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Mineral phosphorus (P) fertilization in calcareous soils is not efficient enough to ensure

optimal plant growth. Therefore, a higher P input is generally needed. Polymer-coated

fertilizers are a promising fertilizer category that seems to affect soil extractable P, thus

permitting a reduction in fertilizer rates. We tested this hypothesis in a short-term (45

days) field trial by evaluating both the agronomic and the environmental implications. In

this study, two conventional fertilizers (single superphosphate, SSP; mono-ammonium

phosphate, MAP) and a slow P-release fertilizer (polymer-coated MAP, PCMAP) were

tested for their effects on soil P pools by combining different P rates and degrees of

coating. The P soil test was determined with either Olsen or Mehlich-3 solution (available

P), whereas the P soil release was estimated through water extraction. The efficiency of

fertilizers was evaluated by assessing the growth ofHypericum×moserianum (L.) plants.

As expected, both SSP and MAP influenced the soil Mehlich-3-P, Olsen-P, and water-P,

as concentrations increased with the fertilizer rate. Conversely, PCMAP decreased the

soil extractable P with increasing coating. The plant dry weight and P uptake linearly

correlated with the fertilizer rate for SSP and MAP, whilst they achieved the maximum

yield with PCMAP. This result indicates the underdosing for conventional fertilizers. With

reference to the soil test P with water-P, the presence of change points showed low

water-P release concentrations for PCMAP and SSP, and high water-P release for MAP.

In conclusion, in the short-term period both soil extractable P and water-P depend on the

type of fertilizer, whereas the amount of added P has rather a secondary role. PCMAP,

in particular, ensures high plant P use efficiency with minimum environmental impacts.

Keywords: phosphorus, calcareous soil, short-term fertilization, polymer-coated, fertilizer rate, soil test P, change

point, plant yield
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INTRODUCTION

The efficiency of mineral phosphorus (P) fertilizers is generally
questionable when applied to calcareous soils due to the rapid
fixation of P into sparingly soluble forms that are not promptly
available for the plant uptake (Chien et al., 2011). Indeed,
under alkaline conditions a large proportion of P added to the
soil through inorganic fertilizers can be rapidly converted into
pools unavailable to plants via precipitation of Ca-P compounds
(Bertrand et al., 2006). The importance of P precipitation
reactions in controlling P availability and the fertilizer efficiency
has been previously reported by Lombi et al. (2006), who
pinpointed the presence of apatite-like compounds among the P
species in the soil around mono-ammonium phosphate (MAP)
fertilizer granules.

Recent evidence shows that recurrent applications of
inorganic P fertilizers and livestock manure that exceed the
P removal capacity by crops thriving on calcareous soils can
result in P concentrations in the upper soil layers higher
than those required for the optimal plant growth (Hao et al.,
2008; Vu et al., 2009; Pizzeghello et al., 2011). Furthermore,
changes in P sorption properties may occur in the deeper
soil layers (Olson et al., 2010; Pizzeghello et al., 2014, 2016),
which can cause P losses by leaching, and thus increased
risk of eutrophication of aquatic ecosystems (Frossard et al.,
2000). In this respect, while investigating the influence of soil
texture on P extractability and sorption in a wide range of
calcareous soils, Jalali and Jalali (2016) discovered that most of
them contained very high P concentrations that might cause
environmental risks, therefore pointing out that inorganic
and organic P fertilizer inputs in this type of soil should be
reduced.

In Italy, most agricultural soils are rich in P due to the
intensive and long-term application of animal manure and P
fertilizers (ISPRA, 2011), which has led to soil P saturation and
increased risk of P losses (Scalenghe et al., 2014; Pizzeghello et al.,
2016). Although mineral phosphate fertilizers are still largely
imported in this country, their consumption has decreased
from more than 700,000 tons per year of phosphoric anhydride
in the 70’s−200,000 tons current, with mineral fertilizers
representing 45% of all the used fertilizers and 60% of the
total invoiced (Federchimica Assofertilizzanti, 2017). A similar
scenario occurs in the other European Union member states
(van Dijk et al., 2016), and recommendations for the use of
P fertilizers in agriculture have been recently established in
relation to environmental risk assessment (Sharpley et al., 2003).
Furthermore, values of P extracted by using either Olsen or
Mehlich-3 extractants have been employed as a tool for soil
monitoring (Bai et al., 2013; Jalali and Jalali, 2016) since they
well correlate with P losses resulting from runoff and/or leaching
(Wang et al., 2012).

Among the strategies that could be used in order to
improve nutrient availability and use efficiency by plants, the
utilization of controlled or slow-release fertilizers has gained
increased recognition (Chien et al., 2009, 2011; McLaughlin
et al., 2011; Chen et al., 2018). Among the slow P-release
fertilizers, the major categories include those based on coating.

