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Highlights

• The Energy and Volumes data are obtained via first principles modelling.
• The state functions, E(V , T )s, of each end members are expanded in a polynomial basis in V Mix (the volume of the solid solution)

and linearly summed in Vegard’s scheme.
• V Mix is determined by solving the fundamental equilibrium equation −(∂ E/∂V )T = P .
• Consequentely, EMIX and all the excess functions can be easily derived.
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Abstract  
A method has been developed, herein presented, to model binary solid solutions' 

volume, enthalpy and Gibbs energy using the energy state functions, E(V,S), of the end-

members only.  The E(V,S)s are expanded around an unknown mixing volume, VMix, 

and the fundamental equilibrium equation -(∂E/∂V)S = P is used to determine VMix. VMix 

allows us to model enthalpy, straightforwardly. The same argument holds using 

Helmholtz energy, F(V,T), in place of E(V,S), and the equilibrium equation becomes -

(∂F/∂V)T = P. One can readily determine the Gibbs free energy, too. The method 

presented remarkably simplifies computing of solid mixings' thermodynamic properties 

and makes it possible to preserve crystal structure symmetry that would undergo 

reduction because of the introduction of disordered super-cells. 
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1. Introduction 
Solid mixing is a common phenomenology occurring in crystals and affecting their 

properties and stability. Mineralogy, metallurgy and materials science deal with 

crystalline solids, which have structures characterized by isomorphic atomic 

replacements, often involving more than two end-members.  Dating back to Vegard, 

treating solid mixings by means only of their end-members (EM) has been an object of 

interest, both for the scientific implications and the relevant simplifications that would 

ensue in performing calculations [1]. Jacob et al. critically revised the notion of Vegard-

type linearity between a solid solution and its EMs, paying special attention to whether 

such a relationship is a bare, though effective and efficient, approximation or it 

expresses a fundamental relation [2]. 

An early model to predict lattice parameters of an alloy as a function of the 

composition was proposed by Moreen et al., who based their method on the assumption 

that lattice parameters of solid solutions are the average of all the interatomic distances 

over a selected and representative portion of lattice [3]. Denton and Ashcroft pointed out 

the role of the atomic sizes to allow formation of a solid mixing [4]. The “Delta Lattice 

Parameter” (DLP) model of Stringfellow for calculation of excess enthalpy relies on the 

lattice mismatch between solid mixing and EMs, assuming a regular (symmetric) 

behaviour of the resulting solid solution [5]. In the early seventies, the “Coherent 

Potential Approximation” (CPA) was extended to random materials through the 

Korringa, Kohn and Rostoker (KKR) method, thus making it possible to model the 

energetics of a disordered material [6]. The Connolly-Williams (CW) method resorts to 

the determination of effective cluster interactions (ECIs) from the formation enthalpies of 

a set of reference ordered structures [7]. ECIs, in turn, allow an estimate of alloys’ 

formation enthalpies. The “Special Quasi-random Structures” (SQSs) technique uses 

supercells to model a random configuration of atoms. All the mentioned methods 

assume that the energy of an alloy can be expressed via cluster expansions. The 

Cluster Expansion method [8] (see [9] for a review. In the case of applications to natural 

systems, see [10,11]) allows one to exploit a theoretically robust approach, which 

makes it possible to explore the properties of solid mixings even at extreme conditions, 

though at exceedingly demanding computing costs [12,13]. In fact, the “cluster 
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expansion method” requires investigation of as many configurations as possible, 

resorting to super cells to mimic atomic disorder in a crystal. Moreover, all this implies 

an unavoidable breakdown of the crystal symmetry, as a function of the configuration 

under study.  The Virtual Crystal Approximation (VCA) provides an alternative approach 

based on a solid mixing description that employs the notion of site occupancy, i.e. the 

probability of having a given species at a crystal site [14,15]. Although such a method 

preserves crystal symmetry and allows one to avoid using super-cells, yet it simply 

represents the transposition of the Vegard’s law to the microscopic scale. In “Critical 

analysis of the virtual crystal approximation” by Dargam et. al., the authors point out the 

limits and drawbacks related to the use of VCA [15]. In general, modelling of solid 

mixings has attracted the interest of several authors, who resorted to a variety of 

approaches, often chosen as a function of the observables they meant to reproduce. In 

