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Abstract
This paper is devoted to extend some Hu–Keel results on Mori dream spaces (MDS) beyond
the projective setup. Namely, Q-factorial algebraic varieties with finitely generated class
group andCox ring, here calledweakMori dreamspaces (wMDS), are considered.Conditions
guaranteeing the existence of a neat embedding of a (completion of a) wMDS into a complete
toric variety are studied, showing that, on the one hand, those which are complete and
admitting low Picard number are always projective, hence Mori dream spaces in the sense of
Hu–Keel. On the other hand, an example of a wMDS that does not admit any neat embedded
sharp completion (i.e. Picard number preserving) into a complete toric variety is given, on
the contrary of what Hu and Keel exhibited for a MDS. Moreover, termination of the Mori
minimal model program for every divisor and a classification of rational contractions for
a complete wMDS are studied, obtaining analogous conclusions as for a MDS. Finally, we
give a characterization of wMDS arising from a smallQ-factorial modification of a projective
weak Q-Fano variety.

Keywords Mori dream space · Cox ring · Class group · Toric varieties · Gale duality · The
secondary fan · GKZ decomposition · Good and geometric quotient · Fan matrix · Weight
matrix · Nef cone · Moving cone · Pseudo-effective cone · Picard number · Bunch of cones ·
Irrelevant ideal and locus · Completion · Completion of fans · Minimal model program ·
Small modification · Rational contraction
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Introduction

AMori dream space (MDS) is a projective variety for which Mori’s minimal model program
(MMP) terminates for every divisor. Historically Mori dream spaces were introduced in the
pivotal paper [15] by Hu and Keel, as Q-factorial projective varieties admitting a good Mori
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chambers decomposition of the Neron–Severi group [15, Def. 1.10]. This turns out to be
equivalent to requiring that a MDS is a Q-factorial projective variety X whose class group
Cl(X) is a finitely generated abelian group andwhose Cox ring Cox(X) is a finitely generated
algebra [15, Prop. 2.9].

Later many authors studied Mori dream spaces mainly emphasizing their combinatorial
properties, rather than their birational behaviour. From this point of view, their projective
embedding or completeness or sometimes even their Q-factoriality turned out to be unnec-
essary hypotheses. In fact, normality and the finite generation of both Cl(X) and Cox(X)

are sufficient hypotheses for obtaining the most interesting combinatorial properties, sum-
marized by a good Mori chambers decomposition and giving rise to the main computational
aspects of a MDS: e.g. this is what is assumed to be a MDS by Hausen and Keicher in their
Maple package MDSpackage [18, Def. 2.3.2], [14]. Such a combinatorial nature of a MDS
has been extrapolated by Arzhantsev, Derenthal, Hausen and Laface in their recent book [1]
with the concept of a variety arising from a bunched ring [1, § 3.2], which can be understood
as the combinatorial quintessence of a MDS. It makes then sense asking if and why Hu–Keel
results on a MDS can be extended beyond the projective setup.

To avoid confusion with the definition of a MDS given by Hu and Keel, in this paper a
Q-factorial algebraic variety with finite generated Cl(X) and Cox(X) will be called a weak
Mori dream space (wMDS): see Definition 7. The focus is on a possible extension to a
non-projective setup of Propositions 1.11 and 2.11 in [15]; namely:

1. a MDS X admits a neat embedding (see Definition 13) into a projective toric variety Z
[15, Prop. 2.11]; moreover, there are as many non isomorphic neat projective embeddings
of a MDS as pullbacks of Mori chambers of Z contained in the Nef cone Nef(X);

2. Mori’s MMP can be carried out for any divisor on a MDS [15, Prop. 1.11 (1)];
3. a MDS admits a finite number of rational contractions (see Definition 20) associated

with a fan structure on its Mov cone [15, Prop. 1.11 (2),(3)].

Extending (2) and (3) to a wMDS is an application of [1, Thm. 4.3.3.1], here recalled by
Lemma 1. Section3 is entirely devoted to give a proof of (2) and (3), namely in Sects. 3.1
and 3.2, respectively.

The attempt to extend (1) to the case of a wMDS is more interesting. Since in general a
wMDS is not a (quasi)-projective algebraic variety, (1) should be understood in terms of a
neat embedding of (a suitable closure of) a wMDS into a complete toric variety: this fact does
not seem to hold in general! More precisely, Sect. 2 is devoted to developing the following
steps:

(a) describing a canonical neat embedding of a wMDS X into a Q-factorial toric varietyW ;
in general, the latter, if exixting, is not even complete;

(b) finding conditions guaranteeing the existence of a sharp completion Z ofW , where sharp
means Picard number preserving;

(c) perform a closure of X inside Z , when the latter exists, so obtaining a neat embedding
of such a closure into Z ; if X is a complete wMDS, this gives a neat embedding of X
into the complete toric variety Z .

Step (a) is known, after the canonical toric embedding of a variety arising from a bunched ring
performed in [1, § 3.2.5]. Anyway, in the present paper, an alternative proof of this result, for
a wMDS endowed with aCox basis (see Definition 12) is presented in Theorem 2, essentially
for two reasons: giving an explicit construction of the canonical ambient toric variety W ,
useful for the sequel, and characterizing a wMDS and its canonical toric embedding more
algebraically, by means of a suitable presentation of the Cox ring together with the so-called
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irrelevant ideal Irr(X) of X , rather than combinatorially by means of properties of the
associated bunch of cones.

Step (b) represents the core of the present paper. By Nagata’s compactification theorem
every algebraic variety can be embedded in a complete algebraic variety [23, Thm.4.3]. Sum-
ihiro proved an equivariant version of this theorem for normal algebraic varieties endowed
with an algebraic group action [31],[32], as toric varieties are. In particular, for toric varieties,
it corresponds to a combinatorial completion procedure for fans, as explained by Ewald and
Ishida [9, Thm. III.2.8], [10]. See also the more recent [26] where Rohrer gives a simpli-
fied approach to the Ewald–Ishida completion procedure. In general, all these procedures
require the adjunction of some new ray into the fan under completion. This is necessary
in dimension ≥ 4: there are examples of 4-dimensional fans which cannot be completed
without the introduction of new rays. Consider the Remark ending up § III.3 in [9] and ref-
erences therein, for a discussion of this topic; for explicit examples consider [28, Ex. 2.16]
and the canonical ambient toric variety here presented in Example 3. Adding some new rays
necessarily imposes an increasing of the Picard number: we call sharp a completion which
does not increase the Picard number. What has been just observed is that, in general, a sharp
completion of a toric variety does not exist. In [15, Prop. 2.11] Hu and Keel, as already
recalled in the previous item (1), showed that the canonical ambient toric variety W of a
MDS X admits sharp completions, which are even projective, one for each Mori chamber
whose pullback is contained in Nef(X). This result does no more hold for the ambient toric
variety of a wMDS, as Example 3 shows. The key condition should be imposed, in order to
guarantee the existence of a sharp completion in the non-projective set up, is the existence
of particular cells inside the Nef cone, called filling cells (see Definition 16). This is the
content of Theorem 3. Since every Mori chamber, in the sense of Hu–Keel, is a filling cell,
such a condition is automatically satisfied when considering aMDS. As a byproduct, directly
following from an analogous result for Q-factorial complete toric varieties, jointly obtained
with Lea Terracini [30, Thm. 3.2] and here recalled by Theorem 4, one gets that the Hu–Keel
result (1) holds for a complete wMDS with Picard number r ≤ 2. In fact, every wMDS of
this kind is actually a MDS: this is proved in Theorem 5. The bound on the Picard number
can be extended to 3 in the smooth case, as a consequence of Kleinschmidt and Sturmfels
results [19].

Step (c) follows from (b), just by taking the closure of X inside a sharp completion Z of
the toric ambient variety W .

This paper ends up by exhibiting a class of examples of weak Mori dream spaces,
namely those varieties which are birational and isomorphic in codimension 1 (i.e. small Q-
factorial modifications) to a projective weak Q-Fano variety (see Prop. 14). Corollary 8 and
Proposition 14 give an extension, beyond the projective setup, of characterizations given by
McKernan for smooth Mori dream spaces arising from log Fano varieties [22, Lemma 4.10]
and , more recently, by Gongyo, Okawa, Sannai and Takagi for Mori dream spaces arising
from Fano type varieties [11, Thm. 1.1].

The present paper is organized as follows.
Section 1 is entirely devoted to recall themost part of necessary preliminaries and introduce

main notation.
Section 2 is dedicated to study weak Mori dream spaces and their embeddings. Section 3

is devoted to discussing the termination of a Mori MMP for every divisor and to classifying
rational contractions of a wMDS.

Finally, Section 4 is dedicated to characterizing smallQ-factorial modifications of projec-
tive weak Q-Fano varieties as those weak Mori dream spaces whose total coordinate space
has at most Klt singularities and admitting big and movable anti-canonical class.
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1 Preliminaries and notation

Throughout the present paper, our ground field will be an algebraic closed field K = K, with
charK = 0.

1.1 Toric varieties

Throughout the present paper we will adopt the following definition of a toric variety:

Definition 1 (Toric variety) A toric variety is a tern (X , T, x0) such that:

(i) X is an irreducible, normal, n-dimensional algebraic variety over K,
(ii) T ∼= (K∗)n is a n-torus freely acting on X ,
(iii) x0 ∈ X is a special point called the base point, such that the orbit map t ∈ T �→ t · x0 ∈

T · x0 ⊆ X is an open embedding.

For standard notation on toric varieties and their defining fans we refer to the extensive
treatment [8].

Definition 2 (Morphism of toric varieties) Let Y and X be toric varieties with acting tori TY

andTX and base points y0 and x0, respectively. Amorphism of algebraic varietiesφ : Y → X
is called a morphism of toric varieties if

(i) φ(y0) = x0 ,
(ii) φ restricts to give a homomorphism of tori φT : TY → TX by setting

φT(t) · x0 = φ(t · y0)
The previous conditions (i) and (ii) are equivalent to require that φ induces a morphism

between underling fans, as defined e.g in [8, § 3.3].

1.1.1 List of notation

M, N , MR, NR denote the group of characters of T, its dual group
and their tensor products with R, respectively;

Σ ⊆ P(NR) is the fan defining X;
P(NR) denotes the power set of NR

Σ(i) is the i -skeleton of Σ;
〈v1, . . . , vs〉 ⊆ NR cone generated by v1, . . . , vs ∈ NR;

if s = 1 this cone is called the ray generated by v1;
L(v1, . . . , vs) ⊆ N sublattice spanned by v1, . . . , vs ∈ N ;

Let A ∈ M(d,m; Z) be a d × m integer matrix, then

Lr (A) ⊆ Zm is the sublattice spanned by the rows of A;
Lc(A) ⊆ Zd is the sublattice spanned by the columns of A;
AI , AI ∀ I ⊆ {1, . . . ,m} the former is the submatrix of A given by

the columns indexed by I and the latter is the submatrix
of A whose columns are indexed by the complementary
subset {1, . . . ,m}\I ;

positive a matrix (vector) whose entries are non-negative.
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Given an integer matrix V = (v1, . . . , vm) ∈ M(n,m; Z), then

〈V 〉 = 〈v1, . . . , vm〉 ⊆ NR cone generated by the columns of V ;
SF(V ) = SF(v1, . . . , vm) set of all rational simplicial fans Σ such that

Σ(1) = {〈v1〉, . . . , 〈vm〉} ⊆ NR and
|Σ | = 〈V 〉[29, Def. 1.3].

IΣ := {I ⊆ {1, . . . ,m} | 〈VI 〉 ∈ Σ}
G(V ) is a Gale dual matrix of V [29, § 3.1];

1.2 F andW-matrices

Definition 3 (F-matrix, Def. 3.10 in [29]) An F-matrix is a n × m matrix V with integer
entries, satisfying the conditions:

(a) rk(V ) = n;
(b) V is F-complete i.e. 〈V 〉 = NR

∼= Rn [29, Def. 3.4];
(c) all the columns of V are non zero;
(d) if v is a column of V , then V does not contain another column of the form λv where

λ > 0 is real number.

An F-matrix V is called reduced if every column of V is composed by coprime entries [29,
Def. 3.13].

The most significant example of a F-matrix is given by a matrix V whose columns are
integral vectors generating the rays of the 1-skeleton Σ(1) of a rational complete fan Σ . In
the following V will be called a fan matrix of Σ ; when every column of V is composed
by coprime entries, it will be called a reduced fan matrix. For a detailed definition see [29,
Def. 1.3]

Definition 4 (W -matrix, Def. 3.9 in [29]) A W-matrix is an r × m matrix Q with integer
entries, satisfying the following conditions:

(a) rk(Q) = r ;
(b) Lr (Q) does not have cotorsion in Zm ;
(c) Q isW-positive, that is,Lr (Q) admits a basis consisting of positive vectors [29,Def. 3.4].
(d) Every column of Q is non-zero.
(e) Lr (Q) does not contain vectors of the form (0, . . . , 0, 1, 0, . . . , 0).
(f) Lr (Q) does not contain vectors of the form (0, a, 0, . . . , 0, b, 0, . . . , 0), with ab < 0.

AW -matrix is called reduced if V = G(Q) is a reduced F-matrix [29, Def. 3.14, Thm. 3.15]

The most significant example of aW -matrix Q is given by a Gale dual matrix of a fan matrix
V , that is Q = G(V ). In this case Q will also be called a weight matrix. If Q is also a reduced
W -matrix then it is a reduced weight matrix.