Coated fertilizers are physically prepared by coating granules
of conventional fertilizers with various materials to reduce
their dissolution rate (Shaviv, 2000). Recently, several materials
were tested, such as biodegradable polymers (Sanders et al.,
2012; Lubkowski et al., 2015), superabsorbent polymers (Wu
et al., 2008), commercial polymers (Ma et al., 2013), oxides
(Zhang et al., 2014), and fly ash (Dong et al., 2016). For
instance, in the case of MAP, P was shown to be more slowly
released from a thin polymer-coated fertilizer granule, and P
availability, P uptake and P use efficiency were reported to
increase in barley and rice (Pauly et al., 2002; Fageria et al.,
2014). More recently, Teixeira et al. (2016) studied different types
of granular MAP coated with organic acids in a greenhouse
pot experiment, and observed some differences in release rate
and agronomic efficiency. By contrast, Silva et al. (2012) found
no differences in the dry matter of maize plants treated with
different doses of P using either MAP coated or uncoated. Such
inconsistencies may depend on the distinct effectiveness of the
applied coating material, initial soil P level, fertilizer type and
dose.

Although the risk of P leaching in calcareous soils has already
been investigated (e.g., Ige et al., 2005a,b; Olson et al., 2010; Jalali
and Jalali, 2017), relatively few studies have been conducted to
determine the relationship between P released in water and soil
tests for monitoring P mineral fertilizers. Therefore, the main
starting hypotheses of this paper are: (a) single superphosphate
(SSP) and MAP fertilizers have different effects on the pools of
soil P in calcareous soils, (b) polymer-coated P fertilizers might
affect the soil extractable P, (c) soil P tests, notoriously developed
for agronomic purposes, can be used to evaluate the potential risk
of P losses from soils and the efficiency of fertilizers. To address
these hypotheses, the objectives of the current study were (i) to
determine how the pools of available P varied in a calcareous
soil following a short-term (45 days) mineral P fertilization using
two conventional fertilizers and a polymer-coated fertilizer, (ii)
to determine how P coating influenced the growth of plants, and
(iii) to reconsider agronomic indicators of available P along with
environmental purposes. We considered such as short period
also because plant early P requirements is critical. Indeed, plants
absorb about 50% of their seasonal P requirements by the time
they have accumulated 25% of their total seasonal dry mass
(Chien et al., 2011).

MATERIALS AND METHODS

Climate
The trial was performed at the Experimental Farm of Landlab
S.r.l. in the Veneto region, NE Italy (Quinto Vicentino, Vicenza,
45◦34′N; 11◦37′E; 37m a.s.l.). The climate in this location
is semi–continental, with a mean annual rainfall of 850mm.
Rainfall is higher in June and October (100–90mm) and
lower in the winter months (50–60mm). Air temperature
increases from January (−1.5◦C) to July (27.2◦C). The reference
evapotranspiration (ET0) is 945mm, with a peak of 5mm day−1

in July. The reference evapotranspiration exceeds rainfall from
April to September.
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Experimental Setup
The experimental field trial began in June 2014, in a 20 × 10m
area on a Calcaric Cambisol (IUSS Working Group WRB, 2015).
The treatments derived from the factorial combination of three
types of mineral P fertilizers (single superphosphate, SSP, mono-
ammonium phosphate, MAP, and polymer-coated controlled-
release MAP, PCMAP) with three rates of P, i.e., 0 = untreated
(UNT), 0.7 and 1.4 g P plant−1, these last two corresponding to 23
and 46 kg P ha−1 (i.e., to 50% and 100% of plant needs) according
to the guidelines for nursery crops (Aendekerk, 1997). Mono-
ammonium phosphate had three levels of polymeric coating
(no coating, 25 and 50% coating) obtained by mixing uncoated
and coated P fertilizers with different persistence times: MAP
(12-52-0), SSP (0-19-0), PCMAP (11-49-0) 2-month persistence,
and PCMAP (10-48-0) 4-month persistence (Table 1). The
two polymer-coated fertilizers were polyurethane-like coating
provided by Haifa Chemical Co. Ltd with the commercial
name Multicote. The nine treatments were organized in five
randomized blocks (45 plots). In each plot (1.3 × 2.1m), nine
plants of Hypericum × moserianum (L.) were planted with a
spacing of 0.5 × 0.3m. In total, the trial consisted of 405 plants.
In order to provide the right nutritional supplements, 3 g plant−1

of K (KNO3 13-0-46) and 3 g plant−1 of N (Multicote Urea, a
slow-release nitrogen fertilizer 43-0-0 and 42-0-0) were added
to the treatments. The information of fertilizers persistence was
given by Haifa Chemical. Just before plants transplantation, the
fertilizers were broadcasted onto the soil and the top 10 cm tilled
by hand. A drip irrigation system was installed in the field during
all the experiment long to ensure an adequate water supply. The
irrigation requirements of plants was predicted by estimating
the evapotranspiration calculated through the weather station
located at the farm.

