SIGMA-CONTINUITY WITH CLOSED WITNESSES

RAPHAËL CARROY AND BENJAMIN D. MILLER

ABSTRACT. We use variants of the \mathbb{G}_0 dichotomy to establish a refinement of Solecki's basis theorem for the family of Baire-class one functions which are not σ -continuous with closed witnesses.

Introduction

A subset of a topological space is F_{σ} if it is a union of countablymany closed sets, *Borel* if it is in the σ -algebra generated by the closed sets, and *analytic* if it is a continuous image of a closed subset of $\mathbb{N}^{\mathbb{N}}$.

A function between topological spaces is σ -continuous with closed witnesses if its domain is a union of countably-many closed sets on which it is continuous, Baire class one if preimages of open sets are F_{σ} , strongly σ -closed-to-one if its domain is a union of countably-many analytic sets intersecting the preimage of each singleton in a closed set, F_{σ} -to-one if the preimage of each singleton is F_{σ} , and Borel if preimages of open sets are Borel.

A topological embedding of a topological space X into a topological space Y is a function $\pi \colon X \to Y$ which is a homeomorphism onto its image, where the latter is endowed with the subspace topology. A topological embedding of a set $A \subseteq X$ into a set $B \subseteq Y$ is a topological embedding π of X into Y such that $x \in A \iff \pi(x) \in B$, for all $x \in X$. A topological embedding of a function $f \colon X \to Y$ into a function $f' \colon X' \to Y'$ is a pair (π_X, π_Y) , consisting of topological embeddings π_X of X into X' and π_Y of X into X', with X' and X' of X into X' into X' and X' of X into X' into X' into X' and X' into X' into

A *Polish space* is a second countable topological space which admits a compatible complete metric.

Some time ago, Jayne-Rogers showed that a function between Polish spaces is σ -continuous with closed witnesses if and only if preimages of closed sets are F_{σ} (see [JR82, Theorem 1]). Solecki later refined this result by providing a two-element basis, under topological embeddability, for the family of Baire-class one functions which do not have

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 03E15, 26A21, 28A05, 54H05. Key words and phrases. Basis, closed, continuous, dichotomy, embedding.

The second author was supported in part by FWF Grant P28153.

this property (see [Sol98, Theorem 3.1]). Here we use variants of the \mathbb{G}_0 dichotomy (see [KST99]) to establish a pair of dichotomies which together refine Solecki's theorem.

In §1, we use Lecomte's \aleph_0 -dimensional analog of the \mathbb{G}_0 dichotomy theorem (see [Lec09, Theorem 1.6] or [Mil11, Theorem 18]) to give a new proof of a special case of Hurewicz's dichotomy theorem (see, for example, [Kec95, Theorem 21.18]), yielding the existence of a oneelement basis, under topological embeddability, for the family of Borel sets which are not F_{σ} . To be precise, let $\mathbb{N}_{*}^{\leq \mathbb{N}}$ denote the set $\mathbb{N}^{\leq \mathbb{N}}$, equipped with the smallest topology making the sets $\mathcal{N}_{s}^{*} = \{t \in \mathbb{N}^{\leq \mathbb{N}} \mid s \sqsubseteq t\}$ clopen, for all $s \in \mathbb{N}^{<\mathbb{N}}$. A basis for this topology is given by the sets of the form $\mathcal{N}_s^* \setminus \bigcup_{m < n} \mathcal{N}_{s \smallfrown (m)}^*$, for $n \in \mathbb{N}$ and $s \in \mathbb{N}^{<\mathbb{N}}$. Note that if $s \in \mathbb{N}^{<\mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}} \in (\mathbb{N}^{\leq \mathbb{N}})^{\mathbb{N}}$, then $s \smallfrown (n) \smallfrown z_n \to s$ as $n \to \infty$. We show that if X is a Polish space and $B \subseteq X$ is Borel, then either B is F_{σ} , or there is a topological embedding $\pi: \mathbb{N}_{*}^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^{\mathbb{N}}$ into B. We then note that the same argument, using the parametrized \aleph_0 -dimensional analog of the \mathbb{G}_0 dichotomy theorem (i.e., the straightforward common generalization of [Mil12, Theorems 18 and 31]) in lieu of its non-parametrized counterpart, yields a slight weakening of Saint Raymond's parametrized analog of Hurewicz's result (see, for example, [Kec95, Theorem 35.45]). As a corollary, we show that F_{σ} -to-one Borel functions between Polish spaces are strongly σ -closed-to-one.

In §2, we provide a simple characterization of Baire-class one functions that is used throughout the remainder of the paper. As a first application, we use the Lecomte-Zeleny Δ_2^0 -measurable analog of the \mathbb{G}_0 dichotomy theorem (see [LZ14, Corollary 4.5]) to establish that the property of being Baire class one is determined by behaviour on countable sets.

In §3, we use the Hurewicz dichotomy theorem to provide a oneelement basis, under topological embeddability, for the family of Baireclass one functions which are not F_{σ} -to-one. To be precise, fix a function $f_0 \colon \mathbb{N}_*^{\leq \mathbb{N}} \to \mathbb{R}$ such that $f_0 \upharpoonright \mathbb{N}^{\mathbb{N}}$ has constant value zero and $f_0 \upharpoonright \mathbb{N}^{<\mathbb{N}}$ is an injection into $\{1/n \mid n \in \mathbb{N}\}$.

Theorem 1. Suppose that X and Y are Polish spaces and $f: X \to Y$ is a Baire-class one function. Then exactly one of the following holds:

- (1) The function f is F_{σ} -to-one.
- (2) There is a topological embedding of f_0 into f.

In §4, we use the sequential \aleph_0 -dimensional analog of the \mathbb{G}_0 dichotomy theorem (i.e., the straightforward common generalization of [Mil12, Theorems 18 and 21]) to provide a one-element basis, under topological embeddability, for the family of F_{σ} -to-one Baire-class one

functions which are not σ -continuous with closed witnesses. To be precise, let $\mathbb{N}_{**}^{\leq \mathbb{N}}$ denote the set $\mathbb{N}^{\leq \mathbb{N}}$, equipped with the smallest topology making the sets \mathcal{N}_s^* and $\{s\}$ clopen, for all $s \in \mathbb{N}^{<\mathbb{N}}$. Define $f_1 \colon \mathbb{N}_*^{\leq \mathbb{N}} \to \mathbb{N}_{**}^{\leq \mathbb{N}}$ by $f_1(s) = s$.

Theorem 2. Suppose that X and Y are Polish spaces and $f: X \to X$ Y is an F_{σ} -to-one Baire-class one function. Then exactly one of the following holds:

- (1) The function f is σ -continuous with closed witnesses.
- (2) There is a topological embedding of f_1 into f.

As promised, Theorem 2 trivially yields the following.

Theorem 3 (Jayne-Rogers). Suppose that X and Y are Polish spaces, and $f: X \to Y$ is a function with the property that $f^{-1}(C)$ is F_{σ} , for all closed subsets C of Y. Then f is σ -continuous with closed witnesses.

And Theorems 1 and 2 trivially yield the following.