1.3 Cox sheaf and algebra of an algebraic variety

For what concerning the present topic we will essentially adopt notation introduced in the
extensive book [1], to which the interested reader is referred for any further detail.

Let X be an irreducible and normal, algebraic variety of dimension n over K. The group
of Weil divisors on X is denoted by Div(X) : it is the free group generated by prime divisors
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of X . For D1, D2 ∈ Div(X), D1 ∼ D2 means that they are linearly equivalent. The subgroup
of Weil divisors linearly equivalent to 0 is denoted by Div0(X) ≤ Div(X). The quotient
group Cl(X) := Div(X)/Div0(X) is called the class group, giving the following short exact
sequence of Z-modules

0 Div0(X) Div(X)
dX

Cl(X) 0 (1)

Given a divisor D ∈ Div(X), its class dX (D) is often denoted by [D], when no confusion
may arise.

1.3.1 Assumption

In the following, Cl(X) is assumed to be a finitely generated (f.g.) abelian group of rank
r := rk(Cl(X)). Then r is called either the Picard number or the rank of X . Moreover we
will assume that every invertible global function is constant i.e.

H0(X ,O∗
X ) ∼= K∗ . (2)

The latter condition is clearly satisfied when X is complete.

1.3.2 Choice

Choose a f.g. subgroup K ≤ Div(X) such that

dK := dX |K : K Cl(X)

is an epimorphism. Then K is a free group of rankm ≥ r and (1) induces the following exact
sequence of Z-modules

0 K0 K
dK

Cl(X) 0 (3)

where K0 := Div0(X) ∩ K = ker(dK ).

Definition 5 (Sheaf of divisorial algebras, Def. 1.3.1.1 in [1]) The sheaf of divisorial algebras
associated with the subgroup K ≤ Div(X) is the sheaf of K -graded OX -algebras

S :=
⊕

D∈K
SD , SD := OX (D) ,

where the multiplication in S is defined by multiplying homogeneous sections in the field of
functions K(X).

1.3.3 Choice

Choose a character χ : K0 → K(X)∗ such that

∀ D ∈ K0 D = (χ(D))

where ( f ) denotes the principal divisor defined by the rational function f ∈ K(X)∗. Consider
the ideal sheaf Iχ locally defined by sections 1 − χ(D) i.e.

Γ (U , Iχ ) = ((1 − χ(D))|U | D ∈ K0) ⊆ Γ (U ,S) .
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This induces the following short exact sequence of OX -modules

0 Iχ S πχ S/Iχ 0 (4)

Definition 6 (Cox sheaf and Cox algebra, Construction 1.4.2.1 in [1]) Keeping in mind the
exact sequence (4), the Cox sheaf of X , associated with K and χ , is the quotient sheaf
Cox := S/Iχ with the Cl(X)-grading

Cox :=
⊕

δ∈Cl(X)

Coxδ , Coxδ := πχ(Sδ) Sδ :=
⎛

⎜⎝
⊕

D∈d−1
K (δ)

SD

⎞

⎟⎠ . (5)

Passing to global sections, one gets the following Cox algebra (usually called Cox ring) of
X , associated with K and χ ,

Cox(X) := Cox(X) =
⊕

δ∈Cl(X)

Γ (X , Coxδ) .

Remark 1 ([1], Lemma 1.4.3.1) With respect to the Cl(X)-graded decompositions given in
(5), the exact sequence (4) behaves coherently, that is Iχ is a Cl(X)-homogeneous sheaf of
ideals in S admitting a well-defined Cl(X)-graded decomposition Iχ = ⊕

δ∈Cl(X) Iχ,δ such
that Coxδ

∼= Sδ/Iχ,δ .

Proposition 1 For every D, D′ ∈ K, D ∼ D′ if and only if there exists an isomorphism

ψ : H0(X ,OX (D))
∼=−→ H0(X ,OX (D′)) such that

∀ f ∈ H0(X ,OX (D)) f − ψ( f ) ∈ H0(X , Iχ ) .

Proof Assume D ∼ D′. Then E := D − D′ ∈ K0, meaning that E = (χ(E)). Then define

∀ f ∈ H0(X ,OX (D)) ψ( f ) := f · χ(E) .

ψ is well defined:

(ψ( f )) + D′ = ( f ) + E + D′ = ( f ) + D ≥ 0 �⇒ ψ( f ) ∈ H0(X ,OX (D′)) .

ψ−1 is well defined by setting

∀ g ∈ H0(X ,OX (D′)) ψ−1(g) := g · χ(−E) ∈ H0(X ,OX (D)) .

Then ψ gives an isomorphism and

∀ f ∈ H0(X ,OX (D)) f − ψ( f ) = f · (1 − χ(E)) ∈ H0(X , Iχ ) .

Viceversa, the necessary condition follows from Remark 1. In fact f − ψ( f ) ∈ H0(X , Iχ )

means that [D] = [D′], by the Cl(X)-graded exact sequence (4). ��

Remarks 1 1. [1, Prop. 1.4.2.2] Depending on choices 1.3.2 and 1.3.3, both Cox sheaf and
algebra are not canonically defined. Anyway, given two choices K , χ and K ′, χ ′ there
is a graded isomorphism of OX -modules

Cox(K , χ) ∼= Cox(K ′, χ ′) .
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2. For any open subset U ⊆ X , there is a canonical isomorphism

Γ (U ,S)/Γ (U , Iχ )
∼=

Γ (U , Cox) .

In particular Cox(X) ∼= H0(X ,S)/H0(X , Iχ ). This fact, jointly with Proposition 1,
explains why Iχ is the right sheaf of ideals giving a precise meaning to the usual ambigu-
ous writing

Cox(X) ∼=
⊕

[D]∈Cl(X)

H0(X ,OX (D)) .

3. Choice 1.3.3 is needed to fixing a unique section fD ∈ Γ (X ,S−D), for each principal
divisor D ∈ K0. Both choices 1.3.2 and 1.3.3 are unnecessary if a special point x ∈ X
is chosen. In this case both K and χ can be canonically assigned by setting

K := K x = {D ∈ Div(X) | x /∈ Supp(D)}
χ := χ x : K x

0 −→ K(X)∗ , D = (χ x (D)) , χ x (D)(x) = 1 .

Then Cox(X , x) is canonical [1, Construction 1.4.2.3]. This is the case e.g. when X is
a normal toric variety whose fan is non-degenerate (i.e. H0(X ,O∗

X ) ∼= K∗, as assumed
in Assumption 1.3.1, display (2)) and x0 is the base point fixing the open embedding
T → T · x0 ⊆ X of the acting torus T = (K∗)n [1, Def. 2.1.1.1].

4. In case X is a normal toric variety with non-degenerate fan, the canonical choices of
K x0 , χ x0 can be furtherly specialized as follows. Let Σ be a fan of X and xρ the dis-
tinguished point of a ray ρ ∈ Σ(1) (for a definition see e.g. [8, § 3.2]). Let Dρ be the
associated torus invariant divisor i.e. Dρ = T · xρ ⊆ X . Then

⋃

ρ∈Σ(1)

Dρ = X\(T · x0) ⇒ K x0 ≥
⊕

ρ∈Σ(1)

Z · Dρ =: DivT(X) ≤ Div(X)

DivT(X) is called the subgroupof torus invariantWeil divisors of X . It is awell known fact
that every class in Cl(X) admits a tours invariant representative (see e.g. [8, Thm. 4.1.3]),
giving a surjection

dX |DivT(X) : DivT(X) Cl(X) .

Then we get the canonical choice K = DivT(X). In this case K0 = ker(dX )∩DivT is the
subgroup of torus invariant principal divisors, which are principal divisors D admitting,
as a defining function, a Laurent monomial associated with an exponent m ∈ M =
Hom(T, Z) and well defined up to a factor k ∈ H0(X ,O∗

X ) ∼= K∗. Namely, in Cox
coordinates

D =
⎛

⎝k
|Σ(1)|∏

j=1

x
<m,v j>

j

⎞

⎠

where v j is a primitive generator of the ray 〈v j 〉 ∈ Σ(1) i.e. a column of a fan matrix V
of X . Normalizing k on the base point x0 of X , one gets the natural choice:

χ := χ x0 |K0 : D ∈ K0 xm := ∏|Σ(1)|
j=1 x

<m,v j>

j ∈ K(X)∗

Then S = ⊕
D∈DivT(X) OX (D) and Iχ (U ) = ({(1 − xm)|U |m ∈ M}), for every open

subset U ⊆ X .
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Moreover the exact sequence (3) gives rise, under our hypothesis, to the following well
known exact sequence of abelian groups

0 M
divX

V T
K = DivT(X)

dK

Q⊕Γ
Cl(X) 0 (6)

where V and Q = G(V ) are a fan matrix and a weight matrix, respectively, of X , as
defined after Definitions 3 and 4:

– the transposed V T represents the morphism divX assigning to a character m ∈ M
the associated principal torus invariant divisor divX (m) = (xm), with respect to
a suitable basis of M and the basis of torus invariant divisors {Dρ}ρ∈Σ(1); if X is
complete then V is an F-matrix;

– Q is a Gale dual matrix to V , and representing, together with a torsion matrix Γ ,
the morphism dK assigning a linear equivalence class dK (D) = [D] to every torus
invariant divisor D ∈ DivT(X), with respect to the basis {Dρ} and a suitable choice
of generators of Cl(X): namely, given a decomposition Cl(X) = F⊕Tors(X), where
Tors(X) is the canonical torsion subgroup of Cl(X) and F a free part, also the class
morphism splits as

dK = fK ⊕ τK with dK : DivT(X) → F , τK : DivT(X) → Tors(X)

and Q andΓ are their representative matrices; if X is complete then Q is aW -matrix.

Therefore, the kernel K0 admits the following interpretation

K0 = Im(divX ) = {V Tm |m ∈ M} and χ : V Tm ∈ K0 xm ∈ K(X)∗ .

Proposition 2 The Cox algebra of a toric variety without torus factor X(Σ) is a polynomial
algebra formally generated by the rays of its 1-scheleton Σ(1), that is

Cox(X) ∼=
⊕

D∈DivT(X) H
0(X ,OX (D))

H0(X , Iχ )

∼=
⊕

δ∈Cl(X)

⎛

⎝
⊕

D∈δ , D≥0

K · xD
⎞

⎠ ∼= K
[{xρ}ρ∈Σ(1)

]

Remark 2 The previous Proposition 2 was proved earlier by Batyrev and Mel’nikov [2] and
it is clearly implicit in the Cox’s quotient construction given in [7]. Proposition 2 admits also
a converse statement, so giving an “if and only if” characterization when:

– X is smooth with Cl(X) f.g. [16, Thm. 3.1], [15, Cor. 2.10],
– X is normal and projective with a lattice contained in Pic(X) [17, Thm. 1.5]
– see also the recent [5, Thm. 1.2] for a log relative version with (X ,Δ) a toric log pair

admitting log canonical singularities such that −(KX +Δ) is nef and Δ admits a decom-
position of complexity less than 1 [5, Def. 1.1].

2 WeakMori dream spaces (wMDS) and their embedding

In the literatureMori dream spaces (MDS) comewith a required projective embedding essen-
tially for their optimal behavior with respect to the termination ofMori program.Actually this
assumption is not necessary to obtainmain properties ofMDS, like e.g. their toric embedding,
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chamber decomposition of their moving and pseudo-effective cones and even termination of
Mori program, for what this fact could mean for a non-projective algebraic variety.

Definition 7 (wMDS) An irreducible and Q-factorial algebraic variety X (i.e. normal and
such that a suitable integer multiple of a Weil divisor is a Cartier divisor) satisfying assump-
tion 1.3.1 is called a weak Mori dream space (wMDS) if Cox(X) is a finitely generated
K-algebra. A projective (hence complete) wMDS is called aMori dream space (MDS).

2.1 Total coordinate and characteristic spaces

Let us open the present section with the following

Remarks 2 1. The Cox sheaf Cox = S/Iχ of a wMDS X is locally of finite type, that is
there exists a finite affine covering

⋃
i Ui = X such that Cox(Ui ) are finitely generated

K-algebras [1, Propositions 1.6.1.2, 1.6.1.4].
2. As a consequence of the previous part (1), the relative spectrum of Cox [12, Ex. II.5.17],

X̂ = SpecX (Cox) pX−→ X (7)

is an irreducible normal and quasi-affine variety, coming with an actions of the quasi-
torusG := Hom(Cl(X), K∗), whose quotient map is realized by the canonical morphism
in (7) [1, § 1.3.2 , Construction 1.6.1.5].

3. Consider X := Spec(Cox(X)) which is an irreducible and normal, affine variety. Then
there exists an open embedding

jX : X̂ ↪→ X

The action of the quasi-torus G extends to X in such a way that jX turns out to be
equivariant.

4. Since Cox(X) is a finitely generated K-algebra, up to the choice of a set of generators
X = (x1, . . . , xm), we get

Cox(X) ∼= K[X]/I
being I ⊆ K[X] := K[x1, . . . , xm] a suitable ideal of relations. Calling W :=
SpecK[X] ∼= Km , the canonical surjection

πX : K[X] Cox(X) (8)

gives rise to a closed embedding i : X ↪→ W ∼= Km , depending on the choice of
(K , χ,X).

In the following definitions we will consider a quasi-torus G acting on an irreducible and
normal algebraic variety Y .

Definition 8 (Good and geometric quotients) A surjective morphism p : Y � X is called a
good quotient for the G-action on Y if

(i) p is affine, that is p−1(U ) ⊆ Y is affine for every open affine subset U ⊆ X ,
(ii) p is G-invariant, that is p is constant along every G-orbit,

(iii) the pull back p∗ : OX
∼=−→ p∗OG

Y is an isomorphism.