Soil Sampling and Analyses
Soil samples were collected 45 days from the beginning of the
experiment. In each plot, samples were taken from the shallower
10 cm layer using an auger. Sub-samples from four points were

then bulked to obtain a homogenous sample of about 0.5 kg per
plot. Individual samples were air dried, crushed with a rolling pin
to break up clods, passed through a 2mm sieve, and stored at low
humidity.

Soil pH was measured potentiometrically on 1:2.5 soil/water
extracts. Organic carbon was determined by dry combustion
in a CNS Vario Macro elemental analyzer (Elementar, Hanau,
Germany), correcting for the inorganic carbon. Carbonate
content was quantified using the calcimeter method and
gravimetric loss of CO2, and active carbonate was measured by
reaction with 0.1M NH4-oxalate (Drouineau, 1942). Particle size
analysis was performed according to the hydrometer method,
using sodium hexametaphosphate as a dispersant (Gee and
Bauder, 1986). Exchangeable bases, including calcium (Ca),
magnesium (Mg), potassium (K), and sodium (Na), were
extracted using barium chloride (Sumner and Miller, 1996),
and their concentration was determined by inductively coupled

TABLE 2 | Main physical and chemical characteristics of the soil (0–20 cm) at the

beginning of the experiment.

Parameters

Sand (2 mm−50µm) (g kg−1) 203

Silt (50–2µm) (g kg−1) 640

Clay (<2µm) (g kg−1) 157

pH 8.1

Total carbonates (g kg−1) 380

Active carbonates (g kg−1) 56

Organic carbon (g kg−1) 19.2

Total nitrogen (g kg−1) 1.4

C/N 13.7

Cation exchange capacity (meq 100 g−1) 8.9

Total P (mg kg−1) 2512

Organic P (mg kg−1) 834

Mehlich-3-P (mg kg−1) 15.1

Olsen-P (mg kg−1) 12.4

TABLE 1 | Experimental treatments: type, dose, coating, and formulations.

Treatment Fertilizer

Type Dose g plant−1 Coating MAP(4) MAP(2) MAP(0) SSP KN MCU(2) MCU(4)

N P K % g plant−1

Untreated 3 – 3 – – – – – 6.5 1.1 1.1

SSP 3 0.7 3 Uncoated – – – 3.7 6.5 1.1 1.1

3 1.4 3 Uncoated – – – 7.4 6.5 1.1 1.1

MAP 3 0.7 3 Uncoated – – 1.3 – 6.5 1.0 1.0

3 1.4 3 Uncoated – – 2.7 – 6.5 0.9 0.9

PCMAP 3 0.7 3 25 0.2 0.2 1.0 – 6.5 1.0 1.0

3 1.4 3 25 0.4 0.4 2.0 – 6.5 0.9 0.9

3 0.7 3 50 0.4 0.4 0.7 – 6.5 1.0 1.0

3 1.4 3 50 0.7 0.7 1.3 – 6.5 0.9 0.9

UNT, untreated; SSP, single superphosphate; MAP, mono-ammonium phosphate; PCMAP, polymer-coated MAP; KN, potassium nitrate; MCU, Multi-Cote Urea. In brackets the number

of month persistence.
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plasma-optical emission spectroscopy (ICP-OES) on a SPECTRO
CIROS (Spectro Analytical Instruments, Kleve, Germany). The
cation exchange capacity (CEC) was calculated as the sum of the
four basis.

Extractable soil P was analyzed using the Mehlich-3 and
Olsen methods, whereas soil P release was estimated via water
extraction. Mehlich-3-P was determined by shaking 2.5 g of soil
with 25mL of Mehlich-3 extracting reagent for 5min (Mehlich,
1984). Olsen extractable P was obtained by shaking 1.0 g of soil
with 20mL of 0.5mol L−1 sodium bicarbonate solution (pH 8.5)
for 30min (Olsen and Sommers, 1982). Water extractable P was

determined in a soil: water ratio of 1:10 (w/v) at 23◦C for 1 h
(Börling et al., 2004). After filtration through Whatman No. 42
filter paper, P in the extracts was determined colorimetrically
using the malachite green method (Martin et al., 1999), except
for Olsen as in this case the procedure reported by Murphy and
Riley (1962) was followed. Total P was determined by ignition
and HCl extraction (Kuo, 1996). Phosphorus concentration in
the extracts was determined colorimetrically by the malachite
green method. The organic P was calculated as the difference
between the HCl-extractable P of a sample ignited at 513K and
that extracted from an untreated sample (Legg and Black, 1955).

