A conditional algorithm for Bayesian finite
mixture models via normalized point process.

Un algoritmo per la stima bayesiana di misture finito
dimensionali costruite mediante normalizzazione di
processi di punto

Raffaele Argiento

Abstract Modelling via finite mixtures is one of the most fruitful Bayesian ap-
proach, particularly useful when there is unobserved heterogeneity in the data. The
most popular algorithm under this model is the reversible jump MCMC, that can
be nontrivial to design, especially in high-dimensional spaces. In this work, we first
introduce a class of finite discrete random probability measures obtained by normal-
ization of finite point processes. Then, we use the new class as the mixing measure
of a mixture model and derive its posterior characterization. The resulting new class
encompasses the popular finite Dirichlet mixture model; here, in order to compute
posterior, we propose an alternative to the reversible jump. In particular, borrowing
notation from the nonparametric Bayesian literature, we set up a conditional MCMC
algorithm based on the posterior characterization of the unnormalized point process.
In order to show the performance of our algorithm and the flexibility of the model,
we illustrate some examples on the popular Galaxy dataset.

Abstract La classe dei modelli mistura e frequentemente utilizzata come strumen-
to per l'analisi di popolazioni eterogenee. Per ottenere delle stime bayesiane dei
parametri di questi modelli, sono comunemente utilizzati gli algoritmi MCMC di
tipo “Reversible Jump”. Tuttavia, questi ultimi sono molto difficili da configura-
re, in special modo quando i dati appartengono a spazi di dimensione elevata. In
questo lavoro, come primo passo, introdurremo una classe di misure di probabilita
aleatorie. Tali misure saranno costruite come normalizzazione di processi di punto
finito dimensionali di cui daremo una caratterizzazione a posteriori. Come secondo
passo, utilizzeremo gli elementi della nuova classe come misure miscelanti in mo-
delli mistura, generalizzando, cosi, la ben nota famiglia di misture di Dirichlet finito
dimensionali. Proporremo un campionatore di tipo Gibbs in alternativa all’usuale
algoritmo a salti reversibili. In particolare, prendendo in prestito la nomenclatura
dalla letteratura bayesiana nonparametrica, costruiremo un agoritmo di tipo con-
dizionale basandoci sulla caratterizzazione a posteriori del processo di punto finito
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dimensionale non normalizzato. Per illustrare le prestazioni del nostro algoritmo e
la flessibilita del modello, illustreremo due esempi di mistura considerando il popo-
lare set di dati Galaxy.

Key words: Mixture Models, Reversible Jump MCMC, Point Processes, Density
Estimation

1 Introduction

Mixture models are very powerful and natural statistical tools to fit data from an
heterogeneous population. Under such a model each observation is assumed to have
arisen from one of 0 < M < oo groups. Let Y € % C R” be the population variable,
a mixture model for Y is given by

M
fr(3;P) = /@ 10:0)P(6) = Y. Pif 0, )

where {f(+;0),0 € ® C R} is a parametric family of densities on %, while P(-) is
an almost sure discrete density on ©, and it is called mixing measure.

For each j = 1,...,M, the density f(y, ;) is referred to as a kernel of the mix-
ture, and is weighted by P;, the relative frequency of the group in the population.
Model (1) provides a framework by which observations may be clustered together
into groups for discrimination or classification, so that conditionally to the groups
data are independent and identically distributed within the groups and independent
between groups.

In Bayesian Nonparametrics framework (i.e., M = o) the Dirichlet process mix-
ture model ([8]), i.e. model (1) were the mixing measure is indeed the Dirichlet
process, plays a pivotal role. This popularity is mainly due to its high flexibility
in density estimation problems as well as in clustering and for its mathematical
and computational tractability. However, in some statistical applications, clustering
induced by the Dirichlet process may be restrictive (see for instance [2]), so that
many alternative mixing measures have been proposed. In particular, [7] replaces
the Dirichlet process with a huge and flexible class of random probability measures
obtained by normalization of random (infinite dimensional) measures with indepen-
dent increments. On the other hand, in a Bayesian parametric context (i.e., M < oo
almost surely) the most natural approach is to choose a prior on M, then, condition-
ally to M = m, the mixture weights (Pj,...,P,) are chosen according to a m — 1
dimensional Dirichlet,, distribution. We denote the latter model the finite Dirichlet
mixture model (FDMM) and refer, among the other, to Nobile [10], Richardson and
Green [11], Stephens [13] and Miller and Harrison [9] for more details on it.

