
REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED

PRODUCTS

GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

Dedicated to Patrizia Pucci on her 65th birthday

Abstract. We study some properties of mean curvature flow solitons in general Riemannian

manifolds and in warped products, with emphasis on constant curvature and Schwarzschild

type spaces. We focus on splitting and rigidity results under various geometric conditions,
ranging from the stability of the soliton to the fact that the image of its Gauss map be

contained in suitable regions of the sphere. We also investigate the case of entire graphs.
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1. Introduction

The mean curvature flow (MCF) is a smooth map Ψ : [0, T ]×Mm →M
n

between Riemannian
manifolds M , M such that Ψt = Ψ(t, ·) is an immersion for every t, and satisfying

∂Ψ

∂t
= mHt,

with Ht the normalized mean curvature of Mt = Ψt(M) with the induced metric. We are
interested in a MCF that moves along the flow Φ of a smooth vector field X ∈ X(M), namely, for
which there exists a reparametrization t 7→ s(t) and a flow η : [0, T ]×M →M of some tangential
vector field on M satisfying

(1) Ψ(t, x) = Φ
(
s(t),Ψ0(η(t, x))

)
.

Typically, interesting X are conformal or Killing fields, so the induced MCF is self-similar at every
time. As expected, this study is motivated by the importance that self-shrinkers, self-translators
and self-expanders have in the classical MCF in Euclidean space, and although self-similar solu-
tions of the MCF on general manifolds do not arise from blow-up procedures, nevertheless they
provide suitable barriers and thus their study is important to grasp the behaviour of the MCF in
an ambient space that possesses some symmetries. This is the original motivation for the present
work.

Differentiating (1) in t one deduces that mHt = s′(t)X⊥, with X⊥ the component of X
orthogonal to Mt. Restricting to the time slice t = 0, this motivates the following definition
recently proposed in [1].

Definition 1.1. An isometric immersion ψ : Mm → M
n+1

is a mean curvature flow soliton
with respect to X ∈ X(M) if there exists c ∈ R (hereafter called the soliton constant) such that

(2) cX⊥ = mH

along ψ.
1
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(Observe that in [1] H is not normalized, that is, H = tr II). In particular, for c = 0 the map ψ is
a minimal submanifold. In the statements of the results below we shall pay attention to specify
the sign of the soliton constant: we feel convenient not to include c in the field X because, later
on, we will focus on some “canonical” fields in M , and inserting the scale and time-orientation
in a separate constant c makes things easier.

In what follows we typically, but not exclusively, consider codimension 1 solitons in a warped
product

(3) M = I ×h P,
where I ⊆ R is an interval, h : I → R+ = (0,+∞) is a smooth function and M is endowed with
the warped metric

(4) ḡ = dt2 + h(t)2〈 , 〉P
where 〈 , 〉P is the metric on P and t is the standard coordinate on I. In this setting there exists
a natural closed conformal vector field X on M coming from a potential and given by

(5) X = h(t)∂t = ∇η̄,
where

(6) η̄(x) =

∫ πI(x)

t0

h(s)ds,

with πI : I ×h P→ I the projection onto the first factor and t0 ∈ I a fixed value. If X = ∇η̄, for
future use we set

(7) η = η̄ ◦ ψ : M → R.
Recall that a vector field X is said to be closed when the dual 1-form is closed. One essential
feature of this setting is that it enables us to derive, for a mean curvature flow soliton with
respect to X as in (5), a manageable form of some differential equations (see for instance (35)
below) that will be used in our analytical investigation. The second order operator naturally
appearing in those formulas is the drifted Laplacian

(8) ∆−cX> = ∆ + c〈∇ · , X>〉,

that for gradient fields X = ∇η̄, as the one in (5), becomes the weighted Laplacian

(9) ∆−cη = ∆ + c〈∇ · ,∇η〉.
For more details, and the very general form of the equations mentioned above we refer again to
[1]. Let us also recall, for terminology, that when M = I × P is simply a product (h ≡ 1) and
X = ∂t the soliton is called translational.

Notation and agreements. Throughout the paper, all manifolds M , M will be assumed to be
connected; BR(o) ⊂ M will denote the geodesic ball of radius R > 0 centered at a fixed origin
o ∈M and ∂BR(o) its boundary. If no confusion may arise we omit to write the origin o.

Example 1. The hyperbolic space Hm+1 of curvature −1 admits representations as the warped
products R ×et Rm and R ×cosh t Hm. In the first case, the slices of the foliation for constant t
are horospheres, whereas in the second case they are hyperspheres.

Example 2. Given a mass parameter m > 0, the Schwarzschild space is defined to be the
product

(10) M
m+1

= (r0(m),∞)× Pm with metric 〈 , 〉M =
dr2

V (r)
+ r2〈 , 〉P,
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where P is a (compact) Einstein manifold with RicP = (m− 1)〈 , 〉P,

(11) V (r) = 1− 2mr1−m

and r0(m) is the unique positive root of V (r) = 0. Its importance lies in the fact that the
manifold R×M with the Lorentzian static metric −V (r)dt2 + 〈 , 〉M is a solution of the Einstein
field equation in vacuum with zero cosmological constant. In a similar way, given κ̄ ∈ {1, 0,−1}
the ADS-Schwarzschild space (with, respectively, spherical, flat or hyperbolic topology according
to whether κ̄ = 1, 0,−1) is the manifold (10) with respectively

(12) V (r) = κ̄+ r2 − 2mr1−m, RicP = (m− 1)κ̄〈 , 〉P,
and r0(m), as before, the unique positive root of V (r) = 0. They generate static solutions
of the vacuum Einstein field equation with negative cosmological constant, normalized to be
−m(m + 1)/2. The products (10) can be reduced in the form I ×h P with metric (4) via the
change of variables

(13) t =

∫ r

r0(m)

dσ√
V (σ)

, h(t) = r(t), I = R+.

Note that r0(m) is a simple root of V (r) = 0, so the integral is well defined, and that 1/
√
V (r) 6∈

L1(∞) so I is an unbounded interval. A similar example for charged black-hole solutions of
Einstein equation is the Reissner-Nordström-Tangherlini space, where (10) holds with

V (r) = 1− 2mr1−m + q2r2−2m, P = Sm,
q ∈ R being the charge and |q| ≤ m.

The paper is naturally divided into three parts. First we study codimension 1 solitons in the
presence of a Killing vector field B on the target space M . The relevant differential equation we
analyse is satisfied by u = 〈B, ν〉, ν a unit normal to ψ : M →M . We will often assume that ψ
is two-sided, that is, that the normal bundle is trivial, so there exists globally defined unit normal
ν. If M is orientable, this is equivalent to require that M is oriented.

By way of example, we apply our results to the case of a self-shrinker of Rm+1, that is, a
soliton with respect to the position vector field of Rm+1 with soliton constant c < 0: the next
result was recently shown by Ding, Xin, Yang [19], however our proof in Theorem 2.2 below is
different, and especially it follows from a strategy that works in greater generality. It serves the
purpose to illustrate our technique. For the sake of clarity, we remark that a continuous map
ψ : M → N between differentiable manifolds is said to be proper if ψ−1(K) is a compact subset
of M for every compact subset K of N . When M and N are complete Riemannian manifolds,
this is equivalent to saying that ψ−1(B) is bounded in M for every bounded subset B of N .

Theorem A. Let ψ : Mm → Rm+1 be an oriented, complete, proper self-shrinker whose spherical
Gauss map ν has image contained in a closed hemisphere of Sm. Then either ψ is totally geodesic
(that is, ψ(M) is an affine hyperplane) or ψ is a cylinder over some complete, proper self-shrinker
of Rm.

As we shall see, the result heavily depends on the parabolicity of the weighted Laplacian
∆−cη on a self-shrinker. However, if ∆−cη is possibly non-parabolic we can still conclude a
similar rigidity for M when the Gauss map is contained in a hemisphere, by using some results
in oscillation theory (cf. [10]). Suppose that ψ : M → I ×h P is a complete soliton with respect
to h(t)∂t and with constant c, and define η̄, η as in (6), (7). Recall that an end of M (with
respect to a compact set K) is a connected component of M\K with noncompact closure. Fix
an origin o ∈M and an end E, and define

(14) vE(r) =

∫
∂Br∩E

ecη,
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where Br is the geodesic ball of M centered at o. Given a(x) ∈ C0(M) we introduce the weighted
spherical mean

(15) AE(r) =
1

vE(r)

∫
∂Br∩E

a(x)ecη

If 1
vE(r) ∈ L

1(∞), the rigidity of M will depend on how much AE(r) exceeds the critical curve

(16) χE(r) =

{
2vE(r)

∫ +∞

r

ds

vE(s)

}−2

for all r > R.

For explanations on the origin of χE and its behaviour, as well as for other geometric applications,
we refer to Chapters 4, 5, 6 in [10]. Here we limit ourselves to observe that, in the minimal case
c = 0 and for the Euclidean space Rm (for which vE(r) = ωm−1r

m−1),

χE(r) =
(m− 2)2

4r2

is the potential in the famous Hardy inequality on Rm. In fact, there is a tight relation between
χE(r) and Hardy weights, explored in [10].

We are ready to state our theorem. Results in this spirit can be found in [28] (for m = 2),
[24] (for m ≥ 3 and a compact setting) and [10, Thm. 5.36].

Theorem B. Let Pm be a Riemannian manifold of dimension m ≥ 3, I ⊆ R an open interval
and let ψ : Mm →M = I ×Pm be an oriented, complete translating mean curvature flow soliton
with respect to the vector field X = ∂t, with soliton constant c and global unit normal ν. Suppose
that there exists an end E of M such that 〈ν, ∂t〉 does not change sign on E, and that, having
fixed an origin o ∈M and set vE , AE as in (14), (15) with the choice

(17) η̄ = πI , a(x) =
(
Ric(ν, ν) + |II|2

)
(x),

either

(18)

(i) v−1
E 6∈ L1(∞), lim

r→+∞

∫
E∩Br

ec(πI◦ψ)
(
Ric(ν, ν) + |II|2

)
= +∞, or

(ii) v−1
E ∈ L1(∞), AE ≥ 0 on [2R,∞) and

lim sup
r→∞

∫ r

2R

(√
AE(s)−

√
χE(s)

)
ds = +∞,

with χE as in (16) if v−1
E ∈ L1(∞). Then, ψ is a minimal hypersurface that splits as a Riemann-

ian product R × Σ with ψΣ : Σm−1 → Pm a minimal hypersurface itself, and the soliton vector
X is tangent to ψ along the straight lines ψ(R× {y}), y ∈ Σ. Furthermore, under this isometry
ψ : R× Σ→M can be written as the cylinder

(19) ψ(t, y) = ψ(0, y) + tX.

In the second part we look at solitons as extrema of an appropriate weighted volume functional
and we consider the stable case according to Section 3. The stability condition often implies a
rigidity for M provided that suitable geometric quantities like H, the second fundamental form
II or the umbilicity tensor

Φ = II− 〈 , 〉M ⊗H

have controlled Lp norms. This is the case of the next result, Theorem 3.4 below, one of the
main of the present paper. Its proof depends on Lemma 3.3, that classifies Codazzi tensors whose
traceless part satisfies the equality in Kato inequality: this might be of independent interest. We
here write the result in a slightly simplified form, and we refer the reader to Theorem 3.4 below
for a more detailed statement of item 2.
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Theorem C. Let ψ : Mm →M
m+1

= I ×h P be a complete, stable mean curvature flow soliton
with respect to X = h(t)∂t with soliton constant c. Assume that M is complete and has constant
sectional curvature κ̄, with

ch′(πI ◦ ψ) ≤ mκ̄ on M.

Let Φ = II− 〈 , 〉M ⊗H be the umbilicity tensor of ψ and suppose that

|Φ| ∈ L2(M, ecη)

with η defined as above. Then one of the following cases occurs:

(1) ψ is totally geodesic (and if c 6= 0 then ψ(M) is invariant by the flow of X), or
(2) M , M̄ are flat manifolds, M has linear volume growth and ψ lifts to a grim reaper

immersion Ψ : Rm → Rm+1.