Theorem 4 (Solecki). Suppose that X and Y are Polish spaces and f is a Baire-class one function. Then exactly one of the following holds:

- (1) The function f is σ -continuous with closed witnesses.
- (2) There is a topological embedding of f_0 or f_1 into f.

1.
$$F_{\sigma}$$
 SETS

We begin this section with a straightforward observation.

Proposition 1.1. (a) The set $\mathbb{N}^{\mathbb{N}}$ is not an F_{σ} subspace of $\mathbb{N}_{*}^{\leq \mathbb{N}}$. (b) The set $\mathbb{N}^{\mathbb{N}}$ is a closed subspace of $\mathbb{N}_{**}^{\leq \mathbb{N}}$.

Proof. To see (a), note that a subset of a topological space is G_{δ} if it is an intersection of countably-many open sets. As $\mathbb{N}^{\leq \mathbb{N}}$ is countable and $\mathbb{N}^{\mathbb{N}}$ is dense in $\mathbb{N}_*^{\leq \mathbb{N}}$, it follows that $\mathbb{N}^{\mathbb{N}}$ is a dense G_{δ} subspace of $\mathbb{N}_*^{\leq \mathbb{N}}$. As $\mathbb{N}^{<\mathbb{N}}$ is also dense in $\mathbb{N}_*^{\leq \mathbb{N}}$, the Baire category theorem (see, for example, [Kec95, Theorem 8.4]) ensures that it is not a G_{δ} subspace of $\mathbb{N}_*^{\leq \mathbb{N}}$, thus $\mathbb{N}^{\mathbb{N}}$ is not an F_{σ} subspace of $\mathbb{N}_*^{\leq \mathbb{N}}$.

To see (b), note that $\{s\}$ is clopen in $\mathbb{N}_{**}^{\leq \mathbb{N}}$ for all $s \in \mathbb{N}^{<\mathbb{N}}$, so $\mathbb{N}^{<\mathbb{N}}$ is open in $\mathbb{N}_{**}^{\leq \mathbb{N}}$, thus $\mathbb{N}^{\mathbb{N}}$ is closed in $\mathbb{N}_{**}^{\leq \mathbb{N}}$.

An \aleph_0 -dimensional dihypergraph on a set X is a set of non-constant elements of $X^{\mathbb{N}}$. A homomorphism from an \aleph_0 -dimensional dihypergraph G on X to an \aleph_0 -dimensional dihypergraph H on Y is a function $\phi \colon X \to Y$ sending elements of G to elements of H.

Fix sequences $s_n^{\mathbb{N}} \in \mathbb{N}^n$ such that $\forall s \in \mathbb{N}^{<\mathbb{N}} \exists n \in \mathbb{N} \ s \sqsubseteq s_n^{\mathbb{N}}$, and define \aleph_0 -dimensional dihypergraphs on $\mathbb{N}^{\mathbb{N}}$ by setting

$$\mathbb{G}_{0,n}^{\mathbb{N}} = \{ (s_n^{\mathbb{N}} \smallfrown (i) \smallfrown z)_{i \in \mathbb{N}} \mid z \in \mathbb{N}^{\mathbb{N}} \},$$

for all $n \in \mathbb{N}$, and $\mathbb{G}_0^{\mathbb{N}} = \bigcup_{n \in \mathbb{N}} \mathbb{G}_{0,n}^{\mathbb{N}}$.

We now establish a technical but useful sufficient condition for the topological embeddability of $\mathbb{N}^{\mathbb{N}}$.

Proposition 1.2. Suppose that X is a metric space, $Y \subseteq X$ is a set, and there are a dense G_{δ} set $C \subseteq \mathbb{N}^{\mathbb{N}}$ and a continuous homomorphism $\phi \colon C \to Y$ from $\mathbb{G}_0^{\mathbb{N}} \upharpoonright C$ to the \aleph_0 -dimensional dihypergraph

$$G = \{ (y_n)_{n \in \mathbb{N}} \in Y^{\mathbb{N}} \mid \exists x \in X \setminus Y \ x = \lim_{n \to \infty} y_n \}.$$

Then there is a topological embedding $\pi: \mathbb{N}_*^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^{\mathbb{N}}$ into Y.

Proof. Fix dense open sets $U_n \subseteq \mathbb{N}^{\mathbb{N}}$ such that $\bigcap_{n \in \mathbb{N}} U_n \subseteq C$. We will recursively construct sequences $(u_s)_{s \in \mathbb{N}^n}$ of elements of $\mathbb{N}^{<\mathbb{N}}$ and sequences $(x_s)_{s \in \mathbb{N}^n}$ of elements of X, for all $n \in \mathbb{N}$, such that:

- (1) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ u_s \sqsubset u_{s \frown (i)}.$
- $(2) \forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \, \mathcal{N}_{u_{s \cap (i)}} \subseteq U_{|s|}.$
- (3) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \operatorname{diam}_{d_X}(\phi(\mathcal{N}_{u_{s_{\mathcal{O}}(i)}})) < 1/|s|.$
- (4) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \overline{\phi(\mathcal{N}_{u_{s_{c}(i)}})} \subseteq \mathcal{B}_{d_X}(x_s, 1/i).$
- (5) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ x_s \notin \overline{\phi(\mathcal{N}_{u_{s \cap (i)}})}.$
- (6) $\forall i, j \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ (i \neq j \implies \overline{\phi(\mathcal{N}_{u_{s \sim (i)}})} \cap \overline{\phi(\mathcal{N}_{u_{s \sim (j)}})} = \emptyset).$

We begin by setting $u_{\emptyset} = \emptyset$. Suppose now that $n \in \mathbb{N}$ and we have already found $(u_s)_{s \in \mathbb{N}^{\leq n}}$ and $(x_s)_{s \in \mathbb{N}^{\leq n}}$. For each $s \in \mathbb{N}^n$, fix $u_s' \in \mathbb{N}^{\leq N}$ such that $u_s \sqsubseteq u_s'$, $\mathcal{N}_{u_s'} \subseteq U_n$, and $\operatorname{diam}_{d_X}(\phi(\mathcal{N}_{u_s'})) < 1/n$, fix $n_s \in \mathbb{N}$ for which $u_s' \sqsubseteq s_{n_s}^{\mathbb{N}}$, and appeal to the Baire category theorem to find $z_s \in \mathbb{N}^{\mathbb{N}}$ with the property that $s_{n_s}^{\mathbb{N}} \cap (i) \cap z_s \in C$, for all $i \in \mathbb{N}$. Set $y_{i,s} = \phi(s_{n_s}^{\mathbb{N}} \cap (i) \cap z_s)$ for all $i \in \mathbb{N}$, as well as $x_s = \lim_{n \to \infty} y_{i,s}$. As $x_s \notin \{y_{i,s} \mid i \in \mathbb{N}\}$, there is an infinite set $I_s \subseteq \mathbb{N}$ for which $(y_{i,s})_{i \in I_s}$ is injective. By passing to an infinite subset of I_s , we can assume that $d_X(x_s, y_{i_{k,s},s}) < 1/k$ for all $k \in \mathbb{N}$, where $(i_{k,s})_{k \in \mathbb{N}}$ is the strictly increasing enumeration of I_s . For each $k \in \mathbb{N}$, fix $\epsilon_{k,s} > 0$ strictly less than $1/k - d_X(x_s, y_{i_{k,s},s})$, $d_X(x_s, y_{i_{k,s},s})$, and $d_X(y_{i,s}, y_{i_{k,s},s})/2$ for all $i \in I_s \setminus \{i_{k,s}\}$, and fix an initial segment $u_{s \cap (k)}$ of $s_{n_s}^{\mathbb{N}} \cap (i_{k,s}) \cap z_s$ of length at least $n_s + 1$ with the property that $\phi(\mathcal{N}_{u_{s \cap (k)}}) \subseteq \mathcal{B}_{d_X}(y_{i_{k,s},s}, \epsilon_{k,s})$. Our choice of u_s' ensures that conditions (1) – (3) hold, and our strict upper bounds on $\epsilon_{k,s}$ yield the remaining conditions. This completes the recursive construction.

