and announces publicly the outcome of the lottery). To investigate

whether any communication equilibrium of G is in S (G), we first need some definitions.

Given a communication equilibrium q of G, consider the canonical game GD (q) .We say

that q is regular if there is a sequential equilibrium of GD (q) in which each player reports

her type truthfully to the mediator, and obeys the mediator’s recommendation after being

honest (a player may disobey the mediator’s recommendation if she did not report her type

truthfully). Clearly, any regular communication equilibrium of G belongs to S (G) .

When G has full support, it is easy to show that any communication equilibrium is reg-

ular. When all type profiles have positive probability, a player never learns that some other

player lied to the mediator. This fact and inequality (3) imply that for a player who reports

her type sincerely, it is sequentially rational to obey the mediator’s suggestion. Moreover,

inequality (3) also guarantees that no player has an incentive to lie to the mediator. Thus,

if G has full support, S (G) is equal to CE (G) .

This result does not hold in games without full support. As we show in the next

example, it is possible to construct a game G0, without full support, such that the set

S (G0) is strictly included in the set of communication equilibria CE (G0) .

Example 1 A Bayesian game G0 with CE (G0) * S (G0) .

G0 is a two-player game. The set of types of players P1 and P2 are T1 = {t11, t21} and
T2 = {t12, t22} , respectively. P1 has to choose an action from the set S1 = {s1, s2, s3} , while
P2 does not choose an action. The probability distribution over the set of type profiles is:

p (t11, t
1
2) = p (t

1
1, t

2
2) = p (t

2
1, t

1
2) =

1
3
, p (t21, t

2
2) = 0.

Payoffs are described in Table 1, where, for each combination of type profile and action,

we report the corresponding vector of payoffs (the first entry denotes P1’s payoff).

First, let us consider the game G0 without communication. In any Bayesian-Nash equi-

librium, type t21 plays action s
2, and type t11 chooses either s

1, or s3, or a randomization

between the two actions.
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t12 t22

t11

s1 (1, 0)
s2 (−1, 0)
s3 (0, 2)

s1 (0, 0)
s2 (−1, 0)
s3 (1, 1)

t21

s1 (−1,−1)
s2 (1, 1)
s3 (0, 1)

s1 (0, 0)
s2 (0, 0)
s3 (0, 0)

Table 1: Payoffs of the game G0

We now provide a complete characterization of the set S (G0) . Consider a cheap talk

extension of G0. Since type t21 of player P1 knows that player P2 has type t
1
2, sequential

rationality implies that in every information set in which t21 has to choose an action from

S1, she will play s2.

Further, type t11 of P1 never chooses action s
2. In fact, independent of P2’s type, action

s2 is dominated by actions s1 and s3. We now show that if q belongs to S (G0) , then

q (t11, t
1
2) = q (t

1
1, t

2
2) . Both types of P2 prefer action s

3 to any other action when P1 has type

t11. Suppose, by contradiction, that there exists a sequential equilibrium of a cheap talk

extension that induces an outcome q, with q (s3|t11, t12) > q (s3|t11, t22) . Then type t22 would
have an incentive to deviate and mimic the behavior of type t12 to increase the probability

of action s3. Similarly, suppose that a sequential equilibrium induces an outcome q such

that q (s3|t11, t12) < q (s3|t11, t22) . Type t12 knows that, independent of her strategy, type t21 of
P1 will play action s2. Therefore t12 has an incentive to mimic the behavior of t

2
2 : if P1 has

type t11, the probability of action s
3 will increase.

We conclude that S (G0) coincides with the set of equilibrium outcomes of G0. If the

players are sequentially rational, communication cannot expand the set of equilibrium out-

comes of G0. Given this, it is very easy to show that S (G0) is strictly included in the set

of communication equilibria of G0. A communication equilibrium that does not belong to

S (G0) is, for example, q0 defined by:

q0 (t11, t
1
2) = q

0 (t21, t
2
2) = s

1, q0 (t11, t
2
2) = s

3, q0 (t21, t
1
2) = s

2,
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where we adopt the convention of writing, for example, q0 (t11, t
1
2) = s

1 to denote q0 (s1|t11, t12) =
1.

Although not all communication equilibria of G0 belong to S (G0) , the revelation prin-

ciple is still valid in the above example. Any element of S (G0) is a regular communication

equilibrium, and can be implemented with the canonical game. This result could sug-

gest that for a Bayesian game G, S (G) coincides with the set of regular communication

equilibria. However, it turns out that this conjecture is incorrect. As the next example

demonstrates, when a game G does not have full support, S (G) may contain communica-

tion equilibria that are not regular. In other words, the revelation principle does not hold

in games without full support when the solution concept is sequential equilibrium.

Example 2 The failure of the revelation principle.

Consider the following three-person game G00. The set of types of players P1 and P2 are

T1 = {t11, t21} , and T2 = {t12, t22}, respectively. P3 does not have private information and
is the only player to choose an action, from the set S3 = {s1, s2, s3, s4} . The probability
distribution over the set of profiles of types is given by:

p (t11, t
1
2) = p (t

1
1, t

2
2) = p (t

2
1, t

1
2) =

1
3
, p (t21, t

2
2) = 0.

Finally, Table 2 describes the vector of payoffs for each pair of type profile and action

(the first entry refers to P1, the second one to P2).

The communication equilibrium of G00 that maximizes P3’s expected payoff is unique

and equal to q00, where:

q00 (t11, t
1
2) = s

1, q00 (t11, t
2
2) = q

00 (t21, t
1
2) = s

2, q00 (s3|t21, t22) = q00 (s4|t21, t22) = 1
2
.

We now show that the communication equilibrium q00 is not regular. Consider the

canonical game G00D (q00) . P3 has four information sets, one for each recommendation that

the mediator can send. After receiving a recommendation, P3 computes her beliefs over
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t12 t22

t11

s1 (−1,−1, 1)
s2 (1, 1, 0)
s3 (0, 0,−1)
s4 (0, 0,−1)

s1 (1, 0, 0)
s2 (1, 1, 1)
s3 (−3, 0, 1)
s4 (1, 0,−1)

t21

s1 (0, 1, 0)
s2 (1, 1, 1)
s3 (0, 1,−1)
s4 (0,−3, 1)

s1 (0, 0, 0)
s2 (0, 0, 0)
s3 (0, 0, 0)
s4 (0, 0, 0)

Table 2: Payoffs of the game G00

the set {(t11, t12) , (t11, t22) , (t21, t12)} . In any consistent assessment of G00D (q00) , P3’s beliefs after
recommendation s3 must coincide with her beliefs after s4.8 Notice that it is sequentially

rational for P3 to choose action s3 only if she assigns probability one to the profile of types

(t11, t
2
2) . On the other hand, it is optimal for P3 to play s

4 only if she assigns probability

one to (t21, t
1
2) . But since P3 has the same beliefs after s

3 and s4, it cannot be sequentially

rational to obey both recommendations. We conclude that q00 cannot be implemented with

the canonical game G00D (q00) .

However, q00 does belong to the set S (G00) . Consider the following cheap talk extensioncG00 (q00) . Players P1 and P2 simultaneously report their messages to the mediator. Then the
mediator recommends an action to P3. Finally, P3 chooses an action from S3. The set of

messages of Pi, i = 1, 2, is bTi = {t1i , t2i , t3i , t4i} , where t3i and t4i are two arbitrary messages.
In Table 3, we report the mediator’s recommendation to P3 for each vector of reports of P1

and P2.

The mediator adopts a deterministic behavior unless P1 and P2 report messages t21 and

t22, respectively. In this case the mediator randomizes, with equal probability, between
8The only thing that P3 learns after receiving recommendations s3 or s4 is that the mediator received

message t21 from P1, and t22 from P2. The mediator performs the lottery between s3 and s4 after P1 and P2
send their messages. Therefore, to prove the consistency of an assessment of G00D (q00) , we cannot choose
trembles for P1 or P2 that depend on the outcome of the mediator’s lottery. This, in turn, implies that
P3’s beliefs after s3 cannot differ from her beliefs after s4.
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t12 t22 t32 t42
t11 s1 s2 s1 s1

t21 s2 1
2
s3, 1

2
s4 s2 s2

t31 s1 s2 s3 s1

t41 s1 s2 s1 s4

Table 3: Mediator’s recommendation in cG00 (q00)
recommendations s3 and s4.

It is easy to show that the cheap talk extension cG00 (q00) admits a sequential equilibrium
in which P1 and P2 “reveal their types truthfully” (i.e. t

j
i sends message t

j
i , i = 1, 2,

j = 1, 2), and P3 obeys the mediator’s recommendation (clearly, this equilibrium induces

q00). Intuitively, by introducing the new messages t3i and t
4
i , i = 1, 2, we allow player

P3 to have different beliefs after recommendations s3 and s4 (recommendation s3 can be

induced by reports (t31, t
3
2) , and s

4 by reports (t41, t
4
2)). In this way, both obedience to s

3

and obedience to s4 can be sequentially rational (see Gerardi (2001) for details).

A complete characterization of the set S (G) when G is a game without full support is

still an open question and beyond the scope of this paper. In Gerardi (2001), we provide

the solution for a special class of games. Specifically, we characterizes S (G) when G is a

game in which one player is uninformed and has to choose an action, while all other players

have private information but do not choose an action.

We now assume that an impartial mediator is not available and turn to unmediated

communication. A cheap talk extension of G is defined as follows. First, Nature selects

a type profile t according to the probability distribution p and each player learns her own

type. Then, in the communication phase, players exchange “cheap” messages as described

in Section 2. Finally, in the action phase, players simultaneously choose their actions.

We denote by SU (G) the set of outcomes in a Bayesian game G induced by a sequential

equilibrium of some cheap talk extension with unmediated communication. Clearly, SU (G)

is included in CE (G) .
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We say that a communication equilibrium can be implemented if it belongs to SU (G) .

We are ready to state our first result for games of incomplete information.

Theorem 2 Let G be a finite Bayesian game with five or more players, and let q be a

rational and regular communication equilibrium of G. Then q ∈ SU (G) .

The proof of Theorem 2 (presented in Appendix B) consists of two steps. In the first

one, we use a result due to Forges (1990). Consider a communication equilibrium (not

necessarily rational) q of a finite Bayesian game G with at least four players. Forges (1990)

constructs a cheap talk extension GF (q) in which, first, the players receive messages from

a mediator, then exchange public and private messages, and, finally, choose their actions.

Notice that in GF (q) the players do not send messages to the mediator, i.e. the mediator

is a correlation device. Forges (1990) shows that q is the outcome induced by a Bayesian-

Nash equilibrium of GF (q) . We demonstrate that if q is regular, then the equilibrium in

GF (q) that implements q can be made sequential. However, communication in GF (q) is

still mediated, since the mediator has to send messages to the players at the beginning of

GF (q) . In the second part of our proof, we use the fact that the communication equilibrium

is rational and that there are at least five players. Under these assumptions, we show

that the players, after learning their types, can use the communication scheme presented

in Section 5 to generate the mediator’s messages. In other words, we construct a finite

plain cheap talk extension Ḡ (q) which starts with the communication scheme described in

Section 5. At the end of it, the players exchange public and private messages as in GF (q)

and, finally, choose their actions. We conclude our proof by showing that Ḡ (q) admits a

sequential equilibrium, Φ (q) , that induces q.

Theorem 2 does not pertain to communication equilibria that are not regular or that

have some irrational components. However, these equilibria can be implemented, provided

that they can be expressed as a convex combination of rational and regular communication
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equilibria.9 As in Section 2, we require the players to conduct a jointly controlled lottery

among the cheap talk extensions in which the rational and regular communication equilibria

are implemented.

Specifically, consider a game G with at least five players. Let q be a convex combina-

tion of K regular and rational communication equilibria q1, ..., qK, with weights ρ1, ..., ρK ,

respectively. It follows from Theorem 2 that for every qk (k = 1, ...,K) there exists a plain

cheap talk extension Ḡ (qk), and a sequential equilibrium Φ (qk) of Ḡ (qk) that induces qk.

We construct the following cheap talk extension G̃ (q) . At the beginning of G̃ (q), players

P1 and P2 simultaneously announce to all players two positive numbers in the unit interval

(Pi announces ωi, i = 1, 2). Let ω = χ (ω1,ω2) , where χ (ω1,ω2) is defined in equation (2),

and let ρ0 be equal to zero. If ω ∈
³Pk−1

j=0 ρj,
Pk

j=0 ρj

i
, for some k = 1, ..., K, then the

cheap talk extension Ḡ (qk) is played.

The cheap talk extension G̃ (q) is not a finite game, since the first two players can

announce any number in the interval (0, 1]. Moreover, after P1 and P2 report ω1 and ω2,

respectively, a proper subgame is not induced, since the players have private information

about their types. In general, consistent beliefs have not been defined in games with infi-

nite strategy sets. Some authors have extended the notion of sequential equilibrium only

to specific classes of infinite games.10 However, for our purposes, it is enough to consider

assessments of G̃ (q) in which all types of Pi, i = 1, 2, select ωi at random, according to

the uniform distribution. We call these assessments simple. For a simple assessment, it is

easy to define consistent beliefs. In this case, observing ω1 and ω2 does not provide any

information about the types of P1 and P2. A simple assessment is a sequential equilibrium

if the strategies and the beliefs, when restricted to a game Ḡ (qk) , form a sequential equi-

librium of Ḡ (qk) . Moreover, for every type of Pi, i = 1, 2, selecting ωi at random according

to the uniform distribution, is optimal among all behavioral strategies.
9Notice that in games without full support, the set of regular communication equilibria need not be

convex.
10Manelli (1996), for example, considers signaling games.
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Consider the simple assessment where the players play the sequential equilibrium Φ (qk)

if game Ḡ (qk) is selected, i.e. if ω ∈
³Pk−1

j=0 ρj,
Pk

j=0 ρj

i
. The analysis at the end of Section

2 shows that for every type of Pi (i = 1, 2), it is optimal to choose ωi randomly according

to the uniform distribution. Therefore, we conclude that q can be implemented.