A good quotient p : Y � X is called a geometric quotient if its fibers are precisely the
G-orbits.
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For ease, in the definition above, we required p to be surjective: actually this is an overabun-
dant hypothesis [1, Cor. 1.2.3.7].

Definition 9 (1-free action)AG-action on Y is called free in codimension 1, or simply 1-free,
if it induces a good quotient p : Y � X and there exists an open subset V ⊆ Y such that

(i) the complement Y\V has codimension greater than or equal to 2,
(ii) G acts freely on V ,
(iii) for every x in V the orbit G · x is closed in Y .

Definition 10 (Stable, semi-stable and unstable loci) Consider a G-action on Y . The subset
Y ss ⊆ Y of semi-stable points, with respect to the given G-action, is the greatest subset of
Y such that p|Y ss : Y ss � p(Y ss) is a good quotient. The subset Y s ⊆ Y ss of stable points
is the greatest subset of Y such that p|Y s : Y s � p(Y s) is a geometric quotient. The subset
of unstable points is the complement Ynss := Y\Y ss .

Theorem 1 (Cox Theorem for a wMDS) Let X be a wMDS and consider the quasi-torus
action of G = Hom(Cl(X), K∗) on the affine variety X = Spec(Cox(X)). Then jX (X̂) =
X
s = X

ss
, giving rise to a 1-free, geometric quotient pX : X̂ � X such that

(pX )∗(OX̂ ) ∼= Cox , (pX )∗ : OX
∼=−→ CoxG := (pX )∗OG

X̂
.

Proof pX gives a good quotient, with (pX )∗(OX̂ ) ∼= Cox , by the relative spectrum construc-
tion of X̂ , as explained in Remarks 2 (2), (3). In particular this gives X

ss = jX (X̂) and
condition (iii) in Definition 8 implies that

(pX )∗ : OX
∼=

(pX )∗(OG
X̂
) =: CoxG .

Since X is a wMDS, it is Q-factorial, hence pX turns out to give a geometric quotient by [1,
Cor. 1.6.2.7(ii)]. Then X

s = jX (X̂). Finally [1, Prop. 1.6.1.6(i)] proves that G acts freely
on p−1

X (Xreg) where Xreg ⊆ X is the open subset of smooth points. Since X is normal,
codimX (X\Xreg) ≥ 2 and [1, Prop. 1.6.1.6(ii)] proves that codim X̂ (X̂\p−1

X (Xreg)) ≥ 2.
This is enough to conclude that the G-action on X̂ is 1-free as pX is a geometric quotient. ��

2.1.1 Nomenclature

1. The relative spectrum X̂ introduced in Remark 2 (2) is called the characteristic spaces
of X .

2. The quasi-torus G introduced in Remark 2 (2) is called a characteristic quasi-torus of
the wMDS X . Notice that if Cl(X) is torsion free then G is actually a torus.

3. The spectrum X introduced in Remark 2 (3) is called the total coordinate spaces of X .

2.2 Irrelevant loci and ideals

Recall Remarks 2 (3), (4), the open embedding jX of the characteristic space of a wMDS into
its total coordinate space and the surjection πX, defined in (8), associated with the choice of
a finite set of generators of the Cox ring.

Definition 11 (Irrelevant loci and ideals) Let X be a wMDS. The irrelevant locus of a total
coordinate space X of X is the Zariski closed subset given by the complement BX :=
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X\ jX (X̂). Since X is affine, the irrelevant locus BX defines an irrelevant ideal of the Cox
algebra Cox(X), as

Irr(X) := (
f ∈ Cox(X)δ | δ ∈ Cl(X) and f |BX = 0

) ⊆ Cox(X) .

Analogously, after the choice of a setX of generators of Cox(X), consider the lifted irrelevant
ideal of X

Ĩrr := π−1
X (Irr(X)) ⊆ K[X] .

The associated zero-locus B̃ = V(Ĩrr) ⊆ Spec(K[X]) =: W will be called the lifted
irrelevant locus of X .

Proposition 3 The following facts hold:

1. Irr(X) = (
f ∈ Cox(X)δ | δ ∈ Cl(X) and X f := X\{ f = 0} is affine) ;

2. Ĩrr = (
P ∈ K[X] |W P is affine

)
;

3. the definition of Ĩrr gives: I ⊆ Ĩrr �⇒ B̃ ⊆ Im(i) ;
then, under the isomorphism Cox(X) ∼= K[X]/I , it turns out that

Irr(X) ∼= Ĩrr/I i.e. i (BX ) = B̃ .

Proof (1) follows immediately from the definition. (2) and (3) are consequences of (1) and
the definition of Ĩrr . ��

2.3 TheX-canonical toric embedding

Let X be a wMDS and Cox(X) be its Cox ring. Recall that the latter is a graded K-algebra
over the class group Cl(X) of X .

Definition 12 (Cox generators and bases)Given a setX of generators of Cox(X), as done in
Remark 2 (4), an element x ∈ X is called a Cox generator if it is Cl(X) -prime, in the sense
of [1, Def. 1.5.3.1], that is:

– x is a non-zero, non-unit element of Cox(X) and there exists δ ∈ Cl(X) such that
x ∈ Cox(X)δ (i.e. x is homogeneous) and

∀ δ1, δ2 ∈ Cl(X) , ∀ f1 ∈ Cox(X)δ1 , ∀ f2 ∈ Cox(X)δ2 x | f1 f2 �⇒ x | f1 or x | f2 .

If X is entirely composed by Cox generators then it is called a Cox basis of Cox(X) if it has
minimum cardinality.

Theorem 2 (X-canonical toric embedding) Let X be a wMDS endowed with a Cox basis
X of Cox(X). Then there exists a closed embedding i : X ↪→ W into a Q-factorial and
non-degenerate toric variety W, fitting into the following commutative diagram

X

i

X̂
jX

pX

î
Ŵ

jW

pW

W

X
i

W

(9)

where
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1. W = SpecK[X], as in Remark 2 (4),
2. Ŵ := W\B̃ is a Zariski open subset and jW : Ŵ ↪→ W is the associated open embed-

ding,
3. î := i |X̂ ,
4. pW : Ŵ � W is a 1-free geometric quotient by an action of the quasi-torus G =

Hom(Cl(X), K∗) on the affine variety W = Spec(K[X]), with respect to î turns out to
be equivariant. Then jW (Ŵ ) = W

s = W
ss
and

(pW )∗ : OW
∼=−→ (pW )∗OG

Ŵ

Proof Let X = {x1, . . . , xm} be a Cox basis of Cox(X). Then the surjection πX : K[X] �
Cox(X) gives rise to the closed embedding i : X ↪→ W ∼= Km explicitly obtained by
evaluating the Cox generators i.e.

x ∈ X (x1(x), . . . , xm(x)) ∈ Km .

The fact that xi is a Cox generator implies that xi = xi + I is homogeneous, that is there
exists a class δi ∈ Cl(X) such that xi ∈ Cox(X)δi . We can then define an action of the
quasi-torus G = Hom(Cl(X), K∗) on W by multiplication, as follows,

(g, z) ∈ G × W (χ1(g)z1, . . . , χm(g)zm) ∈ W

where χi : G → K∗ is the character defined by setting: χi (g) = g(δi ) .
In particular χ = (χ1, . . . , χm) defines a closed embedding

G
χ

T := SpecK[X±1] ∼= (K∗)m

the latter being the torus naturally acting by multiplication on W ∼= Km and giving the
obvious structure of toric variety to W . In particular i is equivariant with respect to the G-
actions on both X and W . Recalling Proposition 3 (3), i(BX ) = B̃ guaranteeing that also
î := i |X̂ is a closed equivariant embedding. Passing to the quotient by G, we get then a
well defined injection i : X ↪→ W := Ŵ/G, fitting into the commutative diagram (9). In
particular i(X) is a closed subset of W , since p−1

W (W\i(X)) = Ŵ \̂i(X̂) is open.
To show that pW : Ŵ � W is a geometric quotient of toric varieties it suffices observing it
is realizing the Cox quotient construction for W . In fact, by the exact sequence

1 G
χ

T Hom(K0, K∗) 1

W is naturally a toric variety under the action of the residue torus Hom(K0, K∗), with base
point x0 := pW ([1 : · · · : 1]). By the quotient construction one has the natural isomorphism

(pW )∗ : OW
∼=−→ (pW )∗OG

Ŵ
. Moreover, W is non-degenerate, that is it does not admit torus

factors, as

H0(W ,O∗
W )

p∗
W∼= H0

(
W , ((pW )∗OG

Ŵ
)∗
)

= H0
(
Ŵ , (OG

Ŵ
)∗
) ∼= H0

(
Ŵ ,O∗̂

W

) ∼= K∗

by observing that Ŵ does not admit any torus factor, as it is an open subset ofW ∼= Km whose
complementary set B̃ has codimension bigger than 2, and the G-action on constant functions
is trivial. Finally, W turns out to be Q-factorial, as proved in the following Corollary 1. We
can then apply [7, Thm. 2.1 (iii)]. Then all the further properties of the geometric quotient
pW : Ŵ � W follow by the same arguments given when proving the previous Theorem 1.

��
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Remark 3 Włodarzyck proved [33, Thm. A], that a Q-factorial variety X admits a closed
embedding into a Q-factorial toric variety if and only if it admits the following property

(V-2) for any two points of Y there exists an open affine set containing them.

As a consequence of the previous Theorem 2, one can then say that:

– a wMDS X admitting a Cox basis X satisfies the (V-2) property.

The latter is proved, in a combinatorial language, in [1, Thm. 3.2.1.4], as the reader will
understand after reading the next Remark 7.

2.3.1 Nomenclature (continued)

We continue the nomenclature and notation introduced in § 2.1.1.

1. The ambient toric variety W , defined in Theorem 2, only depends on the choices of the
Cox basis X and no more on K and χ , as given in 1.3.2 and 1.3.3. In fact, for different
choices K ′, χ ′ we get an isomorphic Cox ring, as observed in Remark 1 (1). Then it still
admits the presentationK[X]/I , given in Remark 2 (4), meaning that the toric embedding
i : X ↪→ W remains unchanged, up to isomorphism. The latter is then called the X-
canonical toric embedding, and W is called the X-canonical toric ambient variety, of
the wMDS X .
Notice that theX-canonical toric embedding exhibited in Theorem 2 only depends on the
cardinality |X|, which is fixed to be theminimum. Then, up to isomorphisms, i : X ↪→ W
is then a canonical toric embedding.

2. Varieties Ŵ and W , exhibited in Theorem 2, are called the characteristic space and the
total coordinate space, respectively, of the canonical toric ambient variety W .

Remark 4 If X is aQ-factorial and complete toric variety, then the canonical toric embedding
defined in § 2.3.1 (1) becomes trivial, giving X ∼= W , X̂ ∼= Ŵ and X ∼= W .

2.3.2 The canonical toric embedding is a neat embedding

Let X be a wMDS and i : X ↪→ W be its X-canonical toric embedding constructed in
Theorem 2, withX = {x1, . . . , xm} a given Cox basis of Cox(X). Recall notation introduced
in Remark 1 (4) and in particular the definition of the fan matrix V = (v1, . . . , vm), which
is a representative matrix of the dual morphism

Hom(DivT(W ), Z)
div∨

W

V
N := Hom(M, Z)

whose columns are primitive generators of the rays in Σ(1). In the following we will then
denote Di := D〈vi 〉 the prime torus invariant associated with the ray 〈vi 〉 ∈ Σ(1), for every
1 ≤ i ≤ m.

Proposition 4 (Pulling back divisor classes) Let i : X ↪→ W be a closed embedding of
a normal irreducible algebraic variety X into a toric variety W (Σ) with acting torus T.
Let Dρ = T · xρ , for ρ ∈ Σ(1), be the invariant prime divisors of W and assume that
{i−1(Dρ)}ρ∈Σ(1) is a set of pairwise distinct irreducible hypersurfaces in X. Then it is well
defined a pull back homomorphism

i∗ : Cl(W ) → Cl(X)
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Proof Let x0 be the base point of W , as in Definition 1. Define

WT := T · x0 ∪
⋃

ρ∈Σ(1)

T · xρ ∩ Wreg .

Ourhypothesis on {i−1(Dρ)}ρ∈Σ(1) allows then us to conclude that i−1(WT) is a denseZariski
open subset of X . Let D ∈ DivT(W ) be a torus invariantWeil divisor. Then D∩WT is aCartier
divisor on WT ⊆ Wreg and define the pull back i#(D) := i#(D ∩ WT) ∈ Div(X) by pulling
back local equations. This procedure clearly sends principal divisors to principal divisors, so
defining a pull back homomorphism i∗ : Cl(W ) → Cl(X), by setting i∗δ = [i#(d−1

W (δ))],
for every δ ∈ Cl(W ) and recalling the surjection dW : DivT(W ) � Cl(W ) presented in
Remark 1 (4). ��

Definition 13 (Neat embedding) Let X be a wMDS and W (Σ) be a toric variety. Let
{Dρ}ρ∈Σ(1) be the torus invariant prime divisors of W . A closed embedding i : X ↪→ W is
called a neat (toric) embedding if

(i) {i−1(Dρ)}ρ∈Σ(1) is a set of pairwise distinct irreducible hypersurfaces in X ,
(ii) the pullback homomorphism defined in Proposition 4,

i∗ : Cl(W )
∼=

Cl(X) ,

is an isomorphism.