In this work we put ourselves in a parametric context and we introduce a new
class of random measures obtained by normalization of a finite point processes.
Then, as in [7] in the nonparametric case, we aim at using elements of the new



Title Suppressed Due to Excessive Length 3

class as mixing measures in Model (1). We call the new class of random probability
measures the class of normalized independent finite point processes and we derive
the prior the family of prior distributions it induces on the data partition by giving a
general formula for the corresponding exchangeable partition probability functions
[12]. As a further result, we characterize the posterior distribution of a normalized
independent finite point process given a sample from it.

It is well known that a finite Dirichlet vector can be obtained by normalization
of Gamma random variables with common scale parameter, so that our normalized
class encompasses the finite Dirichlet process; we specialized our theoretical result
for the Dirichlet measure when the number of jumps is chosen according to a shifted
Poisson on the positive integers 1,2, .... We refer to this simple process as the nor-
malized finite Poisson-Dirichlet measure and set up the relative mixture model.

Several inference methods have been proposed for the finite Dirichlet mix-
ture model, the most commonly-used method being reversible jump Markov chain
Monte Carlo ([11]). Reversible jump is a very general technique, and has been suc-
cessfully applied in many contexts, but it can be difficult to use since applying it to
new situations requires one to design good reversible jump moves, which is often
nontrivial, particularly in high-dimensional parameter spaces.

Among the main achievements of this work, there is the construction of (con-
jugate) Gibbs sampler scheme to simulate from the posterior distribution of a nor-
malize finite Poisson-Dirichlet; in particular, borrowing notation from the nonpara-
metric Bayesian literature, we set up a conditional MCMC algorithm based on the
posterior characterization of the unnormalized point process.

For illustration purposes, we apply the finite Poisson-Dirichlet model to a popular
dataset, namely the Galaxy dataset, since it is nowadays the favorite test dataset
for any new nonparametric model in a density estimation context. We illustrate the
performances of our algorithm for different sets of hyperparameters and compare
our results with the one obtained under the reversible jump MCMC.

2 The General Finite Point Process

Let 2 be a complete separable metric space, a finite point process X is a random
countable subset of :Z". In this paper attention is restricted to processes whose re-
alizations are finite subset of .2". Formally, for any subset x C 2", let m(x) denote
the cardinality of x, realization of X are constrained on Ny = {x C 2" : m(x) < co}.
Elements of Ny are called finite point configurations.

We refer to the book of Daley and Vere-Jones ([4]) for a complete treatment
of finite point processes. We mention here that the law of a finite point process is
identified given the following:

1. A discrete probability density {qm,m=0,1,...} determining the law of the total
number M of points of the process,
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2. for each integer m > 1, a probability distribution IL,(-) on the Borel sets of
™, that determines the joint distribution of the positions of the points of the
process, given that their total number is m.

In particular {g,,} and {IT, } provide a constructive definition that could be used to
simulate the process: first, generate a random number M according to the distribu-
tion {g, }, and then, supposing M = m and, excepting the case m = 0 in which there

is nothing else to do, generate a random set X = {&;,..., &y}, where (&1,...,&y) is
distributed according to IT,(-).
We point out that, a point process X = {&,...,&,} is a set of unordered points.

This fact, is implicit in Conditions 1. and 2. above: to be consistent with treating
point processes as unordered sets, one as to stipulate that the distributions IT,(+)
should give equal weight to all m! permutations of the elements in the vector
(&1,...,&), ie. IT,(-) should be symmetric. If this is not already the case, it is
easily achieved by introducing the symmetrized form for any partition (Ay,...,A.)
of 27 Iy (Ay X -+ X Aw) = a3 ¥ perm Hin(Ai; X -+ X A;,), where the summation
perm is taken over all m! permutations (iy,...,i,) of the integers (1,...,m). An al-
ternative notation to identify the law of X, which has some advantages in simplifying
combinatorial formulae, utilizes the nonprobability measures

Tn(Ar X X Ap) = gm Y, Thn(Ajy X -+ X Ay,) = mlguIT™ (A X - X Ap).

perm

This latter is referred as Janossy measure ([4]). The Jannossy measure has a simple
interpretation. If 2° = R? and j,,(&1,...,&,) denotes the density of J,,(-) with re-
spect to Lesbegue measure and &§; # §; for i # j, then j,,(&1,...,En)dE ... dE, =TP(
there are exactly m points in the process, one in each of the distinct infinitesimal re-
gions (&;,& +d&;)). Janossy densities play a fundamental role in the study of finite
point processes and spatial point patterns, we refer to [4] for more details. Here, we
will use this mathematical object to characterize the posterior distribution of a new
class of finite discrete random probability measures. In fact, in this work we will
deal with a simple family of finite point processes, namely the family of indepen-
dent finite point processes (IFPP):