Remark 1. Particular cases of Theorem C, for a translating soliton in Euclidean space ψ :
Mm → Rm+1, were proved in [31] under stronger conditions: namely, the authors required
either |II| ∈ L2(M, ecη), or |Φ| ∈ L2(M, ecη) and the hypothesis that H does not change sign
(Thms. A and B therein, respectively). Note that the case of the grim reaper soliton is excluded
in their setting since |Φ| 6∈ L2(M, ecη). We emphasize that, in case 2, necessarily M shall be a
nontrivial quotient of Rm+1.

Applying the above theorem to solitons in the sphere, we deduce the next

Corollary D. Let ψ : Mm → Sm+1 be a complete, connected mean curvature flow soliton with
respect to the conformal field X = sin r ∂r centered at some point p ∈ Sm+1, where r is the
distance function from p in Sm+1. Assume that the soliton constant c satisfies

c ≤ m
and that |Φ| ∈ L2(M). Then ψ is unstable.

Suppose that ψ : Mm → M
m+1

= I ×h P is a soliton in a warped product as above, with
soliton constant c. In [1] the authors introduced the soliton function

ζc(t) = mh′(t) + ch(t)2,

whose geometric meaning is explained in detail in Proposition 7.1 of [1]. In what follows it
suffices to observe that

(20)
the leaf {t̄} × Pm is a soliton

with respect to h(t)∂t, with constant c
⇐⇒ ζc(t̄) = 0.

For instance realizing Hm+1 as the product R ×et Rm via horospheres, given a soliton ψ :
Mm → Hm+1 with respect to et∂t with constant c, the corresponding soliton function reads

ζc(t) = met + ce2t.

In the last part of the paper, we investigate the case where the soliton ψ = ψu is the graph of a
function u : P→ R and we complement recent results in [7]. In particular, we prove the following
rigidity theorem for Schwarzschild type spaces in Example 2.

Theorem E. There exists no entire graph in the Schwarzschild and ADS-Schwarzschild space
(with spherical, flat or hyperbolic topology) over a complete P that is a soliton with respect to

the conformal field r
√
V (r)∂r with constant c ≥ 0, where V (r) is the corresponding potential

function defined in either (11) or (12).

We remark that solitons with c < 0 in such spaces, in general, do exist, see Example 3 below.
Regarding the hyperbolic space, we prove
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Corollary F. Let Hm+1 = R ×et Rm be the hyperbolic space of curvature −1 foliated by horo-
spheres and let X = et∂t ∈ X(Hm+1). Then

(1) there exist no entire graphs ψu : Rm → Hm+1 over the horosphere Rm which are mean
curvature flow solitons with respect to X with c ≥ 0;

(2) if ψu : Rm → Hm+1 is an entire graph over the horosphere Rm which is a mean curvature
flow soliton with respect to X with soliton constant c < 0, then

dist
(
ψu(Rm),

{
t = log

(
−m
c

)})
= 0.

Remark 2. For c = 0, that is, for minimal graphs, item 1. has been proved with an entirely
different technique (the moving plane method) by M.P. Do Carmo and H.B. Lawson [20]. In
their work, they also consider graphs over hyperspheres ψu : M → R ×cosh t Hm: this case will
be treated in Proposition 6 below.

Part of the techniques used in the proof of the results have been introduced in some of our
previous papers. Thus, in order to help the reader and for the sake of clarity, we recall, when
needed, the original or appropriately modified statements of the theorems we use in the arguments
below.

2. Invariance by a 1-parameter group of isometries

The aim of this section is to study the geometry of codimension 1 mean curvature flow solitons
in the presence of a Killing vector field B on M . We begin with a computational result.

Proposition 1. Let ψ : Mm →M
m+1

be a two-sided, mean curvature flow soliton with respect
to X ∈ X(M) with soliton constant c. Let ν be a chosen unit normal vector field on M and let
B ∈ X(M) be a Killing field. Set u = 〈ν,B〉; then

(21) ∆−cX>u+ |II|2u+ Ric−cX(ν, ν)u = 〈[cX,B], ν〉

where ∆−cX> is as in (8) and Ric−cX is the modified Bakry-Emery Ricci tensor field on M given
by

(22) Ric−cX = Ric +
1

2
L−cX〈 , 〉M

with L−cX the Lie derivative along −cX.

Remark 3. The immersion ψ : M → M is said to be two-sided if the induced normal bundle
on M is trivial, so that there exists a global unit normal vector field ν as in the statement of the
Proposition.

Proof. We fix the index ranges 1 ≤ i, j, · · · ≤ m, 1 ≤ a, b, · · · ≤ m + 1 and we let {θa} be an
oriented Darboux coframe along ψ with corresponding Levi-Civita connection forms {θab }. If
{ea} is the dual frame then

B = Baea

and the fact that B is Killing is equivalent to the skew symmetry

(23) Bab +Bba = 0.

Note that, since we are dealing with an oriented Darboux coframe, along ψ, ν = em+1 so that

u = Bm+1.

Differentiating u we obtain

(24) du = dBm+1 = Bm+1
j θj −Btθm+1

t = (Bm+1
i −Bthti)θi,
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that is,

(25) ui = Bm+1
i −Bthti.

In particular

(26) ∇u = Bm+1
i ei −Bshsiei.

Thus

uikθ
k = dui − utθti = dBm+1

i − d(Bthti)− (Bm+1
t −Bshst)θti

= (Bm+1
ik −Bsi hsk −Bskhsi −Bshsik − uhkshsi)θk.

Using (23) it follows that

(27) ∆u = −Bthtkk − |II|2u+Bm+1
kk .

We recall the commutation relations

(28) Bm+1
ki = −Bkm+1,i = −Bki,m+1 −BaR̄ak,m+1,i

and Codazzi equations

(29) htik = htki − R̄m+1,tik.

Tracing (28) and (29) with respect to k and i and using (23) we have

Bm+1
kk = −Ric(B, ν)

−Bthtkk = −Bthktk = −Bthkkt +BtR̄m+1,ktk.

Thus, substituting in (27) we finally obtain

(30) ∆u+ |II|2u+ Ric(ν, ν)u = −Bshkks.
Next, from the soliton equation (2),

(31) hkk = cXm+1

where X = Xiei +Xm+1ν along ψ. On the other hand on M we have

Xm+1
i θi = dXm+1 +Xkθm+1

k = dXm+1 +Xkhkiθ
i.

Differentiating equation (31) we thus obtain

hkki = c(Xm+1
i −Xthti)

and using (23) we have

XiBm+1
i −BaXm+1

a = XaBm+1
a −BaXm+1

a = 〈∇XB −∇BX, ν〉 = 〈[X,B], ν〉.
Inserting into (30) and using (23), (26) we infer

∆u+ |II|2u+ Ric(ν, ν)u = −cBiXm+1
i + cXthtiB

i

= −c(XiBm+1
i −XthtiB

i) + c(XiBm+1
i −BiXm+1

i )

= −cXi(Bm+1
i − htiBt)

+ c(XaBm+1
a −BaXm+1

a +Bm+1Xm+1
m+1 )

= −c〈∇u,X>〉+ 〈[cX,B], ν〉+ cXm+1
m+1u

and observing that

cXm+1
m+1 = 〈∇νcX, ν〉 =

1

2
(LcX〈 , 〉M )(ν, ν) = −1

2
(L−cX〈 , 〉M )(ν, ν)

we obtain (21). �
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Remark 4. In the particular case where X = ∇η̄ for some η̄ ∈ C∞(M), the tensor field Ric−cX
is the Bakry-Emery Ricci tensor

(32) Ric−cη̄ = Ric− cHess(η̄)

and the differential operator ∆−cX> is the weighted Laplacian ∆−cη, where η = η̄ ◦ ψ. Hence,
equation (21) becomes

(33) ∆−cηu+ |II|2u+ Ric−cη̄(ν, ν)u = 〈[cX,B], ν〉.

The idea is now to couple equation (33) with a second equation of the same type and holding
independently of the first. Towards this aim we consider the case of an oriented mean curvature

flow soliton ψ : Mm → M
m+1

with respect to X = ∇η̄ for some η̄ ∈ C∞(M) with constant c
and we compute ∆−cηη, where η = η̄ ◦ ψ. We begin by computing ∆η. The chain rule formula
gives

(34) ∆η =

m∑
i=1

Hess(η̄)(dψ(ei), dψ(ei)) + 〈∇η̄,mH〉M

where {ei}mi=1 is a local orthonormal frame on M . On the other hand ψ is a mean curvature flow
soliton and thus

〈mH,∇η̄〉M = c〈X⊥,∇η̄〉M = c〈∇η̄⊥,∇η̄⊥〉 = c(|∇η̄|2 − |∇η|2).

Using (34) we can therefore write

∆−cηη = ∆η + c|∇η|2 = ∆η̄ −Hess(η̄)(ν, ν) + c|∇η̄|2,

In the particular case M = I ×h P and X = h(t)∂t, we have X = ∇η̄ with η̄ defined by (6) for
some t0 ∈ I. Thus X is conformal and

Hess(η̄) = h′(πI)〈 , 〉M .

From |∇η̄|2 = h(πI)
2 we therefore obtain

(35) ∆−cηη = mh′(t) + ch(t)2

along ψ.
In the next results, under suitable geometric assumptions we will infer a Liouville theorem

for the function 〈ν,B〉, with B Killing. The geometric rigidity that follows from it depends on
the next version of a splitting theorem investigated, in the intrinsic setting, by Tashiro [44] and
Obata [37].

Lemma 2.1. Let ψ : Mm → M
m+1

be an orientable, complete immersed hypersurface, and let
f ∈ C∞(M) satisfy

Hessf = µ〈 , 〉M ,
for some µ ∈ C∞(M). If ∇f is tangent to M and does not vanish identically, then the set
Cf ⊂ M of critical points of the restriction of f to M consists of at most two points, M\Cf is
isometric to the warped product

I ×h Σ, with metric 〈 , 〉 = dt2 + h(t)2gΣ,

I ⊂ R is an open interval, Σ is a (regular) level set of f with induced metric gΣ, ∂t = ∇f/|∇f |, f
only depends on t and h(t) = f ′(t). In particular, in these coordinates µ(t, y) = f ′′(t). Moreover,

- if |Cf | = 0, then I = R,
- if |Cf | = 1, then I = (t1,∞) or (−∞, t2), for some t1 < 0, t2 > 0, and M is globally

conformal to either Rm or the hyperbolic space Hm,
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- if |Cf | = 2, then I = (t1, t2) for some t1 < 0 < t2, and M is globally conformal to the
sphere Sm.

Furthermore, in coordinates (t, y) ∈ I × Σ the immersion ψ writes as

(36) ψ(t, y) = Φ
(
t, ψ(0, y)

)
where Φ is the flow of ∇f/|∇f | on M\Cf̄ .

Proof. First observe that X = ∇f is a gradient, conformal field also on M :

Hess f(V,W ) = 〈∇V∇f,W 〉 = 〈∇̄V∇f,W 〉 = Hessf(V,W ).

The completeness of M together with Lemma 1.2 and Section 2 in [44] guarantee that Cf has
at most 2 points, and that M\Cf splits as indicated. The identity (36) is a straightforward
consequence. �

Recalling that a self-shrinker in Rm+1 is a mean curvature flow soliton with respect to the
position vector field of Rm+1 with soliton constant c < 0, we have the following result reported
in the Introduction.

Theorem 2.2 ([19], Thm. 3.1). Let ψ : Mm → Rm+1 be an oriented, complete proper self-
shrinker whose spherical Gauss map ν has image contained in a closed hemisphere of Sm. Then,
either ψ is totally geodesic or ψ is a cylinder over a proper, complete self-shrinker in Rm.

Remark 5. We remark that, by [14], the properness of a complete immersed self-shrinker ψ :
Mm → Rm+1 is equivalent to any of the following properties:

(i) M has Euclidean volume growth of geodesic balls,
(ii) M has polynomial volume growth of geodesic balls,

(iii) M has finite weighted volume: ∫
M

ec
|ψ|2
2 <∞.

Note that we used a different normalization with respect to [14], where the soliton field is half
of the position vector field and thus |ψ|2/4 appears in (iii).