Proposition 5 The X-canonical toric embedding i : X ↪→ W, of a wMDS X with Cox basis

X, is a neat embedding. Moreover the isomorphism i∗ : Cl(W )
∼=−→ Cl(X) restricts to give

an isomorphism Pic(W ) ∼= Pic(X).

Proof Given a Cox basis X = (x1, . . . , xm), recall the construction of the X-canonical
ambient toric variety W = W (Σ) given in Theorem 2. Consider the torus invariant prime
divisor Di ∈ DivT(W ) associated with the ray 〈vi 〉 ∈ Σ(1). Its pull back D̂i := p#W (Di ) is
the principal divisor associated with xi |Ŵ , when xi is thought of as a homogeneous function
onW . Then î−1

(
D̂i
) = (

xi |X̂
)
, where xi is now thought of as a function on X . Let Xi ∈ K ≤

Div(X) and ξi ∈ H0(X ,OX (Xi )) ⊆ S(X) be such that ξi+Iχ (X) = xi := xi+ I ∈ Cox(X)

andDi := (ξi )+ Xi is a prime divisor in Div(X). There is a unique choice for such a section
ξi and p#X (Di ) = (

xi |X̂
)
[1, § 1.5.2, Prop. 1.5.3.5]. Then commutative diagram (9) gives that

Di = i−1(Di ) , meaning that hypotheses of Proposition 4 are satisfied and there is a well
defined pull back i∗ : Cl(W ) → Cl(X).
To prove that i is a neat embedding we have to show that i∗ is an isomorphism, that is
Di ∼ D j if and only if Di ∼ Dj . In fact

Di ∼ D j ⇐⇒ (ξi ) + Xi ∼ (ξ j ) + X j ⇐⇒ Xi ∼ X j

Proposition 1 gives that Xi ∼ X j if and only if there exists an isomorphism

ψ : H0(X ,OX (Xi ))
∼=

H0(X ,OX (X j ))

such that ξi − ψ(ξi ) ∈ Iχ (X), where ψ(ξi ) = ξi · χ(Xi − X j ). In particular

(ψ(ξi )) + X j = (ξi ) + Xi = Di
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The uniqueness of ξ j necessarily gives that ψ(ξi ) = kξ j , for some k ∈ K∗, and D j = Di .
Then

Xi ∼ X j ⇐⇒ ξi − ξ j ∈ Iχ (X) ⇐⇒ xi − x j ∈ I

By minimality of X the latter can happen if and only if xi = x j , hence giving Di = Dj .
Since i∗ is an isomorphism, its restriction induces a monomorphism of Pic(W ) ≤ Cl(W )

into Pic(X) ≤ Cl(X). Then it suffices to show it is also onto Pic(X). Consider a class
[D] ∈ Pic(X) with D ∈ K a Cartier divisor, i.e. D ∈ K ∩ H0(X ,K∗

X/O∗
X ). Locally, on an

open subset U ⊆ X , D|U is the principal divisor of a rational function f /g ∈ K∗
X (U ), with

f , g ∈ OX (U ). Let V ⊆ W be a Zariski open subset of W such that U = i−1(V ): then
OX (U ) = i∗OX (V ). Recalling the pull-back morphism i# : OW −→ i∗OX , locally defined
by setting (i |U )#(h) = h ◦ i |U for every h ∈ OW (V ), the thesis consists in showing that
f = (i |U )#(ϕ) and g = (i |U )#(γ ), for some ϕ, γ ∈ OW (V ), so giving that [D] = i∗[D]
with D|V = (ϕ/γ ), that is [D] ∈ Pic(W ).
Notice that OW |V ∼= OV and i∗OX |V ∼= (i |U )∗OU , since V and U are open subsets of W
and X , respectively. Without lose of generality, assume V is affine and consider the exact
sequence of coherent OV -modules

0 I OV
(i |U )#

(i |U )∗OU 0

where I is the sheaf of ideals of the closed embedding i |U : U ↪→ V (for the coherence
of I and (i |U )∗OU recall [12, Prop. II.5.9]). Then [12, Prop. II.5.6] gives that exactness is
preserved on global sections, that is

0 I(V ) OV (V )
(i |U )#

(i |U )∗OU (V ) 0

is an exact sequence: in particular (i |U )# : OW (V ) � OX (U ) is surjective, so giving the
thesis. ��
Corollary 1 The canonical ambient toric variety W, of a wMDS X, is Q-factorial.

Proof Recall that X is Q-factorial, then Proposition 5 gives

Pic(W ) ⊗ Q

i∗
Q∼= Pic(X) ⊗ Q ∼= Cl(X) ⊗ Q

(i∗
Q

)−1

∼= Cl(W ) ⊗ Q .

��
Remark 5 The grading of Cox(W ) ∼= K[X] over Cl(W ) is given by

Cox(W ) =
⊕

δ∈Cl(W )

Cox(W )δ with

Cox(W )δ ∼= K[X]δ := {x ∈ K[X] | x = x + I ∈ Cox(X)i∗(δ)} .

2.4 Bunch of cones

Let X be a wMDS, X = {x1, . . . , xm} be a Cox basis and i : X ↪→ W be the associated
X-canonical toric embedding. First of all notice that Proposition 5 implies that X andW have
the same Picard number, given by

r := rk Cl(X) = rk Cl(W )
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Moreover, recalling that there exist divisors X1, . . . , Xm ∈ K such that

∀ i = 1, . . . ,m xi + I = ξi + Iχ (X) and ξi ∈ H0(X ,O(Xi ))

as exhibited in the proof of Proposition 5, up to shrink K , one can assume

K = L(X1, . . . , Xm) (10)

In fact, calling δi = dK (Xi ), for every D ∈ K

dK (D) ∈ Cl(X) = L(δ1, . . . , δm) �⇒ [D] =
∑

i

aiδi �⇒ D ∼
∑

i

ai Xi .

Let us then set
rk DivT(W ) = rk K = m , n := m − r > 0 .

Choose generators d1, . . . dr , ε1, . . . , εs for Cl(W ) such that

Cl(X)
(i∗)−1

∼= Cl(W ) ∼= F ⊕ Tors ∼=
(

r⊕

i=1

Z · di
)

⊕
(

s⊕

k=1

Z · εi

)
∼= Zr ⊕

(
s⊕

k=1

Z/τiZ

)
.

Calling dW : DivT(W ) � Cl(W ) the surjection defined by the exact sequence (6), there are
induced decompositions dW = fW ⊕τW and dK = fK ⊕τK in free parts fW , fK and torsion
parts τW , τK . Consider the weight and torsion matrices defined in Remark 1 (4), that is

– Q = (q1 . . . qm) being a r × m weight matrix representing fW on the bases {Dj } and
{di },

– Γ = (γ 1 . . . γm) being a s × m torsion matrix representing τW on the bases {Dj } and
{εk}, where the k-th entry of γ j is a class γk j ∈ Z/τiZ.

The situation is then described by the following commutative diagram

0 M
divW

V T

In

DivT(W )
dW

Q⊕Γ

i#Im

Cl(W )

i∗Ir⊕Is

0

0 K0
V T

K
dK

Q⊕Γ
Cl(X) 0

(11)

The pseudo-effective cone Eff(W ) is then given by the cone generated by the columns of Q
i.e.

Eff(W ) = 〈Q〉 ⊆ Cl(W ) ⊗ R = N 1(W )

It is well known that Eff(W ) supports a fan called the secondary fan orGKZ subdivision (see
e.g. [8, § 15]).

Consider the irrelevant ideal Irr(X), defined inDefinition 11, and let f be a homogeneous
generator ofIrr(X). SinceX is aCox basis, f can be expressed as a product of x1, . . . , xm , up
to a constant inK∗ (see e.g. the proof of [1, Thm. 1.5.3.7]), meaning that Ĩrr = π−1

X (Irr(X))

is a homogeneous monomial ideal inK[X]. On the other hand, one has an explicit description
of the irrelevant ideal of W , given by
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Irr(W ) = Ĩrr =
⎛

⎝
∏

ρ /∈σ

xρ | σ ∈ Σ

⎞

⎠

=
⎛

⎝
∏

ρ /∈σ

xρ | σ ∈ Σmax

⎞

⎠ ⊆ K[X] ∼= Cox(W ) (12)

where Σmax is the collection of maximal cones of Σ (see e.g. [7]).

Remark 6 Notice that:

(a) generators of Irr(W ) are in one to one correspondence with cones of the bunch B,
associated via Gale duality with the fan Σ ofW (see [3], [1, § 2.2.1]); recalling notation
introduced in 1.1.1, this correspondence can be made more explicit as follows

Irr(W ) =
(
∏

i /∈I
xi | I ∈ IΣ

)
←→ B =

{
〈QI 〉 | I ∈ IΣ

}
(13)

(b) the common intersection of all cones in B gives the cone Nef(W ), generated by the
classes of nef divisors inside Eff(W ) [3, Thm. 10.2], that is

Nef(W ) =
⋂

I∈IΣ

〈QI 〉 =
⋂

I∈IΣmax

〈QI 〉

where the last equality comes from (12) and (13);
(c) let Mov(W ) be the closed cone defined by classes ofmovable divisors ofW [8, (15.1.7)];

then Mov(W ) = ⋂m
i=1〈Q{i}〉 [8, Prop. 15.2.4], so giving, by the previous item (b),

Nef(W ) ⊆ Mov(W ) ⊆ Eff(W ) .

Remark 7 Keeping in mind diagram (11) and Proposition 3, correspondence (13) shows that
a wMDS X is actually a variety arising from a bunched ring, in the sense of [1, Construc-
tion 3.2.1.3]. In particular the bunched ring associated with X is the triple (Cox(X),X,B).

Proposition 6 Let X be a wMDS, X be a Cox basis and i : X ↪→ W be the associated
X-canonical toric embedding. Then the isomorphism i∗, between class groups, extends to

give an isomorphism i∗
R

: N 1(W )
∼=−→ N 1(X) such that

i∗
R

(
Eff(W )

) = Eff(X) , i∗
R

(
Mov(W )

) = Mov(X) , i∗
R

(Nef(W )) = Nef(X) .

Proof The statement is a direct consequence of diagram (11). For any further detail, the
interested reader is referred to [1, § 3.3.2] (in particular Prop. 3.3.2.9 and Prop. 3.2.5.4(v)),
keeping in mind that a wMDS is a variety arising from a bunched ring, as just observed in
Remark 7. ��
Corollary 2 Let X be a complete wMDS endowed with a Cox basis X and i : X ↪→ W be its
X-canonical toric embedding. Then Eff(X) ∼= Eff(W ) are strongly convex, full dimensional
cones in N 1(X) ∼= N 1(W ), respectively. In particular the weight matrix Q in diagram (11)
turns out to be a W-matrix and consequently the fan matrix V is a F-matrix. Moreover Q
can then be given by a positive matrix, meaning that both Eff(X) ∼= Eff(W ) can be thought
of as subcones of the positive orthant in N1(X) ∼= N 1(W ), respectively.
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Proof X is complete and irreducible meaning that H0(X ,OX ) ∼= K. Therefore an effective
and principal divisor is necessarily zero. Assume that [D], [D′] ∈ Eff(X) with D, D′ effec-
tive divisors and [D] + [D′] = [D + D′] = 0. Then D + D′ is an effective and principal
divisor, that is D + D′ = 0. But D and D′ are effective, then D = D′ = 0. This suffices to
show that Eff(X) is strongly convex. Clearly Eff(X) is full dimensional since Q has maximal
rank r = dim N 1(X).

Recall Definition 4 of a W-matrix. We just proved condition (a). For (c), up to a linear
automorphism of N 1(W ), one can always assume Eff(W ) = 〈Q〉 contained in the positive
orthant of N 1(W ), proving also the last part of the statement. For (b), dualize the upper exact
sequence in diagram (11), getting the following exact sequence

0 Hom(Cl(W ), Z)
d∨
W

QT
Hom(DivT(W ), Z)

div∨
W

V
N

in which Lr (Q) ∼= ker div∨
W ≤ Hom(DivT(W ), Z) ∼= Zm . Then Lr (Q) is a free subgroup

of Zm . For (d), a zero column in Q means that the corresponding torus invariant divisor Dρ

is principal, which cannot happen. Last conditions (e) and (f) follow by observing that Q is a
Gale dual matrix of the fan matrix V of W : those conditions correspond to say that the zero
vector can’t generate a ray of Σ and distinct rays in Σ can’t be generated by proportional
vectors, respectively.

Finally V turns out to be a F-matrix by [29, Prop. 3.12.2]. ��

2.5 The GKZ-decomposition: cones, cells and chambers

Recall that, given a toric variety W , both Eff(W ) and its subcone Mov(W ) support a fan
structure, the so called Gelfand–Kapranov–Zelevinsky (GKZ)-decomposition or secondary
fan (see [8, §14.4] and references therein). For quickly visualize GKZ-cones composing such
a fan, consider [27, Def. 1.7]. Here we will use the interpretation of GKZ-cones given in [1,
§2.2.2], to which the interested reader is referred for any further detail.

2.5.1 Notation

Let W be a n-dimensional toric variety of Picard number r and Q be a weight matrix of
W . Then Eff(W ) = 〈Q〉 and Mov(W ) = ⋂m

i=1〈Q{i}〉, as observed in the previous section
§ 2.4. For this reason, in the following we will often denote the polyhedral cones 〈Q〉 and⋂m

i=1〈Q{i}〉 by Eff(Q) and Mov(Q), respectively.