Definition 1. Let v(-) be a density on 2", and {p,,,m =0, 1,...} a probability den-
sity, we will say that X is an independent finite point process, or X ~ IFPP(V, py),
if its Janossy density can be written as

m

Jm(&1s-- -, 6m) = m!PmHV(xj)~

j=1

3 Normalized independent finite point processes

Let ® C RY, for some positive integer d and let 2~ be Rt x ®. We denote with
& = (s,7) a point of 2. Let v(s, ) be a density on 2" so that v(s,T) = h(s)po(7),
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where A(-) is a density on R and po(-) is a density on ©. Finally, let {g,,,m =
0,1,...} be a discrete density on the natural number such that go = 0. We consider
the independent finite point process P = {(S1,71),...,(Sm,Ts)} with parameters
v and {gn}, i.e. P~ IFPP(V,qu,po). Let # :={1,...,M} be the set of point’s
indexes, since we are assuming go = 0, the random variable 7 := ). je s S is almost
surely different from 0, so that we can give the following

Definition 2. Let P ~ IFPP(h,qu, po), with go = 0. A normalized independent fi-
nite point process (Norm-IFPP) with parameter & and {g, } is the discrete probabil-
ity measure on © defined by

S.
PO)= Y P8 ()£ Y 76000, @)
jes et

where T = ):je/ S;. We will use the notation P ~ Norm —IFPP(h,qm, po).

The finite dimensional processes defined in (2) belong to the wide class of species
sampling models, deeply investigated in [12], and we use some of the results there to
derive ours. Let (6,.. ., 6,) be a sample from a Norm-IFPP (or more generally, from
a species sampling model); since it is a sample from a discrete probability, it induces
a random partition p, := {Cy,...,C¢} on the set N, := {1,...,n} where C; = {i:
0, = 91*} for j=1,... k. f #C; = n; for 1 <i < k, the marginal law of (6y,...,6,)
has unique characterization: Z(p,,,0y,...,6{) = p(n1,...,ny) H’;ZI .Z(Gl*), where
p is the exchangeable partition probability function (eppf) associated to the random
probability. The eppf p is a probability law on the set of the partitions of N,,. The
following proposition provides an expression for the eppf of a Norm-HFPP measure.

Proposition 1. Let (ny,...,n;) be a vector of positive integers such that Zf-‘zl n;=n.
Then, the eppf associated with a Norm-IFPP(h,{qn}, po) is

ooun—l < (m ! k
w(mr.m) = [ {Z( *")'w(u)'"qm+k}nx<ni,u>du

o I'(n)|= m! ply

where y(u) is the Laplace transform of the density h(s), i.e.

y(u):= /O.mefmh(s)ds, and x(nj,u):= /Om uie " h(s)ds = (—1)" v (u).

du’i

We denote by _Z, the indexes of allocated jumps of the process, i.e., the indexes
J € 7 corresponding to some S; such that there exists a location for which 7; = 6/,
i=1,...,k. The remaining values are non-allocated jumps. We use the superscript
(na) for random variables related to non-allocated jumps. We also introduce the
random variable U := I, /T, where I}, ~ gamma(n, 1), being I}, and T independent.

Proposition 2. If P is an Norm-IFPP(h,{q,},po), then the unnormalized process
P, given 0" = (67, ..., 0;), n=(ni,...,nx) and U = u, is the superposition of two

processes P 2 plna) | pla) yhere
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1. The process of non-allocated jumps P9 s an independent finite point process
with Janossy density given by

m

jm((slafl)a"'a(sm>fm)) = m!panh*(Sj)po(Tj)7
=

where, denoting with y(u) is the Laplace transform of h, hj;(s) o< e " h(s) and
i o P Y () G, m= 0,12,

2. The process of allocated jumps P\9) is the unordered set of the points (Sy, 1), .., (Sk, ),
such that, for j=1,....k, 7 = 9;‘ and the distribution of S; is proportional to
s"ieT"h(s).

. Conditionally to 7 (@, pl@) and P9 qre independent.