[12,16] the reader can find a survey upon such a subject. Recent papers also 

demonstrate a lively interest in excess properties of liquid phases, in particular about 

volume excess, even at non-ambient conditions [17,18,19,20].    

Although the “cluster expansion method” is robustly formulated, it implies many 

difficulties because of the complexity one faces in providing a faithful representation of a 

solid mixing, in terms of i) choosing a representative portion of a disordered crystal, i.e. 

supercell’s size determination, and ii) exploring the related disordered atomic 

arrangements. In this view, being able to infer some fundamental properties of a solid 

mixing using only the EMs would result in a significant enhancement to modelling and 

understanding such systems [21,22].   

In the present paper, we introduce a binary mixing model that aims to predict solid 

solutions’ volume and thermodynamic potentials (energy, E; Helmholtz energy, F; 

enthalpy, H; Gibbs energy, G), resorting to EMs only, and using E as a key state 

function. The model in question is tested by comparing synthetic data produced using 

quantum mechanics modelling with experimental observations and earlier calculations, 

on a number of solid mixings. 

 

2. Theoretical background  
2.1 Model 
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The energy EMix of a solid solution between two phases A and B can be formulated as  

,            (1) 

where x is the mole fraction of the component A and O(x) = , 

with Cnm being the coefficients of the Mth-degree polynomial function.    

Ej is here expressed as a function of volume and entropy, i.e. Ej = f(Vj,S); j refers to 

the jth-phase, i.e. A and B. Hereafter, we drop S, for the sake of simplicity of notation. At 

a given S, Ej can be expanded in terms of powers of Vj, i.e. 

                 (2) 

with kj,m being the coefficient for the jth-phase of the mth-degree term.   

Taking into account that 

       (3) 

and setting 

1) Vj = VMix+δj 

2) N = max{L,M}, 

Eq. (3) can be recast into the following expression 

  

which is readily turned into 

                                                        

(4.a) 

In the equations above VMix means volume of the solid mixing generated by A and B; 

VMix-VA-VB are supposed to be at equilibrium at given and shared P-T conditions. 

The second right-hand side member of Eq. (4.a) depends on powers of  

.                      (4.b) 

εA,B turns out to be on average as large as ∼5%, an estimate we obtained on the basis 

of the cases explored. In such a view, we altogether assume that the ε-dependent terms 

of Eq. (4.a) can be neglected, so that the solid mixing energy is expressed as a function 

of VMix and x, only, i.e. 
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.        (5) 

The legitimacy of such a truncation and the ensuing effects will be discussed in the 

next section. Let us focus attention on Eq. (5) and the relationship beneath 

                        (6) 

A crucial step consists in estimating the following derivative 

, 

which is accomplished as reported below.  

We recast Eq. (1) into its differential form, that is  

, 

where the infinitesimal variations of energy are due to infinitesimal changes of the 

volumes of the involved phases. We divide and multiply each term of the equation 

above by the related dV. In so doing, one obtains 

. 

Taking into account Eq. (6), the expression above is recast into 

,      

from which it descends 

  

and eventually 

 .        (7) 

In Eq. (7), one observes that 

  

and 

  

hold.  

In view of all this,  is expected to yield a negligible contribution to P, in Eq. (6). 