Proof. Since ψ is proper, the pre-image K = ψ−1(0) is compact. We then consider ψ : M\K →
M with M = Rm+1 \ {0} = R+ ×h Sm where h(t) = t. The restriction ψ is a mean curvature
flow soliton with respect to X = t∂t, with c < 0. Now, up to an inessential additive constant,
for y ∈M , η̄(y) = 1

2 t(πR+(y))2 and since ψ is proper

η(x) = η̄(ψ(x))→ +∞ as x→∞ in M.

From (35) and c < 0 we then deduce

∆−cηη(x) = m+ 2cη(x)→ −∞ as x→∞ in M.

The above conditions imply, by Theorem 4.12 of [2], that the operator ∆−cη is parabolic on M .
Since by assumption ν(M) is contained in a closed hemisphere of Sm, there exists a unit vector
b ∈ Sm such that 〈b, ν〉 ≥ 0. We extend b to a parallel field B on Rm+1. Let {xa}m+1

a=1 be a
Cartesian chart on Rm+1 centered at o such that B = ∂x1 . Then X = xa∂xa and we have

[X,B] = [xa∂xa , ∂x1 ] = xa[∂xa , ∂x1 ]− (∂x1xa)∂xa = −∂x1 = −B.

Since Hess(η̄) = 〈 , 〉M , using (33) and (32) we deduce that u = 〈B, ν〉 is a non-negative solution
of

(37) ∆−cηu+ |II|2u− cu = 〈−cB, ν〉 = −cu
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that is,

∆−cηu = −|II|2u ≤ 0.

Thus, the ∆−cη-parabolicity implies that u is a non-negative constant. If u > 0, then |II|2 ≡ 0.
Otherwise, from 0 ≡ u = 〈ν,B〉 we deduce that B is tangent to M , and by Lemma 2.1 it follows
that M is a cylinder R×Σ and that the immersion factorizes. The fact that Σ is a self-shrinker
in Rm is a straightforward consequence. �

Note that we have used equation (35) to show that on the complete manifold M the operator
∆−cη is parabolic. However, from Theorem 4.1 of [2], we know that a second sufficient condition
is given by

1∫
∂Br

ecη
/∈ L1(+∞),

where ∂Br is the boundary of the geodesic ball Br centered at some fixed origin o ∈ M . That,
in turn, is implied, see for instance Proposition 1.3 of [41], by

(38)

∫
Br

ecη = O(r2) as r →∞,

in particular, by

(39) ecη ∈ L1(M).

In the case of self-shrinkers for the position vector field in Rm+1 we readily recover condition
(iii) in Remark 5. However, the equivalence in Remark 5 is a specific feature of the self-shrinkers
case.

The situation for translational solitons with Gauss map contained in a hemisphere is less rigid,
since there are examples of translational solitons in Rm+1 that are convex, entire graphs over a
totally geodesic hyperplane (cf. [3, 15, 45]). However, if the image of the Gauss map is compactly
contained into an open hemisphere, the immersion is still totally geodesic, see [4]. When the
Gauss map is just contained in a closed hemisphere, then we can still obtain a rigidity theorem
provided that the second fundamental form grows sufficiently fast. This will be investigated in
Theorem 2.3 below.

Nevertheless, for more general classes of warped products with nonnegative curvature one can
still obtain interesting results. By way of example, we consider the following

Proposition 2. Let M = R× P be a product manifold with

(40) RicP ≥ 0

and let ψ : Mm → M
m+1

be a two-sided, complete, translational soliton with respect to ∂t with
soliton constant c. Suppose that the angle function 〈∂t, ν〉 has constant sign on M and that M
satisfies

(41)

∫
Br

ec(πI◦ψ) = o(r2) as r →∞

for some (therefore, any) choice of an origin o ∈M . Then, either

(i) M is a slice, or
(ii) ∂t is tangent to M and M splits as a cylinder in the t-direction, or

(iii) ψ is totally geodesic, there exists a Riemannian covering map π0 : P0 → P with P0 = R×Σ
for some compact Σ, and there exists a totally geodesic immersion ψ0 : M → R×P0 such
that ψ = (id × π0) ◦ ψ0. Moreover, in coordinates (s, y) ∈ R × Σ, ψ0(M) writes as the
graph of a function v : P→ R of the type v(s, y) = as+ b, for some a ∈ R\{0}, b ∈ R.
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Remark 6. As a particular case, (41) is satisfied under the assumption that M is contained
into a half-space [a,∞) × P, c ≤ 0 and M has less than quadratic Riemannian volume growth:
vol(Br) = o(r2) as r →∞. In this case, the only conclusion compatible with the assumptions is
that M is a slice.

Proof. The non-negativity of RicP is equivalent to that of the ambient Ricci curvature Ric. Set
u = 〈ν, ∂t〉. Since h ≡ 1,

Ric−cη̄(ν, ν) = Ric(ν, ν) ≥ 0,

thus (33) becomes

(42) ∆−cηu+ (|II|2 + Ric(ν, ν))u = 0.

Up to changing ν we can suppose 0 ≤ u ≤ 1, thus either u ≡ 0 and M is invariant by ∂t (so (ii)
holds by Lemma 2.1), or 0 < u ≤ 1 on M . From (41) and the discussion in the previous pages
we deduce that ∆−cη is parabolic, thus u is a positive constant and II ≡ 0 follows from (42).
The soliton equation then implies c = 0. If u ≡ 1 then M is a slice, and (i) occurs. Otherwise,
u ≡ k ∈ (0, 1), so the projection πP : R × P → P restricted to M is a local diffeomorphism.
However, M might not be a global graph over P. To overcome the problem, we let P0 be M
endowed with the metric π∗〈 , 〉P, and note that π : P0 → P is a covering because of the
completeness of P. Introducing the covering R×P0 of R×P, we can lift ψ to a (totally geodesic)
soliton ψ0 : M → R×P0, and in this way M becomes globally the graph of a function v : P0 → R.
The second fundamental form of the graph is II = ±(1 + |Dv|2)−1/2 HessP v, where D is the
connection on P, thus HessP v ≡ 0. Furthermore, Dv 6= 0 at every point of P0 (because u < 1),
hence Dv realizes a Riemannian splitting P0 = R × Σ for some totally geodesic Σ. Moreover,
in realizing the splitting one observes that v is linear in the R coordinate and independent of
Σ (cf. Step 3 in the proof of Thm. 9.3 in [40], or [21, Thm. 5]). We claim that Σ is compact.
Otherwise, having observed that (40) implies RicΣ ≥ 0, if Σ were not compact the Calabi-Yau
volume estimate would imply that the volume of geodesic balls in Σ grows at least linearly in
the radius, hence

volP0
(Br) ≥ Br2 for r ≥ 1,

for some constant B > 0. However, from (41) and c = 0, we infer

o(r2) =

∫
Br

ec(πI◦ψ) = volM (Br) ≥ volP0
(Br) ≥ Br2,

contradiction. Hence, Σ is compact. �

Next, we consider rigidity results when ∆−cη is possibly non-parabolic. To achieve the goal,
we focus on the spectral properties of associated stationary Schrödinger operators of the type

∆−cη + a(x),

for suitable potentials a(x). We first recall some facts taken from [9] and [10]. For f, a ∈ C0(M)
consider the weighted Laplacian

∆f = ∆− 〈∇ · ,∇f〉,
that is symmetric on C∞c (M) if we integrate with respect to the weighted measure e−fdx, and
let L = ∆f + a(x). Given an open subset Ω ⊂M , the bottom of the spectrum of (L,C∞c (Ω)) is
variationally defined by the Rayleigh quotient

(43) λL1 (Ω) = inf
ϕ∈C∞c (Ω)
ϕ6≡0

QL(ϕ)∫
M
ϕ2e−f

, with QL(ϕ) =

∫
M

[
|∇ϕ|2 − a(x)ϕ2

]
e−f .
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We say that L ≥ 0 on Ω if λL1 (Ω) ≥ 0. By a minor adaptation of a result in [23] and [36], L ≥ 0
if and only if there exists a positive solution of

∆fu+ a(x)u = 0 on Ω,

and equivalently, if and only if there exists a positive solution of ∆fu+a(x)u ≤ 0 of class H1
loc(Ω).

The Morse index of L, indL(M), is defined as the limit

indL(M) = lim
j→∞

indL(Ωj),

where Ωj ↑ M is an exhaustion of M by relatively compact, smooth open domains (the limit
is independent of the exhaustion), and indL(Ωj) is the number of negative eigenvalues of L on
Ωj . If L is bounded from below on C∞c (M), indL(M) coincides with the index of the Friedrichs
extension of L originally defined on C∞c (M), that is, the only self-adjoint extension of L whose
domain lies in the one of the associated quadratic form QL (for more details, see Chapter 3 in
[40] and [10, Sect. 1.3]). We say that L has finite index if indL(M) < ∞. By work of [18] and
[10, Thm. 1.41], L has finite index if and only if there exists a compact set K ⊂ M such that
L ≥ 0 on M\K, see also [22, 39].

We are ready to prove Theorem B from the Introduction.

Proof of Theorem B. Up to possibly changing t to −t, we consider (33) for u = 〈ν,X〉 ≥ 0
restricted to the end E, with X = B = ∂t:

(44) Lu = ∆−cηu+ (|II|2 + Ric(ν, ν))u = 0 on E.

By the strong maximum principle, either u ≡ 0 or u > 0 on E, and in the second case we infer
λL1 (E) ≥ 0. We shall prove that λL1 (E) < 0, so u ≡ 0 on E and, by unique continuation, u ≡ 0
on the entire M . The conclusion of the Theorem follows from Lemma 2.1, taking into account
that X is nowhere vanishing. To estimate λL1 (E), let R > 0 be large enough so that ∂E ⊆ BR(o).
This is possible because ∂E ⊆ ∂K is compact and M is complete. We let vE(r), AE(r) be defined
as in (14), (15), with η = η̄ ◦ ψ and η̄, a(x) as in (17). We consider the Cauchy problem

(45)

{
(vEz

′)′ +AEvEz = 0 on [R,∞)

z(R) = 1 > 0, vE(R)z′(R+) = 0.

We observe that vE ∈ L∞loc([R,∞)) and, by Proposition 1.4 of [10], we also have v−1
E ∈ L∞loc([R,∞)).

Hence (45) has a solution z ∈ Liploc([R,∞)). As such, by Proposition 4.6 of [10], z has, if any,
only isolated zeros. Under the assumptions in (i), using the co-area formula we have

(46)

∫ r

R

AE(s)vE(s)ds =

∫
E∩(Br\BR)

(
Ric(ν, ν) + |II|2

)
ecη → +∞

as r → ∞. From (46) and v−1
E 6∈ L1(∞), we deduce that z is oscillatory by [35, Cor. 2.9].

Similarly, z is oscillatory under assumption (ii), by [10, Thm. 5.6]. Choose any two consecutive
zeros R < R1 < R2 of z, and define ϕ(x) = z(r(x)) ∈ Liploc(M). Since ∂E ⊆ BR, we have
∂(E ∩ (BR2 \BR1)) = (E ∩∂BR2)∪ (E ∩∂BR1) and by the Rayleigh variational characterization
and the co-area formula we have

λL1 (E ∩ (BR2 \BR1)) ≤

∫
E∩(BR2

\BR1
)
ecη
[
|∇ϕ|2 −

(
Ric(ν, ν) + |II|2

)
ϕ2
]∫

E∩(BR2
\BR1

)
ecηϕ2

=

∫ R2

R1

[
|z′(s)|2vE(s)−AE(s)vE(s)z(s)2

]
ds∫ R2

R1
z(s)2vE(s) ds

= 0
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as immediately seen by multiplying the equation in (45) by z, integrating by parts and using
z(R1) = z(R2) = 0. As a result, by the monotonicity property of eigenvalues,

(47) λL1 (E) < λL1 (E ∩ (BR2
\BR1

)) ≤ 0,

as required. �

With a similar proof, we also deduce the following

Theorem 2.3. Let ψ : Mm → Rm+1 be an oriented, complete translational soliton in direction
X ∈ Sm with soliton constant c. Suppose that there exists some end E ⊂M such that the image
of E via the Gauss map is contained in a closed hemisphere of Sm with center b ∈ Sm. If

(48)

(∫
∂Br∩E

ec〈ψ,X〉
)−1

6∈ L1(∞), lim
r→+∞

∫
E∩Br

ec〈ψ,X〉|II|2 = +∞

for some fixed origin o ∈ M , then ψ splits as a Riemannian product R × Σm−1 and, under this
isometry, ψ : R× Σ→ Rm+1 can be written as the cylinder

(49) ψ(t, y) = ψ(0, y) + tb.