2.5.2 Assumption

In the following we will always assume that Mov(Q) is of full dimension r = rk(Q) inside
Eff(Q). This is certainly the case when Q is a weight matrix of the canonical ambient toric
variety of a wMDS [1, Thm.2.2.2.6 (i)].

Definition 14 (GKZ-cones and decomposition) In the above notation, for every w ∈ 〈Q〉,
define the GKZ-cone associated with w as the following polyhedral cone

γw :=
⋂

{〈QI 〉 | ∀ I ⊆ {1, . . . , n + r} : w ∈ 〈QI 〉}
=

⋂
{〈QJ 〉 | ∀ J ⊆ {1, . . . , n + r} : w ∈ Relint〈QJ 〉}
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TheGKZ-decomposition of Eff(Q) is the collection Γ (Q) = {γw | w ∈ 〈Q〉} of GKZ-cones.
The same construction on Mov(Q) defines the GKZ-decomposition Γ (Q)|Mov of Mov(Q).

Remark 8 (Construction 2.2.2.1 and Thm. 2.2.2.2 in [1]) Notice that:

(a) if w ∈ 〈Q〉 then w ∈ Relint(γw);
(b) if γ ∈ Γ (Q) then γ = γw, for every w ∈ Relint(γ );
(c) Γ (Q) and Γ (Q)|Mov turn out to be fans with support Eff(Q) = 〈Q〉 and Mov(Q) =⋂m

i=1〈Q{i}〉, respectively.
With every cone γ ∈ Γ (Q) one can associate the following bunch of cones

Bγ := {〈QI 〉 | I ⊆ {1, . . . , n + r} : Relint(γ ) ⊆ Relint〈QI 〉} .

Let V be a Gale dual matrix of Q giving a fan matrix of W . Then Bγ determines, by Gale
duality, the following collection of convex cones

Σγ := {〈VI 〉 | 〈QI 〉 ∈ Bγ } (14)

which in general is a quasi-fan, meaning that it may admit a cone containing a line.

Proposition 7 Given a GKZ-cone γ ∈ Γ (Q) the following facts hold:

1. the support |Σγ | = 〈V 〉 [1, Prop. 2.2.4.1];
2. Σγ is a fan if and only if Relint(γ ) ⊆ Relint(Mov(Q)) [1, Thm. 2.2.2.6 (ii)];
3. if Σγ is a fan then the associated toric variety X(Σγ ) is quasi-projective [1,

Thm. 2.2.2.2 (ii)];
4. if Σγ is a fan then γ is full-dimensional inside Mov(Q) if and only if Σγ is simplicial

[1, Thm. 2.2.2.6 (iii)]. In particular Σγ ∈ SF(V ) .

Definition 15 (Geometric cells and chambers) A GKZ-cone γ ∈ Γ (Q)|Mov is called a
geometric cell (or simply a g-cell) if there exists a fan Σ ∈ SF(V ) such that γ = γΣ :=⋂

I∈IΣ
〈QI 〉. A full dimensional geometric cell insideMov(Q) is called a geometric chamber

(or simply a g-chamber).

Recalling Remark6 (b), if 〈V 〉 = Rn then a GKZ-cone γ is a g-cell if it is the Nef cone
of a Q-factorial and complete toric variety: this is the case e.g. when V is a fan matrix of the
canonical ambient toric variety W of a complete wMDS X .
In general a GKZ-cone may not be a g-cell: e.g., as a consequence of considerations we will
give in the following §2.8, if rk(Q) = 2 then every 1-dimensional GKZ-cone cannot be a
g-cell, since every Q-factorial complete toric variety of Picard number 2 is projective, thus
it admits a full-dimensional Nef cone [30, Thm.3.2].

Proposition 8 A geometric cell γΣ is a geometric chamber if and only if ΣγΣ = Σ .

Proof Assume that γ := γΣ = ⋂
I∈IΣ

〈QI 〉 is a g-chamber. Then

∀ I ∈ IΣ Relint(γ ) ⊆ Relint〈QI 〉 �⇒ B ⊆ Bγ

where B is the bunch of cones associated with Σ by Gale duality. This means that Σ ⊆ Σγ ,
that is Σ = Σγ , as Σ ∈ SF(V ).

Conversely if Σ = Σγ then B = Bγ . Since Σ is simplicial, Proposition7 (4) guarantees
that γ is full dimensional. ��
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Proposition 9 Every full dimensional GKZ-cone γ ⊆ Mov(Q) ∼= Mov(W ) ∼= Mov(X) is a
geometric chamber.

Proof For every w ∈ Relint γ , one has γw = γ , meaning that every cone composing the
associated bunch Bγ is full dimensional. Therefore the associated fan Σγ is simplicial. By
[1, Prop. 2.2.4.1] the support of Σγ is given by 〈V 〉 and the latter fills up the whole Rn . Then
Σγ ∈ SF(V ) and γ = ⋂

I∈IΣγ
〈QI 〉 is a g-chamber. ��

Proposition 10 The Nef cone of a Q-factorial and complete toric variety is always a geo-
metric cell.

Proof Let Z = Z(Σ) be a Q-factorial and complete toric variety and let Q be a weight
matrix of Z . This means that Σ ∈ SF(V ), where V is a fan matrix of Z . By Remark6 (b)

Nef(Z) =
⋂

I∈IΣ

〈QI 〉 =
⋂

{〈QI 〉 | 〈QI 〉 ∈ B} ⊆ Mov(Q)

where B is the bunch of cones associated with Σ . Then Nef(Z) is a finite union of GKZ-
cones in Γ (Q)|Mov. Let us first of all assume that Nef(Z) is full dimensional insideMov(Q).
Choose w ∈ Relint(Nef(Z)) and consider the associated GKZ-cone γw. Then Relint(γw) ⊆
Relint(〈QI 〉), for every I ∈ IΣ , so giving that B ⊆ Bγw . Then Σ ⊆ Σγw , meaning that
Σγw = Σ , as Σ ∈ SF(V ). Then γw = Nef(Z), for every w ∈ Relint(Nef(Z)), so giving
that Nef(Z) is a g-cell.

Assume now that Nef(Z) is not full dimensional in Mov(Q) and choose w ∈
Relint(Nef(Z)). Then Proposition7 (1) gives that the fan |Σγw | = 〈V 〉. LetΣ ′ be a simplicial
refinement of Σγw . Then Σ ′ ∈ SF(V ) and Proposition 7 implies that γ ′ := ⋂

I∈IΣ ′ 〈QI 〉 is
full dimensional inMov(Q). By the previous part of the proof, γ ′ turns out to be a g-chamber.
SinceΣ ′ is a refinement ofΣγw , one has that γw is a face of γ ′, for everyw ∈ Relint(Nef(Z)),
by [1, Thm. 2.2.2.2]. Then Nef(Z) is a face of γ ′, as it is a convex cone. Finally, the fan
structure of the GKZ-decomposition allows us to concluding that Nef(Z) a is actually a
GKZ-cone, hence a g-cell. ��

2.6 Sharp completions of the canonical ambient toric variety

As already observed in the introduction, by Nagata’s theorem every algebraic variety can
be embedded in a complete one and, for those endowed with an algebraic group action
Sumihiro provided an equivariant version of this theorem. In particular, for toric varieties,
it corresponds with the Ewald–Ishida combinatorial completion procedure for fans, recently
simplified by Rohrer. Anyway, all these procedures in general require the adjunction of some
new ray into the fan under completion, that is an increasing of the Picard number.

In the following we call sharp a completion which does not increase the Picard number.
Although a sharp completion of a toric variety does not exist in general, Hu and Keel showed
that the canonical ambient toric varietyW of a MDS X admits sharp completions, which are
even projective, one for each g-chamber contained in Nef(W ) ∼= Nef(X) [15, Prop. 2.11].

Unfortunately, this Hu–Keel result does no more hold for the ambient toric variety of a
wMDS. The key condition one needs to impose, in order to guarantee the existence of a sharp
completion in the non-projective set up, is the existence of particular cells inside the Nef
cone, in the following called filling cells.

Let us then set some notation.
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Fig. 1 The section of the cone
Eff(Q) in Example 1, which is
the positive orthant of R3, with
the plane x1 + x2 + x3 = 1

Definition 16 (Filling cell) Let X be a wMDS endowed with a Cox basis X and i : X ↪→ W
its X-canonical toric embedding. A geometric cell γ ⊆ Nef(X) ∼= Nef(W ) is called filling
if γ = ⋂

I∈IΣ ′ 〈QI 〉 for some fan Σ ′ ∈ SF(V ) containing the fan Σ of W , that is Σ ⊆ Σ ′.
The associated fan Σ ′ is called a filling fan. Moreover, whenever W is smooth, a filling cell
is called smooth if it is associated to a regular filling fan Σ ′.

Definition 17 (Fillable wMDS)AwMDS X is called fillable if Nef(X) contains a filling cell
γ . Moreover, it is called smoothly fillable if γ ⊆ Nef(X) is a smooth filling cell.

In general a g-cell may correspond to more than one fan and may not be a filling cell as the
following example shows.

Example 1 Consider the Berchtold-Hausen example [3, Ex. 10.2]. Here we will refer to the
analysis performed in [30, Rem. 3.1]. Let X = W be the MDS given by the Q-factorial
complete toric variety whose fan matrix V and weight matrix Q are given by

V :=
⎛

⎝
1 0 0 0 −1 1
0 1 0 −1 −1 2
0 0 1 −1 0 1

⎞

⎠ ⇒ Q =
⎛

⎝
1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 1 1 1

⎞

⎠

andwhose fanΣ1 := Σγ1 is the fan determined by the g-chamber 1 in Fig. 1. The intersection
of all the six chambers contained in Mov(Q) is given by the cone generated by the anti-

canonical class γ =
〈 1
1
1

〉
(see Fig. 1). It is clearly a GKZ-cone contained in the boundary

∂γ1. In particular γ is the g-cell corresponding to both the two different fansΣ,Σ ′ ∈ SF(V )

giving rise to complete and non-projective Q-factorial toric varieties, as described in [30,
Rem. 3.1]. Then γ is a g-cell inside γ1 = Nef(W ) but it cannot be a filling cell since both
Σ,Σ ′ do not contain Σ1, and any further g-cell described by the remaining fans in SF(V )

are given by the chambers determined by numbers from 2 to 6 in Fig. 1.

Anywaywhat described in the previous Example 1 cannot occur for full dimensional cells,
as proved by the following
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Proposition 11 A geometric chamber γ ⊆ Nef(X) is always a filling cell. Moreover the
filling fan determined by γ is unique and given by Σγ , as defined in (14).

Proof Since γ is a g-chamber, Relint(γ ) ⊆ Relint(γΣ), where γΣ = Nef(Z). ThenB ⊆ Bγ ,
that is Σ ⊆ Σγ .

For what is concerning the uniqueness of the filling fan associated with γ , assume that Σ ′
is a further filling fan associated with γ , that is γ = ⋂

I∈IΣ ′ 〈QI 〉. Let B′ be the associated
bunch of cones. For every w ∈ Relint(γ ) one has

∀ I ∈ IΣγ , J ∈ IΣ ′ w ∈ 〈QI 〉 ∩ 〈QJ 〉 �⇒ Relint〈QI 〉 ∩ Relint〈QJ 〉 �= ∅
so giving that B′ = Bγ , as they are maximal bunches. Then Σ ′ = Σγ . ��

Remark 9 Putting together what observed until now and assuming 〈V 〉 = Rn , we get the
following picture

SF(V )
ν {g-cells} η

Γ (Q)|Mov

PSF(V )
1:1
νP {g-chambers}

1:1
ηP

Γ (Q)|Mov(r)

where

– the map ν is defined by setting ν(Σ) := Nef(Z(Σ)), as described in Proposition 10:
Example 1 shows that ν is not injective. But it is surjective by Definition 15 of a g-cell;

– PSF(V ) = {Σ ∈ SF(V ) | Z(Σ) is (quasi-)projective};
– the map νP is the restriction of ν to the subset PSF(V ) ⊆ SF(V ): it gives a bijection

on the subset of g-chambers by Propositions 7 and 11;
– the map η is given by the definition 15 of a g-cell; its restriction to the subset of chambers

gives rise to a bijection ηP on the r -skeleton of the GKZ-decomposition by Proposition 9,
assuming r := rk(Q).

The following is an attempt of extending, to the non-projective setup, under suitable
conditions, the Hu–Keel sharp completion (see items (1), (2) and (3) in [15, Prop. 2.11]). A
comparison with Construction 3.2.5.6 in [1], may be useful.

Theorem 3 Let X be a fillable wMDS with Cox basis X, i : X ↪→ W its X-canonical toric
embedding and V a fan matrix of W . Then the following facts hold.

1. For any filling cell γ ⊆ Nef(W ), there esists a Q-factorial partial completion Z of W,
with an associated open embedding ι : W ↪→ Z, such that:

– the composed embedding ι ◦ i : X ↪→ Z induces a neat embedding of the closure of
X inside Z, that is j : X ′ := ι ◦ i(X) ↪→ Z; in particular X ′ is still a wMDS giving
a partial completion of X;

– Z is complete if and only if 〈V 〉 = Rn, that is if and only if V is an F-matrix: in
this case Z is a sharp completion of W and X ′ is a complete wMDS giving a sharp
completion of X;

– if X is complete then X ′ ∼= X and ι ◦ i : X ↪→ Z is a neat embedding;
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– there is a commutative diagram between total coordinate spaces, characteristic
spaces and toric embeddings, given by

X
i

W
id

Z

X̂

pX

jX

î
Ŵ

pW

jW

ι̂
Ẑ

pZ

jZ

X
ι◦i

i
W

ι
Z

X ′

j

In particular pZ : Ẑ � Z is a 1-free geometric quotient coming from the action of
the characteristic quasi-torus G on Z and jZ (Ẑ) = Z

s = Z
ss
.