For some games, it is possible to provide a precise characterization of the set of commu-

nication equilibria that can be implemented. We say that a game has rational parameters if

for every i = 1, ..., I, every action profile s in S and every profile of types t in T, the payoffs

ui (t, s) and the probability p (t) are rational numbers. If G has rational parameters, the

vertices of CE (G) are rational communication equilibria. Moreover the vertices of CE (G)

are regular communication equilibria if G has full support (remember that in this case all

communication equilibria are regular). Therefore, when G has at least five players, rational

parameters and full support, every communication equilibrium can be implemented. We

can summarize our findings as follows.

Corollary 2 Let G be a finite Bayesian game with five or more players. Let q be a convex

combination of rational and regular communication equilibria of G. Then q ∈ SU (G) . If G
has full support and rational parameters, SU (G) = CE (G) .

It is an open question whether it is possible to implement communication equilibria

that cannot be expressed as convex combinations of rational and regular communication

equilibria. As Corollary 2 suggests, a complete characterization of the set of outcomes that

can be implemented with unmediated communication is not available for games without

full support or with irrational parameters or with less than five players. As has already

been stated, for a game G of incomplete information with at least three players, a partial

characterization of SU (G) is provided by Ben-Porath (2000).
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4 Mechanism Design with Imperfect Commitment

This section illustrates how our results on unmediated communication can be applied to

solve a mechanism design problem. We consider a decision maker (or principal) who has

to select an action, the payoff of which depends on the unknown state of the world. A

number of experts (or agents) have private information about the state and are affected by

the principal’s decision.

We model this environment as a Bayesian game, G0 = hT1, ..., TI−1, SI , p, u1, ..., uIi. The
principal, player I, does not have private information and her set of actions is SI . Players

1, ..., I−1 are agents, and Ti denotes the set of types of agent i.We let T =
QI−1
i=1 Ti denote

the set of the states of the world, and p is a probability distribution over T. As usual, we

use T−i to denote the set of profiles of types of agents different from i. Finally, the payoffs

of each player i are described by the function ui : T ×SI → R.We assume that G0 is finite

and has full support, rational parameters and at least four agents.

The decision maker faces the problem of finding a way to elicit as much information as

possible from the experts. We start the analysis by considering the case where the principal

can fully commit to a mechanism. In our environment, a mechanism is any function of the

form κ : Σ1×...×ΣI−1 → ∆ (SI) , where Σi denotes the set of strategies available to agent i.

For every profile of agents’ strategies, the mechanism specifies the probability distribution

according to which the principal will select an action in SI . Direct-revelation mechanisms

constitute a very important class of mechanisms. In a direct-revelation mechanism the set

of strategies of each agent i coincides with Ti, the set of her types.

A mechanism defines, in an obvious way, a game among the agents. As in the previous

sections, our solution concept is sequential equilibrium. For any profile of agents’ strategies

the principal can compute her expected payoff. The goal of the decision maker is to find

the mechanism that gives her the highest sequential equilibrium payoff.11 The revelation
11Actually, when full commitment to a mechanism is possible, the solution to the principal’s problem

does not change if the solution concept is Bayesian-Nash equilibrium.
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principle greatly simplifies this problem (see Dasgupta, Hammond and Maskin (1979), Har-

ris and Townsend (1981) and Myerson (1979), among others). According to this powerful

result, the decision maker can restrict attention to truthful equilibria12 of direct-revelation

mechanisms.

Let q denote a mapping from the set of states T to ∆ (SI) , the set of probability distri-

butions over SI . The principal’s highest payoff is associated with the truthful equilibrium

of the direct-revelation mechanism qFC , where qFC is a solution to the following problem:

max
q:T→∆(SI)

X
t∈T

X
sI∈SI

p (t) q (sI |t)uI (t, sI) , (4)

subject to: P
t−i∈T−i

P
sI∈SI

p (t−i|ti) q (sI | (t−i, ti)) ui ((t−i, ti) , sI) >P
t−i∈T−i

P
sI∈SI

p (t−i|ti) q (sI | (t−i, t0i))ui ((t−i, ti) , sI) ,
i = 1, ..., I − 1, ∀ (ti, t0i) ∈ T 2i .

(5)

The decision maker recognizes that agents need incentives to reveal their information.

The constraints in inequality (5), usually called informational incentive constraints, guaran-

tee that it is rational for every agent to report her type truthfully to the principal, provided

that all the other agents behave likewise.

The game defined by the mechanism qFC may have other equilibria, in which the agents

do not report their types truthfully to the decision maker. When we use the revelation

principle, we implicitly assume that not only does the principal choose the mechanism, but

she can also designate a specific equilibrium of it. For example, the decision maker can

recommend (by a public announcement) all agents to play the truthful equilibrium in the

direct-revelation mechanism qFC (i.e. the truthful equilibrium becomes a focal point).

However, in many situations, a decision maker cannot fully commit to a mechanism.

Experts often express non-binding opinions and the principal has the power to choose

any action she desires. Therefore, we now model a situation of imperfect commitment.
12As the name suggests, in a truthful equilibrium all agents honestly report their types.
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Specifically, we assume that the decision maker can commit to a particular cheap talk

extension of G0, but she cannot commit to a strategy in the extended game. In other

words, once the cheap talk extension is chosen, the principal becomes a player.13 Further,

we assume that an impartial mediator is not available, and thus, we restrict attention to

unmediated communication systems.

The problem of the decision maker is to find the cheap talk extension of G0 with the

highest sequential equilibrium payoff. Bester and Strausz (2001) and Wolinsky (1999)

analyze a similar problem of mechanism design with imperfect commitment. Bester and

Strausz (2001) consider the case where there is only one agent, and restrict attention to

cheap talk extensions in which the agent sends a costless message, and the principal selects

an action. They show that in order to maximize her expected utility, the decision maker

chooses the game in which the set of messages coincides with the set of types of the agent.

Wolinsky (1999) considers the case of multiple agents and allows the decision maker to

partition the set of experts into different groups. Agents in the same group communicate

among themselves and send a joint report to the principal who, in turn, chooses an action.

Wolinsky (1999) shows that to elicit more information from the experts, the principal

should allow partial communication among the agents, that is, the size of a group should

be greater than one but smaller than the number of agents.

The results derived in the previous section allow us to find the optimal mechanism for

the decision maker. Since G0 has at least four agents (i.e. there are five or more players),

rational parameters and full support, the set of outcomes that are induced by sequential

equilibria in cheap talk extensions of G0 coincides with the set of communication equilibria

of G0. So, we proceed in two steps. We first compute the communication equilibrium that

maximizes the decision maker’s expected payoff. This simply requires maximization of the
13To give an example of what we mean by imperfect commitment, suppose that the principal chooses a

cheap talk extension that contains an information set in which she has to send either message 0 or message
1. Full commitment to a specific behavioral strategy is not possible, but when the information set is reached
the principal has only two options: she can say either 0 or 1 (she cannot send any other message or be
silent).
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expression (4) subject to the informational incentive constraint (5) and to the following

constraint: P
t∈T

P
sI∈SI

p (t) q (sI |t) (uI (t, sI)− uI (t, δI (sI))) > 0, ∀δI : SI → SI . (6)

Constraint (6) is an obedience constraint, that provides the principal with the incentive

to follow the mediator’s recommendation. Since G0 has rational parameters, the maximiza-

tion problem above admits a solution with rational components, which we denote by q∗.

Moreover, the communication equilibrium q∗ is regular, since G0 has full support.

The second step of our procedure concerns the implementation of q∗. To do this, the

decision maker selects the cheap talk extension G0 (q∗) and recommends14 the sequential

equilibrium Φ (q∗) (see Appendix B).

5 Proof of Theorem 1

In this section we prove that when a normal-form game Γ has five or more players, any

rational correlated equilibrium can be implemented. Given a rational correlated equilibrium

r of Γ, we construct a finite plain cheap talk extension Γ̄ (r), and a sequential equilibrium

Ψ (r) of Γ̄ (r) that induces the distribution r on S.

We first illustrate how the players can generate the probability distribution r. Since

r is rational, there exists a positive integer m̃ (greater than one) and, for every s in S,

a non-negative integer m̃s such that r (s) = m̃s

m̃+1
. Define X = {1, ..., m̃, m̃+ 1} , and let

{Xs}s∈S be a partition of X such that |Xs| = m̃s for every s in S. For i = 1, ..., I, let the

projection pri : S → Si be defined by pri (s) = si if s = (s1, ..., si, ..., sI) . We extend each

projection pri to X as follows:

pri (x) = si if x ∈ Xs and pri (s) = si.

14The cheap talk extension G0 (q∗) admits multiple equilibria. Similarly to the case of full commitment,
we assume that the decision maker can induce all agents to play the equilibrium she prefers.
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It is easy to verify that if an element y ∈ X is randomly selected according to the

uniform distribution, and if every player Pi chooses the action pri (y) , then every action

profile s in S is chosen with probability r (s) .

Let Λ (X) denote the set of permutations on X, and let m + 1 denote the cardinality

of Λ (X) . The sets X, Λ (X) and the projections pr1, ..., prI are common knowledge among

the players.

It is useful to divide the game Γ̄ (r) into several steps. For each step, we first illustrate

the game and then present equilibrium behavioral strategies (hereafter simply called equi-

librium strategies) and equilibrium beliefs. Then, we prove that the assessment Ψ (r) that

we propose is sequentially rational. The proof that Ψ (r) is also consistent is relegated to

Appendix A.

Step 0. Random choices.

In this step, which consists of several substeps, players “jointly select” random permu-

tations on X and a random element of X.We will explain later how the joint selections are

made. We first list the random choices that players make. P1, P2, P3, P4, P6, ..., PI jointly

select permutation σ.15 P2, P3, P4, P5, P6, ..., PI choose two permutations, τ and β41. P2,

P3, P4, P5 choose permutation β31. P1, P3, P4, P5, P6, ..., PI select two permutations, ϕ

and β42. P1, P3, P4, P5 choose permutation β32. P1, P2, P5 select an element x ∈ X. Finally,
for i = 1, ..., 4, players in the set {P1, P2, P3, P4} \ {Pi} choose permutation αi.

We let Ii denote the set of random choices known to Pi at the end of Step 0. It is

convenient to summarize Step 0 in Table 4, where for every player Pi, we list the elements

of the set Ii.

There is a separate substep for each random choice. Every choice is made according to

the uniform distribution over the underlying probability space, and every choice is made

independently of all others.
15The proof we present is valid both for the cases I = 5 and I > 5. Clearly, any reference to player Pk,

with k > 5, is relevant only if there are more than five players.
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Player Random Choices
P1 σ ϕ x α2 α3 α4 β32 β42
P2 σ τ x α1 α3 α4 β31 β41
P3 σ τ ϕ α1 α2 α4 β31 β41 β32 β42
P4 σ τ ϕ α1 α2 α3 β31 β41 β32 β42
P5 τ ϕ x β31 β41 β32 β42
P6 σ τ ϕ β41 β42
...

...
...

...
...

...
PI σ τ ϕ β41 β42

Table 4: Random Choices of Step 0

We now describe how the players jointly select a random permutation, or an element

of X. Consider, for example, the substep in which P1, P2, P3, P4, P6, ..., PI have to select

the random permutation σ. The two players with the lowest indices (P1 and P2 in this

case) make two announcements simultaneously. Specifically, Pi, i = 1, 2, announces a

permutation σi ∈ Λ (X) to players in the set {P1, P2, P3, P4, P6, ..., PI} \ {Pi} . The chosen
permutation will be σ = σ1σ2 (notice that σ is common knowledge among P1, P2, P3,

P4, P6, ..., PI). In equilibrium, Pi selects a permutation σi at random, according to the

uniform distribution on Λ (X) . This implies that the random permutation σ is uniformly

distributed.

A similar procedure is used to make the remaining random choices.16 In every substep,

the two players who have to make an announcement choose their messages randomly,

according to the uniform distribution on the underlying probability space, independently

of the messages that they have already sent or received.

Equilibrium beliefs are very simple. At the end of Step 0, a player either knows the

realization of a given random variable, or believes that the random variable is uniformly

distributed.
16To select the random element x, P1 and P2 simultaneously announce x1 ∈ X and x2 ∈ X, respectively.

The chosen element is x = x1 + x2, where + is mod (m̃+ 1) .
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Sketch of Γ̄ (r).

To provide the reader with a better understanding of our construction, let us outline the

rest of the game Γ̄ (r) before presenting the next steps. The state y := στϕ (x) determines

the action profile of the original game Γ that players choose in the action phase (see below).

In equilibrium, y has a uniform distribution on X since σ, τ , ϕ and x are uniformly

distributed. Notice that no player knows the realization of y at the end of Step 0. This

is crucial, since a player who is informed about y knows the actions of the game Γ that

her opponents play when communication is over. However, Step i, i = 1, ..., 4, is carefully

designed to make Pi learn αi (y) and nothing more (P5 learns α2 (y) in Step 2, and for

k > 5, Pk learns α4 (y) in Step 4). The permutations α1, ...,α4 prevent a player from

learning the state y. In Step 5 Pi, i = 1, ..., 4, learns the function priα−1i (P5 learns pr5α−12 ,

and for k > 5, Pk learns prkα−14 ). So player Pi learns her action pri (y). Since the action

profile (pr1 (y) , ..., prI (y)) is chosen according to the correlated equilibrium distribution r,

Pi has exactly the same information as in the case in which she receives recommendation

pri (y) from a mediator who implements r. In the sixth and last step, every player Pi chooses

action pri (y). Notice that pri (y) is optimal for Pi given her information and her opponents’

actions.