Therefore, the solid mixing volume must fulfill the relationship shown below 

.         (8) 
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From Eq. (8), one is able to obtain VMix once the roots of the related (n-1)th-order 

polynomial have been determined. Let us refer to the VMix-solution of Eq. (8) by VMix,0 

and to the physically correct VMix-value by VMix,corr, so that VMix,0 = VMix,corr+ δV. One 

readily reformulates Eq. (8) into  

.                      (9) 

δV is therefore the deviation of the VMix-estimate, i.e. VMix,0, from its actual value. Such 

deviation from VMix,corr partially compensates for neglecting in Eq. (8) both the ε-

dependent contribution and the O(x) term. In this light, δV affects the estimate of the 

excess properties of a solid mixing, predicted on the basis of its end-members. Using 

VMix and EMix, one is also able to calculate the enthalpy, i.e. HMix = EMix+PVMix. 

Please, note that the arguments brought about above also hold for Helmholtz free 

energy, F(V,T)=E(V,S)-TS. If one uses F(V,T), then Eq.(8) changes into 

, 

which is commonly used in practice, when vibration contributions to energy and entropy 

are also taken into account. Therefore, in this light, one can readily determine 

 

 

 

and, combining the equation above, 

 

 

where Δ refers to “excess” volume, energy, Helmholtz energy, enthalpy and Gibbs 

energy of a given solid mixing. 

2.2 Error estimate 
Using the VMix-estimate from Eq. (8) and the definition in Eq. (4.b), one can assess the 

legitimacy of the truncation of the summation in Eq. (4.a). In fact, one can write 

        (10) 



 7

where ΔErrMix is the εA,B-dependent contribution to energy. Therefore, it ensues from 

Eq. (10), Eq. (5) and neglecting O(x) that 

         (11) 

where we have assumed that |εA,0|>|εB,0|, for the sake of simplicity. From Eq. (11), one 

estimates a relative error as large as 0.2-0.3 ‰. Neglecting both ΔErrMix and O(x) is a 

source of uncertainty, which is estimable for the former and unknown for the latter. Such 

uncertainty is partially compensated via VMix,0 (see Eq. (9)), i.e. the estimate of the 

actual mixing volume, namely VMix,corr. Therefore, a comparison is required between 

excess properties, predicted as discussed above, and previous excess data 

(experimental and theoretical) to assess the accuracy of the method presented.  

2.3 Computational details  
Energy was determined using static and vibrational contributions, for each solid 

mixing under study. The calculations were performed by the CRYSTAL14-code that 

exploits “Linear Combinations of Atomic Orbitals” [23]. We used a hybrid Hamiltonian, 

with Hartree-Fock/DFT rate, DFT functional and atomic basis set that were chosen 

differently from one case to another. The hybridization rate was determined to 

reproduce both unit cell volume and electronic energy gap, at room conditions. More 

details about the computing setup are reported in the “Results and discussion” section. 

The following tolerances that control the accuracy of the self-consistent cycles’ integrals 

were used: 10-9 for coulomb overlap; 10-9 for coulomb penetration; 10-9 for exchange 

overlap; 10-9 for exchange pseudo-overlap in direct space and 10-18 for exchange 

pseudo-overlap in reciprocal space; 10-10 a.u. threshold for SCF-cycles’ convergence. 

The shrinking factors of the reciprocal space (Monkhorst net, [24]) and of the secondary 

reciprocal space net (Gilat net, [25]) were set at 12 and 24, respectively. The vibrational 

energy was determined by combining atomic vibration frequencies of a harmonic model 

and standard statistical mechanics formalism, including zero point vibration and purely 

thermal contributions. The static E(V)-curves of the EMs were obtained by shrinking 

under a nominal P the cell volume up to about -10% with respect to the equilibrium 



 8

geometry determined at ambient pressure and 0 K. Then the vibration components of 

energy were calculated on the equilibrated structure and introduced. Eventually, the 

F(V)s of the end-members were determined by adding the configuration and vibration 

entropy contributions to E(V)s. The resulting F(V)s were expanded in polynomial bases 

of VMix and summed according to the Vegard’s scheme, as discussed in the sections 

above. The degree of the polynomials used in this work varied from case to case (2nd 

and 3rd order polynomials have been mostly employed). VMix was determined by solving 

the fundamental equilibrium equation -(∂E/∂V)S =-(∂F/∂V)T = P, i.e. Eq.(8), for a given x 

value. Then, the lacking PVMix contribution was added to obtain the Gibbs free energy.  