2. There is an induced diagram of group isomorphisms

Cl(Z)
ι∗
∼= Cl(W )

i∗
∼= Cl(X)

Pic(Z)
ι∗
∼= Pic(W )

i∗
∼= Pic(X)

3. Isomorphisms ι∗ and i∗ extend to give R-linear isomorphisms

N 1(Z)
ι∗
R

∼= N 1(W )
i∗
R

∼= N 1(X)

Eff(Z)
ι∗
R

∼= Eff(W )
i∗
R

∼= Eff(X)

Mov(Z)
ι∗
R

∼= Mov(W )
i∗
R

∼= Mov(X)

γ = Nef(Z)
ι∗
R

Nef(W )
i∗
R

∼= Nef(X)

Proof (1): Let Q = G(V ) be a weight matrix ofW ,Σ be the fan ofW andB be the associated
bunch of cones. Since X is fillable, there exists a filling cell γ ⊆ Nef(W ) ∼= Nef(X), that is,
there exists Σ ′ ∈ SF(V ) such that γ = ⋂

I∈IΣ ′ 〈QI 〉 and Σ ⊆ Σ ′. Let Z = Z(γ,Σ ′) be
the Q-factorial and toric variety determined by the fan Σ ′. Clearly Z is complete if and only
if the support 〈V 〉 = |Σ ′| coincides with NR

∼= Rn . By construction the total coordinate
space Z of Z is given by

Z = Spec(Cox(Z)) = Km = Spec(Cox(W )) = W .
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Moreover, calling B′ the bunch associated by Gale duality with Σ ′, the inclusion Σ ⊆ Σ ′ of
simplicial fans, translates into the inclusion B ⊆ B′ of bunches. Then

Irr(Z) = (∏
i /∈I xi | I ∈ IΣ ′

) =
(∏

j∈J x j | 〈QJ 〉 ∈ B′
)

⊇
(∏

j∈J x j | 〈QJ 〉 ∈ B
)

= (∏
i /∈I xi | I ∈ IΣ

) = Irr(W ) = Ĩrr
⇒ BZ ⊆ BW = B̃

where the latter is an inclusion of Zariski closed subset of Z = W . Setting Ẑ := Z\BZ we
get naturally the open embeddings

jZ : Ẑ ↪→ Z

ι̂ : Ŵ := W\BW Z\BZ =: Ẑ

which are clearly equivariant with respect to the G-action on W = Z . Such an action gives
rise to the characteristic space pZ : Ẑ � Z and, so, to a 1-free geometric quotient by
Cox Theorem [7, Thm. 2.1], as Z is Q-factorial and without torus factors, being a sharp
partial completion of W . In particular, jZ (Ẑ) = Z

s = Z
ss
. Passing to the quotient by the

equivariant action of G, the open embedding ι̂ gives rise to an open embedding ι : W ↪→ Z .
By construction, the closure X ′ := ι ◦ i(X), inside Z , is a sharp partial completion of X whose
natural embedding j : X ′ ↪→ Z is a neat closed embedding. Sharpness conditions ensure
that rk(Cl(X ′)) = rk(Cl(X), hence finite. Finally, by construction Cox(X ′) ∼= Cox(X) ∼=
Cox(W )/I , being the relations defining I unchanged. Then X ′ is a wMDS. If Z is complete
then also X ′ is complete.

(2): The given diagram follows immediately by construction explained in the previous part
(1) and Proposition 5. The only point deserving some word of explanation is the surjectivity
of ι∗ : Pic(Z) → Pic(W ), which is immediately obtained by observing that every local
equation of a Cartier divisor D on Z is actually a local equation of the Cartier divisor ι∗D
on W , since ι is an open embedding.

(3): The given diagram follows immediately by construction explained in the previous part
(1) and Proposition 6. In particular notice that Z has been chosen by asking that γ = Nef(Z)

is a g-cell inside Nef(W ). ��

Remark 10 Recalling § 2.4 and in particular relation (10), up to shrink K , pullbackmorphisms
i#, i∗, ι#, ι∗ allows us to extend diagram (11) as follows

0 M
divZ

V T

In

DivT(Z)
dZ

Q⊕Γ

ι#Im

Cl(Z)

ι∗Ir⊕Is

0

0 M
divW

V T

In

DivT(W )
dW

Q⊕Γ

i#Im

Cl(W )

i∗Ir⊕Is

0

0 K0
V T

K
dK

Q⊕Γ
Cl(X) 0

(15)

where representative matrices are chosen with respect to a fixed basis of the character group
M = Hom(T, Z) and the standard basis of torus invariant divisors.
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Proposition 12 Let X be a complete wMDS with Cox basis X and i : X ↪→ W its X-
canonical toric embedding. Then X is a MDS if and only if Nef(X) ∼= Nef(W ) is a finite
union of chambers.

Proof Assume that X is a MDS. Then [15, Prop. 2.11 (3)] implies that Nef(X) is a finite
union of chambers, each of them associated with a projective completion of the canonical
ambient toric variety W . Conversely if γ ⊆ Nef(X) ∼= Nef(W ) is a g-chamber, then X is a
fillable wMDS and the previous Theorem 3 exhibits a completion Z(γ,Σ ′) of W which is
projective by Propositions 7 and 8. Then X is a projective wMDS, hence a MDS. ��

An obvious consequence of the previous Propositions 11 and 12 is the following

Corollary 3 Every MDS is a complete fillable wMDS.

Remark 11 Notice that a converse of the previous Corollary 3 does not hold in general,
as many well known examples of complete, Q-factorial and non-projective toric varieties
show. Consider e.g. either the Oda’s example of a smooth, complete and non-projective toric
threefold of Picard number 4, given in his famous book [24, p. 84], or Q-factorial, complete
and non-projective 3-dimensional toric varieties, of Picard number 3, given by fans Σ,Σ ′ in
the previous Example 1: both of them admit Nef cone given by a g-cell, meaning that they
are fillable wMDS. But they cannot be MDS being non-projective.

Remark 12 Anatural question is if the strong hypothesis, for a wMDS in Theorem 3, of being
fillable could be dropped. In fact it seems to be an extra-condition when the statement of this
theorem is compared with that of [15, Prop. 2.11]. Actually the previous Corollary 3 clarifies
that the existence of a filling chamber is guaranteed when we are dealing with Mori dream
spaces. Anyway one could ask if also being a wMDS may imply the existence of a filling
cell in Nef(X).
The answer is negative, in general, as the following Example 3 shows. Nevertheless, this
example does not exclude the possibility that being a complete wMDS may imply the exis-
tence of a filling cell, as explained in the following Remark 13. Unfortunately I was not able
to find a counterexample to such a possibility: the point is exhibiting a complete wMDS X
whose canonical ambient toric variety W is a non-complete and non sharply completable
one! Does it exist?

2.7 Discussing hypotheses of Theorem 3: some examples

In the present section we give two instances of possible occurrences in the completion pro-
cedure of Theorem 3. Namely, in the first example 2, we will discuss a case in which X
is complete and fillable, hence X ∼= X ′ admitting a sharp completion Z of the canonical
ambient toric variety W . On the contrary, in the second Example 3 we will consider the case
of a non-complete wMDS which is not fillable.

Example 2 Let us start by considering a case in which X is complete and coincides with the
induced sharp completion X ′, as described in item (1) of Theorem 3. At this purpose consider
the MDS X given in [1, Ex. 3.2.5.8]. This is also considered, up to a isomorphism, in the
Cox ring database [13], where it is reported as the id no. 67.
Consider the grading map dK : K = Z5 � Z2 represented by the weight matrix

Q =
(
1 2 1 1 0
0 1 1 2 1

)
= (

q1 · · · q5
)
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Fig. 2 The GKZ decomposition
of the canonical ambient toric
variety W in Ex. 2

and the quotient algebra R = K[x1, . . . , x5]/(x1x4 + x2x5 + x23 ), graded by dK . This is
consistent since the relation defining R is homogeneous with respect to such a grading.
Moreover R turns out to be a Cox ring with X := {x1, . . . , x5} giving a Cox basis of R.
Then X := Spec(R) ⊆ SpecK[x] =: W defines the total coordinate space of a wMDS
X := X̂/(K∗)2 where

X̂ = X\BX being BX = V(Irr(X)) and Irr(X) = (x1x5, x2x4, x1x3x4, x2x3x5)

The canonical ambient toric variety of X is the given by W := Ŵ/(K∗)2 where

Ŵ = W\B̃ being B̃ = V(Ĩrr) and Ĩrr = (x1x5, x2x4, x1x3x4, x2x3x5)

Notice that W = W (Σ) is the toric variety given by a fan matrix V , gale dual to Q, e.g.

V :=
⎛

⎝
1 0 0 −1 2
0 1 0 −2 3
0 0 1 −1 1

⎞

⎠ = (
v1 · · · v5

)

and fan Σ generated by the following collection of maximal cones

Σ(max) := {〈v2, v3, v4〉 〈v1, v3, v5〉, 〈v2, v5〉, 〈v1, v4〉} .

The GKZ decomposition of Eff(X) ∼= Eff(W ) = 〈Q〉 =: Eff(Q) is represented in Fig. 2. In
particular it turns out that

Nef(X) = Mov(X) ∼= Mov(W ) = Nef(W ) = Mov(Q) = 〈q2,q4〉
Following notation introduced in Theorem 3, it is the union of two g-chambers γ1 = 〈q2,q3〉
and γ2 = 〈q3,q4〉, giving the Nef cones of the only two possible sharp completions
Z1(γ1,Σ1), Z2(γ2,Σ2) of W . In particular one has

SF(V ) = PSF(V ) = {Σ1,Σ2}
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where Σ1 and Σ2 are simplicial and complete fans generated by the following collection of
maximal cones

Σ1(3) = {〈v1, v3, v4〉 〈v1, v3, v5〉 〈v1, v4, v5〉 〈v2, v3, v4〉 〈v2, v3, v5〉 〈v2, v4, v5〉}
Σ2(3) = {〈v1, v2, v4〉 〈v1, v2, v5〉 〈v1, v3, v4〉 〈v1, v3, v5〉 〈v2, v3, v4〉 〈v2, v3, v5〉}

For k = 1, 2, the associated (projective) completion Zk ofW encodes the completion X ′
k :=

X̂ ′
k/(K

∗)2 of X , where
X̂ ′
k = X\Bk being Bk = V(Irr(X ′

k))

and

Irr(X ′
1) = (x1x3, x1x4, x1x5, x2x3, x2x4, x2x5)

Irr(X ′
2) = (x1x4, x1x5, x2x4, x2x5, x3x4, x3x5)

Notice that X is actually complete (then a MDS) since X = X ′
k , for both k = 1, 2. Therefore

jk = ιk ◦ i : X ↪→ Zk is a neat embedding, for both k = 1, 2.

Example 3 The following is an example of a wMDS whose canonical toric ambient variety
is a non sharply completable one. This fact shows that the hypothesis of existence of a filling
cell in Nef(X), as given in Theorem 3, cannot be dropped.
Consider the grading map dK : K = Z7 � Z3 represented by the weight matrix

Q =
⎛

⎝
1 1 0 1 0 1 0
0 1 1 1 1 0 0
0 0 0 1 1 1 1

⎞

⎠ = (
q1 · · · q7

)

and the quotient algebra

R = K[x1, . . . , x7]/(x1x3x7 + x1x5 + x2x7 + x3x6 + x4)

graded by dK . Moreover, the divisor associated with the generator xi , given by cutting with
{xi = 0}, turns out to be a primedivisor, so giving that xi isCl(X)-prime [1, Prop. 1.5.3.5 (iii)].
Then R turns out to be a Cox ring with X := {x1, . . . , x7} giving a Cox basis of R, X :=
Spec(R) ⊆ SpecK[x] =: W defines the total coordinate space of a wMDS X := X̂/(K∗)3
where X̂ = X\BX , being BX = V(Irr(X)) and

Irr(X) =
⎛

⎝
x2x5x6, x1x2x3x7, x1x2x5x7, x1x3x4x6, x1x3x4x7,
x1x3x5x6, x1x3x5x7, x1x3x6x7, x1x4x5x6, x1x4x5x7,

x2x3x4x6, x2x3x4x7, x2x3x6x7, x2x4x5x7

⎞

⎠

The canonical ambient toric variety of X is then given byW := Ŵ/(K∗)3 where Ŵ = W\B̃,
being B̃ = V(Ĩrr) and Ĩrr = π−1

X (Irr(X)). In particular the bunch B of W is generated
by the following collection of minimal cones

B(min) :=

⎧
⎪⎪⎨

⎪⎪⎩

〈q2,q5,q6〉, 〈q1,q2,q3,q7〉, 〈q1,q2,q5,q7〉, 〈q1,q3,q4,q6〉,
〈q1,q3,q4,q7〉, 〈q1,q3,q5,q6〉, 〈q1,q3,q5,q7〉, 〈q1,q3,q6,q7〉,

〈q1,q4,q5,q6〉, 〈q1,q4,q5,q7〉, 〈q2,q3,q4,q6〉,
〈q2,q3,q4,q7〉, 〈q2,q3,q6,q7〉, 〈q2,q4,q5,q7〉

⎫
⎪⎪⎬

⎪⎪⎭

Then W is a Q-factorial non-complete toric variety. The GKZ decomposition of Eff(X) ∼=
Eff(W ) = Eff(Q) is represented in Fig. 3, where chambers from 1 to 6 are the Nef cones
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Fig. 3 The GKZ decomposition
of the canonical ambient toric
variety W in Ex. 3

associated with elements of PSF(V ) = SF(V ), being V a Gale dual matrix of Q, given
e.g. by

V :=

⎛

⎜⎜⎝

1 0 0 0 0 −1 1
0 1 0 0 −1 −1 2
0 0 1 0 −1 0 1
0 0 0 1 −1 −1 1

⎞

⎟⎟⎠ = (
v1 · · · v7

)
(16)

In particular

Nef(X) ∼= Nef(W ) =
⋂

τ∈B
τ = 〈q4〉

which is strictly contained in every chamber from 1 to 6. Consequently, none of these cham-
bers can be a filling cell in Nef(X) and W cannot admit any sharp completion.