4. the posterior law of U given 0" has density on the positive real given by

w

n—1 oo k

Furer (u8") o { r (mt4)! w<u>mqm+k}nx<m,u>

I'(n) m! e

4 A simple mixture model

Let A to be the density of a gamma(y,1) distribution (being ¥ the shape parameter)
and let g, = e A A" /(m—1)! (m = 1,2,...) be the density of a shifted Poisson
distribution. It is simple to realize that under this choice of 4 and {¢,, } the Norm-
IFPP is a finite Dirichlet measure, that is an almost sure discrete probability measure
as in (2), where conditionally to M = m > 0 the jumps size (Py,...,P,) of P are a
sample from the (m — 1)-dimensional Dirichlet,,(7,...,¥) distribution. We are go-
ing to call this measure a normalized finite Poisson-Dirichlet (NFPD) process with
parameters ¥ > 0, A > 0 and py(-); We will use the notation P ~ NFPD(y, A, po).

Observe that the Laplace transform and its derivatives for a gamma(y, 1) density are
. _ 1 _ 1 L(y+n) _

given by y(u) = @i and x(n,u) = T T o U >0,n=1,2,..., 80

that, by applying Proposition 1, we obtain that the eppf of a NFPD(y, A, pg) is given

by

n n) =V(n : 7F(Y+nj)
P( Lyeoes k)*v( ’k>jI;IlA F(’)/) )

A—(ut+1)?
)

oo 11 A+k(u+1)Y T
where V (n,k) = Ji” {5 i et 7 du

Let Yy,...,Y, a set of data in an Euclidean space ¢/, we consider the following
mixture model
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Yl,...,Yn|61,...,9nif@f(y;e,')

0,....0,P% P €)
P ~NFPD(Y,A, po).

where f(-;6;) is a parametric density on %, for all 8 € ® C R?. We point out that
po is the density of a non-atomic probability measure Py on @, such that E(P(A)) =
Py(A) for all A € B(0O). Model (3) will be addressed here as NFPD hierarchical
mixture model. It is well known that this model is equivalent to assume that the Y;’s,
conditionally on P, are independently distributed according to the random density
(1). We point out that model (3) is equivalent to the popular finite Dirichlet mixture
model (see [10, 11, 13, 9]). Essentially, conditionally to M = m > 0 we can think
at the jump size (P, ...,P,) of the mixing measure P in (2) as a sample from the
(m — 1)-dimensional Dirichlet,,(y,...,¥) distribution.

Thanks to the posterior characterization given in Proposition 2, we are able to
build a blocked Gibbs sampler to update blocks of parameters, which are drawn
from multivariate distributions. The Gibbs sampler we propose here, has the same
structure of that ones provided in [3] and [1] for the finite dimensional approx-
imation of Normalized Generalized gamma and Normalized Completely random
mixtures, respectively. In particular the parameter of our Gibbs sampler is (P, 0,U),
where P is the unnormalized finite point process and U is an auxiliary augmenting
variable prescribed by the posterior characterization in Proposition 2.

Description of the full-conditionals is below.

1. Sampling from . (U|Y, 0, P): By its construction, conditionally on P, the ran-
dom variable U is distributed as gamma with parameters (n,T).

2. Sampling from . (0|u,Y,P): each 6;, for i = 1,...,n, has discrete law with
support {7i,..., Ty}, and probabilities P(6; = 7;) o< S; f(¥i; 7}).

3. Sampling from . (P|u,0,Y): first we observe that conditionally on @ the
process P does not depend on the data Y. So that we have to sample from
£ (P|u, 8); then, thanks to Proposition 2 we can split this step into two sub-
steps:

3.a Sampling from £ (P(9)|u,0,Y): the allocated process is a set of indepen-
dent pairs of vaiable ((Sga), Tl(a)), e (S,((a),rlga)) such that, for j =1,...,k:

SE.‘Z) ~ gamma(n;+Y,u+1) independent from T](.a) ~ ICI FisTi)po(T))
el

where C; is the cluster of data identified by ;.

3.b Sampling from .Z(P"9|,u,0,Y): the process of non allocate jumps is a
independent finite process with Janossy density:

i ((51.20)1 (5 7)) = m1p T (5) o),

Jj=1
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where, i} is the density of a gamma(y,u+ 1) and py, is the discrete density
of the following two-components mixture

(u+1)"

A A D)+

(z,t—l—l)%k—l—/\yO(A/(qu 1)7)7

where Z7;(A) the shifted Poisson distribution on {i,i+ 1,i+2,...} with
meani+A,i=0,1;

We point out that, if the density po and the family of kernel f(y;0) are conjugate,
then all the full conditionals of the latter algorithm belong to standard distributions,
so that its implementation is quite straightforward.