FIGURE 1 | Linear response of soil Mehlich-3-P (A), Olsen-P (B), and water-P (C) concentrations, plant’s P uptake (D), living ground cover (LGC) index (E), and dry

weight (DW) (F) on two fertilizers (single superphosphate, SSP and mono-ammonium phosphate, MAP) at two fertilizer rates (0.7 and 1.4 g P plant−1) and untreated.

Treatments were: MAP, continuous line with red squares; SSP, dotted line with blue rhombus. Means with the same letter are not significantly different at the 0.05

probability level. Bars indicate standard deviation.
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Relationship Between Extractable P Forms
and Water P
The relationship between extractable P (x) and water-P (y) was
modeled as a segmented-line (Equation 1), with parameters
estimated using a nonlinear least squares method as reported by
Heckrath et al. (1995). The change point of P release was defined
as the intersection of the two linear relationships while standard
errors were estimated from the Fisher information matrix and
confidence intervals.

y =

{

a+ b1 x if x ≤ lim
(a+ b1 lim)+ b2x if x > lim

(1)

Where b1 is the slope of the linear relationships for values of
extractable P less than the change point, and b2 is slope of the
second tract.

Plant Material and Analyses
Hypericum × moseranum (L.) was chosen as a model plant
because it thrives on many environments and different types of
soil, and foremost for its high sensitivity to P deficiencies and
tolerance to repeated biomass sampling (Aendekerk, 1997). Plant
growth was recorded at the end of the experiment by determining
living ground cover (LGC), which is a non-destructive index
of canopy development, and by measuring the dry weight. Just
before harvesting, three zenithal photos per plot were taken,
for a total of 15 photos per treatment. To avoid the variability
induced by the environmental conditions, the photos were
taken inside a box equipped with an artificial light source.
The box was open, parallelepiped shaped and without a base,
so when it was placed on the plant it used the ground as a
base. The camera was installed on the upper side facing toward
the inside of the box. The photos were processed by digital
image analysis with the WinCAM software (Regent Instruments,
Quebec, Canada). The LGC index was further calculated as a
percentage of the total area, i.e., the difference between the
area of the plant and the area of the background (floor and
walls). For the dry weight (DW) measurement, plants were
harvested at the end of the trial by cutting at 10 cm height,
rinsed three times with deionized water and dried with filter
paper. The plants were oven dried at 65◦C until constant
weight was obtained. Dried plants were then ground, digested
in 0.1N HCl and analyzed for P concentration using optical
emission spectroscopy with inductively-coupled plasma (ICP-
OES, Spectro, Kleve, Germany). Plant P uptake was calculated as
the product of plant DW and P concentration.

Statistical Analyses
All examined variables were tested for normality and
homoscedasticity (by Shapiro–Wilk’s and Levene’s tests,
respectively) and transformed—when necessary—to satisfy
assumptions required by parametric statistics. Two two-way
completely randomized ANOVA were used to compare the
treatment effects: one for type of fertilizer (SSP and MAP)
and rate of P (0 = untreated control, 0.7 and 1.4 g plant−1),
and the second for rate of P (0.7 and 1.4 g plant−1) and
polymeric coating (uncoated, 25% coated and 50% coated). T

A
B
L
E
3
|
M
a
in

e
ff
e
c
ts

a
n
d
tw

o
-w

a
y
in
te
ra
c
tio

n
A
N
O
V
A
fo
r
so

il
M
e
h
lic
h
-3
-P
,
O
ls
e
n
-P

a
n
d
w
a
te
r-
P
(m

g
P
kg

−
1
),
a
n
d
p
la
n
t
d
ry

w
e
ig
h
t
(M

g
h
a
−
1
),
P
u
p
ta
ke

(m
g
P
p
la
n
t−

1
)
a
n
d
liv
in
g
g
ro
u
n
d
c
o
ve
r
(L
G
C
)
in
d
e
x
(%

)
in

a
n

e
xp

e
rim

e
n
t
w
ith

ty
p
e
o
f
fe
rt
ili
ze
r
(S
S
P
a
n
d
M
A
P
)
a
t
tw

o
P
ra
te
s
(0
.7

a
n
d
1
.4

g
p
la
n
t−

1
)
a
n
d
u
n
tr
e
a
te
d
c
o
n
tr
o
l.