In particular, Σ is a mean curvature flow soliton in the hyperplane b⊥ with respect to X−〈X, b〉b
with constant c (and Σ is minimal if X = b).

Proof. The proof is identical, using as B the parallel translation of b and noting that [X,B] = 0.
Lemma 2.1 guarantees the splitting in the direction of B, and the fact that Σ is a soliton in the
hyperplane b⊥ is a straightforward consequence. �

Theorem 2.4. Let ψ : Mm → Rm+1 be an oriented complete, mean curvature flow soliton with
respect to the position vector field of Rm+1 with soliton constant c. Assume that, for some fixed
origin o ∈M ,

(50) lim inf
r→∞

log
∫
Br
ec
|ψ|2
2

r
= α ∈ [0,∞),

where Br is the geodesic ball of M centered at o. Suppose that 〈B, ν〉 has constant sign for a
chosen unit normal ν to M and a parallel unit field B. If

α < 2 inf
M
|II|,

then, M splits as a cylinder R × Σ, the immersion writes as ψ(t, y) = ψ(0, y) + tB and the
restriction ψΣ : Σ → B⊥ = Rm is itself a soliton with respect to the position field of Rm with
constant c.

Proof. As we saw in the proof of Theorem 2.2, (33) with u = 〈B, ν〉 and η = |ψ|2
2 becomes

(51) ∆−cηu+ |II|2u = 0.

Supposing, without loss of generality, that u ≥ 0, by the usual maximum principle and equation
(51) we have that either u ≡ 0 or u > 0 on M . In the latter case, using a minor variation of a
result of Barta, [5], we have

λ
∆−cη
1 (M) ≥ inf

M

(
−∆−cηu

u

)
= inf

M
|II|2,

where the last equality is due to (51). However, by adapting to the weighted setting a criterion
due to R. Brooks and Y. Higuchi [12, 27] (cf. [42]), if (50) holds then

(52) λ
∆−cη
1 (M) ≤ α2

4
.
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Coupling the last two inequalities we contradict our assumption α < 2 infM |II|. Therefore,
u ≡ 0 and, by Lemma 2.1, M splits as indicated. The fact that Σ is a soliton in B⊥ is easily
established. �

Remark 7. The criterion in [12, 27, 42] is, indeed, an estimate on the bottom of the essential
spectrum of ∆−cη and also requires that the weighted volume vol−cη(M) be infinite. However, if
vol−cη(M) <∞ then clearly the bottom of the spectrum of ∆−cη is zero, as constant functions
are in L2, and (52) still holds.

3. Stability

The aim of this section is to study stable mean curvature flow solitons. Again we refer to
Section 11 in [1] and for the sake of simplicity we restrict ourselves to the case of codimension 1

mean curvature flow solitons in a warped product space M
m+1

= I ×h P. For a given immersion

ψ : Mm → M
m+1

we let η = η̄ ◦ ψ with η̄ defined in (6). For a fixed c ∈ R and a relatively
compact Ω ⊆M we consider the weighted volume

(53) volcη(Ω) =

∫
Ω

ecηdx

where dx is the volume element induced by the immersion ψ. The mean curvature flow soliton
equation

mH = cX⊥

with c the soliton constant, is the Euler-Lagrange equation for the functional (53) with respect
to variations of ψ compactly supported in Ω. See, for instance, Proposition 11.1 in [1]. In the
same Proposition we also compute the stability operator L given by

(54) L = ∆−cη +
(

(|II|2 + Ric−cη(ν, ν)
)

= ∆−cη +
(
|II|2 + Ric(ν, ν)− ch′(πI ◦ ψ)

)
where ν is any (local) unit normal vector field to the stationary immersion ψ. It follows that the
LHS of equation (33) is exactly the stability operator applied to the function u.

We say that ψ is stable if L ≥ 0 on M . We are interested in stable solitons in warped product
ambient manifolds M = R×h P with constant sectional curvature κ̄. In this case, necessarily P
has constant sectional curvature too, say κ, and by Gauss equations

(55) −h
′′

h
= κ̄ =

κ

h2
−
(
h′

h

)2

,

thus

(56) κ+ h′′h− (h′)2 ≡ 0.

We shall use the next result in [6, Thm. 4], whose proof is a refinement of that of Theorem
4.5 in [40].

Theorem 3.1. Let (M, 〈 , 〉, e−f ) be a complete, weighted manifold with f ∈ C∞(M). Let
a(x) ∈ L∞loc(M) and let u ∈ Liploc(M) satisfy the differential inequality

(57) u∆fu+ a(x)u2 +A|∇u|2 ≥ 0 weakly on M

for some constant A ∈ R. Let v ∈ Liploc(M) be a positive solution of

(58) ∆fv + µa(x)v ≤ −K |∇v|
2

v
weakly on M

for some constants µ and K satisfying

(59) K > −1, A+ 1 ≤ µ(K + 1), µ > 0, µ ≥ A+ 1.
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Suppose that one of the following conditions is satisfied:

(1) M is compact, or
(2) M is non-compact and there exists o ∈M such that

(60)

(∫
∂Br

v
β+1
µ (2−p)|u|p(β+1)e−f

)−1

6∈ L1(+∞)

holds for some p > 1 and β satisfying

(61) A ≤ β ≤ µ(K + 1)− 1, β > −1,

with Br the geodesic ball of M centered at o with radius r.

Then there exists a constant α ∈ R such that

(62) αv = sgnu|u|µ.
Furthermore,

(i) if A + 1 < µ(K + 1) then u is constant on M and if in addition a(x) does not vanish
identically, then u ≡ 0;

(ii) if A + 1 = µ(K + 1) and u doesn’t vanish identically, then v and therefore |u|µ satisfy
(58) with the equality sign.

Remark 8. In the references given above, Theorem 3.1 is proved in the non-compact case.
However, in the compact case the proof simplifies, as no cut-off functions are needed.

We are now ready to prove the next

Theorem 3.2. Let M = I×h Pm be a warped product space with constant sectional curvature κ̄.
Let ψ : Mm → M be a complete, stable mean curvature flow soliton with respect to X = h(t)∂t
with soliton constant c. Assume that

(63) inf
M
ch′(πI ◦ ψ) < sup

M
ch′(πI ◦ ψ) ≤ 1

2
mκ̄

and |H| ∈ L2(M, ecη). Then H ≡ 0.

Proof. Since the stability operator L is non-negative, there exists a positive smooth solution v
of the equation

(64) Lv = ∆−cηv + (|II|2 + Ric−cη(ν, ν))v = 0 on M

where ν is any (local) normal to M . We note that

Ric−cη(ν, ν) = Ric(ν, ν)− ch′(πI ◦ ψ)〈ν, ν〉M = mκ̄− ch′(πI ◦ ψ)

Using that M and P have constant sectional curvature, respectively κ̄ and κ, from Corollary 7.3
in [1] one has the validity of the formula

(65)
1

2
∆−cη|H|2 = −ch′|H|2 − |IIH|2 + |∇⊥H|2,

where IIH = 〈II,H〉. Since M has codimension 1, we respectively have

|IIH|2 = |H|2|II|2, |∇|H|2|2 = 4|H|2|∇⊥H|2.
Hence multiplying (65) by |H|2 and using the above inequalities we deduce

|H|2
(

∆−cη|H|2 + 2(|II|2 + ch′)|H|2
)

=
1

2
|∇|H|2|2.

Setting u = |H|2 we can rewrite the above as

(66) u∆−cηu+ 2(|II|2 +mκ̄− ch′)u2 =
1

2
|∇u|2 − 2(2ch′ −mκ̄)u2,
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and because of (63) we deduce

(67) u∆−cηu+ 2(|II|2 +mκ̄− ch′)u2 ≥ 1

2
|∇u|2.

This compares with (64) that we can rewrite in the form

(68) ∆−cηv + (|II|2 +mκ̄− ch′)v = 0.

We set

a(x) = 2(|II|2 +mκ̄− ch′)(x) on M

and let µ = 1
2 , K = 0, A = − 1

2 , f = −cη. If M is compact, we can apply Theorem 3.1 above. If

M is non-compact, we set p = 2, β = − 1
2 and, since in this case condition (60) reads as(∫

∂Br

|u|ecη
)−1

6∈ L1(+∞),

which is implied by |H|2 ∈ L1(M, ecη), so we can still apply Theorem 3.1 to deduce that either

u ≡ 0, that is, H ≡ 0, or u
1
2 satisfies (68), that is,

∆−cηu
1
2 + (|II|2 +mκ̄− ch′)u 1

2 = 0.

Explicitating the equation with respect to u we have

u∆−cηu+ 2(|II|2 +mκ̄− ch′)u− 1

2
|∇u|2 = 0.

By (66), we infer 2ch′ −mκ̄ ≡ 0 on M , contradicting (63). �

By similar reasoning, but exploiting the Jacobi equation instead of (65), we recover the fol-
lowing well-known result for self-shrinkers in Euclidean space (cf. Theorem 9.2 in [17]).

Proposition 3. There are no stable, complete oriented self-shrinkers ψ : Mm → Rm+1 (with
soliton constant c < 0) satisfying

(69) e
c
2 |ψ|

2

∈ L1(M).

Proof. It is enough to observe that, for each unit parallel field B, by (37) u = 〈B, ν〉 satisfies

(70) ∆−c |ψ|22

u+ (|II|2 − c)u = −cu.

Because of (69) and |u| ≤ 1, u ∈ L2(M, ecη) and is therefore an eigenfunction associated to the
eigenvalue c < 0. Alternatively, we can directly use Theorem 3.1 with the choices

a(x) = (|II|2 − c)(x), A = 0, µ = 1, K = 0,

and

β = 0, p = 2 in case M is non-compact,

noting that stability implies the existence of a positive smooth solution v of the equation

(71) ∆−c |ψ|22

v + (|II|2 − c)v = 0 on M,

that (70) implies

u∆−c |ψ|22

u+ (|II|2 − c)u2 = −cu2 ≥ 0,

and that in the non-compact case (60) is satisfied because of (69). Applying (ii) of Theorem 3.1
we have that either u ≡ 0 and ψ(M) is orthogonal to B or u = sgnu|u| 6≡ 0 and satisfies (71).
In the second case, we get cu2 = 0, a contradiction since c < 0. Thus ψ(M) is orthogonal to b,
an evident contradiction since b is chosen arbitrarily. �



REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS 17

We next come to the proof of Theorem C in the Introduction. To get more information
besides stability and equation (65), we shall also use a Simons’ type formula for mean curvature
flow solitons (cf. Lemma 10.8 in [17] for self-shrinkers in Rm+1, and [16] for general f -minimal
hypersurfaces). We first introduce the following

Lemma 3.3. Let A be a 2-covariant Codazzi tensor field on a connected manifold (Mm, 〈 , 〉),
that is, A satisfies

(∇ZA)(X,Y ) = (∇YA)(X,Z) for each X,Y, Z ∈ TM.

Suppose that its traceless part B = A− trA
m 〈 , 〉 matches the identity in Kato’s inequality:

(72) |∇|B||2 = |∇B|2.

Then, either

(i) B ≡ 0 on M , or
(ii) |B| > 0 and ∇B = ∇A = 0 on M , or

(iii) the subset M0 = {p ∈M : |B|(p) 6= 0,∇|B|(p) 6= 0} is nonempty and each point p ∈M0

has a neighbourhood U that splits as a Riemannian product (−ε, ε) × Σ. Furthermore,
〈 , 〉 and A write as

〈 , 〉 = ds⊗ ds+ 〈 , 〉Σ, A = µ1(s) ds⊗ ds+ µ2(πΣ)〈 , 〉Σ,

with πΣ : U → Σ the projection onto Σ and µ1(s) 6= µ2(πΣ) for every point of U . If
m ≥ 3, then µ2 is constant on Σ.