Condition (1) ensures that we obtain a function $\psi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by setting $\psi(s) = \bigcup_{n \in \mathbb{N}} u_{s \mid n}$, and condition (2) implies that $\psi(\mathbb{N}^{\mathbb{N}}) \subseteq C$. Set $x_s = (\phi \circ \psi)(s)$ for $s \in \mathbb{N}^{\mathbb{N}}$, and define $\pi \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ by $\pi(s) = x_s$. We will show that π is a topological embedding of $\mathbb{N}^{\mathbb{N}}$ into Y.

Lemma 1.3. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then $\pi(\mathcal{N}_s^*) \subseteq \overline{\phi(\mathcal{N}_{u_s})}$.

Proof. Simply observe that

$$\pi(\mathcal{N}_{s}^{*}) = (\phi \circ \psi)(\mathcal{N}_{s}) \cup \{x_{t} \mid t \in \mathcal{N}_{s}^{*} \setminus \mathcal{N}_{s}\}$$

$$\subseteq \phi(\mathcal{N}_{u_{s}}) \cup \bigcup_{t \in \mathcal{N}_{s}^{*} \setminus \mathcal{N}_{s}} \overline{\phi(\mathcal{N}_{u_{t}})}$$

$$\subseteq \overline{\phi(\mathcal{N}_{u_{s}})},$$

by conditions (1) and (4).

To see that π is injective, suppose that $s,t \in \mathbb{N}^{\leq \mathbb{N}}$ are distinct. If there is a least $n \leq \min\{|s|,|t|\}$ with $s \upharpoonright n \neq t \upharpoonright n$, then condition (6) ensures that $\overline{\phi(\mathcal{N}_{u_{s}\upharpoonright n})}$ and $\overline{\phi(\mathcal{N}_{u_{t}\upharpoonright n})}$ are disjoint, and since Lemma 1.3 implies that $\pi(s)$ is in the former and $\pi(t)$ is in the latter, it follows that they are distinct. Otherwise, after reversing the roles of s and t if necessary, we can assume that there exists $n \leq |t|$ for which $s = t \upharpoonright n$. But then condition (5) ensures that $\pi(s) \notin \overline{\phi(\mathcal{N}_{u_{t}\upharpoonright (n+1)})}$, while Lemma 1.3 implies that $\pi(t) \in \overline{\phi(\mathcal{N}_{u_{t}\upharpoonright (n+1)})}$, thus $\pi(s) \neq \pi(t)$.

As $\mathbb{N}_*^{\leq \mathbb{N}}$ is compact, it only remains to check that π is continuous. And for this, it is enough to check that for all $n \in \mathbb{N}$ and $s \in \mathbb{N}_*^{\leq \mathbb{N}}$, there is an open neighborhood of s whose image under π is a subset of $\mathcal{B}_{d_X}(\pi(s), 1/n)$. Towards this end, note first that if $s \in \mathbb{N}^{\mathbb{N}}$, then Lemma 1.3 ensures that $\pi(\mathcal{N}_{s \restriction (n+1)}^*) \subseteq \overline{\phi(\mathcal{N}_{u_s \restriction (n+1)})}$, so condition (3) implies that $\mathcal{N}_{s \restriction (n+1)}^*$ is an open neighborhood of s whose image under π is a subset of $\mathcal{B}_{d_X}(\pi(s), 1/n)$. On the other hand, if $s \in \mathbb{N}^{\leq \mathbb{N}}$, then Lemma 1.3 ensures that

$$\pi(\mathcal{N}_{s}^{*} \setminus \bigcup_{i < n} \mathcal{N}_{s \cap (i)}^{*}) = \pi(\{s\} \cup \bigcup_{i \geq n} \mathcal{N}_{s \cap (i)}^{*})$$
$$\subseteq \{\pi(s)\} \cup \bigcup_{i > n} \overline{\phi(\mathcal{N}_{u_{s \cap (i)}})},$$

so condition (4) implies that $\mathcal{N}_s^* \setminus \bigcup_{i < n} \mathcal{N}_{s \cap (i)}^*$ is an open neighborhood of s whose image under π is a subset of $\mathcal{B}_{d_X}(\pi(s), 1/n)$.

As a corollary, we obtain the following dichotomy theorem characterizing the family of Borel sets which are F_{σ} .

Theorem 1.4 (Hurewicz). Suppose that X is a Polish space and $B \subseteq X$ is Borel. Then exactly one of the following holds:

- (1) The set B is F_{σ} .
- (2) There is a topological embedding $\pi \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^{\mathbb{N}}$ into B.

Proof. Proposition 1.1 ensures that conditions (1) and (2) are mutually exclusive. To see that at least one of them holds, let G denote the \aleph_0 -dimensional dihypergraph consisting of all sequences $(y_n)_{n\in\mathbb{N}}$ of points of B converging to a point of $X\setminus B$. We say that a set $W\subseteq X$

is G-independent if $G \upharpoonright W = \emptyset$. Note that the closure of every such subset of B is contained in B. In particular, it follows that if B is a union of countably-many G-independent sets, then it is F_{σ} . Otherwise, Lecomte's dichotomy theorem for \aleph_0 -dimensional dihypergraphs of uncountable chromatic number (see [Lec09, Theorem 1.6] or [Mil11, Theorem 18]) yields a dense G_{δ} set $C \subseteq \mathbb{N}^{\mathbb{N}}$ for which there is a continuous homomorphism $\phi \colon C \to B$ from $\mathbb{G}_0^{\mathbb{N}} \upharpoonright C$ to G, in which case Proposition 1.2 yields a topological embedding $\pi \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^{\mathbb{N}}$ into B.

There is also a parametrized form of this theorem.

Theorem 1.5 (Saint Raymond). Suppose that X and Y are Polish spaces and $R \subseteq X \times Y$ is a Borel set with F_{σ} horizontal sections. Then R is a union of countably-many analytic subsets with closed horizontal sections.