5 Galaxy data

This super-popular dataset contains n = 82 measured velocities of different galax-
ies from six well-separated conic sections of space. Values are expressed in Km/s,
scaled by a factor of 1073, We report some of the posterior estimates (mainly den-
sity and number of components estimates) for two different sets of hyperparam-
eters of model (3) when f(-;0) is the Gaussian density on R and 6 = (u,c?)
stands for its mean and variance, and Py(du,do?) = A (du;my,62/ko) X inv —
gamma(do?;a,b); here .4 (mo, 6% /Kp) is the Gaussian distribution with my mean
and 6 / Ky variance, while inv — gamma(a, b) is the inverse-gamma distribution with
mean b/(a—1) (if a > 1). We have fixed my = X, =20.8315, K =0.01,a=2,b=1.
In the fist set of experiments we aim at comparing the performances of our algorithm
with the reversible jump sampler of Richardson and Green [11]. In particular, we
have used the mixAK R-package ([6]). This package implements a reversible jump
MCMC algorithm for univariate data in C++ and link it to R. As far as implementa-
tion of our algorithm is concerned, we implemented a C code, and linked it to R for
post processing. For each experiment we have ran, we have fixed 5000 iteration of
burn-inn, a thinning of 10, and a final sample size of 5000. We have fixed the hyper-
parameters ¥ and A in (3) in such a way that E(K,,) = 6 (this mean was computed
via a Monte Carlo method); in particular we have chosen (v, A) € {(1000,0.0013),
(100,0.0136), (10,0.21),(5,5)}.

Figure 1 shows the density estimates (posterior mean of the random density “pa-
rameter”’) under the different values of the hyperparameters: all the estimates are
quite similar and detect the “right” number of clusters. In order to compare the
two algorithms, we computed the integrated autocorrelation time 7 for the num-
ber M of components of the mixture (1) under the four experiments; T controls
the accuracy of Monte Carlo estimates computed using the MCMC chain and pro-
vides a measure of the efficiency of the method. The same indexes have been also
used in [1] and [5] to assess the performance of their methods. We refer to the lat-
ter two papers for details on how to compute the integrated autocorrelation time
and mention here that a small value of 7 implies good mixing and hence an effi-
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Fig. 1 Density estimation under the firs set of hyperparameters with different values of A and .

cient method. Result are summarized in in Table 1, in terms of running time ours
Gibbs sampler and the reversible jump are comparable, but our algorithm strongly
outperforms the reversible jump in term of index 7. In the second experiment we

(A7) |time Gibbs|E(M|data) Gibbs| ¢ Gibbs|| time RJ |E(M|data) RJ| £RJ |
(1000,0.0013){15.13 min. 1003.47 1.53 {{22.69 min. 669.33 864.44
(100, 0.0136) | 1.51 min. 103.19 1.51 || 2.12 min. 98.16 138.40
(10,0.21) 12.50 sec. 13.18 1.33 || 12.03 sec. 10.31 3.45
(5,5) 9.60 sec. 9.34 22.26 || 9.25 sec. 7.10 6.29

Table 1 Running times, posterior mean of M and estimation of integrated autocorrelation times
7 under the Gibbs sampler of Section 4 and the Reversible Jump MCMC implemented in the R-
package mixAK.

have added a level of hierarchy to model (3) by choosing prior distributions for
both y and A, we considered y ~ gamma(ay,b;) and A ~ gamma(aa,bs). We have
updated the Gibbs sampler illustrated at the end of Section 4, by computing the
full conditionals of this two parameters. In particular, from one hand A |rest ~

% gamma(k +ar + 1,1 — y(u) + by) Mgamma(kJr az,1 —y(u) + by),

+b 1+by
where y(u) = (uTll)Y is the Laplace transform of a gamma(y,1) density; on the
other, 7(y|rest) o< (A y/(u) +k)eA¥® W(L)k 15, F(Fyz;')'ﬂ, and we have to resort to a

Metropolis-Hasting step to sample from this non standard full conditional. We set
a; = 0.01 and b; = 0.01 resulting in vague prior on the parameter A, while we was
more informative on Y by choosing a, =2 and b, = 1. The running time under this
setting was quite short: 8.287 sec.; this is justified by the fact that the number of
non allocated jumps was small E(M " |data) = 0.86. The integrated autocorrela-
tion time is 3.98, while the posterior distribution the autocorrelation plot and the
scatter plot for the parameter A and Y are reported in Figure 2.
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Fig. 2 Trace plots, autocorrelations and posterior distributions, of y and A
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