After Step 0, the game Γ̄ (r) proceeds as follows.

Step 1. P2, P3 and P4 send P1 the permutation α1στ .

Player Pi, i = 2, 3, 4, sends P1 a permutation on X. The three senders report their

messages simultaneously. Let a be a permutation on X. The meaning of message a in Step

1 is “The realization of the random permutation α1στ is a”. To simplify the presentation we

say that in Step 1, P2, P3 and P4 send P1 the permutation α1στ (we adopt this terminology

to describe the next steps).

The equilibrium strategies prescribe that each sender reports the realization of α1στ to

P1. For example, if the realizations of the random permutations α1, σ and τ are cα1, bσ and
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bτ , respectively, in equilibrium P2, P3 and P4 send P1 the message cα1bσbτ .17
Before presenting equilibrium beliefs, let us clarify our terminology. As we will see, in

Steps 1-5 of the game Γ̄ (r) , each message is sent by three players to a fourth one. We

will often consider the message sent either by the majority of the senders, if a majority

exists, or by the first sender in the description of the step (P2 in Step 1), if the senders

report three different messages. For expositional reasons, we refer to this message simply

as the message sent by the majority of the senders. Moreover, we occasionally refer to the

message sent by the majority as the message that the receiver “learns”. Finally, we let wj

denote a generic triple of messages sent in Step j, and we use zij to denote the message that

Pi sends in Step j.

We are now ready to describe equilibrium beliefs. At the end of Step 1, P1 assigns

probability one to the event that the realization of α1στ coincides with the message sent by

the majority of the senders (we denote this message by α1στ). For any triple of messages

w1 we have:

Pr (α1στ = α1στ |w1,I1) = 1.

This result is trivial if the three senders follow their equilibrium strategies and report

the same message. To obtain the same result off the equilibrium path, in Appendix A we

construct a sequence of completely mixed strategies that satisfies two requirements. First,

P2 is less likely to deviate than P3 and P4. Second, the probability that any two senders

deviate converges to zero faster than the probability that only the third sender deviates.

These two assumptions guarantee that in the limit (i.e. as the probability of deviating

converges to zero) the majority of the senders report the true message with probability

one.

In Appendix A, we also show that, conditional on P1’s information, both α1 and τ

are uniformly distributed over Λ (X) . Intuitively, knowing the realization of α1στ does

not make any realization of τ more likely than the others. Every realization of τ is made
17We adopt the following notation: o for a random variable and bo for its realization.
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compatible with the realization of α1στ by one (and only one) realization of α1. Since α1 and

τ are independent and uniformly distributed, the marginal distribution of τ , given α1στ , is

uniform. This, in turn, implies that the conditional distribution of the state y = στϕ (x)

is uniform over X. In other words, P1 does not learn anything new about y.

Our equilibrium beliefs do not say anything about β31 and β41, two random permuta-

tions unknown to P1. To keep notation simple, we adopt the convention that the equilibrium

beliefs specified in Step 0 hold when we are silent about a random variable. Thus, condi-

tionally on P1’s information, both β31 and β41 have a uniform distribution over Λ (X) .

Notice that P1 knows (from Step 0) the permutation ϕ and the element x. On the

equilibrium path, she receives the realization of the permutation α1στ (from all senders)

and therefore learns α1στϕ (x) = α1 (y) .

Step 2.

In this step, P5 and P2 learn α2 (y) . Since P2 does not know the permutation ϕ, she

receives the permutation α2στϕ. This message should be sent by three senders. However,

only two players, P3 and P4, know the realizations of σ, τ and ϕ. We divide Step 2 into

two substeps: 2.1 and 2.2. In the first substep, P5 (who knows τ and ϕ) receives the

permutation α2σ from P1, P3 and P4. Notice that P5 does not know α2 and therefore does

not learn anything about σ. In the second substep, P3, P4 and P5 send the permutation

α2στϕ to P2.

Substep 2.1. P1, P3 and P4 send P5 the permutation α2σ.

In equilibrium, P1, P3 and P4 report the realization of α2σ to P5. This means that P1, P3

and P4 send the true message in any information set of Substep 2.1. As far as equilibrium

beliefs are concerned, they are very similar to those derived in Step 1. Specifically, P5

assigns probability one to the event that the majority of the senders sent the true message.

We let α2σ denote the permutation sent by the majority. For any triple of messages w21

received by P5, we have:

Pr (α2σ = α2σ|w21,I5) = 1.
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Moreover, conditional on the information of P5 in Substep 2.1, both α2 and σ have a

uniform distribution over Λ (X).

P5 knows the random permutations τ and ϕ, and the random element x. Since in

equilibrium P5 learns α2σ, she can compute α2στϕ (x) = α2 (y) .

Substep 2.2. P3, P4 and P5 send P2 the permutation α2στϕ.

The equilibrium strategies prescribe that P3 and P4 report the realization of α2στϕ to

P2. In equilibrium, P5 sends P2 the permutation α2στϕ.

As usual, we denote the message sent by the majority of the senders to P2 by α2στϕ.

In Substep 2.2, P2 knows z21 , the message that she sent in Step 1. For any message z
2
1 and

for any triple of messages w22 received in Substep 2.2, P2’s beliefs are given by:18

Pr
¡
α2στϕ = α2στϕ,α2σ = α2σ|w22, z21 ,I2

¢
= 1.

With probability one, the realization of the random permutation α2στϕ is the message

sent by the majority of the senders. Further, independently of the triple of messages

received, P2 assigns probability one to the event that P5 learnt the realization of α2σ in

Substep 2.1. In Appendix A, we also show that, conditional on P2’s information, both ϕ

and α2 are uniformly distributed over Λ (X) . This implies that the conditional distribution

of the random state y is uniform over X.

P2 knows the realization of x, so she can compute α2στϕ (x) . In equilibrium, α2στϕ =

α2στϕ, i.e. P2 learns the realization of α2στϕ. Thus, at the end of Step 2, P2 knows

α2στϕ (x) = α2 (y) .

Step 3.

This step is designed to make P3 learn the random element α3 (y) . Since no player

knows y, we need some preliminary steps in which the senders of the message to P3 learn
18Note that from P5’s point of view, α2σ is a degenerate random permutation (P5 knows the message

that the majority of her senders report in Substep 2.1). In Substep 2.2, P2 does not know the realization
of α2σ. Technically speaking, α2σ in Substep 2.1 is a different object from α2σ in Substep 2.2. However,
since the meaning of α2σ in every step is clear and no ambiguity arises, we decide not to introduce further
notation. We follow this convention in the rest of the section.
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the necessary information. Specifically, in Substep 3.1, P5 receives the permutation α3σ

from P1, P2 and P4. Notice that P5 does not know α3 and so she does not learn anything

new about σ. In Substep 3.2, P2, P4 and P5 send player P1 the permutation β31α3στ . The

permutation β31 is unknown to P1 and is used to prevent her from learning the realization

of τ . Then, in Substep 3.3, P2 receives the permutation β32β31α3στϕ from P1, P4 and

P5. The fact that P2 does not know β32 implies that she does not get any information

about the unknown permutation ϕ. Finally, in Substep 3.4, P1, P2 and P5 send the element

β32β31α3στϕ (x) to P3. Notice that P3 knows both β32 and β31. Therefore, she can compute

β−131 β
−1
32 (β32β31α3στϕ (x)) = α3 (y) .

Substep 3.1. P1, P2 and P4 send P5 the permutation α3σ.

The equilibrium strategies prescribe that the three senders report the realization of α3σ.

The message sent by the majority is denoted by α3σ. At the end of Substep 3.1, P5 knows

the random choices in I5, the message that she sent in Substep 2.2, z522, and the triples of

messages received in Substeps 2.1 and 3.1, w21 and w31. Given this information, P5’s beliefs

are given by:

Pr
¡
α2σ = α2σ,α3σ = α3σ|w21, w31, z522,I5

¢
= 1.

According to these beliefs, the majority of the senders report the true message in Substep

3.1. Further, the additional information that P5 obtains in Substep 3.1 does not modify

her beliefs from Substep 2.1. In Appendix A, we also demonstrate that in this step, P5

does not learn anything about the state y. The conditional distribution of σ is uniform.

Substep 3.2. P2, P4 and P5 send P1 the permutation β31α3στ .

In equilibrium, P2 and P4 send the realization of β31α3στ . P5 sends the permutation

β31α3στ . We let β31α3στ denote the message sent by the majority of the senders to P1.

Equilibrium beliefs are given by:

Pr
¡
β31α3στ = β31α3στ ,α3σ = α3σ,α1στ = α1στ |w32, w1, z131, z121,I1

¢
= 1.

First, with probability one, the message sent by the majority is the realization of the
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random permutation β31α3στ . Second, P5 learnt the realization of α3σ in Substep 3.1 with

probability one. Moreover, the additional information that P1 gets in Substep 3.2 does not

modify her beliefs from Step 1. Finally, the proof in Appendix A shows that P1 does not

update her beliefs about the marginal distributions of τ , α1 and β31 (conditional on P1’s

information, these random permutations are uniformly distributed).

Substep 3.3. P4, P1 and P5 send P2 the permutation β32β31α3στϕ.

The equilibrium strategy of P4 is to send P2 the realization of the random permutation

β32β31α3στϕ (notice that P4 knows this permutation). Moreover, in equilibrium, P1 reports

the realization of β32β31α3στϕ and P5 sends the realization of β32β31α3στϕ.

Equilibrium beliefs are similar to those described in Substep 3.2. Specifically, P2 assigns

probability one to the event that the realization of the permutation β32β31α3στϕ coincides

with β32β31α3στϕ, the message sent by the majority of the senders. Moreover, with prob-

ability one, both P5 and P1 learnt the truth in Substeps 3.1 and 3.2. Finally, equilibrium

beliefs derived in Substep 2.2 still hold. Formally, we have:

Pr(β32β31α3στϕ = β32β31α3στϕ,β31α3στ = β31α3στ ,α3σ = α3σ,
α2στϕ = α2στϕ,α2σ = α2σ|w33, w22, z232, z231, z21 ,I2) = 1.

The proof that the assessment Ψ (r) is consistent also shows that P2 does not obtain

any information about the state y. The conditional distribution of the permutation ϕ is

uniform.

Substep 3.4. P1, P2 and P5 send P3 the element β32β31α3στϕ (x) .

P1, P2 and P5 simultaneously send P1 an element of the set X. In equilibrium, P1 sends

the message β32β31α3στϕ (x) , P2 reports the message β32β31α3στϕ (x) and P5 chooses the

element β32β31α3στϕ (x) .

The message sent by the majority of the senders is denoted by β32β31α3στϕ (x). P3’s

beliefs are given by:

Pr(β32β31α3στϕ (x) = β32β31α3στϕ (x), β32β31α3στϕ = β32β31α3στϕ,
β31α3στ = β31α3στ ,α3σ = α3σ|w34, z31, z321, z322,I3) = 1.
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According to equilibrium beliefs, the message sent by the majority coincides with the

realization of β32β31α3στϕ (x). Further, each sender knows the realization of the random

permutation β32β31α3στϕ. In Appendix A, we also show that, conditional on the infor-

mation that P3 has in Substep 3.4, α3 and x are uniformly distributed on the underlying

probability spaces. This, in turn, implies that the conditional distribution of the state y is

uniform (in other words, P3 learns α3 (y) but nothing more).

Step 4.

We provide a brief description of this step, since it is almost identical to the previous

one. The purpose of Step 4 is to let P4 (and P6, ...PI , if I > 5) learn the realization of the

random element α4 (y) .

In Substep 4.1, P1, P2 and P3 send P5 the permutation α4σ. In Substep 4.2, P1 receives

the permutation β41α4στ from P2, P3 and P5. Then, in Substep 4.3, P3, P1 and P5 report

the permutation β42β41α4στϕ to P2. In Substep 4.4, P1, P2 and P5 send P4 the element

β42β41α4στϕ (x) . P4 knows the permutations β41 and β42, and so she learns α4 (y) . As

usual, β42β41α4στϕ (x) denotes the message sent by the majority of the senders to P4 in

Substep 4.4.

Step 4 ends here if there are exactly five players, otherwise it continues as follows. Con-

sider k = 6, ..., I. In Substep 4.(k−1), P1, P2 and P5 send Pk the element β42β41α4στϕ (x) .19

The message sent by the majority of the senders to Pk is denoted by β42β41α4στϕ (x)
k
.

The equilibrium strategies of Step 4 are identical to the equilibrium strategies specified

in Step 3. Every sender behaves sincerely, and uses the message sent by the majority of

her senders when she does not know a random permutation.

According to equilibrium beliefs, the realization of the permutation that a player receives

coincides with the message sent by the majority. Each receiver assigns probability one to

the event that all her senders learnt the exact realization of the permutation that they

report. Moreover, the information that a player obtains in Step 4 does not modify her
19Then Pk can use the permutations β41 and β42 to compute α4 (y) .
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former beliefs. Finally, the conditional distribution of each random variable is uniform on

the underlying probability space.

Step 5.

At this point of the game, every player knows an element of the set X. However, this

element alone does not reveal any information about the state y. In this step every player

Pi, i = 1, ..., I, learns which action in the set Si corresponds to y. We divide Step 5 into

the following substeps.

Substep 5.1. P2, P3 and P4 send P1 the function pr1α−11 .