Proof. The parametrized form of our earlier dihypergraph is given by

$$G = \{ ((x_n)_{n \in \mathbb{N}}, y) \in (R^y)^{\mathbb{N}} \times Y \mid \exists x \in X \setminus R^y \ x = \lim_{n \to \infty} x_n \}.$$

We say that a set $S \subseteq X \times Y$ is G-independent if S^y is G^y -independent, for all $y \in Y$. Note that the closure of every horizontal section of every such subset of R is contained in the corresponding horizontal section of R. Moreover, if $S \subseteq R$ is analytic, then so too is the set $\{(x,y) \in X \times Y \mid x \in \overline{S^y}\}$. In particular, it follows that if R is a union of countably-many G-independent analytic subsets, then it is a union of countably-many analytic subsets with closed horizontal sections. Otherwise, the parametrized form of the dichotomy theorem for \aleph_0 -dimensional dihypergraphs of uncountable Borel chromatic number (i.e., the straightforward common generalization of [Mil12, Theorems 18 and 31]) yields a dense G_δ set $C \subseteq \mathbb{N}^\mathbb{N}$ and $y \in Y$ for which there is a continuous homomorphism $\phi \colon C \to R^y$ from $\mathbb{G}_0^\mathbb{N} \upharpoonright C$ to G^y , in which case Proposition 1.2 yields a continuous embedding $\pi \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^\mathbb{N}$ into R^y . As the latter is F_σ , this contradicts Proposition 1.1.

Our use of this result will be via the following corollary.

Theorem 1.6. Suppose that X and Y are Polish spaces and $f: X \to Y$ is an F_{σ} -to-one Borel function. Then f is strongly σ -closed-to-one.

Proof. As the set $R = \operatorname{graph}(f)$ is Borel (see, for example, [Kec95, Proposition 12.4]) and has F_{σ} horizontal sections, an application of Theorem 1.5 ensures that it is a union of countably-many analytic sets with closed horizontal sections. As the projections of these sets onto X intersect the preimage of each singleton in a closed set, it follows that f is strongly σ -closed-to-one.

2. Baire-class one functions

Throughout the rest of the paper, we will rely on the following characterization of Baire-class one functions.

Proposition 2.1. Suppose that X is a topological space, Y is a second countable metric space, and $f: X \to Y$ is a function. Then the following are equivalent:

- (1) The function f is Baire class one.
- (2) For all $\epsilon > 0$, there is a cover of X by countably-many closed subsets whose f-images have d_Y -diameter strictly less than ϵ .

Proof. To see (1) \Longrightarrow (2), it is sufficient to show that for all real numbers $\epsilon > 0$ and open sets $V \subseteq Y$ of d_Y -diameter strictly less than ϵ , the set $f^{-1}(V)$ is a union of countably-many closed subsets of X. But this follows from the fact that $f^{-1}(V)$ is F_{σ} .

To see $(2) \Longrightarrow (1)$, it is sufficient to show that for all real numbers $\epsilon > 0$ and open sets $V \subseteq Y$, there is an F_{σ} set $F \subseteq X$ such that $f^{-1}(V_{\epsilon}) \subseteq F \subseteq f^{-1}(V)$, where $V_{\epsilon} = \{y \in Y \mid \mathcal{B}_{d_Y}(y, \epsilon) \subseteq V\}$. Towards this end, fix a cover $(C_n)_{n \in \mathbb{N}}$ of X by closed sets whose f-images have d_Y -diameter strictly less than ϵ , define $N = \{n \in \mathbb{N} \mid f(C_n) \cap V_{\epsilon} \neq \emptyset\}$, and observe that the set $F = \bigcup_{n \in \mathbb{N}} C_n$ is as desired.

As a corollary, we obtain the following.

Theorem 2.2. Suppose that X and Y are Polish spaces, d_Y is a compatible metric on Y, and $f: X \to Y$ is Borel. Suppose further that for all countable sets $C \subseteq X$ and real numbers $\epsilon > 0$, there is a Baire-class one function $g: X \to Y$ with $\sup_{x \in C} d_Y(f(x), g(x)) \le \epsilon$. Then f is Baire class one.

Proof. Suppose, towards a contradiction, that f is not Baire class one, fix a compatible metric d_Y on Y, and appeal to Proposition 2.1 to find $\delta > 0$ for which there is no cover of X by countably-many closed subsets whose f-images have d_Y -diameter at most δ .

A digraph on a set X is an irreflexive subset of $X \times X$. A homomorphism from a digraph G on X to a digraph H on Y is a function $\phi \colon X \to Y$ sending G-related points to H-related points.

Let $G_{\delta,f}$ denote the digraph on X consisting of all $(w,x) \in X \times X$ for which $d_Y(f(w), f(x)) > \delta$. We say that a set $W \subseteq X$ is $G_{\delta,f}$ -independent if $G_{\delta,f} \upharpoonright W = \emptyset$. Our choice of δ ensures that X is not the union of countably-many closed $G_{\delta,f}$ -independent sets.

Fix $s_n^{\Delta_2^0} \in 2^n$ such that $\forall s \in 2^{<\mathbb{N}} \exists n \in \mathbb{N} \ s \sqsubseteq s_n^{\Delta_2^0}$, as well as $z_n \in 2^{\mathbb{N}}$ for all $n \in \mathbb{N}$. Now define a digraph on $2^{\mathbb{N}}$ by setting

$$\mathbb{G}_0^{\boldsymbol{\Delta}_2^0} = \{ (s_n^{\boldsymbol{\Delta}_2^0} \smallfrown (0) \smallfrown z_n, s_n^{\boldsymbol{\Delta}_2^0} \smallfrown (1) \smallfrown z_n) \mid n \in \mathbb{N} \}.$$

The Lecomte-Zeleny dichotomy theorem characterizing analytic graphs of uncountable Δ_2^0 -measurable chromatic number (see [LZ14, Corollary 4.5]) yields a continuous homomorphism $\phi \colon 2^{\mathbb{N}} \to X$ from this digraph to $G_{\delta,f}$. Set

$$C = \phi(\{s_n^{\Delta_2^0} \smallfrown (i) \smallfrown z_n \mid i < 2 \text{ and } n \in \mathbb{N}\})$$

and $\epsilon = \delta/3$.

It only remains to check that no function $g: X \to Y$ for which $\sup_{x \in C} d_Y(f(x), g(x)) \leq \epsilon$ is Baire class one. As ϕ is necessarily a homomorphism from the above digraph to the digraph $G_{\epsilon,g}$ associated with such a function, there can be no cover of X by countably-many closed subsets whose g-images have d_Y -diameter at most ϵ , so one more appeal to Proposition 2.1 ensures that g is not Baire class one.

3. F_{σ} -TO-ONE FUNCTIONS

The proof of Theorem 1 is based on a technical but useful sufficient condition for the topological embeddability of f_0 .

Proposition 3.1. Suppose that Y is a Polish space and $f: \mathbb{N}_*^{\leq \mathbb{N}} \to Y$ is a Baire-class one function for which there exists $y \in Y$ such that $\mathbb{N}^{\mathbb{N}} = f^{-1}(y)$. Then there is a topological embedding of f_0 into f.

Proof. Fix a compatible metric d_Y on Y.

Lemma 3.2. Suppose that $\epsilon > 0$. Then there is a dense open subset U of $\mathbb{N}_*^{\leq \mathbb{N}}$ such that $f(U) \subseteq \mathcal{B}_{d_Y}(y, \epsilon)$.