S
o
u
rc
e

d
f

S
u
m

o
f

s
q
u
a
re
s

F
P

S
u
m

o
f

s
q
u
a
re
s

F
P

S
u
m

o
f

s
q
u
a
re
s

F
P

S
u
m

o
f

s
q
u
a
re
s

F
P

S
u
m

o
f

s
q
u
a
re
s

F
P

S
u
m

o
f

s
q
u
a
re
s

F
P

S
o
il

P
la
n
t

M
e
h
li
c
h
-3
-P

O
ls
e
n
-P

W
a
te
r-
P

D
ry

w
e
ig
h
t

P
u
p
ta
k
e

L
G
C

M
o
d
e
l

4
1
6
,3
7
6

2
7
1

0
.0
0
0

3
,9
6
1

7
8
6

0
.0
0
0

6
8
4

1
0
1

0
.0
0
0

7
7
8

1
8
1

0
.0
0
0

1
3
,4
5
9

1
3
5

0
.0
0
0

7
1
5

1
0
7

0
.0
0
0

F
e
rt
ili
ze
r

1
3
,9
8
2

2
6
4

0
.0
0
0

1
,0
0
0

7
9
4

0
.0
0
0

1
9
0

1
1
3

0
.0
0
0

1
0
3

9
6

0
.0
0
0

2
,5
2
7

1
0
1

0
.0
0
0

2
3

1
4

0
.0
0
1

R
a
te

o
f
P

1
4
,6
2
7

3
0
6

0
.0
0
0

1
,2
7
3

1
,0
1
1

0
.0
0
0

2
0
5

1
2
2

0
.0
0
0

2
2
7

2
1
2

0
.0
0
0

4
,5
7
3

1
,8
4
1

0
.0
0
0

2
0
3

1
2
2

0
.0
0
0

F
R
P

1
1
,0
5
4

6
9

0
.0
0
0

4
0
7

3
2
3

0
.0
0
0

1
8
.5

1
1

0
.0
0
3

7
.6

7
.1

0
.0
1
5

5
2
5

2
1
.1

0
.0
0
0

0
.7

0
.4
8

0
.4
9
6

E
rr
o
r

2
0

3
0
2

2
5
.1
8

3
3
.5

2
1
.4

4
9
6

3
3

To
ta
l

2
5

7
6
,6
2
3

1
6
,1
7
0

4
,3
1
6

2
0
,6
3
2

1
3
4
,8
5
5

1
2
,9
4
5

F
R
P,
fe
rt
ili
ze
r
×
ra
te
o
f
P
in
te
ra
c
ti
o
n
;
d
f,
d
e
g
re
e
s
o
f
fr
e
e
d
o
m
;
F,
F
is
h
e
r;
P,
p
ro
b
a
b
ili
ty
va
lu
e
.

Frontiers in Sustainable Food Systems | www.frontiersin.org 5 February 2019 | Volume 3 | Article 4

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Pizzeghello et al. Short-Term Effect of PCMAP on Calcareous Soil

In the second case, to better dissect the results, the ANOVA
was made with untreated control (df = 6) and without
untreated control (df = 5). The Student Newman Keuls
test was applied to compare the differences among group
means and the results were indicated with letters directly
in the figures. Linear responses were tested to interpret the
interactions (Vargas et al., 2015). The statistical analyses were
performed using SPSS for Windows software, version 19.0 (SPSS,
Chicago, IL).

RESULTS

General Properties
Table 2 summarizes the main characteristics of the soil at the
beginning of the experiment. The soil displayed an alkaline
reaction, as confirmed by the high concentration of total
carbonates and active carbonates. The natural soil fertility was
poor, being low in cation exchange capacity, soil organic carbon,
Olsen-P and Mehlich-3-P concentrations. After the treatment,
the soil extractable P (i.e., Mehlich-3-P, Olsen-P, water-P)
concentrations widely varied, ranging within 7.5–96.5mg P kg−1

(Figures 1A–C), whereas the plant LGC index was strongly
and linearly related to both the plant DW (R2 = 0.76, p ≤

0.001) and plant P uptake (R2 = 0.85, p ≤ 0.001) (data not
shown).