In this step, P2, P3 and P4 simultaneously send three messages to P1. The (finite) set

of feasible messages is denoted by R1 and contains any mapping from X to S1 that can

be generated by applying the function pr1 to some permutation on X (i.e. a message is

feasible if and only if it can be expressed as pr1ς, where ς is a permutation on X).

The equilibrium strategies prescribe that each sender sends P1 the function pr1α−11 . Note

that all senders know the realization of the random permutation α1, and the projection pr1

is common knowledge among the players.

As usual, according to equilibrium beliefs, the message sent by the majority (which we

denote by pr1α−11 ) coincides with the realization of the random function pr1α
−1
1 . Moreover,

P1 does not modify her former beliefs. Formally, let M1 denote the sequence of messages

sent and received by P1 in Steps 1-5.1. We have:

Pr(pr1α
−1
1 = pr1α

−1
1 ,β41α4στ = β41α4στ ,α4σ = α4σ,

β31α3στ = β31α3στ ,α3σ = α3σ,α1στ = α1στ |M1,I1) = 1.

Note that not all permutations on X are compatible20 with the message pr1α−11 . Thus,

at the end of this step, P1 assigns probability zero to some realizations of α1. This, combined

with the fact that P1 knows the realization of α1στ and σ, implies that some realizations

of the random permutation τ have zero probability. Therefore, the conditional distribution

20A permutation ς on X is compatible with message pr1α
−1
1 if pr1ς−1 = pr1α−11 .
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of the state y cannot be uniform over X anymore. We will come back to this point when

we show that the assessment Ψ (r) is sequentially rational.

The rest of Step 5 is similar to Substep 5.1. Specifically, consider i = 2, 3, 4. In Substep

5.i, players in the set {P1, P2, P3, P4} \ {Pi} send Pi the function priα−1i . In Substep 5.5, P1,
P3 and P4 send P5 the function pr5α−12 . If there are more than five players, P1, P2 and P3

send Pk the function prkα−14 in Substep 5.k (where k = 6, ..., I). Sets of feasible messages,

equilibrium strategies and equilibrium beliefs are similar to those described in Substep 5.1.

Step 6. The game Γ is played.

In Step 6 all players simultaneously choose an action and then the game Γ̄ (r) ends. Pi’s

set of (pure) strategies in Step 6 is Si, her set of actions in the original game.

Equilibrium strategies are formally described in Table 5. Roughly speaking, to choose

an action, a player applies the projection function learned in Step 5 to the element of X

computed before Step 5. Consider, for example, P1. In Step 1, she receives the permuta-

tion α1στ from the majority of the senders. P1 knows (from Step 0) the realizations of ϕ

and x and computes the element α1στϕ (x) . In Substep 5.1, the majority of the senders

send P1 the function pr1α−11 . Her equilibrium strategy in Step 6 is to choose the action

pr1α
−1
1 α1στϕ (x) . The other players adopt similar strategies (see Table 5). Notice that the

equilibrium strategy of a player in Step 6 does not depend on the messages that she sends

in Steps 1-5.

Sequential rationality.

We now demonstrate that the assessment Ψ (r) is sequentially rational. In particular, we

restrict attention to player P1 and show that, given her beliefs, she does not have profitable

deviations. Our proof can be easily applied to any other player. Given the so-called “one-

shot-deviation principle”, we only need to verify that deviations in a single information set

are not profitable for P1.
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Player Equilibrium strategies
P1 pr1α

−1
1 α1στϕ (x)

P2 pr2α
−1
2 α2στϕ (x)

P3 pr3α
−1
3 β−131 β

−1
32 β32β31α3στϕ (x)

P4 pr4α
−1
4 β−141 β

−1
42 β42β41α4στϕ (x)

P5 pr5α
−1
2 α2στϕ (x)

P6 pr6α
−1
4 β−141 β

−1
42 β42β41α4στϕ (x)

6

...

PI prIα
−1
4 β−141 β

−1
42 β42β41α4στϕ (x)

I

Table 5: Equilibrium Strategies in Step 6

Consider an information set in Step 6. Given P1’s beliefs, we may say that she knows21

the realization of α1στ and the realizations of the random variables in the set eI1, where
eI1 = ©σ,ϕ, x,α2,α3,α4,β32,β42,β31α3στ , β41α4στ , pr1α−11 ª .

Clearly, this implies that P1 knows the realization of pr1 (y) , which we denote by s1.

Notice that y is independent of eI1, since the random permutation τ is independent of eI1.
In any information set of Step 6, P1 assigns probability one to the event that every

player Pk, k = 2, ..., I, chooses the action prk (y). We now compute the probability that

P1’s opponents play the action profile (s2, ..., sI) given her information. We have:

Pr
³
pr2 (y) = s2, ..., prI (y) = sI |pr1 (y) = s1,eI1,α1στ´ =

Pr(pr1(y)=s1,pr2(y)=s2,...,prI(y)=sI ,eI1,α1στ)
Pr(pr1(y)=s1,eI1,α1στ) =

Pr(pr1(y)=s1,pr2(y)=s2,...,prI(y)=sI ,eI1)
Pr(pr1(y)=s1,eI1) =

Pr(pr1(y)=s1,pr2(y)=s2,...,prI(y)=sI)
Pr(pr1(y)=s1)

= r (s2, ..., sI |s1) ,

(7)

where r is the correlated equilibrium distribution that we want to implement. The third

equality follows from y being independent of eI1, and the last equality comes from the

fact that y is uniformly distributed over X. To explain the second equality, we need to
21In fact, P1 assigns probability one to the event that the messages sent by the majority coincide with

the realizations of the corresponding permutations.

39



introduce additional notation. Let bϕ, bx and \pr1α−11 denote the realizations of ϕ, x and

pr1α
−1
1 respectively. We say that the permutation [α1στ on X is compatible with eI1 and

s1 if \pr1α−11 [α1στbϕ (bx) = s1. We let Q denote the number of realizations of α1στ that are

compatible with eI1 and s1. Then it is easy to show that for any compatible permutation
[α1στ , the following holds:

Pr
³
pr1 (y) = s1, pr2 (y) = s2, ..., prI (y) = sI ,eI1,α1στ = [α1στ

´
=

1
Q
Pr
³
pr1 (y) = s1, pr2 (y) = s2, ..., prI (y) = sI ,eI1´ ,

and

Pr
³
pr1 (y) = s1,eI1,α1στ = [α1στ

´
=
1

Q
Pr
³
pr1 (y) = s1,eI1´ .

The two equalities above show that all realizations of α1στ compatible with eI1 and s1
are equally likely.

According to equation (7), P1 has the same information as in the case where she receives

recommendation s1 from a reliable mediator who implements the correlated equilibrium

r. Thus, the action s1 maximizes P1’s expected payoff. In other words, the equilibrium

strategy of Step 6 is optimal for player P1.

Consider now any P1’s information set in Steps 1-5. Remember that P1 assigns proba-

bility one to the event that all senders know the realization of the permutation that they

report. Since every receiver follows the message sent by the majority of the senders, and

since P1’s action in Step 6 does not depend on her messages in Steps 1-5, we conclude that

a deviation is not profitable.

Finally, we examine Step 0. Consider, for example, the substep in which P1 and P2 send

two messages (σ1 and σ2, respectively) to determine the permutation σ = σ1σ2. Since σ2 is

uniformly distributed, the permutation σ is independent of σ1 and uniformly distributed.

Any strategy is optimal in this substep for P1, including the uniform randomization over

the set Λ (X) . Clearly, a similar argument can be used to show that P1 does not have

profitable deviations in any other substep of Step 0. We conclude that the assessment

Ψ (r) is sequentially rational.
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6 Conclusion

In this paper we characterize the outcomes of static games that sequentially rational players

can implement with direct communication. We show that for a large class of games there

is no difference between mediated and unmediated communication, in the sense that both

forms of communication allow players to implement the same outcomes. Specifically, if

a game has five or more players, rational parameters and full support, then the set of

outcomes that can be implemented with unmediated communication coincides with the set

of communication equilibria.

We use sequential equilibrium to analyze cheap talk extensions of a static game. How-

ever, our results provide a complete characterization of the effects of unmediated communi-

cation even for the case in which a solution concept weaker than sequential equilibrium, but

stronger than Nash equilibrium (such as subgame-perfect equilibrium or perfect Bayesian

equilibrium), is considered. In fact, by using a solution concept weaker than sequential

equilibrium, one can always implement all the outcomes than we implement in this paper.

If the solution concept is stronger than Nash equilibrium, only communication equilibria

can be implemented. Thus, if a game satisfies our assumptions (five or more players, ratio-

nal parameters and full support), the set of communication equilibria coincides with the set

of outcomes that are induced by perfect Bayesian or subgame-perfect equilibria of cheap

talk extensions with unmediated communication.

Future research is needed to obtain a complete characterization of the effects of direct

communication in games that do not satisfy our assumptions. Moreover, we restrict our

attention to static games. For extensive-form games, two important articles deal with me-

diated communication. Forges (1986) extends the notion of correlated and communication

equilibria to multistage games. Myerson (1986) introduces a sequential rationality criterion

in the context of multistage games with mediated communication. An interesting extension

of this paper would be the analysis of unmediated communication in dynamic games.
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Appendix A: Consistency of the Assessment Ψ (r)

In this appendix we show that the assessment Ψ (r) presented in Section 5 is consistent.

We construct a sequence of completely mixed strategies that converges to the equilibrium

strategies. We compute beliefs along the sequence and show that, in the limit, they coincide

with equilibrium beliefs. We proceed as in Section 5 and divide our analysis into different

steps.

As far as Step 0 is concerned, we use the equilibrium strategies of Step 0 to construct a

(constant) sequence of completely mixed strategies (in Step 0 all strategies are played with

positive probability). This implies that, along the sequence, each random variable chosen

in Step 0 has a uniform distribution on the underlying probability space. The assessment

Ψ (r) trivially satisfies consistency in Step 0.22

Let {εn}∞n=1 be a sequence of positive numbers in the unit interval, converging to zero.
Step 1. P2, P3 and P4 send P1 the permutation α1στ .

For any integer n, let ε1,n = ε3n. We assume that in Step 1, P2 follows her equilibrium

strategy (and sends P1 the realization of α1στ) with probability 1 − ε31,n. To simplify the

notation, we drop the subscript n and say that P2 reports the truth with probability 1−ε31.

P3 and P4 send the true message with probability 1 − ε21. All messages different from the

realization of α1στ are equally likely. Suppose that the realization of the permutation α1στ

is cα1bσbτ . Along the sequences of completely mixed strategies, P2 sends the message cα1bσbτ
with probability 1−ε31 and any other message in Λ (X) with probability

ε31
m
. P3 and P4 send

the message cα1bσbτ with probability 1− ε21, and any other message with probability
ε21
m
. We

refer to these completely mixed strategies by saying that P2 trembles from her equilibrium

strategy with probability ε31 and P3 and P4 tremble from their equilibrium strategies with

probability ε21. Trembles are independent across information sets.

We list the messages that a player receives in the order in which the senders appear in
22Remember that at the end of Step 0, a player either knows the realization of a random variable or

believes that the random variable is uniformly distributed.
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the description of the step. For example, suppose that a, b and c are three permutations

on X. In Step 1, the triple (abc) means that the messages sent by P2, P3 and P4 are a, b

and c, respectively. At the end of Step 1, P1 faces one of the following five situations:

• (aaa) , which means that P2, P3 and P4 sent the same message, a;

• (aab) , (aba) and (baa) : in these three situations two players sent the same message,
a, and one player sent a different message, b;

• (abc) : the senders reported three different messages.

We let M = {(aaa) , (aab) , (aba) , (baa) , (abc)} denote the set of triples of messages in
which a is the message sent by the majority of the senders. Suppose that the realization of

σ is bσ (note that P1 knows bσ). Let bτ 1, ...,bτm+1 be m+1 different permutations on X. Then
for every l = 1, ...,m + 1, there exists a permutation cα1l in Λ (X) such that cα1lbσbτ l = a.

Moreover, l 6= l0 implies cα1l 6= cα1l0 . We let Prn ³α1 =cα1l, τ = bτ l|w1,σ = bσ´ denote the
probability that α1 = cα1l and τ = bτ l given that P1 receives the triple of messages w1, the
realization of σ is bσ and the trembles of P2, P3 and P4 are defined by ε1,n.

We have to show that it satisfies consistency to assign probability one to the event that

the message sent by the majority of the senders to P1 is the realization of α1στ . Further,

conditional on P1’s information in Step 1, both α1 and τ are uniformly distributed over

Λ (X) . To prove our claims it is enough to show that:

lim
n→∞

Prn
³
α1 =cα1l, τ = bτ l|w1,σ = bσ´ = 1

m+ 1
,

for any triple of messages w1 inM, and every l = 1, ...,m+1.23 So, let us first assume that
23Note that P1 changes her beliefs about the joint distribution of α1 and τ . After Step 0, P1 believes that

the pair of random permutations (α1, τ) is uniformly distributed on Λ (X)×Λ (X) . On the other hand, at
the end of Step 1, P1 assigns probability 1

m+1 only to the pairs of permutations
³cα1l,bτ l´ , l = 1, ...,m+1.