Proof. For notational convenience let H = trA/m. Suppose that B 6≡ 0, and let p be such that
|B|(p) > 0. Let let aij , bij be the components of A,B in a local orthonormal frame {ei}, with
bij = aij −Hδij , and assume that b is diagonalized at p with eigenvalues {λi}. At the point p
we then have

(73)

4|B|2|∇|B||2 = |∇|B|2|2 = 4
∑
k

∑
i,j

bijbijk

2

= 4
∑
k

(∑
i

λibiik

)2

= 4
∑
k

∑
i

λ2
i

∑
i

b2iik −
∑
j 6=i

(λibjjk − λjbiik)2


= 4|B|2

∑
i,k

b2iik − |B|−2
∑
k

∑
j 6=i

(λibjjk − λjbiik)2

 .
(recall that u = |B|2 > 0 around p). Therefore, at p

0 = |∇B|2 − |∇|B||2 =
∑
i,j,k

b2ijk −
∑
i,k

b2iik + |B|−2
∑
k

∑
j 6=i

(λibjjk − λjbiik)2

=
∑

i,j,k distinct

b2ijk +
∑
i 6=k

(b2iki + b2ikk) + |B|−2
∑
k

∑
j 6=i

(λibjjk − λjbiik)2.

Thus,

(74)
(i) 0 = bijk = biki = bikk for each i, j, k pairwise distinct.

(ii) λibjjk − λjbiik = 0 for each k and each i 6= j.

Since A is a Codazzi tensor, aijk = aikj for each i, j, k and (74) implies

0 = aijk = aiki = aikk = aiik for i, j, k distinct,
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and in particular from aiik = 0 we get

(75) biik = −Hk for each k and each i 6= k.

As B is trace-free,

(76) bkkk = −
∑
i 6=k

biik = (m− 1)Hk for each k.

Suppose that ∇|B| ≡ 0, so by (72) ∇B ≡ 0. From (76) we deduce that H is constant, hence
also ∇A = 0. The constancy of the norm of B implies that B never vanishes on M , thus (ii)
holds.
We are left to consider the case |∇|B|| 6= 0 at some point p. Because of (73), there exist i, k such
that biik 6= 0, and in view of (75), (76) we can assume i = k and rename indices in such a way
that b111 = (m− 1)H1 6= 0. Using (74), for each j 6= 1 we infer

−λ1H1 = λ1bjj1 = λjb111 = (m− 1)λjH1,

thus λ1 = −(m−1)λj for each j 6= 1. The tensor B has only two eigenvalues, both nonzero since
|B| > 0 and therefore distinct. The rank theorem guarantees that the frame {ei} can be chosen
to diagonalize B in a full neighbourhood U ⊆M of p, hence

(77)
−Hk = bjjk = ek(λj) for k 6= j,

(m− 1)Hj = bjjj = ej(λj)

If we denote with µj = λj +H the eigenvalues of A, from (77) we deduce ek(µj) = 0 for k 6= j,
hence ∇µj is a multiple of ej . Next, denote with {θi} the local orthonormal coframe dual to the
frame {ei} and by {θij} the corresponding Levi-Civita connection forms satisfying the structural
equations

(78)
dθi = −θij ∧ θj for 1 ≤ i ≤ m,

θij + θji = 0 for 1 ≤ i, j ≤ m;

from (74) we deduce, for each k and each j 6= 1

0 = b1jk = ek(b1j)− b1iθij(ek)− bijθi1(ek) = 0− λ1θ
1
j (ek)− λjθj1(ek) = mλjθ

1
j (ek)

on U , since λ1 = −(m − 1)λj and θj1 = −θ1
j (no sum over j is intended in the expression

above). The eigenvalues of B are nonzero, so θ1
j ≡ 0 for each j. It follows from the first of (78)

that dθ1 = 0 and around p there exists s such that θ1 = ds. Again the structure equations
imply L∇s〈 , 〉 = 0 so ∇s is Killing, hence parallel. Therefore, a neighbourhood U of p splits
as (−ε, ε) × Σ with the product metric. Eventually, since ∇µj only depends on ej and A is
diagonalized by {ej} on U , A too has the form indicated in (iii), with µ2 constant if Σ has
dimension at least 2. �

We are ready to prove Theorem C.

Theorem 3.4. Let ψ : Mm →M
m+1

= I×hP be a complete, stable mean curvature flow soliton
with respect to X = h(t)∂t with soliton constant c. Assume that M is complete and has constant
sectional curvature κ̄, with

(79) ch′(πI ◦ ψ) ≤ mκ̄ on M.

Let Φ = II− 〈 , 〉M ⊗H be the umbilicity tensor of ψ and suppose that

(80) |Φ| ∈ L2(M, ecη)

with η defined as above. Then one of the following cases occurs:

(1) ψ is totally geodesic (and if c 6= 0 then ψ(M) is invariant by the flow of X), or
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(2) I = R, h is constant on R, M is isometric to the product R× F with F a complete flat
manifold and M is also flat. By introducing the universal coverings πM : Rm → M ,
πF : Rm → F and πM = idR × πF : Rm+1 → M , the map ψ lifts to an immersion
Ψ : Rm → R × Rm satisfying πM ◦ Ψ = ψ ◦ πM , which up to an isometry of Rm and a
translation along the R factor is given by

Ψ : Rm → Rm+1 : (x1, x2, . . . , xm) 7→ (γ1(x1), γ2(x1), x2, . . . , xm)

where γ = (γ1, γ2) : R→ R2 is the grim reaper curve with image

γ(R) =

{
(x, y) ∈ R2 : x = − 1

ch0
log(cos(ch0y)), |y| < 2

π|c|h0

}
and h0 is the constant value of h on R. Furthermore, M is the total space of a flat
line bundle πΩ : M → Ω over a compact flat manifold Ω, and each fiber πM (R ×
{(x2, . . . , xm)}) of the bundle, for constant (x2, . . . , xm) ∈ Rm−1, is mapped by ψ into
the grim reaper curve πM (γ(R)× {(x2, . . . , xm)}).

Proof. Having fixed a local unit normal ν and set H = 〈H, ν〉 we clearly have

|Φ|2 = |II|2 −mH2 ≥ 0.

Furthermore,

(81) |∇Φ|2 = |∇II|2 −m|∇H|2.

We recall, see for instance equation (9.37) in [1], that in the present setting we have the validity
of the Simons’ type formula

(82)
1

2
∆−cη|II|2 = −(ch′(πI ◦ ψ) + |II|2)|II|2 +mκ̄|Φ|2 + |∇II|2.

On the other hand, from equation (65) valid in the present assumptions, we have

(83)
1

2
∆−cηH

2 = −(ch′(πI ◦ ψ) + |II|2)H2 + |∇H|2.

Putting together (82) and (83) and using (81) we obtain

(84)
1

2
∆−cη|Φ|2 + (ch′(πI ◦ ψ) + |II|2 −mκ̄)|Φ|2 − |∇Φ|2 = 0.

Setting u = |Φ|2 we therefore deduce

(85) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 = 2|∇Φ|2u+ 4(mκ̄− ch′(πI ◦ ψ))u2.

Now by (79) we deduce

mκ̄− ch′ ≥ 0 on M,

while from Kato’s inequality |∇|Φ||2 ≤ |∇Φ|2 we get

(86) 2u|∇Φ|2 ≥ 1

2
|∇u|2.

Substituting in the above we eventually have

(87) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 ≥ 1

2
|∇u|2.

The stability of the soliton implies the validity of (68) for some positive smooth function v on
M . We now apply Theorem 3.1 with the choices

a(x) = 2(|II|2 +mκ̄− ch′(πI ◦ ψ))(x), f = −cη, µ =
1

2
, A = −1

2
, K = 0
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so that the requirements in formula (59) are satisfied. In case M is non-compact, by choosing
the admissible β = − 1

2 we see that (80) implies(∫
∂Br

uecη
)−1

6∈ L1(+∞),

that corresponds to (60) for the choice p = 2. Applying Theorem 3.1 we deduce that either u ≡ 0

(so ψ : M →M is totally umbilical) or u > 0 and u
1
2 satisfies the equation

∆−cηu
1/2 + (|II|2 +mκ̄− ch′(πI ◦ ψ))u1/2 = 0.

or equivalently

(88) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 =
1

2
|∇u|2.

Let us first show that if u ≡ 0, then ψ is totally geodesic and therefore, if c 6= 0, ψ(M) is
tangent to X (by the soliton equation) and invariant by its flow (by completeness of M). M
is a space of constant curvature, so the tensor field II is Codazzi. Fixing a local orthonormal
coframe {θi}i on M we write II = aijθ

i ⊗ θj ⊗ ν, ∇II = aijkθ
k ⊗ θi ⊗ θj ⊗ ν, dH = Hkθ

k.
Since u ≡ 0, the umbilicity tensor Φ = II − 〈 , 〉 ⊗ H vanishes, so we have aij = Hδij and
aijk = δijHk by parallelism of the metric. For 1 ≤ k ≤ m and for any index t 6= k we have
Hk = δttHk = attk = atkt = δtkHt = 0, where attk = atkt holds true as II is Codazzi. It follows
that dH ≡ 0, therefore H is constant and so is |II|2 = mH2. Plugging this into (83) we get

H2(ch′(πI ◦ ψ) +mH2) ≡ 0 on M.

In particular, either H ≡ 0, and ψ is totally geodesic, or H 6= 0, ch′(πI ◦ ψ) 6= 0, ch′(πI ◦ ψ) =
−mH2 on M . We now prove that the second case cannot occur.

Suppose, by contradiction, that u ≡ 0, H 6= 0 and that πI ◦ ψ is constant: then ψ(M) is a

slice {t0} × P for some t0 ∈ I such that ch′(t0) = −mH2 = −mh′(t0)2

h(t0)2 and the stability operator

of ψ is

∆−cη + (|II|2 +mκ̄− ch′(t0)) = ∆ +m

(
H2 +

κ− h′(t0)2

h(t0)2
+H2

)
= ∆ +m

κ+ h′(t0)2

h(t0)2
,

where ∆ is the Laplace-Beltrami operator of (P, h(t0)2〈 , 〉P) and we have used the identity (55).
Condition (79) now reads as

ch′(t0) = −m h′(t0)2

h(t0)2
≤ mκ̄ = m

κ

h(t0)2
−m h′(t0)2

h(t0)2
,

that is κ ≥ 0. Since (P, h(t0)2〈 , 〉P) has constant sectional curvature κ
h(t0)2 , one easily sees that

the stability operator above is non-negative if and only if κ = 0, h′(t0) = 0. But h′(t0) = 0

implies that H2 = h′(t0)2

h(t0)2 = 0, contradicting the assumption that H 6= 0.

Suppose, by contradiction again, that u ≡ 0, H 6= 0 and that πI ◦ ψ is not constant on
M . Then h′ is constant on the nondegenerate interval (πI ◦ ψ)(M) ⊆ I and by (55) this forces
κ̄ = 0. We have excluded the possibility H ≡ 0, so by (55) again it must be (h′)2 ≡ κ > 0 on
I. Then, (P, 〈 , 〉P) is covered by an m-sphere with constant curvature κ and, up to an affine
reparametrization of I, h(t) =

√
κt. So, the universal covering U(M) of M is isometric to (a

portion of) Rm+1 \ {0} ∼= R+ ×t Sm and X lifts to a multiple of the position vector field t∂t.

Since the covering immersion ψ̃ : U(M) → U(M) is totally umbilical, it is easy to check that

ψ̃ is necessarily a shrinking sphere centered at the origin of Rm+1, hence a slice of R+ ×t Sm,
contradicting the assumption that πI ◦ ψ is not constant on M .
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So far, we have proved that if u ≡ 0 then ψ must be totally geodesic. We now prove that if
u > 0 solves (88), then the second case in the statement of the theorem holds. From (85) and
(88) we have

1

2
|∇|Φ|2|2 = 2u|∇Φ|2 + 4(mκ̄− ch′)u2.

Since mκ̄− ch′ ≥ 0 and u > 0, from the above and Kato’s inequality (86) we deduce

(89) mκ̄ ≡ ch′(πI ◦ ψ), |∇Φ|2 = |∇|Φ||2 on M.

Note that u cannot be both constant and not identically vanishing on M , since otherwise equation
(88) would reduce to 0 = 2|II|2u2, which is absurd since |II|2 ≥ u > 0.