Proof. By Proposition 2.1, there is a partition $(C_n)_{n\in\mathbb{N}}$ of $\mathbb{N}_*^{\leq \mathbb{N}}$ into closed sets whose f-images have d_Y -diameter strictly less than ϵ . Then for each non-empty open set $V \subseteq \mathbb{N}_*^{\leq \mathbb{N}}$, there exists $n \in \mathbb{N}$ for which C_n is non-meager in V, so there is a non-empty open set $W \subseteq V$ such that C_n is comeager in W. As C_n is closed, it follows that $W \subseteq C_n$, thus the diameter of f(W) is strictly less than ϵ . As W necessarily contains a point of $\mathbb{N}^{\mathbb{N}}$, it follows that $f(W) \subseteq \mathcal{B}_{d_Y}(y, \epsilon)$. The union of the non-empty open sets $W \subseteq \mathbb{N}_*^{\leq \mathbb{N}}$ obtained in this way from non-empty open sets $V \subseteq \mathbb{N}_*^{\leq \mathbb{N}}$ is therefore as desired.

Fix an injective enumeration $(s_n)_{n\in\mathbb{N}}$ of $\mathbb{N}^{<\mathbb{N}}$ with the property that $s_m \sqsubseteq s_n \implies m \le n$ for all $m, n \in \mathbb{N}$, fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of strictly positive real numbers such that $0 = \lim_{n\to\infty} \epsilon_n$, and for each

 $n \in \mathbb{N}$, set $m(n+1) = \max\{m \le n \mid s_m \sqsubseteq s_{n+1}\}$. Define $u_{\emptyset} = \emptyset$, and recursively appeal to Lemma 3.2 to obtain sequences $u_{s_{n+1}} \in \mathbb{N}^{<\mathbb{N}}$, for all $n \in \mathbb{N}$, with the property that $u_{s_{m(n+1)}} \cap s_{n+1}(|s_{m(n+1)}|) \sqsubseteq u_{s_{n+1}}$ and $f(\mathcal{N}_{u_{s_{n+1}}}^*) \subseteq \mathcal{B}_{d_Y}(y, \min\{\epsilon_n, d_Y(y, f(u_{s_n}))\}).$

Define $\pi_X \colon \mathbb{N}_*^{\leq \mathbb{N}} \to \mathbb{N}_*^{\leq \mathbb{N}}$ by

$$\pi_X(s) = \begin{cases} u_s & \text{if } s \in \mathbb{N}^{<\mathbb{N}}, \text{ and} \\ \bigcup_{n \in \mathbb{N}} u_{s \mid n} & \text{otherwise.} \end{cases}$$

Define $\pi_Y: f_0(\mathbb{N}_*^{\leq \mathbb{N}}) \to f(X)$ by $\pi_Y(0) = y$ and $\pi_Y(f_0(s)) = f(u_s)$, for all $s \in \mathbb{N}^{<\mathbb{N}}$. As both of these functions are continuous injections with compact domains, they are necessarily topological embeddings, thus (π_X, π_Y) is a topological embedding of f_0 into f.

Proof of Theorem 1. Proposition 1.1 ensures that conditions (1) and (2) are mutually exclusive. To see $\neg(1) \implies (2)$, suppose that there exists $y \in Y$ such that $f^{-1}(y)$ is not F_{σ} , and appeal to Theorem 1.4 to obtain a topological embedding $\pi \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ of $\mathbb{N}^{\mathbb{N}}$ into $f^{-1}(y)$. Proposition 3.1 then yields a topological embedding (π_X, π_Y) of f_0 into $f \circ \pi$, and it follows that $(\pi \circ \pi_X, \pi_Y)$ is a topological embedding of f_0 into f.

4. Sigma-continuous functions

We begin with a technical but useful sufficient condition for the topological embeddability of f_1 .

Proposition 4.1. Suppose that X and Y are metric spaces, $f: X \to X$ Y, and there are a dense G_{δ} set $C \subseteq \mathbb{N}^{\mathbb{N}}$, a set $W \subseteq X$ intersecting the f-preimage of every singleton in a closed set, and a function $\phi\colon C\to W$, such that both ϕ and $f\circ \phi$ are continuous, which is a homomorphism from $\mathbb{G}_{0,m}^{\mathbb{N}} \upharpoonright C$ to the \aleph_0 -dimensional dihypergraph G_m consisting of all convergent sequences $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ with $f(\lim_{n\to\infty}x_n)\neq$ $\lim_{n\to\infty} f(x_n)$ but $\{f(x_n) \mid n\in\mathbb{N}\}\subseteq \mathcal{B}_{d_{\mathcal{N}}}(f(\lim_{n\to\infty} x_n), 1/m), \text{ for all }$ $m \in \mathbb{N}$. Then there is a topological embedding of f_1 into f.

Proof. Fix dense open sets $U_n \subseteq \mathbb{N}^{\mathbb{N}}$ such that $\bigcap_{n \in \mathbb{N}} U_n \subseteq C$. We will recursively construct sequences $(u_s)_{s\in\mathbb{N}^n}$ of elements of $\mathbb{N}^{<\mathbb{N}}$, sequences $(V_s)_{s\in\mathbb{N}^n}$ of open subsets of Y, and sequences $(x_s)_{s\in\mathbb{N}^n}$ of elements of X, for all $n \in \mathbb{N}$, such that:

- (1) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ u_s \sqsubset u_{s \frown (i)}$.
- (2) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \mathcal{N}_{u_{so(i)}} \subseteq U_{|s|}$.
- (3) $\forall s \in \mathbb{N}^{<\mathbb{N}} \ (f \circ \phi)(\mathcal{N}_{u_s}) \cup \{f(x_s)\} \subseteq V_s.$ (4) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ V_{s \cap (i)} \subseteq V_s.$

- (5) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \operatorname{diam}_{d_X}(\phi(\mathcal{N}_{u_{s_{\circ}(i)}})) < 1/|s|.$
- (6) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \operatorname{diam}_{d_{V}}(V_{s \cap (i)}) < 1/|s|$.
- (7) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \overline{\phi(\mathcal{N}_{u_{s}(i)})} \subseteq \mathcal{B}_{d_X}(x_s, 1/i).$
- (8) $\forall s \in \mathbb{N}^{<\mathbb{N}} \ f(x_s) \notin \overline{\bigcup_{i \in \mathbb{N}} V_{s \cap (i)}}.$ (9) $\forall i \in \mathbb{N} \forall s \in \mathbb{N}^{<\mathbb{N}} \ V_{s \cap (i)} \cap \overline{\bigcup_{j \in \mathbb{N} \setminus \{i\}} V_{s \cap (j)}} = \emptyset.$