However, this does not modify P1’s beliefs about the marginal distribution of τ (which is uniform over
Λ (X)).
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P1 receives the triple of messages (aaa) (this represents the situation that P5 faces on the

equilibrium path). By applying Bayes’ rule, we obtain:

Prn
³
α1 =cα1l, τ = bτ l| (aaa) ,σ = bσ´ = (1− ε31) (1− ε21)

2

(m+ 1)
h
(1− ε31) (1− ε21)

2
+m

ε71
m3

i . (8)

Suppose now that P1 observes (aab) or (aba) . In both cases we have:

Prn
³
α1 =cα1l, τ = bτ l| (aab) ,σ = bσ´ = Prn ³α1 =cα1l, τ = bτ l| (aba) ,σ = bσ´

=
(1−ε31)(1−ε21)

ε21
m

(m+1)

·
(1−ε31)(1−ε21)

ε21
m
+(1−ε21)

ε51
m2
+(m−1) ε

7
1

m3

¸ . (9)

When P1 observes the messages (baa) her beliefs are given by:

Prn
³
α1 =cα1l, τ = bτ l| (baa) ,σ = bσ´ = (1− ε21)

2 ε31
m

(m+ 1)
h
(1− ε21)

2 ε31
m
+ (1− ε31)

ε41
m2 + (m− 1) ε71

m3

i .
(10)

Finally, for the case (abc) , we have:

Prn
³
α1 =cα1l, τ = bτ l| (abc) ,σ = bσ´ = (1− ε31)

ε41
m

(m+ 1)
h
(1− ε31)

ε41
m
+ 2 (1− ε21)

ε51
m2 + (m− 2) ε71

m3

i .
(11)

As n goes to infinity, the expressions in equations (8)-(11) converge to 1
m+1

.

To ease the presentation in the next steps, we introduce some notation. Consider a

triple of messages w in the set M . We let g (ε,m;w) denote the value of the numerator of

the expression above corresponding to the triple w, when ε1 is equal to ε and m is equal

to m. For example, g (ε,m; (baa)) is equal to (1− ε2)
2 ε3

m
. Further, we let v (ε,m;w) denote

the value of the denominator of the expression corresponding to the triple w when ε1 is

equal to ε and m is equal to m. Note that for any triple of messages w in M, we have

limε→0
g(ε,m;w)
v(ε,m;w)

= 1
m+1

.
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Step 2.

Substep 2.1. P1, P3 and P4 send P5 the permutation α2σ.

We assume that along the sequence of completely mixed strategies, P1 trembles from

her equilibrium strategy with probability ε31 (that is, P1 sends the realization of α2σ with

probability 1 − ε31 and any other message with probability
ε31
m
). P3 and P4 tremble from

their equilibrium strategies with probability ε21. The proof that the assessmentΨ (r) satisfies

consistency in Substep 2.1 is identical to the proof in Step 1, and is therefore omitted.

Substep 2.2. P3, P4 and P5 send P2 the permutation α2στϕ.

Let ε̃1,n = ε1,n. The probabilities of trembling are ε̃31 for P3 and ε̃21 for P4 and P5.

The senders’ strategies in Step 2 do not depend on z21 , the message sent by P2 in Step

1. Thus P2’s beliefs are not a function of z21.

Suppose that the message sent by the majority of the senders to P2 is a, and the real-

izations of σ and τ are bσ and bτ , respectively (P2 knows these realizations). Let bϕ1, ..., bϕm+1
be m + 1 different permutations on X. Then for every l = 1, ...,m + 1, we can find a per-

mutation cα2l such that cα2lbσbτbϕl = a. Moreover, cα2l 6=cα2l0 if l differs from l0. To prove that

the assessment Ψ (r) satisfies consistency in Substep 2.2, it is enough to show that for any

triple of messages w22 in the set M, and for every l = 1, ...,m + 1, the following equality

holds:

lim
n→∞

Prn
³
α2 =cα2l,ϕ = bϕl,α2σ =cα2lbσ|w22,σ = bσ, τ = bτ´ = 1

m+ 1
. (12)

The probability in equation (12) can be expressed as follows:

Prn
³
α2 =cα2l,ϕ = bϕl,α2σ =cα2lbσ|w22,σ = bσ, τ = bτ´ =

Prn(w22|α2=cα2l,ϕ=bϕl,α2σ=cα2lbσ,σ=bσ,τ=bτ)Prn(α2σ=cα2lbσ|α2=cα2l,σ=bσ)
m+1P

h,j,k=1
Prn(w22|α2=cα2h,ϕ=bϕj ,α2σ=cα2kbσ,σ=bσ,τ=bτ)Prn(α2σ=cα2kbσ|α2=cα2h,σ=bσ) .

(13)

Suppose that the realization of α2 is cα2h, h = 1, ...,m+1. Given the sequences of com-
pletely mixed strategies that we have constructed in Step 0 and Substep 2.1, the probability
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that the message sent by the majority of the senders to P5 coincides with the permutationcα2hbσ (i.e. the probability that P5 learns the true realization of α2σ) is given by:
Prn

³
α2σ =cα2hbσ|α2 =cα2h,σ = bσ´ = 1−ε41µ 1m + 2ε1 − ε31

µ
1 +

1

m

¶¶
:= 1−υ (ε1) . (14)

The probability that P5 learnt some other permutationcα2kbσ, different from the realiza-
tion cα2hbσ is:

Prn
³
α2σ =cα2kbσ|α2 =cα2h,σ = bσ´ = ε41

m

µ
1

m
+ 2ε1 − ε31

µ
1 +

1

m

¶¶
:=

υ (ε1)

m
. (15)

Note that the probability that P5 learnt a wrong state is an infinitesimal of the same

order as ε41
m2 . If P5 did not learn the true realization of α2σ, then at least two senders

deviated from their equilibrium strategies in Substep 2.1. The two most likely players to

deviate are P3 and P4 and the probability that they send a pair of wrong messages is
ε41
m2 .

Substituting equations (14) and (15) into equation (13) yields:

Prn
³
α2 =cα2l,ϕ = bϕl,α2σ =cα2lbσ|w22,σ = bσ, τ = bτ´ =

(1−υ(ε1))g(ε̃1,m;w22)
(1−υ(ε1))v(ε̃1,m;w22)+υ(ε1)

m

P
h 6=k

Prn(w22|α2=cα2h,ϕ=bϕj ,α2σ=cα2kbσ,σ=bσ,τ=bτ) .
It is easy to verify that, for any triple of messages w22, the above probability converges

to 1
m+1

as n goes to infinity.

To give an intuition for this result, let us consider the different situations that P2 can

face in Substep 2.2. First of all, observing the triple (aaa) is consistent with the fact that

all senders in Substeps 2.1 and 2.2 played their equilibrium strategies. Therefore, with

probability one, P5 and P2 received the true realizations of α2σ and α2στϕ, respectively.

We now consider the case where P2 receives the triple (aab) . Although P5’s message

differs from the other two messages, P2 believes that with probability one P5 received the

true realization of α2σ. Suppose that P3 and P4 sent the true message (the probability of
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this event is one in the limit). There are three possible reasons why P5 sent a different

message: (i) P5 received the true realization of α2σ in Substep 2.1, but she deviated in

Substep 2.2. (ii) P5 received a wrong message in Substep 2.1, but followed her equilibrium

strategy in Substep 2.2. (iii) P5 received a wrong message in Substep 2.1, and then deviated.

Note that only one deviation (by P5) is needed for case (i). In case (ii) we need at least

two deviations in Substep 2.1. Finally at least three deviations are required for case (iii).

Since we assume that the probabilities of deviations in Substeps 2.1 and 2.2 are the same,

in the limit we assign probability one to case (i), which requires the fewest deviations.

When P2 receives (aba) , at least one player among P3 and P4 has deviated. A deviation

by P4 from her equilibrium strategy (in Substep 2.2) does not require any other deviation

to justify the triple of messages (aba) (in particular, a deviation by P4 is consistent with the

fact that P5 learnt the true realization of α2σ). On the contrary, a deviation by P3 requires

at least another deviation (either P5 learnt the truth and deviated, or she did not learn

the truth). Again, since deviations occur with arbitrarily small probabilities, we assign

probability one to the event that P4 deviated in Substep 2.2.

We now turn to the triple of messages (baa) . We can justify this triple with a single

deviation by P3 in Substep 2.2. A deviation by P4 requires at least another deviation. It is

true that P3 trembles with probability ε̃31 in Substep 2.2, while P3 trembles with probability

ε̃21, but any other deviation is independent and occurs at least with probability ε̃21 or ε
2
1.

Since ε̃1 is equal to ε1, we conclude that with probability one P3 deviated in Substep 2.2

and P5 learnt the truth in Substep 2.1.

Finally, we consider the case (abc). Note that, independently of what P5 learns in

Substep 2.1, the probability that P2 receives three different messages converges to zero

faster than or at the same rate as ε̃21. Since P3 and P4 have sent different messages, clearly,

at least one of them has deviated from her equilibrium strategy in Substep 2.2 (in the limit

we assign probability one to the event that the deviator is P4, since she is more likely to

tremble than P3). As far as P5 is concerned, it could be the case that she did not learn
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the truth in Substep 2.1, which implies that at least two senders deviated in that substep.

However, it could also be the case that P5 did receive the true message in Substep 2.1,

but then she deviated in Substep 2.2. We assign probability one to the last event, since it

requires only one deviation.

Step 3.

Substep 3.1. P1, P2 and P4 send P5 the permutation α3σ.

We assume that P1 trembles from her equilibrium strategy with probability ε31, and that

P2 and P4 tremble with probability ε21. With this sequence of completely mixed strategies

it is easy to show that, given any triple of messages w31, in the limit, P5 assigns probability

one to the event that the realization of α3σ is the message sent by the majority (see Step 1,

above). This result does not change when we take into account w21, the triple of messages

received by P5 in Substep 2.1, and regarding the permutation α2σ. This follows from the fact

that the random permutations α2,α3 and σ are independent of each other and uniformly

distributed, and trembles are independent across information sets. For the same reason,

in this step, P5 does not update her beliefs from Substep 2.1. These results also imply

that, conditional on P5’s information, the marginal distribution of any of the three random

permutations σ, α2 and α3, is uniform over Λ (X) .

Substep 3.2. P2, P4 and P5 send P1 the permutation β31α3στ .

For any integer n, let ε2,n = ε2n (notice that limn→∞
ε1,n
ε2,n

= 0). P2 trembles from her

equilibrium strategy with probability ε32, and P4 and P5 tremble with probability ε22.

Note that P1’s senders’ strategies do not depend on her message in Substep 2.1. Thus,

P1’s beliefs are independent of z121. However, P1’s beliefs do depend on z
1
31. The message

that P5 sends in Substep 3.2 is a function of the triple of messages that she receives in

Substep 3.1. This triple, in turn, depends on P1’s report, z131.

Let cα31, ...,cα3m+1 be m + 1 different permutations. We let cα31 and bσ denote the re-
alizations of α3 and σ, respectively (cα31 and bσ are known to P1). We also assume that
the message sent by the majority of the senders to P1 is the permutation a. To every
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permutation24 bτ l, l = 1, ...,m + 1, we can assign a different permutation cβ31l such thatcβ31lcα31bσbτ l = a.
We now show that for any triple of messages w32 in the setM, for every l = 1, ...,m+1,

and for every message z131, the following equality holds:

lim
n→∞

Prn
³
β31 = cβ31l, τ = bτ l,α3σ =cα31bσ|w32, z131,σ = bσ,α3 =cα31´ = 1

m+ 1
.

This result, combined with the result of Step 1, and the fact that trembles are inde-

pendent across information sets, and all random choices are independent of each other and

uniformly distributed, implies that the assessment Ψ (r) satisfies consistency in Substep

3.2.

Along the sequence of completely mixed strategies, we have:

Prn
³
β31 = cβ31l, τ = bτ l,α3σ =cα31bσ|w32, z131,σ = bσ,α3 =cα31´ =

Prn
³
w32|β31=dβ31l,τ=bτ l,α3σ=cα31bσ,σ=bσ,α3=cα31´Prn(α3σ=cα31bσ|σ=bσ,α3=cα31,z131)

m+1P
h,j,k=1

Prn
³
w32|β31=dβ31h,τ=bτj ,α3σ=cα3kbσ,σ=bσ,α3=cα31´Prn(α3σ=cα3kbσ|σ=bσ,α3=cα31,z131) .

(16)

At this point we need to specify the action of P1 in Substep 3.1. We first analyze the

case where P1 follows her equilibrium strategy, i.e. z131 =cα31bσ. In this case, the probability
that P5 learns the realization of α3σ is given by:

Prn
¡
α3σ =cα31bσ|σ = bσ,α3 =cα31, z131 =cα31bσ¢ = 1− ε41

m
. (17)

The probability that P5 learns some other realization cα3kbσ, k 6= 1, is:
Prn

³
α3σ =cα3kbσ|σ = bσ,α3 =cα31, z131 =cα31bσ´ = ε41

m2
. (18)

Since P1 is the sender with the lowest probability of trembling, and she reports the truth,

P5 can learn a wrong state cα3kbσ if and only if both P2 and P4 send the message cα3kbσ (the
probability of this event is ε41

m2 ).
24The permutations bτ1, ...,bτm+1 were introduced in Step 1 of this section.
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We substitute equations (17) and (18) into equation (16) and obtain:

Prn
³
β31 = cβ31l, τ = bτ l,α3σ =cα31bσ|w32, z131 =cα31bσ,σ = bσ,α3 =cα31´ =µ

1− ε41
m

¶
g(ε2,m;w32)µ

1− ε41
m

¶
v(ε2,m;w32)+

µ
ε41
m2

¶ P
k 6=1

Prn
³
w32|β31=dβ31h,τ=bτj ,α3σ=cα3kbσ,σ=bσ,α3=cα31´ .

It is easy to verify that, as n goes to infinity, the above probability converges to 1
m+1

.

Consider the event that P5 knows the permutation α3σ, and the message sent by the

majority of the senders to P1 coincides with the permutation β31α3στ . From the analysis

of Substep 2.2 above, we know that this event has probability one if we are ignorant about

P1’s action in Substep 3.1 and the trembles in Substeps 3.1 and 3.2 are equally likely. Now,

since P1 reports the true message to P5, and deviations are less likely in Substep 3.1 than

in Substep 3.2, we conclude that, a fortiori, P5 is informed about the realization of α3σ,

and that the message sent by the majority of the senders is the realization of β31α3στ .