Soil Test P-Values and Plant Growth in
Response to SSP and MAP Fertilizers
The soil extractable P was significantly affected by the two-
way fertilizer × rate of P (FRP) interaction (Table 3). The
FRP exhibited more pronounced linear responses with higher
Mehlich-3-P, Olsen-P and water-P concentrations for MAP than
for SSP (Figures 1A–C), demonstrating a change in the scale
trend. In particular, MAP at 1.4 g P plant−1 produced the
highest soil test P concentrations with increments by 5.7-fold
for Mehlich-3-P (93.7; 16.2mg kg−1) (p < 0.001), 5.8-fold for
Olsen-P (45.2; 7.7mg kg−1) (p < 0.001), and 3.8-fold for water-
P (20.9; 5.4mg kg−1) (p < 0.001) compared to the unfertilized
treatment. As a consequence, the plant DW and P uptake were
significantly affected by the FRP interaction as well (Table 3;
Figures 1D,F). Dry weight yield linearly increased at the rate
of 0.012Mg ha−1 with incremental 1 kg ha−1 increase in P
fertilizer with MAP, while it linearly increased at slower rate
(0.0078Mg ha−1 per 1 kg ha−1 incremental increase in P) using
SSP. Likewise, the plant P uptake displayed a linear increase,
with a rate 1.9-fold higher for MAP than SSP. With respect
to the LGC index, the non-significant FRP interaction could
have been perhaps ascribed to the very small difference between
the angular coefficients of linear response to P rates, as it is
clearly depicted in Figure 1E. Nevertheless, the main factors were
significant (Table 3), and increasing LGC values followed the
untreated (13.2%) < SSP (23.1%) < MAP (26.3%) (p < 0.05)
order, as well as followed the rate of P (untreated 13.2% < 0.7 g
P plant−1 21.1% < 1.4 g P plant−1 27.4%) (p < 0.05) (data not
shown). T
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Soil Test P-Values and Plant Growth in
Response to Coated and Uncoated MAP
The two-way rate of P × coating (RPC) interaction was not
significant for the soil Mehlich-3-P and Olsen-P concentrations,
while it significantly affected the soil water-P concentrations
(Table 4, in both df 6 and df 5). The water-P data fitted linear
responses (Figure 2A), with higher concentrations in the dose of
1.4 g P plant−1 than 0.7 g P plant−1, but with strongly decreasing
concentrations from uncoated MAP (0) to PCMAP 25% and
PCMAP 50% (20.9> 12.8> 8.2mg kg−1 and 12.5> 7.6> 5.5mg
kg−1 for 1.4 and 0.7 g P plant−1, respectively). In contrast to the
water-P, the coating grade affected both Mehlich-3-P and Olsen-
P concentrations (Table 4) with decreasing values following the
uncoated MAP > PCMAP 25% > PCMAP 50% (p < 0.05) order
(71.3-56.9-43.4mg kg−1 for Mehlich-3-P, and 32.7-29.5-25.3mg
kg−1 for Olsen-P).

Concerning plants, the LGC index was significantly affected
by the two-way RPC interaction (Table 4, in both df 6 and
df 5), giving linear responses to the coating with higher LGC
in the dose of 1.4 g P plant−1 (28.7 < 33.9 < 40.5%) than
0.7 g P plant−1 (21.9, 23.9 < 26.7%) (Figure 2B). With respect
to the plant DW and P uptake, only the main factors were
significant (Table 4). In particular, the DW yield exhibited
a significant linear response to coating (Figure 2C), showing
that the PCMAP 50% (1.3Mg ha−1) differed from uncoated
MAP (1Mg ha−1), whereas PCMAP 25% (1.1Mg ha−1) was

intermediate between them. A similar behavior to the DW
was found for the response to coating by plant P uptake
(Figure 2D). Pseudo-relationships were additionally determined
including the unfertilized treatment (UNT, control) (dotted lines
in the graphs). In this way, it is clear that the coating at
50% dose gave soil water-P values very close to those reported
for the control (Figure 2A). Concerning plants, instead, the
pseudo-relationships showed the reaching for the maximum
yield (Figures 2B–D).

Relationships Among Mehlich-3-P,
Olsen-P, and Water-P
Mehlich-3-P concentrations were strongly and linearly related
to Olsen-P concentrations (p < 0.001) (Figure 3A), explaining
93% of the Olsen-P variability. For the relationship with
water-P, the segmented-line model (Equation 1) was used
and it demonstrated that at low Olsen-P and Mehlich-3-
P concentrations the water-P remained low, while at high
concentrations it markedly increased. In other words, the water-
P exhibited a change point at a concentration of 37mg kg−1 for
the Olsen-P (R2 = 0.56, p < 0.001) (Figure 3B) and at 65mg
kg−1 for the Mehlich-3-P (R2 = 0.69, p < 0.001) (Figure 3C).
It is noteworthy that the points in SSP and those in PCMAP
were placed in the initial section of the curves, thus evidencing
low water-P concentrations. Conversely, the points in MAP were

FIGURE 2 | Linear response of soil water-P concentrations (A), plant’s living ground cover (LGC) index (B), dry weight (DW) (C), and P uptake (D) on

polymer-coated mono-ammonium phosphate at two rates of coating (25 and 50%) and untreated (UNT). Treatments were: 0.7 g P plant−1, line with blue rhombus;

1.4 g P plant−1, line with red squares; continuous line, relationship considering coating rate; dotted line, relationship considering coated and untreated soils. Means

with the same letter are not significantly different at the 0.05 probability level. Bars indicate standard deviation.
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FIGURE 3 | (A–C) Relationship among soil Mehlich-3 P, Olsen P, and water P

concentrations after 45 days application of treatment. In the graph split-line

model fitted Equation (1). To appreciate the effect of the treatment on the

model, the cases were differently colored: untreated, black squares; single

superphosphate, SSP, blue circles; mono-ammonium phosphate, MAP, red

rhombuses; polymer-coated mono-ammonium phosphate, PCMAP, green

triangles.

found in the final section of the curves, showing high water-P
concentrations.