If u > 0, we already know that u cannot be constant by the observation above. So, the set
{u > 0,∇u 6= 0} is nonempty. Fix a point p ∈M such that u∇u(p) 6= 0. By applying Lemma 3.3
again with A = II, we obtain the existence of a neighbourhood U of p that splits as a Riemannian
product (−ε, ε)×Σm−1 and such that the metric 〈 , 〉 of M and the tensor field II can be written
as

(90) 〈 , 〉 = ds⊗ ds+ 〈 , 〉Σ, II =
(
µ1(s) ds⊗ ds+ µ2(πΣ)〈 , 〉Σ

)
⊗ ν,

for some smooth functions µ1 : (−ε, ε)→ R, µ2 : Σ→ R satisfying

(91) µ1(s) 6= µ2(x) for each s ∈ (−ε, ε), x ∈ Σ.

Up to reparametrizing (−ε, ε), we can write

(92) p = (0, q) for some q ∈ Σ.

We first observe that M is flat. Indeed, if c = 0 then κ̄ = 0 by (89); if c 6= 0, then again
by (89) and since ψ(M) is not a slice (as slices are totally umbilical), we see that h′ is constant
on the nondegenerate interval (πI ◦ ψ)(M) ⊆ I, so κ̄ = −h′′/h ≡ 0 by (55). Inserting this into
(89) we see that h′ ≡ 0, so κ = 0 by (55) and we conclude that P is flat and X = h0∂t for some
h0 > 0.

Now we prove that µ1(s)µ2(πΣ) ≡ 0 on U . Let {θi} be a local orthonormal coframe on U
as the one described in the last part of the proof of Lemma 3.3. In particular, we assume that
θ1 = ds and then we have θ1

j ≡ 0 on U for 1 ≤ j ≤ m. Writing

II = aijθ
i ⊗ θj ⊗ ν,

we have

a11 = µ1, aii = µ2 for 2 ≤ i ≤ m and aij = 0 for each i 6= j.

On the other hand, since M is flat, Gauss’ equations give

(93) Rijkt = aikajt − aitajk for 1 ≤ i, j, k, t ≤ m
where Rijkt are the components of the Riemann curvature tensor of M along {θi}. Recalling
that θ1

j ≡ 0 for 1 ≤ j ≤ m, by Cartan structural equations

1

2
Rijktθ

k ∧ θt = dθij + θik ∧ θkj for 1 ≤ i, j ≤ m

we immediately see that
R1jkt = 0 for 1 ≤ j, k, t ≤ m.

Putting together these facts, from (93) we obtain

µ1(s)µ2(πΣ) = a11a22 = a11a22 − a12a12 = R1212 = 0.

Note that µ1 and µ2 can never be both zero at the same point by (91). Since they depend on
disjoint sets of variables, this implies that exactly one of them identically vanishes on its domain
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while the other one never attains the zero value. In the 2-dimensional case where m = 2 we can
assume without loss of generality that Σ is an interval and then µ2 ≡ 0, up to renaming indices.
We claim that µ2 identically vanishes on Σ also in case m ≥ 3. Suppose, by contradiction,
that µ2 6= 0. Then µ1 ≡ 0 on (−ε, ε) while µ2 has constant (by Lemma 3.3) nonzero value.
By (90), ψ has constant mean curvature H = m−1

m µ2 in U . Putting this constant value for H

into equation (83) we obtain 0 = |II|2H2, contradiction. So, we have proved that µ2 ≡ 0 on Σ.
Moreover, the mean curvature of ψ is given by H = 1

mµ1(s) 6= 0 on U , so ψ is not a minimal

hypersurface and therefore c 6= 0. By the observation above and by completeness of M , this
implies that I×h P = R×F , with (F, 〈 , 〉F ) = (P, h2

0〈 , 〉P) a complete flat manifold, and that ψ
is a translating soliton with respect to the parallel vector field ∂t with soliton constant ch0 6= 0.
Without loss of generality, we can therefore assume c > 0.

Let π : Rm → F be the universal Riemannian covering of F . Then

π̄ = idR × π : R× Rm → R× F = M

is the universal Riemannian covering of M . The deck transformation group of the covering π is
a discrete subgroup ΓF of the isometries of Rm, and F = Rm/ΓF , while the deck transformation
group of the covering π̄ consists of the maps of the form idR × T : Rm+1 → Rm+1, with T ∈ ΓF .
We can assume that U is simply connected, so that ψ|U →M uniquely lifts to an immersion

ψ̂ : U → Rm+1 such that ψ|U = π̄ ◦ ψ̃.

It is easy to see that ψ̂ is again a translating mean curvature flow soliton with respect to the lift

∂̂t ∈ X(Rm+1) of ∂t with soliton constant ch0 and the second fundamental form of the immersion
is given by

ÎI = µ1(s) ds⊗ ds⊗ ν̂,

with ν̂ the local normal vector field along ψ̂ given by the lift of ν. The structure of ÎI implies that ψ̂
is a flat cylinder over a plane curve. More precisely, the image of the plane curve passing through

the point ψ̂(p) is ψ̂((−ε, ε)× q) and is contained in the 2-plane Π = (ψ̂∗(TqΣ))⊥ ⊆ T0Rm+1. As
observed in the proof of Theorem 2.3, the curve

γ : (−ε, ε)→ Π : s 7→ γ(s) = ψ̂((s, q))

is itself a translating soliton with soliton constant ch0 in the 2-plane Π with respect to the

orthogonal projection of the vector field ∂̂t onto Π. We let V denote such orthogonal projection
and α ∈ [0, π/2) be such that ||V || = cosα. In fact, V is a nonzero vector, since otherwise γ
would be a straight line and ψ totally geodesic. Then, γ is a translating soliton curve with soliton
constant k = ch0 cosα > 0 with respect to a parallel unit vector field in the Euclidean plane and
therefore, under a suitable choice of cartesian coordinates (x1, x2) on Π such that V = cosα∂1,
it can be reparametrized as (a restriction of) the grim reaper curve

σ :
(
− π

2k ,
π
2k

)
→ R2

τ 7→ σ(τ) =
(
− 1
k log(cos(kτ)), τ

)
.

Indeed, a translating soliton curve with respect to ∂1 in R2 with soliton constant k can always
be locally written as a graph x1 = f(x2) with f satisfying

k =
√

1 + (f ′)2

(
f ′√

1 + (f ′)2

)′
=

f ′′

1 + (f ′)2
= (arctan(f ′))′.

Hereafter, the point σ(0) of the grim reaper curve parametrized as above will be referred to as
the vertex of the grim reaper.
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So, ψ̂ is a piece of a (possibly tilted) grim reaper cylinder. Hereafter, we say that a curve ` in
a flat manifold is a straight line if it is a noncompact complete geodesic that is the quotient of a
straight line in Rn. In particular this does not mean that ` is minimizing between any pair of its
points. Let π0 : M0 →M be the universal Riemannian covering of M and fix p0 ∈ π−1

0 (p) ⊆M0.

Then ψ̂ uniquely lifts to an immersion

ψ̂0 : M0 → Rm+1 such that π̄ ◦ ψ̂0 = ψ ◦ π0.

By the strong maximum principle for mean curvature flow solitons, ψ̂0 is itself a grim reaper cylin-
der, and therefore M0 = Rm. Up to an isometry of Rm, we can assume that p0 = (s0, 0, . . . , 0) ∈
Rm for some s0 ∈ R and that π−1

0 ((−ε, ε) × q) = (s0 − ε, s0 + ε) × {0}. Moreover, up to an

isometry of Rm+1, we can assume that ψ̂0(0Rm) = 0Rm+1 . For each x0 ∈ Rm−1, the straight line

`x0 = R×{x0} ⊆M0 is mapped injectively by ψ̂0 into a complete grim reaper curve γx0
contained

in a plane parallel to Π. The deck transformations of π̄ act as the identity on the first coordinate

of Rm+1 and Π is not orthogonal to ∂̂t, so the first coordinate of π̄(γx0
) is unbounded. Therefore

the line `x0
is mapped by π̄ ◦ ψ̂0 : Rm → M into a noncompact curve and, as a consequence,

its projection π0(`x0) ⊆ M is itself noncompact, hence a straight line according to the above
definition. Since x0 was arbitrarily chosen, we conclude that M is foliated by straight lines and
each point of M admits a neighbourhood where the metric 〈 , 〉 can be written as in (90), with
s the arclength along the geodesics of the foliation.

Let Ω0 ∈ M0 be the set of points which are mapped by ψ̂0 to the vertices of the grim reaper

curves obtained by intersecting the cylinder ψ̂0(Rm) with each of the 2-planes parallel to Π. By
the above choice of coordinates on M0 = Rm and since s0 ∈ R was not determined before, it is
easy to see that we can assume Ω0 = {0} × Rm−1. Also let Ω = πM (Ω0). We claim that there
exists a bijection between Ω and the family of straight lines foliating M , namely

Ω 3 P ↔ ` ⊆M with ` the unique straight line in the foliation such that P ∈ `.

In fact, we only have to prove that there exists no straight line ` ∈ M intersecting Ω in more
than one point. Suppose, by contradiction, that there exist two distinct points P1, P2 ∈ Ω
and a straight line ` in the foliation such that Pi ∈ ` for i = 1, 2. Let xi ∈ Rm−1, i = 1, 2,

be such that π0((0, xi)) = Pi for i = 1, 2. Then, ψ̂0((0, x1)) and ψ̂0((0, x2)) are vertices of
grim reaper curves lying in two parallel 2-planes of Rm+1. Without loss of generality, we

can assume that the first coordinate of ψ̂0((0, x1)) does not exceed the first coordinate of

ψ̂0((0, x2)). Since P1 ∈ `, by lifting ` to Rm we can find another point (s1, x2) ∈ R × {x2}
such that π0((s1, x2)) = P1. So, ψ̂0((s1, x2)) is a second point on the grim reaper curve through

ψ̂0((0, x2)), distinct from its vertex. Hence, the first coordinate of ψ̂0((0, x2)) is larger than

the first coordinate of ψ̂0((0, x2)) and so is also larger than the first coordinate of ψ̂0((0, x1)).
Since the deck transformations of π̄ act as the identity on the first coordinate, we conclude that

ψ(P1) = ψ(π0(0, x1)) = π̄(ψ̂0(0, x1)) 6= π̄(ψ̂0(s1, x2)) = ψ(π0(s1, x2)) = ψ(P1), contradiction.
Then, we have proved that M is the total space of a Riemannian flat line bundle

πΩ : M → Ω,

with fibers given by the straight lines of the foliation of M .
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Note that

η̄(πI) = h0(πI − t0) for some t0 ∈ R,

|Φ|2 = |II|2 − 2H2 = (µ1)2 − 2
(µ1

2

)2

=
(µ1)2

2
=

1

2

(
k

||σ̇||

)2

,

||σ̇(τ)||2 = 1 + tan2(kτ) =
1

cos2(kτ)
.

Referring to the notation introduced above, if the angle α between the vector field ∂̂t of Rm+1

and the plane Π is zero, then ψ maps the fibers of the foliation of M into vertical grim reaper
curves in M . A straightforward calculation then shows∫

M

|Φ|2ecη = |Ω|e−ch0t0

∫
R

µ1(y)2

2
ekx

1(γ(y))dy

= |Ω|e
−ch0t0

2

∫ π/(2k)

−π/(2k)

k2

||σ̇(τ)||2
e− log(cos(ks))||σ̇(τ)|| dτ

= |Ω|πke
−ch0t0

2
,

where |Ω| is the (m − 1)-dimensional volume of Ω. So in this case |Φ| ∈ L2(M, ecη) holds true
if and only if the manifold Ω has finite volume. Being Ω flat, Ω must be compact. The positive
function v = 〈ν, ∂t〉 satisfies ∆−cηv + |II|2v = 0 on M by (21), so ψ is indeed stable.

We eventually show that the angle α must be zero. Suppose, by contradiction, that α 6= 0.

Let W be the orthogonal projection of ∂̂t onto the subspace (ψ̂0)∗(TΩ0) of TRm+1, so W 6= 0.