Remark 13 An interesting question is if assuming X complete in Theorem 3 may guarantee
the existence of a filling cell in Nef(X).
Notice that the previous Example 3 cannot exclude such a possibility, as X is not complete,
therein. In fact the six fans in SF(V ) are generated by the six collections of maximal cones

∀ i = 1, . . . , 6 Σi (4) = {〈VI 〉 | I ∈ IΣi (4)}
where

IΣ1(4) = {{3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {1, 3, 4, 5}, {1, 2, 4, 5},
{1, 2, 3, 5}, {2, 3, 4, 7}, {1, 3, 4, 7}, {1, 2, 4, 7}, {1, 2, 3, 7}}

IΣ2(4) = {{2, 4, 5, 6}, {1, 4, 5, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {3, 4, 6, 7}, {2, 4, 6, 7},
{1, 3, 6, 7}, {1, 2, 6, 7}, {1, 2, 4, 5}, {1, 3, 4, 7}, {1, 2, 4, 7}}

IΣ3(4) = {{2, 4, 5, 6}, {1, 4, 5, 6}, {2, 5, 6, 7}, {1, 3, 4, 6}, {3, 4, 6, 7}, {2, 4, 6, 7},
{1, 5, 6, 7}, {1, 3, 6, 7}, {2, 4, 5, 7}, {1, 4, 5, 7}, {1, 3, 4, 7}}

IΣ4(4) = {{2, 4, 5, 6}, {2, 3, 4, 6}, {1, 4, 5, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 2, 3, 6},
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{1, 2, 4, 5}, {2, 3, 4, 7}, {1, 3, 4, 7}, {1, 2, 4, 7}, {1, 2, 3, 7}}
IΣ5(4) = {{3, 4, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}, {2, 5, 6, 7}, {3, 4, 6, 7}, {2, 4, 6, 7},

{1, 3, 4, 5}, {2, 4, 5, 7}, {1, 4, 5, 7}, {1, 3, 5, 7}, {1, 3, 4, 7}}
IΣ6(4) = {{3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {1, 3, 4, 5}, {2, 4, 5, 7},

{2, 3, 5, 7}, {2, 3, 4, 7}, {1, 4, 5, 7}, {1, 3, 5, 7}, {1, 3, 4, 7}}
On the other hand, by Gale duality the collection of minimal cones B(min) determines the
collection of maximal cones of the fan Σ of W , namely

Σ(max) = {〈VI 〉 | I ∈ IΣ(max)}
with

IΣ(max) = {{1, 3, 4, 7}, {4, 5, 6}, {3, 4, 6}, {2, 5, 7}, {2, 5, 6}, {2, 4, 7}, {2, 4, 6},
{2, 4, 5}, {2, 3, 7}, {2, 3, 6}, {1, 5, 7}, {1, 5, 6}, {1, 4, 5}, {1, 3, 6}}

Consider the following 3-cones not belonging to Σ

〈v1, v2, v5〉 ∈ Σ1 ∩ Σ2 ∩ Σ4

〈v2, v6, v7〉 ∈ Σ2 ∩ Σ3 ∩ Σ5

〈v3, v5, v6〉 ∈ Σ1 ∩ Σ5 ∩ Σ6

For k = 1, . . . , 6, let X ′
k be the closure, inside the sharp completion Zk(Σk) of W , of the

image ιk ◦ i(X), being ιk : W ↪→ Zk the natural open embedding. The closures of the
toric orbits of each of the 3-cones above give rise to three 1-cycles intersecting X ′

k , for the
associated value of k, in a finite number of points living outside of the irrelevant loci. Namely,
one has

W ⊇ V(x1, x2, x5, x3x6 + x4) ⇒ [0 : 0 : 1 : 1 : 0 : −1 : 1] ∈ X ′
1 ∩ X ′

2 ∩ X ′
4

W ⊇ V(x2, x6, x7, x1x5 + x4) ⇒ [1 : 0 : 1 : 1 : −1 : 0 : 0] ∈ X ′
2 ∩ X ′

3 ∩ X ′
5

W ⊇ V(x3, x5, x6, x2x7 + x4) ⇒ [1 : 1 : 0 : 1 : 0 : 0 : −1] ∈ X ′
1 ∩ X ′

5 ∩ X ′
6

Clearly points exhibited on the right side cannot belong to X , showing that X is not complete.

2.8 Projective embedding of lower rank complete wMDS

In the recent paper [30], jointly written with L. Terracini, we proved1 the following

Theorem 4 (Thm. 3.2 in [30]) Every Q-factorial complete toric variety of Picard number
r ≤ 2 is projective.

First of all let us observe that this result allows us to prove a converse of Corollary 3 for a
complete fillable wMDS of Picard number r ≤ 2. In fact Theorem 3 ensures that a complete
fillable wMDS X can be embedded in a complete Q-factorial variety Z having the same
Picard number of X . Hence Theorem 4 shows that Z is projective, so giving a projective
embedding of X , too. This gives that

Corollary 4 Every complete wMDS of Picard number r ≤ 2 is fillable if and only if it is a
MDS.

1 In [30]we assumedC as groundfield.Actually all techniques and arguments therein employed are completely
extendable to a general field K = K with charK = 0.
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Consequently, examples given in Example 1 and recalled in Remark 11, turn out to be
sharp counterexamples with respect to the Picard number.

Now we are going to show that

Theorem 5 Every complete wMDS of Picard number r ≤ 2 is fillable.

Proof We will actually prove a stronger statement:

(*) if X is a complete wMDS of Picard number r ≤ 2 then Nef(X) contains a full-
dimensional GKZ-cone.

Then the thesis follows by recalling Propositions 9 and 11.
To prove (*), notice that Remark6 (b) shows that

Nef(X) ∼= Nef(W ) =
⋂

I∈IΣ

〈QI 〉

being Σ a fan of the canonical ambient toric variety W . Corollary 1 shows that W is Q-
factorial, that is Σ is simplicial. Then 〈QI 〉 is a 2-dimensional cone, for every I ∈ IΣ .
Moreover Corollary 2 shows that the weight matrix Q is a W -matrix and a fan matrix V of
W is an F-matrix. This is enough to ensure that lemmas 1.2 and 2.1 in [30] still hold for the
toric variety W . Then the proof of (*) goes on exactly as the proof of [30, Thm. 2.2], giving
that the 2-dimensional GKZ-cone contained in Nef(W ) is the minimal 2-cone contained in
every cone of the bunch of cones B = {〈QI 〉 | I ∈ IΣ }. ��

Recalling Proposition 12 and Theorem 3, the previous result gives immediately the fol-
lowing

Corollary 5 Every complete wMDS of Picard number r ≤ 2 is a MDS.

Let us conclude the present section by recalling that every smooth and complete toric
variety of Picard number r ≤ 3 is projective, by a well known result of Kleinschmidt and
Sturmfels [19]. This clearly gives the following

Corollary 6 Every smoothly fillable and complete wMDS of Picard number r ≤ 3 is a MDS.

Notice that the Oda’s example recalled in Remark 11 is then a sharp counterexample with
respect to an extension of Corollary 6 for higher values of the Picard number r : in fact it is a
smoothly fillable wMDS with r = 4 and non-projective.

3 Birational geometry of complete weakMori dream spaces

In the present section, a wMDS is considered by the birational point of view, aiming to a
possible extension, beyond the projective setup, of Hu–Keel results about the termination of
a MMP for every divisor and the classification of rational contractions [15, Prop. 1.11, 2.11].
As a direct consequence of [1, Thm. 4.3.3.1], here recalled by the following Lemma 1, these
results extend quite naturally to a complete wMDS.

Definition 18 (Small Q-factorial modification) A birational map f : X ��� Y , between
irreducible, complete and Q-factorial algebraic varieties, is called a small Q-factorial modi-
fication (sQm) if it is biregular in codimension 1 i.e. there exist Zariski open subsetsU ⊆ X

and V ⊆ Y such that f |U : U ∼=→ V is biregular and codim(X\U ) ≥ 2 , codim(Y\V ) ≥ 2 .
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Lemma 1 ([1], Thm. 4.3.3.1) A Q-factorial and complete algebraic variety X is a wMDS if
and only if there exists a sQm f : X ��� X ′ such that X ′ is a MDS.

Sketch of proof The necessary condition is trivial. In fact, let f : X ��� X ′ be a sQmwith X ′
given by a MDS. Then f induces isomorphisms Cl(X) ∼= Cl(X ′) and Cox(X) ∼= Cox(X ′),
as f is an isomorphism in codimension 1, so giving that X has to be a wMDS.

The sufficient condition is precisely [1, Thm. 4.3.3.1]: here just a rough idea, of how
constructing the sQm f , is given, referring the interested reader to [1, § 4.3.3] and [8,
§ 15.4], for any further detail.

First of all recall that, given the X-canonical toric embedding i : X ↪→ W , the cone
Mov(X) ∼= Mov(W ) is a full dimensional convex cone inside Eff(X) ∼= Eff(W ) and the
support of the secondary fan Γ (Q)|Mov(W ), being Q a weight matrix of W . Then, there
certainly exists a full dimensional GKZ-cone γ ′ such that γ := Nef(X) � γ ′. Since X is
complete, hypotheses of Prop. 9 are satisfied and γ ′ turns out to be a g-chamber. Calling V
a Gale dual matrix of Q, let Σ ′ ∈ PSF(V ) be the fan associated with γ ′ and Z = Z(Σ ′)
be the related Q-factorial and projective toric variety. Then, recalling notation introduced in
Rem. 2 (4),

Z ∼= SpecK[X] ∼= W

and Cox(X) ∼= K[X]/I . In particular, X = X̂/G , where G = Hom(Cl(X), K∗) is the
characteristic quasi-torus of X , and by setting

Irr(X ′) := πX(Irr(Z)) = Irr(Z)/Irr(Z) ∩ I

BX ′ := V(Irr(X ′))
X̂ ′ := X\BX ′

X ′ := X̂ ′/G

one gets the definition of f by the following diagram

X̂ ∩ X̂ ′
pX |X̂∩X̂ ′ pX ′ |X̂∩X̂ ′

X
f

X ′

that is f (x) := pX ′(p−1
X (x)), for every x ∈ pX (X̂ ∩ X̂ ′). It remains to check that:

– X ′ is a well defined MDS,
– pX (X̂ ∩ X̂ ′) and pX ′(X̂ ∩ X̂ ′) are open Zariski subsets of X and X ′, respectively, whose

complementary sets have both codimension at least 2 ,
– f : pX (X̂ ∩ X̂ ′) ∼= pX ′(X̂ ∩ X̂ ′) , so giving an isomorphism in codimension 1 between

X and X ′ .
For all the necessary details, the interested reader is referred to the extensive treatments cited
above. ��

3.1 Theminimal model program (MMP)

Mori Dream Spaces have been introduced to give a class of varieties on which a MMP can be
carried out for any divisor [15, Prop. 1.11 (1)]. By Lemma 1, this fact extends immediately
to complete weak Mori Dream Spaces.

Let us recall some standard notation.
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Definition 19 (MMP for a divisor) Let X be a Q-factorial and complete algebraic variety
and consider D ∈ Div(X). A MMP for D, or D-MMP, is a finite sequence of birational
transformations

X =: X0
f1

X1
f2

X2
f3 · · · fl−1

Xl−1
fl

Xl =: X∗

such that:

1. Xi is a Q-factorial and complete algebraic variety, for every 0 < i ≤ l;
2. setting D0 = D and Di := ( fi )∗Di−1 := fi (Di ) ∈ Div(Xi ) be the birational transform

of Di−1 ∈ Div(Xi−1), the birational map fi is a Di−1-negative contraction (i.e. Di−1 ·
C < 0 for every complete and irreducible curve C ⊂ Xi−1 such that fi−1(C) is a
point); in particular fi is either a divisorial contraction or a flip of a Di−1-negative small
contraction, for every 0 < i ≤ l;

3. either D∗ := Dl is nef and X∗ := Xl is called a D-minimal model of X , or X∗ admits a
D∗-negative contraction over a lower dimensional variety, giving rise to a Mori fibration
structure for X∗;

4. if l = 0 then only one of the following occurs:

– either D is nef and X = X∗ is already a D-minimal model,
– or X admits a D-negative contraction over a lower dimensional variety, giving rise

to a Mori fibration structure for X .

We are then in a position to state the following

Theorem 6 Let X be a complete wMDS and consider a divisor D ∈ Div(X). Then there
exists a MMP for D and

1. X∗ is a D-minimal model, if and only if [D] ∈ Eff(X); in this case D∗ is semiample (i.e.
|mD∗| is base-point-free for m � 0);

2. X∗ is a sQm of X if and only if [D] ∈ Mov(X).

This D-MMP is not unique and, if D is not nef, the terminal model X∗ can always be assumed
to be a MDS.