Among the VMix-solutions of Eq. (9), we chose the one fulfilling the following 

constraint: VMix,0 must be a real number such as VMix,0 > 0. 

 

3. Results and discussion 
Five cases are investigated: C1) Si1-xGex binary alloy, C2) wurtzite-like Al1-xGaxN 

pseudo-binary alloy, C3) its zinc-blende-like polymorph, C4) Al1-xGaxAs pseudo-binary 

alloy and C5) (Mg1-xCax)3Al2(SiO4)3 binary compound, involving two end-member 

garnets. The choice of such systems is due to the following reasons: C1 is a binary alloy 

with an experimentally measured large ΔV; C2-C3 are pseudo-binary alloys with 

experimentally determined very small ΔV; C4 is a pseudo-binary alloy with 

experimentally determined small but still positive ΔV; C5 provides an example of solid 

mixing other than an alloy, such that the atomic replacement takes place over a subset 

of the available crystal sites. In this view, C1-2-3-4-5 provide a coverage for 

experimentally measured and/or theoretically determined ΔV, ΔH and ΔG of systems 

that exhibit a variety of behaviours.  

 
3.1. Si1-xGex binary alloy 
SiGe is an alloy with complete miscibility on the whole join, commonly used as a 

semiconductor material in integrated circuits and as a substrate for CMOS transistors in 

high-speed electronics and thermoelectric devices. The following basis set was used to 

model SiGe: Si, Si88-1111G [26]; Ge, triple-  basis set with polarization function with 

contraction scheme Ge9-7631-61G [27]. The PBESOL exchange correlation functional 
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[28], which we employed, is an extension to solid systems of the PBE 

exchange/correlation functional [29]. The used functional and a comparison between 

theoretical and observed properties are reported in Table 1. 

 

Table 1 

Si1-xGex alloy: functionals used for exchange and correlation energies;  

hybridization rate, in %; lattice parameter, a; electron energy gap at Γ.  

 
Compound 

Exchange 
and 

correlatio
n 

functional

 
HF/DFT 
Ratio(%) 

 
a(Å) 

this study 

 
Egap(eV) 

this study 

 
Egap (eV) 
this study 

 
a(Å) 

lit. [30] 

 
Egap(eV) 
lit. [31] 

Si PBESOL 15 5.4297 5.6627 1.190 5.4310 1.120 
Ge PBESOL 3 5.6483 5.6589 0.749 5.6562 0.744 

 

Si1-xGex crystallizes with diamond-like structure in the Space Group . In the 

present work, we have taken as a reference the experimental studies at ambient 

conditions of [30-32], which yield maximum excess volumes ranging from -0.4 up to 

0.03%. We introduce the notions of i) “literature data e.s.d”, defined as the estimated 

standard deviation (e.s.d) calculated with respect to the extant literature data (both 

experimental and theoretical), and ii) “theoretical deviation”, calculated as the square 

root of the average square deviation of the extant literature data from our results. In so 

doing, we have that for ΔV the “theoretical deviation” is as large as 0.34 Å3, versus a 

“literature data e.s.d” of 0.26 Å3, i.e. our results exhibit a disagreement with respect to 

the extant data of the same order of magnitude of the internal scattering between 

excess volume values from literature. Figure 1 displays a comparison between ΔVs 

from this work and experimental measurements [30]. One observes that the occurrence 

of a small and negative ΔV is correctly predicted, and the average discrepancy between 

calculated and observed ΔV is about 0.34%.  
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Fig. 1. Si1-xGex alloy’s excess volume, ΔV, at 300 K, as a function of the molar fraction 

of Ge. Solid line: this study; dashed line: experimental data from [30]. 