We now assume that in Substep 3.1, P1 deviates from her equilibrium strategy and

sends the message cα3ekσ̄ to P5, for some ek = 2, ...,m+1. In this case, P5 learns the truth if
and only if both P2 and P4 report the realization of α3σ. This event occurs with probability:

Prn
³
α3σ =cα31bσ|σ = bσ,α3 =cα31, z131 =cα3ekbσ´ = ¡1− ε21

¢2
. (19)

The probability that P5 learns the permutation sent by P1 is:

Prn
³
α3σ =cα3ekbσ|σ = bσ,α3 =cα31, z131 =cα3ekbσ´ = ε21

µ
2− ε21

µ
m2 +m− 1

m2

¶¶
. (20)

Clearly, P5 is more likely to learn the permutation sent by P1 than any other permutationcα3kbσ, for k 6= 1,ek. In fact, in the last case we have:
Prn

³
α3σ =cα3kbσ|σ = bσ,α3 =cα31, z131 =cα3ekbσ´ = ε41

m2
. (21)

Substituting equations (19)-(21) into equation (16) yields:
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Prn
³
β31 = cβ31l, τ = bτ l,α3σ =cα31bσ|w32, z131 =cα3ekbσ,σ = bσ,α3 =cα31´ = (1− ε21)

2
g (ε2,m;w32)

B1
,

where:

B1 = (1− ε21)
2
v (ε2,m;w32) + ε21

³
2− ε21

³
m2+m−1

m2

´´
P
h,j

Prn
³
w32|β31 = cβ31h, τ = bτ j,α3σ =cα3ekbσ,σ = bσ,α3 =cα31´+³

ε41
m2

´ P
k 6=1,k̂

Prn
³
w32|β31 = cβ31h, τ = bτ j,α3σ =cα3kbσ,σ = bσ,α3 =cα31´ .

A sufficient condition for the above probability to converge to 1
m+1

is that limn→∞
ε1,n
ε2,n

=

0. This condition is also necessary, at least in the cases where P1 receives the triples (aab)

and (abc) . Suppose, for example, that P2 and P4 report the same message, a, and that

P5 sends a different message. Consider a pair of permutations, cβ31l and bτ l, such thatcβ31lcα31bσbτ l = a. Let us assume that P5’s message is b = cβ31lcα3ekbσbτ l. The following two
situations are both compatible with the triple (aab) . In the first scenario, we assume that

P5 learnt the true permutation cα31bσ, but then deviated in Substep 3.2. The probability
of this tremble is of the same order as ε22. Suppose now that P5 learnt the permutationcα3ekbσ and then she followed her equilibrium strategy. The probability of this event is an

infinitesimal of the same order as ε21. In Substep 3.2, P1 can assign probability zero to the

last event only if we assume that ε1,n converges to zero faster than ε2,n, i.e. only if the

trembles are much less likely in Substep 3.1 than in Substep 3.2.25

Substep 3.3. P4, P1 and P5 send P2 the permutation β32β31α3στϕ.

Let ε3,n = εn for every n, and note that limn→∞
ε1,n
(ε3,n)

2 = 0 and limn→∞
ε2,n
ε3,n

= 0. We

assume that along the sequence of completely mixed strategies, P4 trembles with probability

ε33, and P1 and P5 tremble with probability ε
2
3. Clearly, P2’s beliefs are a function of z

2
31 and

z232, the messages that she sends in Substeps 3.1 and 3.2, respectively. However, her beliefs

do not depend on z21 , the message sent by P2 in Step 1.
25A similar problem arises when P1 receives the triple of messages (abc) .

51



As in the previous step, cα31 and bσ denote the realizations of α3 and σ, respectively.26

In addition to them, P2 knows the realizations of β31 and τ , which we denote by cβ31 andbτ , respectively. Consider the m + 1 permutations bϕ1, ..., bϕm+1 defined in Substep 2.2 of
this section. For every l = 1, ...,m + 1 there exists a different permutation cβ32l such thatcβ32lcβ31cα31bσbτbϕl = a (we assume that a is the message sent by the majority of the senders
to P2).

In order to demonstrate that the equilibrium beliefs of Substep 3.3 are consistent, it is

enough to show that for any pair of messages z231, z
2
32, for any triple of messages w33 in M,

and for every l = 1, ...,m+ 1, the following equality is satisfied:

lim
n→∞

Prn
³cβ32l, bϕl, β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231, z232, cβ31,cα31, bσ,bτ´ = 1

m+ 1
.

The probability above can be expressed as:

Prn
³cβ32l, bϕl,β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231, z232, cβ31,cα31, bσ,bτ´ = e (l, l, 1, 1)

m+1P
h,j,ι,k=1

e (h, j, ι, k)

,

(22)

where:

e (h, j, ι, k) = Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´Prn ³α3σ =cα3kbσ|z132,cα31, bσ´ .

Depending on whether P2 reports the true messages in Substeps 3.1 and 3.2 or not, we

have to consider four different cases. We start by assuming that P2 follows her equilibrium

strategies in both steps, i.e. z231 =cα31bσ and z232 = cβ31cα31bσbτ . We first need to compute the
probability that P5 learns a given permutation. We have:
26We also use the permutations cα31, ...,cα3m+1, introduced in Substep 3.2 of this section.
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Prn
³
α3σ =cα3kbσ|z132 =cα31bσ,cα31, bσ´ = ½ 1− ε51 k = 1

ε51
m

k 6= 1 . (23)

Suppose that P5 learns the truth in Substep 3.1. The probability that P1 learns a given

permutation in Substep 3.2 is:

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα31bσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´ =

(
1− ε41

m
ι = 1

ε41
m2 ι 6= 1 .

(24)

Substituting equations (23) and (24) into equation (22) yields:

Prn
³cβ32l, bϕl,β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231 =cα31bσ, z232 = cβ31cα31bσbτ , cβ31,cα31, bσ,bτ´ =

(1−ε51)
µ
1− ε42

m

¶
g(ε3,m;w33)

B2
,

where:

B2 = (1− ε51)
³
1− ε42

m

´
v (ε3,m;w33)+

(1− ε51)
ε42
m2

P
h,j
ι6=1

Prn
³
w33|cβ32h, bϕj, β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

ε51
m

P
h,j,ι
k 6=1

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα31bσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´ .

Our assumptions regarding the trembles are sufficient to guarantee that the above prob-

ability converges to 1
m+1

as n goes to infinity.

We now consider the case where P2 deviates in Substep 3.1 (she reports the message

z231 =cα3ekbσ, for some ek = 2, ...,m+ 1) and follows her equilibrium strategy in Substep 3.2.

The probability that P5 learns a given permutation in Substep 3.1 is given by:
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Prn
³
α3σ =cα3kbσ|z132 =cα3ekbσ,cα31, bσ´ =


(1− ε31)

³
1− ε21

m

´
k = 1

ε21
m

³
1 + ε1 − ε31

m

´
k = ek

ε31
m

³
1− ε21

m

´
k 6= 1,ek . (25)

We now substitute equations (24) and (25) into equation (22). This gives us:

Prn
³cβ32l, bϕl,β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231 =cα3ekbσ, z232 = cβ31cα31bσbτ , cβ31,cα31, bσ,bτ´ =

(1−ε31)
µ
1− ε21

m

¶µ
1− ε42

m

¶
g(ε3,m;w33)

B3
,

where:

B3 = (1− ε31)
³
1− ε21

m

´³
1− ε42

m

´
v (ε3,m;w33)+

(1− ε31)
³
1− ε21

m

´
ε42
m2

P
h,j
ι6=1

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

ε21
m

³
1 + ε1 − ε31

m

´ P
h,j,ι

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3ekbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα31bσbτ ,α3σ =cα3ekbσ, cβ31,cα31, bσ,bτ´+

ε31
m

³
1− ε21

m

´ P
h,j,ι

k 6=1,ek
Prn

³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα31bσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´ .

Again, given our assumptions, we can conclude that the limit value of the above prob-

ability is 1
m+1

.

We now assume that P2 plays her equilibrium strategy in Substep 3.1 and deviates in

Substep 3.2 (we assume that she sends message z232 = cβ31cα3eιbσbτ , for some eι = 2, ...,m+ 1).
Consider the case where P5 learns the true realization of α3σ (the probability of this event

is given by equation (23)). Then the probability that P1 learns a given permutation in

Substep 3.2 is:
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Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα3eιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´ =

(1− ε22)
2

ι = 1

ε22

³
2− ε22

³
m2+m−1

m2

´´
ι = eι

ε42
m2 ι 6= 1,eι .

(26)

We substitute equations (23) and (26) into equation (22) and obtain:

Prn
³cβ32l, bϕl,β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231 =cα31bσ, z232 = cβ31cα3eιbσbτ , cβ31,cα31, bσ,bτ´ =

(1−ε51)(1−ε22)
2
g(ε3,m;w33)

B4
,

where:

B4 = (1− ε51) (1− ε22)
2
v (ε3,m;w33) + (1− ε51) ε

2
2

³
2− ε22

³
m2+m−1

m2

´´
P
h,j

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3eιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

(1− ε51)
ε42
m2

P
h,j
ι6=1,eι

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

ε51
m

P
h,j,ι
k 6=1

Prn
³
w33|cβ32h, bϕj, β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα3eιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´ .

It is easy to check that our conditions regarding the trembles are sufficient for the above

probability to be 1
m+1

in the limit. We now show that the condition limn→∞
ε2,n
ε3,n

= 0 is also

necessary to obtain the previous result. Suppose that P2 receives message a from P4 and

P5 and message b from P1. Suppose that both P1 and P5 learnt the true realization of the

permutation they received. Then the probability that P2 receives the triple of messages27

(aba) is an infinitesimal of the same order as ε23. Now consider the scenario where P5 learns

the realization of α3σ, but P1 learns the wrong permutation cβ31cα3eιbσbτ , i.e. the message sent
by P2. The probability of this event is an infinitesimal of the same order as ε22. Suppose that
27Remember that the first message in the triple refers to P4, who is the least likely to tremble among

the senders.
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message b is equal to cβ32lcβ31cα3eιbσbτbϕl, for some l = 1, ...,m+1. In this case, P2 receives the
triple (aba) only if every sender follows her equilibrium strategy in Substep 3.3 (in other

words, no deviation is needed in Substep 3.3 in order to justify the triple (aba)). In the

limit, to assign probability zero to the latter event, we have to assume that ε2,n converges

to zero faster than ε3,n. A similar argument shows that the condition limn→∞
ε2,n
ε3,n

= 0 is

necessary for the case of (abc) , too.

Finally, we consider the case in which P2 deviates in both substeps. We assume that

P2 sends message z132 = cα3ekbσ in Substep 3.1, and message z232 = cβ31cα3eιbσbτ in Substep 3.2,
where ek and eι are different from one. As usual, we substitute equations (25) and (26) into

equation (22). We obtain:

Prn
³cβ32l, bϕl,β31α3στ = cβ31cα31bσbτ ,α3σ =cα31bσ|w33, z231 =cα3ekbσ, z232 = cβ31cα3eιbσbτ , cβ31,cα31, bσ,bτ´ =

(1−ε31)
µ
1− ε21

m

¶
(1−ε22)

2
g(ε3,m;w33)

B5
,

where:

B5 = (1− ε31)
³
1− ε21

m

´
(1− ε22)

2
v (ε3,m;w33) + (1− ε31)

³
1− ε21

m

´
ε22

³
2− ε22

³
m2+m−1

m2

´´
P
h,j

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3eιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

(1− ε31)
³
1− ε21

m

´
ε42
m2

P
h,j
ι6=1,eι

Prn
³
w33|cβ32h, bϕj,β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα31bσ, cβ31,cα31, bσ,bτ´+

ε21
m

³
1 + ε1 − ε31

m

´ P
h,j,ι

Prn
³
w33|cβ32h, bϕj, β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3ekbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα3eιbσbτ ,α3σ =cα3ekbσ, cβ31,cα31, bσ,bτ´+

ε31
m

P
h,j,ι

k 6=1,ek
Prn

³
w33|cβ32h, bϕj, β31α3στ = cβ31cα3ιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´

Prn
³
β31α3στ = cβ31cα3ιbσbτ |z232 = cβ31cα3eιbσbτ ,α3σ =cα3kbσ, cβ31,cα31, bσ,bτ´ .

Similarly to the previous cases, our assumptions regarding the trembles guarantee that

in the limit, the above probability is 1
m+1

. Here we show that the condition limn→∞
ε1,n
(ε3,n)

2 =
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0 is indeed necessary to obtain the previous result. Suppose that P5 learns the permutationcα3ekbσ sent by P2 (the probability of this event is an infinitesimal of the same order as
ε21). Then the probability that in Substep 3.2 P1 learns the permutation cβ31cα3eιbσbτ (sent
by P2) converges to one. Suppose now that ek is different from eι. If in Substep 3.3 every
sender follows her equilibrium strategy, P2 receives three different messages. Remember

that the probability of this event converges to zero at the same speed as ε21. Now consider

the event in which both P1 and P5 receive the true permutation. Then the probability

that three different messages are sent in Substep 3.3 is an infinitesimal of the same order

as ε43. To assign probability zero to the first event (in the limit), we need to assume that

limn→∞
ε1,n
(ε3,n)

2 = 0.

Substep 3.4. P1, P2 and P5 send P3 the element β32β31α3στϕ (x) .