Denote with `W = {0} × β(t) ⊆ Rm any straight line that is mapped by ψ̂0 to a straight line
of Rm+1 with direction W . The vector W is not tangent to the factor Rm of Rm+1 = R × Rm,

so there exists no nontrivial deck transformation for the covering π̄ fixing ψ̂0(`W ). Even more,

π̄ is injective over such a straight line and so is ψ ◦ π0 = ψ̂0 ◦ π̄, since ψ̂0 is injective. As a

consequence, π0 is injective over `W and ψ is injective over π0(`W ). Note also that π̄ ◦ ψ̂0(`W )
is a proper curve in M , and thus the curve π0(`W ) is proper in M and contained into Ω. Let
Σm−2

0 ⊂ Ω0 be a hyperplane orthogonal to `W , and let Σ = π0(Σ0) ⊂ Ω be its projection. Take
a small, simply-connected and compact piece Σ′ of Σ. By a compactness argument that uses the
properness of π0(`W ), up to reducing Σ′ we can guarantee that each π0(`W ) meets Σ′ at most
once. If we denote with E ⊆ Ω the union of all straight lines π0(`W ) passing through Σ′, we
deduce that M contains a “cylindrical” subset of positive m-dimensional measure that splits as
R× E, and a computation analogous to the one performed above then gives∫

M

|Φ|2ecη ≥ |Σ′|e−ch0t0

∫
R
e−(ch0)t 1

sinα
dt

∫
R

µ1(y)2

2
ekx

1(γ(y))dy

= |Σ′|πke
−ch0t0

2

∫
R
e−(ch0 sinα)xdx = +∞,

where |Σ′| is the (m − 2)-dimensional volume of Σ′ and we have used the fact that the map ψ
restricted to each straight line in Ω is affine onto the R-factor of R× F with norm 1/ sinα. So,
|Φ| 6∈ L2(M, ecη), contradicting (80). �

We can apply the above result, for instance, to the case M
m+1

= Hm+1 the hyperbolic space,
to deduce the following half-space theorem:
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Corollary 1. There exist no complete stable mean curvature flow solitons ψ : M → Hm+1 =
R×et Rm with respect to et∂t with soliton constant c < 0 and satisfying

(94) |Φ| ∈ L2(M) and ψ(M) ⊆
[
log
(
−m
c

)
,+∞

)
,

with Φ the umbilicity tensor of ψ.

Proof. By contradiction. Suppose that there exists ψ : M → M satisfying the given conditions.
Noting that (80) is implied by |Φ| ∈ L2(M) and the fact that ψ lies in the given half-space, we
apply Theorem 3.4 to conclude that ψ is a totally geodesic complete hyperplane containing ∂t.
This contradicts the hypothesis that ψ(M) is contained in a vertical half-space. �

Remark 9. As a byproduct of Corollary 1, note that the horosphere
{
t = log

(
−mc

)}
is a

posteriori an unstable soliton.

Proof of Corollary D. We represent Sm+1\{p,−p} as the warped product (0, π) ×sin t Sm, with
(t, x)→ p as t→ 0 for each x ∈ Sm. Note that the coordinate t on the (0, π)-factor is everywhere
equal to the distance from p on Sm+1\{p,−p}. Suppose by contradiction that ψ is stable. Then,
we apply Theorem 3.4: note that the issue of M possibly passing through p,−p is easily handled
by observing that the relevant differential inequalities for |Φ|2 and H2 also hold in ψ−1{p,−p},
and the completeness of M is only used in case (ii) to characterize M as a quotient of the grim-
reaper. Therefore, we can infer that ψ is totally geodesic, hence an equator. However, in this
case the stability operator becomes

L = ∆−cη +m− c cos(πI),

and it is always unstable being M compact, m− c cos(πI) ≥ 0 and positive somewhere. Contra-
diction. �

The next result estimates the number of large ends of a soliton M , in a suitable sense recalled
below, under the assumption that M is stable or has finite stability index. We recall that the
study of the ends of M in terms of harmonic (or, more generally, ∆f -harmonic) functions with
special properties on M is a beautiful theory applied with remarkable success due to P. Li, L.F.
Tam and J.P. Wang, see [33] for a detailed presentation and [40] for recent improvements. We
recall some terminology: taking an exhaustion Ωj of M by relatively compact open sets, M is

said to have finitely many ends if the number of ends of M\Ωj (non-decreasing as a function of
j) has a finite limit as j →∞. The limit is independent of the chosen exhaustion. Given an end
E with ∂E smooth, a double of E is a manifold obtained by gluing two copies of E along ∂E
the common boundary, with metric being that of E apart from a neighbourhood of ∂E; then,
E is said to be ∆f -hyperbolic if ∆f admits a positive Green kernel on some (equivalently, any)
double of E. The notion of ∆f -hyperbolicity is, roughly speaking, a way to measure the size of
E.

Proposition 4. Let ψ : Mm →M
m+1

= I ×h P be a complete mean curvature flow soliton with
respect to X = h(t)∂t with soliton constant c. Assume that M has constant sectional curvature
κ̄ and that

(95) ch′(πI ◦ ψ) ≤ 2m− 1

2
κ̄ on M\Ω,

for some relatively compact open set Ω. Then, setting η = η̄ ◦ ψ with η̄ as in (6),

(i) if M is stable and (95) holds with Ω = ∅, then M has only one ∆−cη-hyperbolic end;
(ii) if M has finite index, then M has at most finitely many ∆−cη-hyperbolic ends.
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Proof. Since M has constant sectional curvature κ̄, P has constant sectional curvature, say, κ,
with κ̄ and κ related by Gauss equation (55). Consider the Bakry-Emery Ricci tensor

Ric−cη = Ric−cHess(η).

Then by the inequality before (5.13) of [1] we have

(96) Ric−cη ≥ −(|II|2 + ch′ − (m− 1)κ̄)〈 , 〉M
.
= ρ〈 , 〉M .

In this setting the stability operator (54) becomes

(97) L = ∆−cη + (|II|2 − ch′ +mκ̄).

Under assumptions (i) or (ii), without loss of generality we can assume that 0 ≤ λL1 (M\Ω), and
thus there exists a positive smooth solution of Lu = 0 on M\Ω. Hence, considering the operator

L̄ = ∆−cη − ρ

from (96) and (95) we have

L̄u = ∆−cηu+ (|II|2 + ch′ − (m− 1)κ̄)u = Lu+ (2ch′ − (2m− 1)κ̄)u

= (2ch′ − (2m− 1)κ̄)u ≤ 0 on M\Ω.

This means that λL̄1 (M\Ω) ≥ 0, and therefore L̄ is nonnegative (in case (i)) or has finite index
(in case (ii)). Applying Corollary 7.12 of [40] we deduce that M has at most one (respectively,
finitely many) ∆−cη-hyperbolic ends. �

Remark 10. Corollary 7.12 of [40] is stated in terms of the standard Laplacian ∆, but its
extension to the weighted operator ∆f is merely notational. Moreover, the result requires the
function ρ in (96) be non-negative, but indeed this is not necessary (although, the case of non-
negative ρ is the most relevant one). In fact, Corollary 7.12 is a direct application of Theorem
5.1 in [40], where no sign assumption on ρ is needed.

We conclude with a result that establishes a sufficient condition for every end of M to be
∆−cη-hyperbolic:

Proposition 5. Let ψ : Mm →M
m+1

= I ×h P be a complete mean curvature flow soliton with
respect to X = h(t)∂t with soliton constant c. Assume that M is a Cartan-Hadamard manifold
(i.e. simply connected, with nonpositive sectional curvature), and that, setting η = η̄ ◦ ψ with η̄
as in (6),

(98) inf
M
ecη > 0, |∇η̄| ∈ Lm(M, ecη).

Then, every end of M is ∆−cη-hyperbolic.

Proof. The proof directly follows from results in [30], so we will be sketchy. The first in (98)
guarantees that

inf
x∈M

lim inf
r→0

vol−cη
(
∂Br(x)

)
rm

> 0

with vol−cη the (m − 1)-dimensional measure weighted by ecη, and ∂Br(x) the sphere in the
metric of M . Therefore, M enjoys the Sobolev inequality in [30, Thm. 6] (with the observation
that the soliton equation (2) implies the vanishing of term Hf in [30]):

(99)

(∫
M

|φ|
m
m−1 ecη

)m−1
m

≤ S1

∫
M

[
|∇φ|+ φ|∇η̄|

]
ecη holds ∀φ ∈ Lipc(M),
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for some constant S1. By the second in (98), we can choose a compact set K such that{∫
M\K

|∇η̄|mecη
} 1
m

< S−1
1 .

Restricting (99) to φ ∈ Lipc(M\K) and applying Holder’s inequality to the right-hand side to
absorb the potential term into the left-hand side, we deduce

(100)

(∫
M

|φ|
m
m−1 ecη

)m−1
m

≤ S2

∫
M

|∇φ|ecη holds ∀φ ∈ Lipc(M\K),

for some S2 > 0. The validity of an isoperimetric inequality on M\K force all ends of M with
respect to K to be ∆−cη-hyperbolic, as observed by H.-D. Cao, Y. Shen and S. Zhu [13] and by
P. Li and J. Wang [34] (cf. [40, Cor. 7.17], and Remark 6 in [30]). �

Remark 11. A note of warning: in the recent [31, Lem. 4.1], a different kind of Sobolev
inequality has been claimed for translators in Euclidean space as a consequence of the fact that
translators in Rm+1 generate minimal hypersurfaces in N = Rm+1× S1 endowed with a suitable
warped product metric. However. it seems to us that the proof has a flaw, namely, to be able to
apply the Hoffman-Spruck Sobolev inequality [29] the authors would need a uniform control on
the injectivity radius, since N is not a Cartan-Hadamard manifold, and the latter seems difficult
to achieve without further assumptions.

4. MCF graphs

In this section we consider the case where ψ : M → M = I ×h Pm is the graph of a function
v : P→ I ⊆ R, that is,

(101) ψ(x) = (v(x), x)

for x ∈ P and, of course, M is P endowed with the graph metric ψ∗〈 , 〉M . Indicate with D
the covariant derivative in (P, 〈 , 〉P). It is convenient to express the graph in terms of the flow
parameter s of the conformal field X = h(t)∂t:

(102) s(t) =

∫ t

t0

dσ

h(σ)
.

for a fixed t0 ∈ I, and thus to define

(103) u(x) = s(v(x)), λ(s) = h(t(s)).

Hereafter, we write ψu to specify that the immersion ψ is a graph of a function u as above.
Denoting with ν the upward normal

ν =
1

λ(u)
√

1 + |Du|2
(∂s − (Φu)∗Du) ,

where Φu is the flow of X at time u(x), a computation shows that the (normalized) scalar mean
curvature of ψu in the direction of ν satisfies

mλ(u)H = divP

(
Du√

1 + |Du|2

)
−mλs(u)

λ(u)

1√
1 + |Du|2

.

with λs = dλ/ds. If ψu is a soliton with respect to ∂s = h(t)∂t with constant c, then

mH = c〈∂s, ν〉 =
c|∂s|2

λ(u)
√

1 + |Du|2
=

cλ(u)√
1 + |Du|2

.
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Thus, a soliton for ∂s with constant c shall satisfy

(104) divP

(
Du√

1 + |Du|2

)
=
cλ3(u) +mλs(u)

λ(u)

1√
1 + |Du|2

.
=

f(u)√
1 + |Du|2

with

(105) f(s) =
cλ3(s) +mλs(s)

λ(s)
= (ch2 +mh′)(t(s)) = ζc

(
t(s)

)
.

Example 3. Referring to Example 2, we search for slices that are solitons in Schwarzschild
and ADS-Schwarzschild spaces. Note that in each of (11) and (12) the potential V (r) is strictly
increasing on (r0(m),∞), therefore h satisfies

h′(t) =
dr

dt
=
√
V (r(t)) > 0, h′′(t) =

1

2

dV

dr
(r(t)) > 0.

Thus, for c ≥ 0, the soliton function ζc(t) is positive and strictly increasing on R+, hence there
are no constant solutions of (104). On the other hand, if c < 0 slices {t = t1} that are solitons

with respect to h(t)∂t = r
√
V (r)∂r correspond to t1 = t(r1) with r1 > r0(m) solving

(106) V (r) =
c2

m2
r4.