Proof If D is nef, then X = X∗ is already a minimal model. Then one can assume D is
not nef, that is [D] /∈ γ = Nef(X). Apply Lemma 1. Then one has a sQm f : X ��� X ′
such that X ′ is a MDS. Let D′ := f∗D be the birational transform of D. If D′ is nef, then
f |X : X ��� X ′ is a D-MMP and the MDS X ′ is a D-minimal model of X . In fact, f turns
out to be D-negative as f contracts precisely all the curves whose classes are in the face
γ ∨ � NE(X) := Nef(X)∨, which is the dual face of γ � γ ′ := Nef(X ′) . Every such curve
is D-negative since [D] /∈ γ .

Then assume D′ is not nef and run a D′-MMP for X ′, which exists by [15, Prop. 1.11 (1)].
This gives a D-MMP with terminal model X∗ which is a MDS.

In particular D∗ is nef if and only if it is semiample. By [15, Prop. 1.11 (2)] and Theo-
rem 3(3), the birational map g : X ′ ��� X∗ is induced by an inclusion

Nef(X∗)
g∗
↪→ Eff(X ′)

f ∗
∼= Eff(X)

and it is a sQm if and only if

Nef(X∗)
g∗
↪→ Mov(X ′)

f ∗
∼= Mov(X) .
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The first inclusion proves that if X∗ is a D-minimal model then [D] ∈ Eff(X) and the second
one proves that if X∗ is also a sQm of X then [D] ∈ Mov(X).

For the converse observe that if [D] ∈ Eff(X) then there exists a g-chamber γ ∗ ⊆ Eff(X)

such that [D] ∈ γ ∗. The choice of γ ∗ determines a projective toric variety Z∗(γ ∗,Σγ ∗). On
the other hand, X ′ is projective, implying that γ ′ = Nef(X ′) is a g-chamber, whose choice
determines the projective toric variety Z(γ ′,Σγ ′) and a birational map G : Z ��� Z∗. Then
the birational transform X∗ := G∗(X ′) gives a D-minimal model of X , so ending up the
proof of (1). Moreover, if [D] ∈ Mov(X) then we can choose γ ∗ ⊆ Mov(X), meaning that
g := G|X ′ : X ′ ��� X∗ is a sQm and proving (2). ��

3.2 Rational contraction of a complete wMDS

Here the goal is proposing an extension, to the non-projective setup, of Hu–Keel results [15,
Prop. 1.11 (3) and Prop. 2.11 (4)]. The key ingredient is still Lemma 1.

Recalling [15, Def. 1.0] and [6, Def. 2.1] let us give the following

Definition 20 (Rational contraction) A rational dominant map f : X ��� Y from a Q-
factorial and complete algebraic variety X to a normal and complete algebraic variety Y is
called a rational contraction if there exists a resolution of f , that is a morphism

φ : Γ̂ Γ ( f ) ⊆ X × Y

on the closure of the graph Γ ( f ) of f , such that:

1. Γ̂ is a smooth and complete algebraic variety,
2. the following diagram commutes

Γ̂

μ

f ′
φ

X × Y

p

q
Y

X

f

3. μ is a birational morphism,
4. f ′ has connected fibers,
5. every μ-exceptional divisor E ⊂ Γ̂ is an f ′-exceptional divisor.

In particular, if f is birational then it is called a birational contraction. The latter happens if
and only if f ′ is a birational morphism. Otherwise dim Y < dim X and f is called of fiber
type.

Remark 14 Let f : X ��� Y be a birational map, with X Q-factorial and complete and
Y normal and complete. Then f is a birational contraction if and only if there exist open
Zariski subsets U ⊆ X and V ⊆ Y such that f |U is an isomorphism between U and V and
codim(Y\V ) ≥ 2 (this fact follows immediately by item (5) in the Definition 20: see [6,
Rem. 2.2] for the details).

Consequently, a birational map g : X ��� X ′ between Q-factorial and complete algebraic
varieties is a sQm if and only both g and g−1 are birational contractions.
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Theorem 7 Let X be a complete wMDS with Cox basis X and i : X ↪→ W its X-canonical
toric embedding. Then:

1. up to isomorphisms, X admits a finite number s > 0 of distinct sQm

gi : X ��� Xi , i = 1, . . . , s

one of which is given by the identity idX ;
2. Mov(X) = ⋃s

i=1 g
∗
i (Nef(Xi )) ;

3. the collection of convex cones given by

MX := {σ | σ is a face of g∗
i (Nef(Xi )) , i = 1, . . . , s}

is a fan whose support is |MX | = Mov(X) ;
4. up to isomorphisms, X admits a finite number of rational contractions which are in 1 : 1

correspondence with the cones of the fan MX , via the association:

( f : X ��� Y ) f ∗ Nef(Y )

5. for every rational contraction f : X ��� Y there exists a toric rational contraction
f̃ : W ��� Y , such that f = f̃ |X .

Proof By Lemma 1 there exists a sQm g : X ��� X ′ such that X ′ is a MDS. In particular, if
Q is a weight matrix of W ,

Mov(Q) = Mov(W )
i∗∼= Mov(X)

(g−1)∗∼= Mov(X ′) .

Items from (1) to (5) hold for X ′ by Prop. 2.9 and Def. 1.10 (3), Prop. 1.11 (2)–(3),
Prop. 2.11 (4) in [15]. Moreover there is a bijection between rational contractions on X ′
and rational contraction on X by associating

( f ′ : X ′ ��� Y ) ( f ′ ◦ g : X ��� Y )

Clearly such a 1 : 1 correspondence sends a sQm in a sQm . This suffices to prove item
from (1) to (4).

For (5), let W ′ be the canonical ambient toric variety of X ′. By [15, Prop. 2.11 (4)] the
sQm g is induced by a sQm g̃ : W ��� W ′ such that g̃|X = g. Then the rational contraction

f = f ′ ◦ g = ( f̃ ′ ◦ g̃)|X : X ��� Y

is the restriction to X of the toric rational contraction f̃ ′ ◦ g̃ : W ��� Y . ��

4 WeakMori dream spaces and weak Fano varieties

In the following an irreducible, normal and complete algebraic variety X will be called (weak)
Q-Fano if it is Q-Gorenstein and there exists an integer k > 0 such that −kKX is an ample
(resp. nef and big) Cartier divisor (recall that a big divisor is one admitting maximal Iitaka
dimension, see e.g. [21, Def. 2.2.1]). As a consequence of a well known result of Birkar,
Cascini, Hacon andMcKernan [4, § 1.3] a Q-factorial Q-Fano variety turns out to be a MDS.
It seems then natural asking if a similar result extends to a weak Q-Fano variety, implying
that it is also a wMDS. Unfortunately the latter cannot be established in such a generality,
but one has to impose the existence of a projective sQm .
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Definition 21 (log pair, see [20]) Let X be an irreducible and normal algebraic variety. An
effective Q-divisor Δ such that KX + Δ is Q-Cartier is called a boundary divisor of X and
the pair (X ,Δ) is called a log pair.

Let (X ,Δ) be a log pair and f : Y −→ X be a birational morphism from an irreducible,
normal, algebraic variety Y . If Δ = ∑

i ai Di , as a sum of prime divisors with rational
coefficients, then its birational transform by f is given by

f −1∗ Δ =
∑

i

ai f
−1∗ Di

where f −1∗ Δ, f −1∗ Di denote the birational transforms of Δ and Di , respectively (following
notation in Kollár-Mori [20, (10) and (11), p.5]). Let m be the Cartier index of KX + Δ (i.e.
the least positive integer m such that m(KX + Δ) is Cartier). Then, for every irreducible
exceptional divisor E j ⊆ Exc( f ) there exists a rational number a(E j , X ,Δ) such that

m(KY + f −1∗ Δ) ∼ f ∗(m(KX + Δ)) + m
∑

j

a(E j , X ,Δ)E j . (17)

Set a( f −1∗ Di , X ,Δ) := −ai and a(E, X ,Δ) = 0 for any further prime divisor not contained
in Exc( f ) ∪ Supp( f −1∗ Δ). Then (17) can be rewritten as follows:

mKY − f ∗(m(KX + Δ)) ∼ m
∑

E prime

a(E, X ,Δ)E = mA(X ,Δ) . (18)

The Q-divisor A(X ,Δ) is called the discrepancy divisor and its coefficient a(E, X ,Δ) is
called the discrepancy of E , with respect to the log pair (X ,Δ) [20, Def. 2.25]. This is well
defined, as discrepancy a(E, X ,Δ) depends only on the valuation v(E, Y ) and not on the
particular choice of f (see [20, Rem. 2.23]).

Definition 22 (Kawamata log terminal (Klt) singularities) Let (X ,Δ) be a log pair and
A(X ,Δ) its discrepancy divisor. Let us denote by � � the integral part of a Q-divisor,
obtained by taking the integral parts of the coefficients. Then:

1. (X ,Δ) is a called a Kawamata log terminal (Klt) pair if �A(X ,Δ)� ≥ 0 and �Δ� = 0,

In particular X is said admitting Klt singularities if there exists a boundary divisor Δ such
that (X ,Δ) is a Klt pair.

Definition 23 (log (weak) Fano, see Def. 2.5 in [25] and [11]) A Klt log pair (X ,Δ) with X
complete is called log Fano (resp. log weak Fano) if a suitable multiple of −(KX + Δ) is
ample (resp. big and nef). Moreover X is called of Fano type if it admits a boundary divisor
Δ such that (X ,Δ) is a log Fano pair.

Notice that if (X ,Δ) is a log Fano pair then X is necessarily a projective variety, but this is
no longer true if (X ,Δ) is a log weak Fano pair.

Proposition 13 (Lemma-Definition 2.6 in [25]) If X is a normal projective variety admitting
a boundary divisor Δ such that (X ,Δ) is a log weak Fano pair then X is of Fano type.
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4.1 Log weak Fano versus wMDS

As already mentioned above, [4, Cor. 1.3.2] guarantees that a Q-factorial variety of Fano
type is a MDS. This result has been later improved by the following result

Theorem 8 (Theorem 1.1 in [11]) A Q-factorial variety X is of Fano type if and only X is a
MDS and the total coordinate space X has at worst Klt singularities.

This result, joint with the previous Proposition 13, gives the following

Corollary 7 AQ-factorial and projective variety X admitting a boundary divisorΔ such that
(X ,Δ) is a log weak Fano pair is a MDS whose total space X has at worst Klt singularities.
In particular a Q-factorial and projective weak Q-Fano variety is a MDS whose total space
has at worst Klt singularities.

Corollary 8 Let X be a Q-factorial and complete algebraic variety admitting a projective
small Q-factorial modification, i.e.

∃ f , N : X
f

sQm
Y PN . (19)

Then the following are equivalent:

1. X is a wMDS and the total space X has at worst Klt singularities,
2. Y is a MDS and the total space Y has at worst Klt singularities,
3. Y is of Fano type,
4. there exists a boundary divisor Δ such that (Y ,Δ) is a log weak Fano pair.

Proof (1)⇒(2): The sQm f induces isomorphisms Cl(X) ∼= Cl(Y ) and Cox(X) ∼= Cox(Y ),
as it is an isomorphism in codimension 1. Then Y is a projective wMDS, that is a MDS. Then
X = Spec(Cox(X)) ∼= Spec(Cox(Y )) = Y have the same type of singularities. In particular
Y ∼= X admits at worst Klt singularities.

(2)⇒(3): It is the necessary condition in Theorem 8.
(3)⇒(4): This is obvious by Definition 23.
(4)⇒(1): By Proposition 13, Y is of Fano type. The sufficient condition in Theorem 8

implies that Y is a MDS and Y has at worst Klt singularities. Finally by same argument
applied when proving (1)⇒(2), which is the necessary condition in Lemma 1, X turns out to
be a wMDS: in particular X admits at worst Klt singularities. ��
Remark 15 If one of the equivalent conditions listed in Corollary 8 holds then hypothesis
(19) can be obtained by asking that

∃m ∈ N : −mKX is a movable Cartier divisor. (20)

In fact, by assuming item (1), there certainly exists a chamber γ ⊆ Mov(X) such that
[−KX ] ∈ γ . By the same argument proving the sufficient condition in Lemma 1, the choice
of γ uniquely determines a MDS Y with a sQm f : X ��� Y such that γ ⊆ f ∗ Nef(Y ).
This is enough to get (19). Moreover, this means that

[−KX ] = f ∗[−KY ] ∈ γ ⊆ f ∗ Nef(Y ) ⊆ f ∗ Mov(Y ) = Mov(X) .

In particular −mKY is a nef Cartier divisor (we are actually running a MMP for −KX ). If
we now further strengthen (20) to ask that

∃m ∈ N : −mKX is a big and movable Cartier divisor (21)
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then −mKY is big and Y turns out to be a projective weak Fano variety. Conversely, if Y in
(19) is assumed to be a weak Q-Fano variety, then Corollary 7 gives that Y is a MDS whose
total space Y has at worst Klt singularities. This gives item (2) in Corollary 8 so implying
item (1) and (21).

This discussion shows that Corollary 8 can be thought of as a generalization of [22,
Lemma 4.10]. In particular it proves that

Proposition 14 The following assertions are equivalent:

1. X is a wMDS whose total space X admits at worst Klt singularities and such that −KX

is a big and movable Q-divisor,
2. X is a Q-factorial and complete algebraic variety admitting a projective weak Q-Fano

sQm Y .
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