 

Binary alloys are often treated as regular solid solutions, whose excess enthalpy is 

modelled by ΔΗ  = Wx(1-x), where W is the interaction parameter. Although the excess 

enthalpy of SiGe turns out to be slightly asymmetric, if we fit a regular model to our ΔH 

data we obtain a critical temperature Tc  435 K (Tc = W/2·kB), to be compared to Tc = 

360 K, predicted by Qteish and Resta [33].  Figure 2 displays the excess Gibbs energy 

whose entropy term accounts for the configuration contribution, too. Values at 0 K, 

corresponding to static ΔΗ, are in agreement with the results by Bublik and Leikin [34].  
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Fig. 2. Si1-xGex alloy’s excess Gibbs energy, ΔG, at 0, 300 and 1000 K as a function of 

the molar fraction of Ge. Triangles: this study, 0 K; diamonds: this study, 300 K; 

squares: this study, 1000 K; dashed line: data from [34] at 0 K. 

Our results are qualitatively comparable with those in Figure 3 of [33], and a general 

accord reveals in terms of trend, with the largest discrepancy estimated at x = 0.5 of  

0.3 kJ/mol, i.e. about 25%. Such a large disagreement reflects a likely low accuracy 

because of the difficulty to obtain numerical quantities from the related available figure 

of the aforementioned authors. 

 

3.2 Al1-xGaxN ternary alloy (wurtzite-like structure) 

Nitrides are widespread in two application areas: short-wavelength light emitters and 

high-power/high-temperature electronics. In particular, AlGaN is often used as a barrier 

material for nitride electronic and optoelectronic devices. AlGaN can crystallize in two 

structures: zinc-blende (space group, ) and wurtzite (space group, P63mc), the 

latter being the more stable phase at room conditions (GZn-BLEND-GWURTZITE  0.7 kJ/mol, 

at ambient pressure and temperature. See for instance [35]). In the present work, we 
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examined both cubic and hexagonal phases of Al1-xGaxN. Reference structures and 

energy gap values for the end-members and along the AlN-GaN join are from [36-38]. 

In all our calculations related to Al1-xGaxN, the aluminium was modelled by the Al 85-

11G* basis set from [39], while gallium was described by the 86-4111d41G basis set 

[40]; N was represented by the 6-31d1G [41]. We used the M06 Minnesota 2006 global 

hybrid GGA-XC functional [42], resorting to hybridization rates of 23 and 19.5%, in AlN 

and GaN, respectively. Table 2 reports general information about the agreement 

between observed versus predicted properties.  

 

Table 2 

Al1-xGaxN alloy: functionals used for exchange and correlation energies; hybridization 

rate, in %; lattice parameter, a and c; electron energy gap at Γ. w = wurtzite-like 

structure; zb = zinc-blende-like structure. 

 
 

Compound 
Exchange 

and 
correlation 
functional 

 
HF/DFT 
Ratio(%) 

 
a(Å) 
this 

study 

 
c(Å) 
this 

study 

Egap 
(eV) 
this 

study 

 
a(Å) 
lit. 

 
c(Å) 
lit. 

 
Egap 
(eV) 
exp.b 

 

AlN – w1 M06 19.5 3.1176 4.9865 6.201 3.1120a 4.9813a 6.23a 
GaN – w M06 19.5 3.1904 5.1862 3.485 3.1875a 5.1837a 3.51a 
AlN – zb M06 19.5 4.3840 - 5.945 4.3800b - 5.94c 
GaN – zb M06 19.5 4.5065 - 3.276 4.5200b - 3.26d 
a extrapolation to 0 K of experimental data by [36] 
b Reference [43] 
c Reference [44] 
d Reference [45] 

 

AlGaN-alloy’s volume follows the Vegard’s law, according to data reported in literature 

[46]. Our method predicts a very small ΔV, the largest deviation from linearity resulting 

in  -0.04 Å3/cell at x(Ga) = 0.5, as one infers by Figure 3, in agreement with earlier first-

principles calculations [47].  
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Fig. 3. Wurtzite-like Al1-xGaxN alloy’s unit cell volume, V, as a function of the molar 

fraction of Ga. Calculated volumes (solid line) and Vs predicted using the Vegard’s law 

and our EMs’ cell parameters.  