DISCUSSION

General View
Phosphorus can limit crop production in calcareous soils,
therefore fertilization is frequently required (Chien et al., 2011). It
is well known that there are differences in the reaction and time-
availability of P fertilizers, depending on the type of fertilization

and application rate (Castro and Torrent, 1994; McLaughlin
et al., 2011). The soil tested in the current study has developed
from calcareous material, as indicated by the soil reaction and
abundance of total and active carbonates. With respect to the
Olsen-P concentration in the unfertilized soil, the available P
should be considered low. Indeed, the addition of conventional
fertilizers (i.e., SSP or MAP) resulted in the increase of soil
extractable P concentrations and plants growth (Haden et al.,
2007; Jiao et al., 2007; Chien et al., 2011; Fageria et al., 2014;
AlKhader and Rayyan, 2015).

Soil Extractable P and Plant Growth
MAP affected the extractable soil P more than SSP, with values
that proportionally increased with the P fertilizer rate. The close
linear relationship found between the Olsen-P and Mehlich-3-P
confirms that the extracting methods give from the same P pool
and with relatively similar intensity (Mallarino and Atia, 2005).
As agronomic soil test P, the concentrations of the extractable
P varied widely up to 45.2 and 93.7mg kg−1 for the Olsen-P
andMehlich-3-P, respectively. Conversely, while calibrating these
results with plant requirements for P, the P rate applied seemed
insufficient. This is clearly because the relationship between
plants DW and P uptake with the P fertilizer rate fitted linearly,
and did not reach the typical curvature zone and flattening
for the maximum yield. However, MAP increased the soil P
concentrations and plant DW and P uptake more than SSP, as
suggested by the higher incremental rate per unit of P fertilizer.
An explanation for the different behavior of the two fertilizers
could be found considering that P reaction products vary in
solubility and that different sources of P fertilizers are not equally
effective. It is possible that nitrification of NH4-N to NO3-N
in MAP could increase the acidity levels around the fertilizer
granules in the soil, and that root absorption of NH4-N enhanced
the dissolution of precipitated Ca-P compounds (Chien et al.,
2011) and P availability (Leytem et al., 2011) through promotion
of rhizosphere acidity (Nardi et al., 2005).

Polymer-coated MAP compared to the uncoated MAP
affected the soil extractable P, but strongly decreasing
concentrations were observed at the increasing grade of coating.
Plants treated with PCMAP were also affected in terms of yield.
It is noteworthy that when PCMAP was used, plants LGC, DW,
and P uptake reached the maximum, as clearly showed by dotted
lines in Figure 2. This indicates that conventional fertilizers at
the tested doses do not allow plants to achieve the maximum
yield, thus suggesting the need to increase the rate of P to the
soil. Conversely, PCMAP enables the maximum plant yield and
at lower soil extractable P concentrations. Coating, allowing
a release of P that follows flow and diffusion mechanisms,
induces a slow P release (Shaviv and Mikkelsen, 1993; Du et al.,
2006), as found in our study when coated and uncoated MAP
were compared. The gradual P solubilisation from PCMAP can
provide a more constant P supply toward the soil where roots
are developing thus enabling greater efficiency as also reported
by other authors (Pauly et al., 2002; Sanders et al., 2012; Teixeira
et al., 2016). In fact, the higher the coating, the lower the P
availability (Mehlich-3, Olsen, water) and the higher the plant
LGC, DW, and P uptake were.
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Soil P Release and Environmental Aspects
The relationship found between Mehlich-3-P and water-P, and
between Olsen-P and water-P, is considered due to a change
of the relative efficiency of P extraction by water as soil P
concentration increased (Atia and Mallarino, 2002; Ige et al.,
2006; Jalali and Jalali, 2017). The increased proportion of water-
P with the increasing rate of fertilizer indicates that the soil
does not have endless capacity to retain the added P, and when
talking about the capacity of the soil to retain P, there is a further
increase in the proportion of P occurring in the labile fraction.
Indeed, a change point was reached and exceeded both in the
Olsen-P and Mehlich-3-P relationships with water-P. The results
show that the P concentration released in water remained low
in most cases, specifically below the Olsen-P change point of
37mg kg−1, while above this value the water-P rapidly increased.
A similar pattern of higher P concentrations in water above a
change point of 65mg kg−1 was observed for Mehlich-3-P. At
the change point, the water-P concentration was 12.5mg kg−1