We begin by setting $u_{\emptyset} = \emptyset$ and $V_{\emptyset} = Y$. Suppose now that $n \in \mathbb{N}$ and we have already found $(u_s)_{s\in\mathbb{N}^{\leq n}}$, $(V_s)_{s\in\mathbb{N}^{\leq n}}$, and $(x_s)_{s\in\mathbb{N}^{< n}}$. For each $s\in\mathbb{N}^n$, fix $\delta_s>0$ as well as $u_s'\in\mathbb{N}^{<\mathbb{N}}$ such that $u_s\sqsubseteq u_s'$, $\mathcal{N}_{u'_s} \subseteq U_n$, diam_{d_X} $(\phi(\mathcal{N}_{u'_s})) < 1/n$, diam_{d_Y} $((f \circ \phi)(\mathcal{N}_{u'_s})) < 3/2n$, and $\mathcal{B}_{d_Y}((f \circ \phi)(\mathcal{N}_{u_s'}), \delta_s) \subseteq V_s$. Fix a natural number $n_s \geq 1/\delta_s$ such that $u'_s \subseteq s_{n_s}^{\mathbb{N}}$, appeal to the Baire category theorem to find $z_s \in \mathbb{N}^{\mathbb{N}}$ with the property that $s_{n_s}^{\mathbb{N}} \cap (i) \cap z_s \in C$ for all $i \in \mathbb{N}$, and define $x_{i,s} = \phi(s_{n_s}^{\mathbb{N}} \cap (i) \cap z_s)$ and $y_{i,s} = f(x_{i,s})$ for all $i \in \mathbb{N}$, as well as $x_s = \lim_{i \to \infty} x_{i,s}$. The fact that $f(x_s) \neq \lim_{i \to \infty} y_{i,s}$ ensures the existence of an infinite set $I_s \subseteq \mathbb{N}$ for which $f(x_s) \notin \{y_{i,s} \mid i \in I_s\}$. Note that there can be no infinite set $J \subseteq I_s$ such that $(y_{j,s})_{j \in J}$ is constant, since otherwise the fact that $\phi(C) \subseteq W$ would imply that $f(x_s) = y_{j,s}$, for all $j \in J$. So by passing to an infinite subset of I_s , we can assume that $(y_{i,s})_{i \in I_s}$ is injective. By passing to a further infinite subset of I_s , we can ensure that $(y_{i,s})_{i \in I_s}$ has at most one limit point. By eliminating this limit point from the sequence if necessary, we can therefore ensure that $y_{i,s} \notin \{y_{j,s} \mid j \in I_s \setminus \{i\}\}\$, for all $i \in I_s$. Similarly, we can assume that $x_s \notin \{x_{i,s} \mid i \in I_s\}$. By passing one last time to an infinite subset of I_s , we can assume that $d_X(x_s, x_{i_{k,s},s}) < 1/k$ for all $k \in \mathbb{N}$, where $(i_{k,s})_{k\in\mathbb{N}}$ is the strictly increasing enumeration of I_s . For each $k\in\mathbb{N}$, fix $\epsilon_{k,s}^X > 0$ strictly less than $1/k - d_X(x_s, x_{i_{k,s},s})$, and fix $\epsilon_{k,s}^Y > 0$ strictly less than $d_Y(f(x_s), y_{i_{k,s},s})/2$ and $d_Y(y_{i,s}, y_{i_{k,s},s})/3$, for all $i \in I_s \setminus \{i_{k,s}\}$. Set $V_{s \cap (k)} = \mathcal{B}_{d_Y}(y_{i_{k,s},s}, \epsilon_{k,s}^Y) \cap V_s$, and fix an initial segment $u_{s \cap (k)}$ of $s_{n_s}^{\mathbb{N}} \cap (i_{k,s}) \cap z_s$ of length at least $n_s + 1$ with the property that $\phi(\mathcal{N}_{u_{s \cap (k)}}) \subseteq \mathcal{B}_{d_X}(x_{i_{k,s},s}, \epsilon_{k,s}^X)$ and $(f \circ \phi)(\mathcal{N}_{u_{s \cap (k)}}) \subseteq V_{s \cap (k)}$. Our choice of u_s' ensures that conditions (1), (2), and (5) hold, and along with the fact that ϕ is a homomorphism, that condition (3) holds as well. Condition (4) holds trivially, and the remaining conditions follow from our upper bounds on $\epsilon_{k,s}^X$ and $\epsilon_{k,s}^Y$. This completes the recursive construction.

By condition (1), we obtain a continuous function $\psi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by setting $\psi(s) = \bigcup_{n \in \mathbb{N}} u_{s \mid n}$. Condition (2) ensures that $\psi(\mathbb{N}^{\mathbb{N}}) \subseteq C$. Set $x_s = (\phi \circ \psi)(s)$ for $s \in \mathbb{N}^{\mathbb{N}}$, and define $\pi_X \colon \mathbb{N}_*^{\leq \mathbb{N}} \to X$ and $\pi_Y \colon \mathbb{N}_{**}^{\leq \mathbb{N}} \to Y$ by $\pi_X(s) = x_s$ and $\pi_Y = f \circ \pi_X$. We will show that (π_X, π_Y) is a topological embedding of f_1 into f.

Lemma 4.2. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then $\pi_X(\mathcal{N}_s^*) \subseteq \overline{\phi(\mathcal{N}_{u_s})}$.

Proof. Simply observe that

$$\pi_X(\mathcal{N}_s^*) = (\phi \circ \psi)(\mathcal{N}_s) \cup \{x_t \mid t \in \mathcal{N}_s^* \setminus \mathcal{N}_s\}$$

$$\subseteq \phi(\mathcal{N}_{u_s}) \cup \bigcup_{t \in \mathcal{N}_s^* \setminus \mathcal{N}_s} \overline{\phi(\mathcal{N}_{u_t})}$$

$$\subseteq \overline{\phi(\mathcal{N}_{u_s})},$$

by conditions (1) and (7).

Lemma 4.3. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then $\pi_Y(\mathcal{N}_s^*) \subseteq V_s$.

Proof. Simply observe that

$$\pi_{Y}(\mathcal{N}_{s}^{*}) = (f \circ \phi \circ \psi)(\mathcal{N}_{s}) \cup \{f(x_{t}) \mid t \in \mathcal{N}_{s}^{*} \setminus \mathcal{N}_{s}\}$$

$$\subseteq (f \circ \phi)(\mathcal{N}_{u_{s}}) \cup \{f(x_{t}) \mid t \in \mathcal{N}_{s}^{*} \setminus \mathcal{N}_{s}\}$$

$$\subseteq V_{s} \cup \bigcup_{t \in \mathcal{N}_{s}^{*} \setminus \mathcal{N}_{s}} V_{t}$$

$$\subseteq V_{s},$$

by conditions (3) and (4).

To see that π_X and π_Y are injective, it is enough to check that the latter is injective. Towards this end, suppose that $s,t \in \mathbb{N}^{\leq \mathbb{N}}$ are distinct. If there is a least $n \leq \min\{|s|,|t|\}$ with $s \upharpoonright n \neq t \upharpoonright n$, then condition (9) ensures that $V_{s \upharpoonright n}$ and $V_{t \upharpoonright n}$ are disjoint, and since Lemma 4.3 implies that $\pi_Y(s)$ is in the former and $\pi_Y(t)$ is in the latter, it follows that they are distinct. Otherwise, after reversing the roles of s and t if necessary, we can assume that there exists n < |t| for which $s = t \upharpoonright n$. But then condition (8) ensures that $\pi_Y(s) \notin V_{t \upharpoonright (n+1)}$, while Lemma 4.3 implies that $\pi_Y(t) \in V_{t \upharpoonright (n+1)}$, thus $\pi_Y(s) \neq \pi_Y(t)$.