The “theoretical deviation” of our ΔVs is  0.04 Å3, versus a “literature data e.s.d.” of  

0.03 Å3. In Figure 4 the excess Gibbs energy curves of wurtzite-like AlGaN alloy at 

1200, 1600 and 2000 K are shown and compared with results obtained by the DLP 

model [5]. The average discrepancy between our model and DLP is  3.0%, 2.3% and 

1.9% at 1200, 1600 and 2000 K, respectively.   
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Fig. 4. Wurtzite-like Al1-xGaxN alloy’s excess Gibbs energy, ΔG, at various temperatures 

as a function of the molar fraction of Ga. Our ΔGs (empty symbols and solid lines) are 

compared to those calculated by means of the DLP model [5] (filled symbols and 

dashed lines). Triangles: 1200 K; diamonds: 1600 K; squares: 2000 K. 

 

Our results are also qualitatively consistent with those reported in Figure 3 by 

Simonya et al. [35], who calculated the Gibbs energy of mixing as a function of T by 

means of the DLP model (mean discrepancy with our data  7%).  

 

3.3 Al1-xGaxN ternary compound (zinc-blende-like structure) 
 

The end-members AlN and GaN of Al1-xGaxN (cubic) were modelled using the setup 

employed for the hexagonal polymorph. Reference experimental data for cell edge and 

electron energy gap are provided by [32] and [48-51]. 

Our cell volume exhibits a slight underestimation with respect to the observed values 

that follow a Vegard-like trend, as reported by Figure 5, in agreement with first-
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principles calculations [50]. The “literature data e.d.s” and “theoretical deviation” of V 

are as large as  0.79 and 0.69 Å3, respectively.  

 
Fig. 5. Zinc-blende-like Al1-xGaxN alloy’s unit cell volume, V, as a function of the molar 

fraction of Ga. Calculated volumes (solid line) and Vs predicted using the Vegard’s law 

and our EMs’ cell parameters (dashed line). 

 

In Figure 6 mixing enthalpy and Gibbs energy curves are displayed. They show a 

satisfactory agreement with results from [51] (0 K; discrepancy  5%) and with those by 

the DLP model of Stringfellow [5]; in the latter case, we observe an average 

discrepancy of 1.9%, 1.4% and 1.1% at 1200, 1600 and 2000 K, respectively.  
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Fig. 6. Zinc-blende-like Al1-xGaxN alloy’s excess Gibbs energy, ΔG, at various 

temperatures as a function of the molar fraction of Ga. Our ΔGs (empty symbols) are 

compared to those calculated by the Stringfellow’s DLP model [5] (filled symbols) and, 

for T = 0 K, to those (filled symbols) in [51]. Triangles: 1200 K; diamonds: 1600 K; 

squares: 1800; circles: 0 K.   

 

A qualitative agreement is observable between our ΔGs and those shown by Figure 3 

in [35], which does not report numerical data. By way of example, at x = 0.5 the 

discrepancy between our ΔG and the value in [35] is estimated  12%. 

 
3.4 Al1-xGaxAs ternary compound (zinc-blende-like structure) 

AlxGa1-xAs crystallizes in the space group . Exchange and correlation energies 

are modelled by the B1WC functional [52], i.e. a combination of WCGGA [53] and 

PWGGA [29], as summarized in Table 3. Experimental geometry data are from [32]. 

  

Table 3 
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Al1-xGaxAs alloy:  functionals used for exchange and correlation energies; 

hybridization rate, in %; lattice parameter, a; electron energy gap at Γ. 