For the Schwarzschild space (11), such a solution do exist if and only if

(107) r∗
.
=

(
m(m− 1)m2

2c2

) 1
m+3

≥
(
m(m+ 3)

2

) 1
m−1

.

In particular there are two solutions r0(m) < r1,− < r∗ < r1,+ if the strict inequality holds in
(107), and a unique solution r1 = r∗ if equality holds.
In the case of the ADS-Schwarzschild space define

4 .
= (m+ 1)2 + 4κ̄(m− 1)

c2

m2
(m+ 3).

If κ̄ ≥ 0 then 4 > 0 and a solution r1 of (106) exists if and only if

r2
∗
.
=
m2

c2
· m+ 1 +

√
4

2(m+ 3)

satisfies
m(m− 1)

rm+1
∗

≤ 2c2

m2
r2
∗ − 1,

and, again, there are two solutions r0(m) < r1,− < r∗ < r1,+ if the strict inequality holds, and
a unique solution r1 = r∗ if equality holds. Eventually, for the ADS-Schwarzschild space with
κ̄ < 0, r1 exists if and only if 4 ≥ 0 and

r2
∗,±

.
=
m2

c2
· m+ 1±

√
4

2(m+ 3)

satisfy

(108)
m(m− 1)

rm+1
∗,−

≥ 2c2

m2
r2
∗,− − 1,

m(m− 1)

rm+1
∗,+

≤ 2c2

m2
r2
∗,+ − 1.

There are, indeed, two solutions r1,± satisfying (106) with r0(m) < r1,− < r∗,+ < r1,+ if both
of (108) hold with the strict inequality and a unique solution r1 = r∗,+ if the equality holds.
Observe that, both in the Schwarzschild and in the ADS-Schwarzschild case, for |c| positive and
small enough two soliton slices do exist.
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Equations of the type (104) have recently been investigated in [7], where the authors estab-
lished the following sharp weak maximum principles and Liouville type theorems under mild
growth assumptions on the volume of geodesic balls (cf. Thms. 5.4 and 8.4 therein). We report
the statement to help the reading.

Theorem 4.1. Let (M, 〈 , 〉) be complete, fix an origin o ∈ M and let r(x) = dist(x, o). Let u
solve

divP

(
Du√

1 + |Du|2

)
≥ f(u)√

1 + |Du|2
on M,

for some f ∈ C(R).

(i) [7, Thm. 5.4] Suppose that

f(t) ≥ C > 0 for t >> 1,

for some constant C > 0, that

lim
r(x)→+∞

u+(x)

r(x)σ
= 0

for some σ ∈ [0, 2], and that

lim inf
r→+∞

log vol(Br)

r2−σ <∞ if σ < 2, or

lim inf
r→+∞

log vol(Br)

log r
<∞ if σ = 2.

Then, u is bounded from above and f(supM u) ≤ 0.
(ii) [7, Thm. 8.4] Suppose that

f(t) ≥ Ctω > 0 for t >> 1,

for some constants C > 0 and ω > 1, and that

lim inf
r→+∞

log vol(Br)

r2
<∞.

Then, u is bounded from above and f(supM u) ≤ 0.

We apply the above result for the Schwarzschild spaces in Example 2 to deduce Theorem E
in the Introduction.

Theorem 4.2. There exists no entire graph in the Schwarzschild and ADS-Schwarzschild space
(with spherical, flat or hyperbolic topology) over a complete P that is a soliton with respect to the

field r
√
V (r)∂r with constant c ≥ 0.

Proof. We refer to Examples 2 and 3. Let ψ(x) = (v(x), x) be a soliton graph, and let u(x) =
s(v(x)) be, as above, a description of the graph with respect to the flow parameter s(t). We
observed in Example 3 that the soliton function ζc(t) is positive and increasing on R+, hence
so is f in (104). If P is compact, a contradiction directly follows by integrating (104) on P and
applying the divergence theorem. By Myers theorem, this case includes both the Schwarzschild
and the ADS-Schwarzschild space with spherical topology. In the remaining cases, observe that
V (r) ∼ r for large r, thus in view of (13)

h(t) = r(t) ∼ et as t→∞.



30 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

As a consequence, the flow parameter s(t) in (102) is bounded from above and so is u. Fur-
thermore, in the ADS-Schwarzschild space with flat or hyperbolic topology, P is Einstein with
non-positive Einstein constant, and by the Bishop-Gromov comparison theorem

lim sup
r→∞

log volBr
r

<∞.

Applying Theorem 4.1 we deduce f(supM u) = ζc(s(supM u)) ≤ 0, contradiction. �

In a similar way, we now give the

Proof of Corollary F. If ψ : Mm → R×etRm is a soliton graph with respect to et∂t with constant
c ∈ R, then the soliton function of ψ is ζc(t) = et(m+cet). Up to translation, the flow parameter
s in (102) is s = −e−t, so u(x) = s(v(x)) < 0 on P. Setting f(s) = ζc(t(s)) we note that
f(s) → m + c as s → 0, and applying Theorem 4.1 we deduce f(supM u) ≤ 0, a contradiction
since ζc > 0. If c < 0, then ζc(t) = 0 if and only if t = t0

.
= log

(
−mc

)
. We assume that ψ(M)

is contained into one of the two half-spaces determined by {t = t0}, otherwise the conclusion is
immediate. Applying Theorem 4.1 both to u (if u < s(t0)) or to −u (if u > s(t0)) we respectively
obtain supM u = t0 and infM u = t0. The conclusion follows. �

Turning our attention to graphs in Hm+1 along hyperspheres, we similary have the next result
that extends [20], where the minimal case is considered.

Proposition 6. Let ψu : M → Hm+1 = R ×cosh t Hm be an entire soliton graph with respect to
cosh t∂t and with constant c.

(i) If c = 0, then ψu is the totally geodesic hypersphere {t = 0};
(ii) if |c| > m/2, there is no such ψu.

Proof. The soliton function is ζc(t) = m sinh t+ c cosh2 t = c sinh2 t+m sinh t+ c. With respect
to the flow variable s(t), u is a bounded graph and thus we can apply Theorem 4.1 to deduce

ζc
(
t(sup

M
u)
)
≤ 0 ≤ ζc

(
t(inf
M
u)
)
.

In assumption (i), ζc is strictly increasing and thus u must be constant and correspond to the
unique zero of ζc. On the other hand, in (ii) ζc is strictly positive or negative on R, leading to a
contradiction. The conclusion follows. �

Next, we consider the case when the soliton function ζc(t) is negative along the graph. As ex-
pected, one needs much stronger conditions to deduce a Liouville type theorem and a consequent
rigidity of the graph: again, parabolicity comes into play.

Theorem 4.3. Let ψu : Mm → R×h Pm be a graphical mean curvature flow soliton with respect
to the vector field h(t)∂t with soliton constant c. Assume that (P, 〈 , 〉P) is complete and

(109)
1

volP(∂Br)
6∈ L1(+∞)

where ∂Br is the boundary of the geodesic ball in (P, 〈 , 〉P) of radius r centered at a fixed origin
o ∈ P. Suppose that ψ(P) ⊆ [a,+∞) × Pm for some a ∈ R and that ζc ≤ 0 in [a,+∞). Then
ψ(P) is a slice of the natural foliation of R×h Pm.

Proof. We let g = log
√

1 + |Du|2 ≥ 0 where u is defined in (103) and D is the covariant
derivative in P. Then

volP,g(∂Br) =

∫
∂Br

e−g ≤ vol(∂Br)



REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS 31

and assumption (109) implies

(110)
1

volP,g(∂Br)
6∈ L1(+∞).

Completeness of (P, 〈 , 〉P) and (110) imply, by Theorem 4.14 of [2] that P is parabolic with
respect to the operator

(111) eg divP(e−gD · ).
On the other hand, from (104) we have the validity of

eg divP(e−gDu) = f(u) = ζc
(
s(u)

)
≤ 0

since ψ(P) ⊆ [a,+∞)×P and ζc ≤ 0 on [a,+∞). Now πI ◦ψ is bounded below and therefore u is
bounded below, superharmonic with respect to the operator (111). It follows that u is constant,
thus ψ is a soliton slice. �

As a direct corollary we have the following result, to be compared with Corollary 1 and the
subsequent Remark 9.

Corollary 2. The only entire graph ψu : M → H3 = R ×et R2 in the 3-dimensional hyperbolic
space that is a graphical soliton with respect to et∂t with soliton constant c < 0 and contained in
the half-space

[
log
(
− 2
c

)
,+∞

)
is the horosphere {t = log

(
− 2
c

)
}.

Proof. It is sufficient to observe that the slice R2 satisfies (109) and apply Theorem 4.3. �

Translating solitons with controlled growth in products R×P have been studied in [7], as well
as self-expanders in Euclidean space. We state without proof the following theorems, that well
fit with our results.

Theorem 4.4 ([7], Thm. 1.23). Let (P, 〈 , 〉P) be complete manifold, set r(x) = distP(x, o) for
some fixed origin o ∈ P and suppose that for some σ ∈ [0, 2] either

lim inf
r→∞

log vol(Br)

r2−σ <∞ if σ ∈ [0, 2) or

lim inf
r→∞

log vol(Br)

log r
<∞ if σ = 2.

Then, there exist no entire graph ψu : M → R×P that is a translator with respect to the vertical
direction ∂t and satisfies

|u(x)| = o
(
r(x)σ

)
as r(x)→∞.

Theorem 4.5 ([7], Thm. 5.20). Let ψu : M → R× Rm be a translator in Rm+1 with respect to
a parallel vector Y . Assume that

lim sup
r(x)→∞

|u(x)|
r(x)

= û <∞.

Then, the angle ϑ between Y and the horizontal hyperplane Rm must satisfy

tanϑ ≤ û.
In particular, if û = 0, Σ cannot be a self-translator with respect to a vector Y which is not
tangent to the horizontal Rm.

Theorem 4.6 ([7], Thm. 5.23). The only entire bounded graph in Rm+1 that is a self-expander
for the mean curvature flow is a hyperplane passing through the origin.

We conclude this section with the next observation.
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Proposition 7. Let ψu : M → R × P be a translating mean curvature flow soliton graph with
soliton constant c > 0. Let (P, 〈 , 〉P) be complete and with subexponential volume growth. Then

(112) sup
P
|Du| = +∞.

Remark 12. Observe that condition (112) is obviously equivalent to

(113) inf
P
H = inf

P

c

m
√

1 + |Du|2
= 0.

Proof of Proposition 7. Suppose by contradiction that (112) is false. Then, there exists Λ > 0
such that |Du| < Λ on P. Let Br = Br(o) be the geodesic ball of radius r centered at a fixed
origin o ∈ P. From equation (104) satisfied by u using the divergence theorem we deduce

Λ
vol(∂Br)√

1 + Λ2
≥
∫
∂Br

〈
Du√

1 + |Du|2
, ν

〉
=

∫
Br

c√
1 + |Du|2

≥ c vol(Br)√
1 + Λ2

and therefore, since c > 0,

(114)
vol(∂Br)

vol(Br)
≥ c

Λ
> 0.

Integrating the left hand side of (114) we obtain that the volume growth of geodesic balls centered
at o is at least exponential, contradiction. �
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[1] L. J. Aĺıas, J. H. de Lira and M. Rigoli, Mean curvature flow solitons in the presence of conformal vector
fields, preprint, arXiv:1707.07132.
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(2006), ii+230 pp. (MR2369440)

[34] P. Li and J. Wang, Minimal hypersurfaces with finite index, Math. Res. Lett., 9 (2002), 95–103. (MR1892316)

[35] L. Mari, P. Mastrolia and M. Rigoli, A note on Killing fields and CMC hypersurfaces, J. Math. Anal. Appl.,
431 (2015), 919–934. (MR3365847)

[36] W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pacific J. Math., 75 (1978), 219–226.
(MR0500041)

[37] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan,

14 (1962), 333–340. (MR0142086)
[38] B. O’Neill, Semi-Riemannian geometry, Academic Press, New York, 1983. (MR0719023)

[39] J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations, 15 (1974), 541–550. (MR0342829)

[40] S. Pigola, M. Rigoli and A. G. Setti, Vanishing and finiteness results in geometric analysis, Birkhäuser
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