for Olsen-P and 9mg kg−1 for Mehlich-3-P, which corresponded
to water-P ranging between 1.2 and 0.9mg l−1, so far above
the value of 0.1mg P l−1 used as environmental threshold
by USEPA (2000). Note, above the change points, the water-P
rapidly increased with the increase of Olsen-P and Mehlich-3-
P. Thus, while the exceeding of the change point values show
environmental risks, of the two soil test P, the Mehlich-3 better
predicts the P loss than the Olsen. Nevertheless, these results
should be considered with caution. Indeed, while Mehlich-3-P
concentration is often determined by ICP, water extractable P was
determined colorimetrically, thus making spurious relationships.
Indeed, while ICP measures the total P in the extract, which
can include organic P, the colorimetrically determination only
measures P in orthophosphate. However, our results are in line
with those reported in literature. Indeed, in other soils of NE-
Italy, we found change point values of 54mg kg−1 for Olsen-P
and ca 100mg kg−1 for Mehlich-3-P (Pizzeghello et al., 2016),
whereas values ranging 39.9–90.2mg kg−1 for the Olsen-P where
reported by Bai et al. (2013). The differences are likely due
to changes in the soil’s chemical properties (i.e., clay, organic
carbon, carbonates) which influence the soil P sorption capacity
(Zhao et al., 2007; Memon et al., 2009; Pizzeghello et al., 2014).

Considering the treatment, it is noteworthy that SSP and
PCMAP showed a lower P release in water than MAP, as
evidenced by the clustering of the soil plots at the initial and
final section of the segmented-line. Uncoated fertilizers, in fact,
had high rate of P release and led to a fast increase of the P
concentration in the soil solution (Silva et al., 2012; Teixeira et al.,
2016). The slower P release of the coated fertilizer might be a
result of physical and chemical barriers, whereas issues such as
porosity, thickness and coating layer composition determine the
P diffusion from the granule to the soil (Shavit et al., 1997; Du
et al., 2006). Overall, our results point out that MAP needs to
be carefully used, as high soil extractable P concentrations are
released into the water, thus suggesting possible movement of P
via runoff and/or through the soil profile. The use of PCMAP,
conversely, appears to be more environmentally friendly than
MAP.

CONCLUSIONS

In the short-period conventional and unconventional mineral P
fertilizers affected the soil P pools and plant growth in a different
way, as depicted in the summary chart (Figure 4). The figure
recalls the graphs of Figure 2, but reveals at a more general level
the extent of all the main variables according to the two studied
factors (fertilization and coating), whereas the arrows should
help the reader making sense of the path. However, while MAP
and SSP induced higher soil Mehlich-3-P, Olsen-P, and water-
P concentrations and high plant yields and P uptake compared
to the untreated (Figure 4, left), PCMAP (Figure 4, right)
decreased soil Mehlich-3-P, Olsen-P, and water-P concentrations
but allowed achieving higher plant yields and P accumulation
than conventional fertilizers. Moreover, from the segmented-line
model between the P released in water and Olsen-P andMehlich-
3-P, the presence of change points give suggestion for possible
environmental P risks. Thus, disentangling among fertilizers,
SSP and PCMAP display a lower P release in water than MAP,
but PCMAP also produces higher agronomic efficiency than
SSP. Due to the short duration of the trial, maybe not all
granules of PCMAP solubilized. Therefore, in order to achieve

FIGURE 4 | Summary chart. The picture depicts the results from conventional P fertilizers (single superphosphate and mono-ammonium phosphate) (LEFT) vs.

polymer-coated mono-ammonium phosphate (RIGHT) on soil Olsen-P, Mehlich-3-P on water-P, on plant dry weight (DW) and on P uptake after 45 d from the

treatment. The arrows should facilitate making sense of the path. On the left, at the increasing of P fertilizer rate, soil Olsen-P, Mehlich-3-P, water-P, plant DW and P

uptake all increased. On the right, at the increasing of coating, soil Olsen-P, Mehlich-3-P and water-P decreased, whereas plant DW and P uptake increased. Overall,

the soil P pools extracted after the treatment with polymer-coated mono-ammonium phosphate were lower than those from conventional fertilizers.
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the optimization of P, for both the soil and the plant systems,
the use of polymer-coated fertilizers seems to be required. These
results also suggests that in the short period, and using rates
of fertilizer similar to those applied in this study, both soil
extractable P and water-P depend on the type of fertilizer,
whereas the amounts of added P have rather a secondary role.
Nevertheless, these results must be taken with caution because
they are the result of replicas in space but not in time.
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