To see that π_X is a topological embedding, it only remains to show that it is continuous (since $\mathbb{N}_*^{\leq \mathbb{N}}$ is compact). And for this, it is enough to check that for all $n \in \mathbb{N}$ and $s \in \mathbb{N}_*^{\leq \mathbb{N}}$, there is an open neighborhood of s whose image under π_X is a subset of $\mathcal{B}_{d_X}(\pi_X(s), 1/n)$. Towards this end, observe that if $s \in \mathbb{N}^{\mathbb{N}}$, then Lemma 4.2 ensures that $\pi_X(\mathcal{N}_{s \restriction (n+1)}^*) \subseteq \overline{\phi(\mathcal{N}_{u_{s \restriction (n+1)}})}$, so condition (5) implies that $\mathcal{N}_{s \restriction (n+1)}^*$ is an open neighborhood of s whose image under π_X is a subset of $\mathcal{B}_{d_X}(\pi_X(s), 1/n)$. And if $s \in \mathbb{N}^{<\mathbb{N}}$, then Lemma 4.2 ensures that

$$\pi_X(\mathcal{N}_s^* \setminus \bigcup_{i < n} \mathcal{N}_{s \cap (i)}^*) = \pi_X(\{s\} \cup \bigcup_{i \ge n} \mathcal{N}_{s \cap (i)}^*)$$
$$\subseteq \{\pi_X(s)\} \cup \bigcup_{i > n} \overline{\phi(\mathcal{N}_{u_{s \cap (i)}})},$$

so condition (7) implies that $\mathcal{N}_s^* \setminus \bigcup_{i < n} \mathcal{N}_{s \cap (i)}^*$ is an open neighborhood of s whose image under π_X is a subset of $\mathcal{B}_{d_X}(\pi_X(s), 1/n)$.

To see that π_Y is continuous, it is sufficient to check that for all $n \in \mathbb{N}$ and $s \in \mathbb{N}_{**}^{\leq \mathbb{N}}$, there is an open neighborhood of s whose image under π_Y is contained in $\mathcal{B}_{d_Y}(\pi_Y(s), 1/n)$. Towards this end, observe that if $s \in \mathbb{N}^{\mathbb{N}}$, then Lemma 4.3 ensures that $\pi_Y(\mathcal{N}_{s \restriction (n+1)}^*) \subseteq V_{s \restriction (n+1)}$, so condition (6) implies that $\mathcal{N}_{s \restriction (n+1)}^*$ is an open neighborhood of s whose image under π_Y is contained in $\mathcal{B}_{d_Y}(\pi_Y(s), 1/n)$. And if $s \in \mathbb{N}^{<\mathbb{N}}$, then $\{s\}$ is an open neighborhood of s whose image under π_Y is a subset of $\mathcal{B}_{d_Y}(\pi_Y(s), 1/n)$.

Before showing that π_Y is a topological embedding, we first establish several lemmas.

Lemma 4.4. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then $\pi_Y(\mathcal{N}_s^*) = \overline{V_s} \cap \pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}})$.

Proof. Lemma 4.3 ensures that $\pi_Y(\mathcal{N}_s^*) \subseteq \overline{V_s} \cap \pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}})$, so it is enough to show that $\pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}} \setminus \mathcal{N}_s^*) \cap \overline{V_s} = \emptyset$. Towards this end, note that if $t \in \mathbb{N}_{**}^{\leq \mathbb{N}} \setminus \mathcal{N}_s^*$, then either there exists a least $n \leq \min\{|s|, |t|\}$ for which $s \upharpoonright n$ and $t \upharpoonright n$ are incompatible, or $t \sqsubset s$. In the former case, condition (9) implies that $\overline{V_{s|n}}$ and $V_{t|n}$ are disjoint, and since Lemma 4.3 implies that $\pi_Y(t)$ is in the latter, it is not in the former. But then it is also not in $\overline{V_s}$, by condition (4). In the latter case, set n = |t|, and appeal to condition (8) to see that $\pi_Y(t)$ is not in $\overline{V_{s|(n+1)}}$. But then it is also not in $\overline{V_s}$, by condition (4).

Lemma 4.5. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then

$$\pi_Y(\mathcal{N}_s^*) = \pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}}) \setminus (\overline{\bigcup_{t \mid s} V_t} \cup \{\pi_Y(t) \mid t \sqsubset s\}).$$

Proof. To see that $\pi_Y(\mathcal{N}_s^*) \cap (\overline{\bigcup_{t \perp s} V_t} \cup \{\pi_Y(t) \mid t \sqsubset s\}) = \emptyset$, note that if $t \perp s$, then there is a maximal $n < \min\{|s|, |t|\}$ with the property that $s \upharpoonright n = t \upharpoonright n$, in which case t is an extension of $(s \upharpoonright n) \smallfrown (j)$, for some $j \in \mathbb{N} \setminus \{s(n)\}$. Condition (4) therefore ensures that

$$\overline{\bigcup_{t \perp s} V_t} = \bigcup_{n < |s|} \overline{\bigcup_{j \in \mathbb{N} \setminus \{s(n)\}} V_{(s \upharpoonright n) \smallfrown (j)}}.$$

As Lemma 4.3 implies that $\pi_Y(\mathcal{N}_s^*) \subseteq V_s$, and condition (4) ensures that $V_s \subseteq V_{s \upharpoonright (n+1)}$ for all n < |s|, it follows from condition (9) that $\pi_Y(\mathcal{N}_s^*) \cap \overline{\bigcup_{t \mid s} V_t} = \emptyset$.

To see that $\pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}} \setminus \mathcal{N}_s^*) \subseteq \overline{\bigcup_{t \perp s} V_t} \cup \{\pi_Y(t) \mid t \sqsubset s\}$, note that if $t \in \mathbb{N}_{**}^{\leq \mathbb{N}} \setminus \mathcal{N}_s^*$ and $t \not\sqsubset s$, then there exists $n \leq \min\{|s|, |t|\}$ such that $s \upharpoonright n$ and $t \upharpoonright n$ are incompatible, so Lemma 4.3 ensures that $\pi_Y(t) \in \overline{\bigcup_{t \perp s} V_t}$.

Lemma 4.6. Suppose that $s \in \mathbb{N}^{<\mathbb{N}}$. Then $\pi_Y(s)$ is the unique element of $\pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}}) \setminus (\overline{\bigcup_{t \not\sqsubseteq s} V_t} \cup \{\pi_Y(t) \mid t \sqsubseteq s\})$.

Proof. As $\overline{\bigcup_{t \not\sqsubseteq s} V_t} = \overline{\bigcup_{t \perp s} V_t} \cup \overline{\bigcup_{i \in \mathbb{N}} V_{s \cap (i)}}$ by condition (4), Lemma 4.5 ensures that we need only show that $\pi_Y(s)$ is the unique element of $\pi_Y(\mathcal{N}_s^*) \setminus \overline{\bigcup_{i \in \mathbb{N}} V_{s \cap (i)}}$. Condition (8) ensures that $\pi_Y(s)$ is in this set, while Lemma 4.3 implies that the other points of $\pi_Y(\mathcal{N}_s^*)$ are not.