For any integer n, let ε4,n = εn. We assume that P1 trembles from her equilibrium

strategy with probability ε34. P2 and P5 tremble with probability ε24.

With a slight abuse of notation, we let a denote an element of X, and M denote

the set of triples of messages in which a is the message sent by the majority. P3 knows

the permutations β32, β31, σ, τ and ϕ (we denote their realizations by cβ32, cβ31, bσ, bτ
and bϕ, respectively). Let bx1, ..., bxm̃+1 denote m̃ + 1 different elements of X. For every

element bxl in X there are m̃! different permutations28 cα3l(m̃!)+1, ...,cα3(l+1)(m̃!) such thatcβ32cβ31cα3elbσbτbϕ ¡bxl¢ = a, for every el = l (m̃!)+1, ..., (l + 1) (m̃!) . Further, l 6= l0 impliescα3j 6=cα3j0 , for every j = l (m̃!) + 1, ..., (l + 1) (m̃!) , and every j0 = l0 (m̃!) + 1, ..., (l0 + 1) (m̃!) .
P3’s beliefs do not depend on her actions in Steps 1 and 2.29 Thus, in order to prove

that the assessment Ψ (r) satisfies consistency in Substep 3.4, it is sufficient to show that

for every triple of messages w34 in M, for every l = 1, ..., m̃+ 1, and for every el = l (m̃!) +
1, ..., (l + 1) (m̃!) , the following equality holds:
28We relabel the indices of the permutations, if necessary.
29The equilibrium strategies in Step 3 do not depend on P3’s messages in Steps 1 and 2.
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lim
n→∞

Prn(bxl,cα3el,β32β31α3στϕ = cβ32cβ31cα3elbσbτbϕ, β31α3στ = cβ31cα3elbσbτ ,
α3σ =cα3elbσbτ |w34, cβ32, cβ31, bσ,bτ , bϕ) = 1

m+1
.

Consider a step in which all the senders know the realization of the permutation that

they have to send. Moreover, suppose that their trembles are defined by ε. Then the

probability that the receiver learns the truth is 1 − υ (ε) , and the probability that the

receiver learns any other message is υ(ε)
m
(see equations (14) and (15)). Thus, we have:

Prn
³bxl,cα3el, β32β31α3στϕ = cβ32cβ31cα3elbσbτbϕ,β31α3στ = cβ31cα3elbσbτ ,α3σ =cα3elbσ|w34, cβ32, cβ31, bσ,bτ , bϕ´ =

(1−υ(ε1))(1−υ(ε2))(1−υ(ε3))g(ε4,m̃;w34)
B6

,

where:

B6 = (1− υ (ε1)) (1− υ (ε2)) (1− υ (ε3))
¡
m+1
m̃+1

¢
v (ε4, m̃;w34) + (1− υ (ε1)) (1− υ (ε2))

υ(ε3)
m

m̃+1P
h=1

m+1P
j,k=1
k 6=j

Prn
³
w34|bxh,cα3j, cβ32cβ31cα3kbσbτbϕ, cβ31cα3jbσbτ ,cα3jbσ, cβ32, cβ31,bτ , bϕ´+

(1− υ (ε1))
υ(ε2)
m

m̃+1P
h=1

m+1P
j,k,ι=1
ι6=j

Prn
³
w34|bxh,cα3j, cβ32cβ31cα3kbσbτbϕ, cβ31cα3ιbσbτ ,cα3jbσ, cβ32, cβ31,bτ , bϕ´

Prn
³cβ32cβ31cα3kbσbτbϕ|cβ31cα3ιbσbτ ,cα3jbσ,cα3j, bσ, cβ32, cβ31,bτ , bϕ´+

υ(ε1)
m

m̃+1P
h=1

m+1P
j,k,ι,η=1

η 6=j

Prn
³
w34|bxh,cα3j, cβ32cβ31cα3kbσbτbϕ, cβ31cα3ιbσbτ ,cα3ηbσ, cβ32, cβ31,bτ , bϕ´

Prn
³cβ32cβ31cα3kbσbτbϕ|cβ31cα3ιbσbτ ,cα3ηbσ,cα3j, bσ, cβ32, cβ31,bτ , bϕ´Prn ³cβ31cα3ιbσbτ |cα3ηbσ,cα3j, bσ, cβ31,bτ´ .
It is tedious but simple to check that as n goes to infinity, the above probability converges

to 1
m+1

.

To provide some intuition, suppose that P3 receives the same message from two senders,

and a different one from the third. Consider the two following scenarios. It is possible that

all senders know the truth30 and only one of them deviated in Substep 3.4. Alternatively,
30The probability of this event converges to one as n goes to infinity.
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it is possible that some of the senders did not learn the truth. However, this implies that

at least two players deviated in Substeps 3.1-3.3. Since deviations in Substep 3.4 are at

least as likely as deviations in earlier steps, we conclude that, in the limit, the latter event

has probability zero.

The case where P3 receives three different messages can be analyzed in a similar way.

If all senders know the truth, the probability of receiving three different messages is an

infinitesimal of the same order as ε44. If P1 and/or P5 did not learn the truth, then at least

two players deviated in Substeps 3.1-3.2. Since ε4,n converges to zero faster than ε1,n and

ε2,n, we assign probability one to the event that both P1 and P5 know the truth. Given

this, the probability that P2 does not learn the truth in Substep 3.3 is an infinitesimal of

the same order as ε43. It is true that ε3,n is equal to ε4,n, but note that P3 cannot receive

three different messages if both P1 and P5 follow their equilibrium strategies in Substep

3.4. At least one other deviation is needed. We conclude that all senders know the truth

and two of them deviated in the last substep.

Step 4.

Consider the four sequences {εj,n}∞n=1 , j = 1, ..., 4, introduced in Step 3. In Substep

4.j, j = 1, ..., 4, the first sender in the description of the step trembles from her equilibrium

strategy with probability ε3j,n. Each of the other two senders trembles with probability ε2j,n

(trembles are always independent across information sets). In each of the other steps (if

any) P1 trembles with probability ε34, and P2 and P5 tremble with probability ε24.

The analysis in Step 3 shows that, given the information acquired in Step 0 and Step 4,

a receiver should assign probability one to the event that the majority of the senders report

the true message and all of them learnt the realization of the corresponding permutation.

Again, we use the fact that trembles are independent across information sets and all random

choices are independent of each other and uniformly distributed to conclude that the above

result does not depend on information from Steps 1-3. At the same time, the additional

information in Step 4 does not modify the beliefs of earlier steps.
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Step 5.

Substep 5.1. P2, P3 and P4 send P1 the function pr1α−11 .

We assume that, along the sequence of mixed strategies, P2 sends P1 the realization

of pr1α−11 with probability (1− ε3n) , and any other message with probability
ε3n

|R1|−1 , where

|R1| is the number of feasible messages in Substep 5.1. P3 and P4 tremble with probability
ε2n.

With another slight abuse of notation, let us assume that a is the message sent by the

majority of the senders to P1 in Substep 5.1. Let Rc denote the number of permutations

compatible with a. We denote these permutations by cα11, ...,cα1Rc (again, we relabel the
indices if necessary). Consider a triple of messages w51 such that a is the message sent

by the majority. Given our sequence of mixed strategies, it is easy to verify that for any

l = 1, ..., Rc, the following equality holds:

lim
n→∞

Prn
³
α1 =cα1l|w51´ = 1

Rc
.

This is sufficient to demonstrate that the assessment Ψ (r) satisfies consistency in Sub-

step 5.1.

Finally, notice that the equality above implies that, conditional on P1’s information in

Substep 5.1, the distribution of τ assigns probability 1
Rc
only to the permutations bτ 1, ...,bτRc

(the same result holds for the random distributions β31 and β41).

Since Substeps 5.2-5.I are identical to Substep 5.1, we conclude that the assessment

Ψ (r) is consistent.

Appendix B: Proof of Theorem 2

In this appendix we show how to implement a rational and regular communication equi-

librium, q, of a Bayesian game G with at least five players. As anticipated in Section 3,

we proceed in two steps. First, we show that q is the outcome induced by a sequential
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equilibrium in a cheap talk extension, GF (q) , in which players use a correlation device

to communicate. Then, we construct a plain cheap talk extension Ḡ (q), and a sequential

equilibrium of Ḡ (q) that induces q.

Remember that, given a communication equilibrium q of G, the cheap talk extension

GD (q) is the following extensive-form game. In Step 1, players simultaneously send the

mediator their messages (Pi sends a message in Ti). If the vector of reports is t, the mediator

randomly selects an action profile in S according to the probability distribution q (·|t) , and
informs each player Pi only of the ith component of the chosen profile. Then, in Step 2,

players simultaneously choose their actions (Pi chooses an action in Si).

An information set of Pi in Step 2 is characterized by her type, ti, her report to the

mediator in Step 1, t0i, and the mediator’s recommendation, si. Obviously, the report t
0
i and

the recommendation si can be in the same information set only if there exist a profile of

opponents’ types t−i, and a profile of opponents’ action s−i, such that q (si, s−i|t0i, t−i) > 0.
We let Li (t0i) denote the set of recommendations that Pi can receive from the mediator

after sending message t0i in Step 1. Formally:

Li (t
0
i) =

si ∈ Si| X
s−i∈S−i

X
t−i∈T−i

q (si, s−i|t0i, t−i) > 0
 . (27)

Since q is regular, GD (q) admits a sequential equilibrium ΦD (q) that satisfies the fol-

lowing two requirements. First, each player reports her true type to the mediator. Second,

each player obeys the mediator’s recommendation after reporting her type truthfully to the

mediator. We let ψDi denote the equilibrium strategy of Pi in Step 2. For any information

set (ti, t0i, si) in Step 2, ψ
D
i (ti, t

0
i, si) specifies a probability distribution over Si. The second

requirement on ΦD (q) implies that for any type ti in Ti, and for any action si in Li (ti) ,

ψDi (ti, ti, si) assigns probability one to si. Clearly, Φ
D (q) induces the outcome q.

The assessment ΦD (q) also specifies the players’ beliefs. We denote Pi’s beliefs in Step

2 by µDi . For each information set (ti, t
0
i, si) , µ

D
i

³¡
tj, t

0
j, sj

¢
j 6=i |ti, t0i, si

´
is the probability
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that each opponent Pj has type tj, has reported t0j to the mediator and has received rec-

ommendation sj. Notice that µDi (ti, t
0
i, si) may be a probability distribution over a proper

subset of T 2−i × S−i. However, µDi (ti, t0i, si) can be easily extended to T 2−i × S−i by assign-
ing the value zero to those elements of T 2−i × S−i that are not in the original domain of
µDi (ti, t

0
i, si) . Without introducing further notation, hereafter we refer to µ

D
i (ti, t

0
i, si) as a

probability distribution over T 2−i × S−i.
Finally, let us introduce the sequence of completely mixed strategies that is used to

show that the assessment ΦD (q) is consistent. Consider the nth element of the sequence,

and let ti and t0i be two different types of player Pi.We let λi,n (t
0
i|ti) denote the probability

that Pi sends the mediator message t0i when her type is ti (clearly, limn→∞ λi,n (t
0
i|ti) = 0).

We denote by λn the smallest probability that all players deviate from their equilibrium

strategies in Step 1, that is:

λn := min
(ti,t0i|ti 6=t0i)

I

i=1

YI

i=1
λi,n (t

0
i|ti) . (28)

We now turn to GF (q), the cheap talk extension proposed by Forges (1990).31 First, we

need to describe how the mediator chooses her messages. The mediator randomly selects

a function f from T to S according to the following probability distribution:

Pr (f) = Pr
¡
(f (t))t∈T

¢
=
Y
t∈T
q (f (t) |t) .

Given two different type profiles, t and t0, f (t) is chosen independently of f (t0) . Further,

for each i = 1, ..., I, the mediator randomly selects a permutation γi on Ti according to the

uniform distribution. Finally, for every i = 1, ..., I, the mediator also selects a permutation

πi on T × Si at random, according to the uniform distribution. f, γ1, ..., γI ,π1, ...,πI are

chosen independently of each other.

Given f, γ1, ..., γI , let f
0 : T → S be defined by:

31Since GF (q) is analyzed in great detail in Forges (1990), we proceed quickly through its description.
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f 0 (t1, ..., tI) = f
¡
γ−11 (t1) , ..., γ

−1
I (tI)

¢ ∀ (t1, ..., tI) ∈ T,
and let f 0i = T → Si be the projection of f 0 on Si. Further, let Υ be the identity mapping

on T and define (Υ× f 0i) : T → T × Si by (Υ× f 0i) (t) = (t, f 0i (t)) . Then the mediator

constructs the mapping ζi = πi◦(Υ× f 0i) from T to T×Si, and the mapping θi = prSi ◦π−1i
from T × Si to Si (i.e. θi is the projection on Si of π−1i ). Clearly, θi ◦ ζ i = f 0i and θi is

independent of f 0i . Moreover, since the mapping (Υ× f 0i) is injective, ζi is also independent
of f 0i (see Forges (1988, 1990)).

The extensive-form game GF (q) is as follows. The mediator reports γi, ζi+1, ζ i+2, ζi+3

(where + is mod I) and θi to every player Pi. In Step 1, players simultaneously announce

public messages (Pi sends a message in Ti). Step 2 of GF (q) is divided into I substeps.

In Substep 2.i, player Pi−h (where h = 1, 2, 3 and Pi−h := Pi−h+I if i − h 6 0) sends Pi

a message in T × Si. The three senders send their messages simultaneously.32 Finally, in
Step 3 players simultaneously choose their action (Pi chooses an action in Si).

Forges (1990) shows that if q is a communication equilibrium of a Bayesian game G

with at least four players, then GF (q) admits a Bayesian-Nash equilibrium that induces

q. Additional work is required to show that if, in addition to Forges’ (1990) assumptions,

the communication equilibrium q is also regular, then there exist a sequential equilibrium

ΦF (q) of GF (q) that induces q.

We now describe the assessment ΦF (q) . Suppose Pi has type ti, and has received the

permutation γi from the mediator. In equilibrium, Pi announces the message γi (ti) in Step

1 (notice that this message is not a function of ζi+1, ζi+2, ζi+3 or θi). We also need to

construct a sequence of completely mixed strategies. Suppose, as above, that Pi has type

ti and has received the permutation γi. Consider a type t
0
i different from γi (ti) . In the

nth element of the sequence of mixed strategies, the probability that Pi reports message t0i
32In Forges (1990), messages of Step 2 may, but need not, be public. Here, we insist on private messages:

in Substep 2.i only Pi observes the messages sent by Pi−3, Pi−2 and Pi−1. We will explain later why we
need private messages in Step 2.
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in Step 1 is equal to λi,n
¡
γ−1i (t0i) |ti

¢
. That is, the probability that Pi (whose type is ti)

reports t0i in Step 1 of G
F (q) coincides with the probability that she sends the mediator

the message γ−1i (t0i) in the canonical game G
D (q) .

We now consider the equilibrium strategy of Pi in Substep 2.(i+ h) (where h = 1, 2, 3).

In addition to her type ti, and to the mediator’s message
¡
γi, ζi+1, ζi+2, ζ i+3, θi

¢
, Pi knows

the vector of reports in Step 1, say t0, and the messages that she has already sent and

received in Step 2. The equilibrium strategy prescribes that Pi sends message ζi+h (t
0) to

Pi+h. Note that in equilibrium, in Step 2 each player receives the same message from the

three senders.

As far as the sequence of completely mixed strategies is concerned, let {²n}∞n=1 be a
sequence of positive numbers in the unit interval, converging to zero and satisfying the

following condition A:

lim
n→∞

²n
λn
= 0, (A)

where λn is defined in equation (28). Consider the nth element of the sequence of mixed

strategies. Consider Pi in Substep 2.(i+ h) and suppose that t0 is the vector of reports in

Step 1. We assume that with probability (1− ²n) Pi follows the equilibrium strategy and

sends Pi+h message ζ i+h (t
0) .All other messages are equally likely. Condition (A) guarantees

that the probability that a single player deviates in a substep of Step 2 converges to zero

faster than the probability that all players deviate in Step 1.

Finally, we analyze Step 3. We let dji denote the message sent by Pi to Pj in Substep 2.j

(where j = i+1, i+2, i+3, and + is mod I). An information set of Pi in Step 3 is charac-

terized by her type ti, the mediator’s message
¡
γi, ζi+1, ζi+2, ζ i+3, θi

¢
, the vector of reports

in Step 1 t0, the three messages sent in Substeps 2.(i+ 1) to 2.(i+ 3)
¡
di+1i , di+2i , di+3i

¢
, and

the three messages received in Substep 2.i
¡
dii−3, d

i
i−2, d

i
i−1
¢
. We say that an information

set in Step 3 is of class 1 if the two following conditions are satisfied. First, at least two

senders sent the same message in Substep 2.i. We let d
i
denote the message sent by the
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majority of the senders. Second, the message d
i
is such that θi

³
d
i
´
belongs to the set

Li
¡
γ−1i (t0i)

¢
, where t0i is the report of Pi in Step 1 and the set Li (·) is defined in equation

(27). The second requirement implies that being in an information set of class 1 is not

definitive evidence that the majority of the senders deviated from their equilibrium strate-

gies in Substep 2.i. In an information set of class 1, Pi may think that the majority of her

senders played the equilibrium strategy, even though this may require a deviation by some

opponents in Step 1 (we will come back to this point shortly).

We let ψFi denote Pi’s equilibrium strategy in Step 3. To every information set of Pi in

Step 3, ψFi assigns a probability distribution on Si. For any information set of class 1, ψ
F
i

satisfies:

ψFi
¡
ti, γi, ζi+1, ζi+2, ζ i+3, θi, t

0, di+1i , di+2i , di+3i , dii−3, d
i
i−2, d

i
i−1
¢
= ψDi

³
ti, γ

−1
i (t0i) , θi

³
d
i
´´
,

(29)

where, remember, d
i
denotes the message sent by the majority in Substep 2.i, and ψDi is the

equilibrium strategy of player Pi in Step 2 of GD (q) . That is, Pi chooses the same strategy

that she plays in GD (q) after sending the mediator the message γ−1i (t0i) , and receiving the

recommendation θi
³
d
i
´
.

To define the equilibrium strategies in information sets that are not of class 1, we first

need to analyze equilibrium beliefs. First of all notice that in any information set of Step 3,

Pi assigns probability one to the event that all her opponents are in information sets of class

1. In fact, messages in Step 2 are private, and the senders of Substep 2.j in equilibrium

send Pj the message ζj (t
0) (where t0 is the vector of reports in Step 1). It might be that Pi

is a sender of Pj and Pi deviated in Substep 2.j. However, with probability one Pj received

the message ζj (t
0) from the other two senders.

Consider now any information set of class 1 of Pi. Condition (A) implies that Pi assigns

probability one to the event that the majority of her senders played their equilibrium

strategies in Substep 2.i. To give an intuition for this result, consider the following case.
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Suppose that two senders reported the same message d
i
(with θi

³
d
i
´
∈ Li

¡
γ−1i (t0i)

¢
), and

that the third sender sent a different message. Consider the nth element of the sequence

of mixed strategies. The ratio between the probability that Pi’s information set is reached

and the majority of the senders deviated, and the probability that Pi’s information set is

reached and the majority played the equilibrium strategy is smaller than ²n/
¡
(1− ²n)2 λn

¢
.

Condition (A) guarantees that in the limit (as n grows large), Pi assigns probability zero

to the event that the majority of the senders deviated from their equilibrium strategies in

Substep 2.i. The same conclusion can be derived, a fortiori, in an information set of class

1 in which all senders have reported the same message.

The above result, and the fact that the trembles in Step 1 are derived from the trembles

of the equilibrium ΦD (q) of GD (q), imply that in any information set of class 1, Pi’s

(consistent) beliefs satisfy the following condition:

Pr((tj, γ
−1
j

¡
t0j
¢
= t̄j, θj

¡
ζj (t

0)
¢
= sj)j 6=i|ti, γi, ζ i+1, ζi+2, ζi+3, θi, t0, di+1i , di+2i , di+3i ,

dii−3, d
i
i−2, d

i
i−1) = µ

D
i

³
(tj, t̄j, sj)j 6=i |ti, γ−1i (t0i) , θi

³
d
i
´´
,

(30)

for any vector (tj, t̄j, sj)j 6=i .

We now turn to analyze information sets that are not of class 1. Given the sequence

of completely mixed strategies, Pi has some consistent beliefs (we will see that it does

not matter what these beliefs are). However, as was said above, Pi assigns probability

one to the event that each opponent Pj is in an information set of class 1. Since we

have already specified equilibrium strategies in information sets of class 1, it is easy to

compute equilibrium strategies in all other information sets of Step 3. Pi selects the strategy

that maximizes her expected payoff, given her beliefs and her opponents’ strategies in

information sets of class 1.

Note that in information sets of class 1 the equilibrium strategy of opponent Pj depends

only on tj (her type), γ−1j
¡
t0j
¢
(t0j is Pj’s report in Step 1) and θj

³
d
j
´
. Given all the infor-

mation that Pi has in Step 3, her beliefs over the realizations of
³
tj, γ

−1
j

¡
t0j
¢
, θj
³
d
j
´´

j 6=i
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do not depend on the messages that she sent in Step 2. Therefore, equilibrium strategies

in information sets that are not of class 1 may be selected so that they do not depend on

the messages that a player sends in Step 2 (similarly to what happens in information sets

of class 1). This concludes the description of the assessment ΦF (q) .

Checking that ΦF (q) is indeed a sequential equilibrium is straightforward. Consider

an information set of class 1 of Pi. She assigns probability one to the event that all her

opponents are in information sets of class 1 (where the equilibrium strategies are defined

by equation (29)). Since her beliefs satisfy equation (30), if Pi has an incentive to deviate

in an information set of class 1, then, given the assessment ΦD (q), she would have an

incentive to deviate from the strategy ψDi in some information set of Step 2 of G
D (q) ,

which is impossible. The strategies in information sets of Step 3 that are not in class 1 are

optimal by construction. A deviation by a player in Step 2 does not have any impact on her

action and on her opponents’ actions in Step 3. The optimality of the strategies of Step 1

comes from the fact that, given the assessment ΦD (q) , no player has an incentive to lie to

the mediator in GD (q). Finally, beliefs of ΦF (q) are consistent, since they are derived by

applying Bayes’ rule to completely mixed strategies converging to the equilibrium strategies.

We now use the assumptions that q is rational and that G has five or more players, and

show how unmediated communication can replace the mediator in GF (q). Let Ξi denote

the set of messages that Pi can receive from the mediator in GF (q) , and let ξ denote the

probability distribution over Ξ =
QI
i=1 Ξi according to which the mediator selects the ran-

dom vector
³
γi,
¡
ζ i+h

¢3
h=1

, θi
´I
i=1
. If q is rational, ξ involves probabilities that are rational

numbers. Therefore, there exists a finite set X̃, and functions epri : X̃ → Ξi (for i = 1, ..., I),

such that picking at random an element x̃ ∈ X̃ according to the uniform distribution, and

then computing ( epr1 (x̃) , ..., eprI (x̃)) , generates the probability distribution ξ on Ξ. Note

that by applying our communication scheme (Steps 0-5 in Section 5) to X̃, epr1, ..., eprI ,
players may randomly select a vector

³
γi,
¡
ζi+h

¢3
h=1

, θi
´I
i=1

according to the probability

distribution ξ, in such a way that every player Pi learns only
³
γi,
¡
ζi+h

¢3
h=1

, θi
´
.
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We therefore combine our communication scheme and GF (q) to obtain Ḡ (q) , a plain

cheap talk extension. Ḡ (q) is an extensive form game that can be divided in nine steps.

Steps 0-5 of Ḡ (q) coincide with Steps 0-5 of Section 5 applied to X̃, epr1, ..., eprI . At the end
of our communication protocol, Steps 1-3 of GF (q) are performed.

We now construct Φ (q), the sequential equilibrium of Ḡ (q) that induces q. In the first six

steps of Ḡ (q) the equilibrium strategies of a player do not depend on her type. Specifically,

every type of Pi (i = 1, ..., I) adopts the equilibrium strategies of Pi in Steps 0-5 of Section

5.

To describe equilibrium strategies in the last three steps of Ḡ (q) we first need to discuss

the information that a player has at the end of our communication scheme. Note that

according to the terminology of Section 5, the message sent by the majority of the senders

in a given step is a well-defined concept (if the senders send three different messages, the

majority message is the message sent by the first player in the description of the step). Pi,

i = 1, ..., 4, combines the random variables known in Step 0 with the majority messages

in Step i and in Substep 5.i to construct a message in Ξi (as described in Table 5). We

refer to this message, as the message that Pi learns after Step 5 of Ḡ (q) . P5 learns her

message in Ξ5 by using the majority messages received in Step 2 and in Substep 5.5 (and

the random variables known in Step 0). If G has more than five players, Pk (k = 6, ..., I)

learns her message in Ξk by using the majority messages received in Step 4 and in Substep

5.k (and the random variables known in Step 0).

We are ready to define the equilibrium strategies of Φ (q) in the last three steps of

Ḡ (q) . Suppose that Pi learns message
³
γ̄i,
¡
ζ̄ i+h

¢3
h=1

, θ̄i
´
. Then Pi adopts the same be-

havioral strategies that Pi chooses in equilibrium ΦF (q) of GF (q) after receiving message³
γ̄i,
¡
ζ̄i+h

¢3
h=1

, θ̄i
´
from the mediator (note that messages of Steps 0-5 influence the equi-

librium strategies of Pi in the last three steps of Ḡ (q) only through the message that Pi

learns after Step 5).

To construct consistent beliefs, in Steps 0-5, for every type of Pi we take the sequence
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of completely mixed strategies of Pi described in Appendix A.33 The mixed strategies of

Steps 0-5 are therefore described by the converging sequence {εn}∞n=1 (see Appendix A). In
Steps 6 and 7 of Ḡ (q) , the sequences of completely mixed strategies are those used above

to show consistency of the assessment ΦF (q) . Moreover, we assume that εn converges to

zero faster than the probability that all players deviate in Steps 6 and 7. Roughly speaking,

this condition requires that deviations in Steps 0-5 are much less likely than deviations in

Steps 6 and 7.

Note that if the majority of the senders follow their equilibrium strategies in Steps

0-5, then a random element x̃ of X̃ is selected according to the uniform distribution, and

every player Pi learns epri (x̃) after Step 5. Our assumption above on the different order
of infinitesimality of the deviations guarantees that at every information set in Steps 6-

8, a player assigns probability one to the event that every player Pj learnt eprj (x̃). This
implies that the strategies specified by Φ (q) in Steps 6-8 satisfy the sequential rationality

requirement. Sequential rationality of the assessment Φ (q) in the first five steps follows

from our proof in Section 5. We conclude that Φ (q) is a sequential equilibrium of Ḡ (q)

that induces q.

33Note that at the end of Step 5, a player’s beliefs over her opponents’ types are described by the
prior distribution p. In other words, in the first five steps a player does not learn anything new about
her opponents’ types. This follows from the fact that in those steps, the equilibrium strategies and the
sequences of mixed strategies are not functions of a player’s type.
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