 
Compound 

 
Exchange 
functional 

 
Correlation 
functional 

 
HF/DFT 
Ratio(%) 

 
a(Å) 
this 

study 

Egap 
(eV) 
this 

study 

 
a(Å) 
exp.a 

 
Egap 
(eV) 
exp.b 

AlAs WCGGA PWGGA 11 5.6627 2.183 5.6601 2.240 
GaAs WCGGA PWGGA 1 5.6589 1.538 5.6515 1.519 

a extrapolation to 0 K of data by [32]. 
b  extrapolation to 0 K of data by [48]. 

 

The cell edge, a, is parametrised as a function of the composition, in terms of the 

following equation [32] 

a(Å) = xa(AlAs)+(1-x)a(GaAs)+Wx(1-x) 

where the value of the bowing parameter, W, is 0.0011 Å. Our modelling, at room 

conditions, yields W≈ 0.0013 Å, in keeping with the experimental determination. Figure 

7 shows that our predictions of excess lattice parameter are in agreement with the 

results reported in literature [54], in terms of an average absolute discrepancy of about 

2.1%.   

 
Fig. 7. Al1-xGaxAs alloy’s excess cell edge, Δa, at 300 K as a function of the molar 

fraction of Ge. Solid line: this study; dashed line: data from [54].  
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In Figure 8 the excess Gibbs energy curves at 0, 300, 1000 and 1500 K are plotted.  

 

 

 
Fig. 8. Calculated ΔG of mixing for Al1-xGaxAs as a function of the molar fraction of Ga. 

Triangles: 0 K; diamonds: 300 K; circles: 1000 K; squares: 1500 K. 

The solid solution exhibits a symmetric behaviour, in agreement with expectations 

according to data reported in [34]. The obtained enthalpy of mixing is practically 

negligible (maximum ΔH ∼ 3·10-3 kJ/mol) and ΔG is governed mostly by the pure 

configuration entropy contribution.  

 

3.5 (Mg1-xCax)3Al2(SiO4)3 garnet: pyrope-grossular join 
The (Mg1-xCax)3Al2(SiO4)3 mixing has roused much attention in the Earth Sciences, 

and a critical review on the still-debated excess thermodynamic properties of such solid 

solution is provided by Dove and Geiger [55]. In the present work, reference geometry 

was taken from [56] and exchange-correlation energy was modelled by the M06 

Minnesota 2006 global hybrid GGA-XC functional [42] with hybridization ratios of 28.5 

and 27% for pyrope and grossular, respectively (Table 4).  
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Table 4 

 (Mg1-xCax)3Al2Si3O12 garnet solid solution: functionals used for exchange and 

correlation energies; hybridization rate, in %; lattice parameter, a; electron energy gap 

at Γ. 

 
Compound 

Exchange 
and 

correlation 
functional 

 
HF/DFT 
Ratio(%) 

a(Å) 
this 

study 

Egap 
(eV) 
this 

study 

a(Å) 
exp. [56] 

Egap(eV)
exp. 

Mg3Al2Si3O12 M06 28.5 11.4542 8.79 11.457(1) -
Ca3Al2Si3O12 M06 27 11.8534 8.57 11.852(1) -

 

Extant ΔVs yield a “literature data e.s.d” of ≈ 1.14 Å3, versus a “theoretical deviation” 

of ≈ 1.05 Å3. Figure 9 shows a comparison between our predicted ΔVs and 

measurements by Newton et al. [57] and reveals an average absolute discrepancy of 

10% (i.e. an average deviation of 0.35 Å3). Larger average absolute discrepancies of 

40% (average absolute difference of ≈ 1.3 Å3) and 37% (average absolute difference of 

1.2 Å) are observed, comparing our excess volumes with those in [58] and [56], 

respectively. Note that the maximum ΔV discrepancy between our results and 

literature’s is  ≈ 1-1.3 Å3, corresponding to ≈ 0.20%-0.35% unit cell volume, i.e. a 

comparatively small quantity with respect to V.  
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Fig. 9. (Mg1-xCax)3Al2Si3O12 solid solution excess volume, ΔV, as a function of the molar 

fraction of Ca. Squares: this study (at 0 K); circles: experimental room conditions data 

from [57]. 

[59] provide excess volume values that are in contrast with the extant ones in 

literature, giving significantly larger ΔVs (even three times as large as those from the 

abovementioned references). In this view, we are inclined to leave the determinations 

by [59] aside. 

 



 21

 
Fig. 10. (Mg1-xCax)3Al2Si3O12 solid solution excess enthalpy, ΔH, as a function of the 

molar fraction of Ca. Filled squares: this study at 300 K; empty circles: Margules fitting 

of our data at 300 K; filled diamonds: [57]; filled triangles: [61]; open squares: [60]. 

In Figure 10, we report ΔH-curves from literature, in comparison with ours, at room 

conditions. Considering the experimental uncertainty between observations from 

different authors, our results are in general agreement with measurements. In particular, 

in the region 0.4<x(Ca)<1 our model provides an excess enthalpy curve that lies 

between those by [57] and [60], with an average discrepancy of 15% and 30% 

respectively. Our ΔHs fully match data by Hodges and Spear [61] over the whole x(Ca)-

range, with an average discrepancy of ≈ 5%. Eventually, in the region x(Ca)<0.4, our 

excess enthalpy data agree with all earlier measurements. Altogether, ΔH yields a 

“literature data e.s.d.” of 2.1 kJ/mol, versus a “theoretical deviation” of 1.4 kJ/mol, 

namely our modelling matches well average experimental data. 

 

4. Conclusions 
A method for calculation of the excess volume, enthalpy and Gibbs energy of 

binary/pseudo-binary joins has been developed, using the E(V,S) and F(V,T) state 

functions of the end-members only. On one hand, this remarkably relieves heavy 
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computing to model solid mixings; on the other hand, it provides an advancement with 

respect to the classic Vegard’s law, allowing prediction of excess quantities. The 

present approach pivots around the fundamental observable VMix (equilibrium volume of 

a solid solution), which is determined by Eq. (8). The capacity of the method presented 

herein to reproduce observations is assessed by a comparison between our predictions 

and experimental/theoretical data for five cases of previously studied solid solutions, at 

room pressure: Si1-xGex, Al1-xGaxN (cubic), Al1-xGaxN (hexagonal), Al1-xGaxAs, (Mg1-

xCax)3Al2(SiO4)3. They provide widely investigated joins and cover a range of solid 

mixings from alloys to silicate compounds. The earlier measured and calculated excess 

volume, enthalpy and Gibbs energy values from literature are often scattered. To take 

this into account, we compare the “literature data e.s.d”, namely the e.s.d calculated by 

data of literature, with the “theoretical deviation”, corresponding to the square root of the 

mean square deviation of our excess data from the extant ones found in literature. In so 

doing, we observe that the “literature data e.s.d” to “theoretical deviation” ratio is very 

close to unity, thus proving that our predictions agree with previous determinations, on 

average. ΔV, ΔH and ΔG exhibit average discrepancies between our results and earlier 

data of some 5, 10, and 12%, respectively.  Such figures can be temporarily taken as 

first approximation estimates of the method’s accuracy, until further comparisons with 

experimental/theoretical data will be available. On one hand, the present model 

complements Stringfellow’s5, which is efficient and simple, but difficult to be transferred 

to high pressure investigations and limited to symmetric solid solutions. On the other 

hand, our approach makes it possible to model solid mixings at any condition by directly 

using the energy of the EMs, thus drastically reducing the difficulty to perform 

calculations. Further work will be devoted to extending the present technique in two 

respects: 1) high pressure studies of solid solutions at extreme conditions; 2) multi-

component systems, beyond binary joins.  
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