It remains to show that $\pi_Y(\mathcal{N}_s^*)$ and $\{\pi_Y(s)\}$ are clopen in $\pi_Y(\mathbb{N}_{**}^{\leq \mathbb{N}})$, for all $s \in \mathbb{N}^{\mathbb{N}}$. The former is a consequence of Lemmas 4.4 and 4.5, while the latter follows from Lemma 4.6.

Lemma 4.7. Suppose that $W \subseteq X$ is G-independent. Then so is \overline{W} .

Proof. We must show that if $x = \lim_{n \to \infty} \overline{w}_n$ and each \overline{w}_n is in \overline{W} , then $f(x) = \lim_{n \to \infty} f(\overline{w}_n)$. For each $n \in \mathbb{N}$, write $\overline{w}_n = \lim_{m \to \infty} w_{m,n}$, where each $w_{m,n}$ is in W. The fact that W is G-independent then ensures that $f(\overline{w}_n) = \lim_{m \to \infty} f(w_{m,n})$. Fix $m_n \in \mathbb{N}$ such that both $d_X(w_{m_n,n},\overline{w}_n)$ and $d_Y(f(w_{m_n,n}),f(\overline{w}_n))$ are at most 1/n. It then follows that $x = \lim_{m \to \infty} w_{m_n,n}$, so one more appeal to the fact that W is G-independent yields that $f(x) = \lim_{m \to \infty} f(w_{m_n,n}) = \lim_{m \to \infty} f(\overline{w}_n)$. \boxtimes

Proof of Theorem 2. Clearly, if (1) holds then $f^{-1}(C)$ is F_{σ} for every closed set $C \subseteq Y$. Hence conditions (1) and (2) are mutually exclusive. To see that at least one of them holds, let G denote the \aleph_0 -dimensional dihypergraph on X consisting of all convergent sequences $(x_n)_{n\in\mathbb{N}}$ such that $f(\lim_{n\to\infty} x_n) \neq \lim_{n\to\infty} f(x_n)$, and fix compatible metrics d_X and d_Y on X and Y, respectively.

As f is continuous on a closed set if and only if the set in question is G-independent, it follows that if X is a union of countably-many G-independent sets, then f is σ -continuous with closed witnesses. We can therefore focus on the case that X is not a union of countably-many G-independent sets. While it is not difficult to see that condition (1) fails in this case, simply applying the dichotomy for \aleph_0 -dimensional analytic dihypergraphs of uncountable chromatic number (see [Lec09, Theorem 1.6] or [Mil11, Theorem 18]) will not yield the sort of homomorphism we require. So instead, we will use our further assumptions to obtain a homomorphism with stronger properties.

For each $\epsilon > 0$, let G_{ϵ} denote the \aleph_0 -dimensional dihypergraph on X consisting of all sequences $(x_n)_{n \in \mathbb{N}} \in G$ with the property that $\{f(x_n) \mid n \in \mathbb{N}\} \subseteq \mathcal{B}_{d_Y}(f(\lim_{n \to \infty} x_n), \epsilon)$. Note that if $B \subseteq X$ is a G_{ϵ} -independent set and $C \subseteq X$ is a closed set whose f-image has d_Y -diameter strictly less than ϵ , then $B \cap C$ is G-independent. As Proposition 2.1 ensures that X is a union of countably-many closed sets whose f-images have d_Y -diameter strictly less than ϵ , it follows that every G_{ϵ} -independent set is a union of countably-many G-independent sets.

We say that a set $W \subseteq X$ is eventually $(G_{\epsilon})_{\epsilon>0}$ -independent if there exists $\epsilon > 0$ for which it is G_{ϵ} -independent. As X is not a union of countably-many G-independent sets, it follows that it is not a union of countably-many eventually $(G_{\epsilon})_{\epsilon>0}$ -independent sets. Again, however, simply applying the sequential \aleph_0 -dimensional analog of the \mathbb{G}_0 dichotomy theorem (i.e., the straightforward common generalization of [Mil12, Theorems 18 and 21]) will not yield the sort of homomorphism we require, and we must once more appeal to our further assumptions.

Theorem 1.6 ensures that X is a union of countably-many analytic sets whose intersection with the f-preimage of each singleton is closed. As X is not a union of countably-many eventually $(G_{\epsilon})_{\epsilon>0}$ -independent sets, it follows that there is an analytic set $A \subseteq X$, whose intersection with the f-preimage of each singleton is closed, that is not a union of countably-many eventually $(G_{\epsilon})_{\epsilon>0}$ -independent sets.

At long last, we now appeal to the sequential \aleph_0 -dimensional analog of the \mathbb{G}_0 dichotomy theorem (i.e., the straightforward common generalization of [Mil12, Theorems 18 and 21]) to obtain a dense G_δ set $C \subseteq \mathbb{N}^{\mathbb{N}}$ and a continuous function $\phi \colon C \to A$ which is a homomorphism from $\mathbb{G}_{0,n}^{\mathbb{N}} \upharpoonright C$ to $G_{1/n}$, for all $n \in \mathbb{N}$. In fact, by first replacing the given topology of X with a finer Polish topology consisting only of Borel sets but with respect to which f is continuous (see, for example, [Kec95, Theorem 13.11]), we can ensure that $f \circ \phi$ is continuous as well. An application of Proposition 4.1 therefore yields the desired topological embedding of f_1 into f.

Acknowledgments. We would like to thank the anonymous editor and referee for several suggestions that improved the clarity of our exposition.

References

- [JR82] J.E. Jayne and C.A. Rogers, First level Borel functions and isomorphisms, J. Math. Pures Appl. (9) 61 (1982), no. 2, 177–205. MR 673304 (84a:54072)
- [Kec95] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
- [KST99] A.S. Kechris, S. Solecki, and S. Todorcevic, Borel chromatic numbers, Adv. Math. 141 (1999), no. 1, 1–44. MR MR1667145 (2000e:03132)
- [Lec09] D. Lecomte, A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension, Trans. Amer. Math. Soc. **361** (2009), no. 8, 4181–4193. MR 2500884 (2010d:03078)
- [LZ14] D. Lecomte and M. Zeleny, Baire-class ξ colorings: the first three levels, Trans. Amer. Math. Soc. **366** (2014), no. 5, 2345–2373. MR 3165641

- [Mil11] B.D. Miller, Dichotomy theorems for countably infinite dimensional analytic hypergraphs, Ann. Pure Appl. Logic 162 (2011), no. 7, 561–565. MR 2781095 (2012c:03133)
- [Mil12] _____, The graph-theoretic approach to descriptive set theory, Bull. Symbolic Logic 18 (2012), no. 4, 554–575. MR 3053069
- [Sol98] S. Solecki, Decomposing Borel sets and functions and the structure of Baire class 1 functions, J. Amer. Math. Soc. 11 (1998), no. 3, 521–550. MR 1606843 (99h:26010)

RAPHAËL CARROY, KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUSTRIA *E-mail address*: raphael.carroy@univie.ac.at

URL: http://www.logique.jussieu.fr/~carroy/indexeng.html

BENJAMIN D. MILLER, KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUSTRIA

E-mail address: benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller