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Abstract: Nuclear-cytoplasmic shuttling is a highly regulated and complex process, which involves
both proteins and nucleic acids. Changes in cellular compartmentalization of various proteins,
including oncogenes and tumor suppressors, affect cellular behavior, promoting or inhibiting
proliferation, apoptosis and sensitivity to therapies. In this review, we will recapitulate the role of
various shuttling components in Chronic Myeloid Leukemia and we will provide insights on the
potential role of shuttling proteins as therapeutic targets.
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1. Introduction

Shuttling from the nucleus to the cytoplasm and back is a highly regulated and complex process,
which may include proteins and nucleic acids such as mRNA molecules [1–3]. This process has been
linked to the regulation of cell cycle induction and cellular proliferation with several implications in
both normal and pathological cellular growth. Nuclear-cytoplasmic shuttling is a targetable process,
with potentially relevant implications from the therapeutic standpoint [4,5]. Very recently, through a fast
track designation, the Food and Drug Administration (FDA) approved the exportin 1 (XPO1) inhibitor
selinexor in multiple myeloma patients with a refractory disease to at least one proteasome inhibitor,
one immunomodulatory agent, and daratumumab (triple-class refractory) [6]. In such a demanding
scenario, selinexor displayed promising response rates, suggesting that the nuclear-cytoplasmic
shuttling represents a master target in cancer therapy.

Several tumor suppressors and oncogenes have been recognized to affect tumorigenesis through
their ability to shuttle among various cellular compartments. For instance, the tumor suppressors
PTEN, p53 and FOXOs may lose their tumor suppressive functions if delocalized [7]. The identification
of shuttling tumor suppressors and the mechanisms that promote their delocalization in the cell
may allow the development of therapies to restore the proper cellular compartmentalization with
consequent re-activation of the tumor suppressive functions [8]. In this respect, it is worth noting that
the reactivation of tumor suppressor is the most efficient approach to promote cancer apoptosis, as it was
pointed out for p53 [9]. As a consequence, strategies to restore the correct cellular compartmentalization
are highly promising therapeutic approaches [5].

Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder characterized by the
translocation t(9;22), which codes for the chimeric protein BCR-ABL [10]. This disease is the paradigm
of the precision medicine, due to the stunning efficacy of BCR-ABL inhibitors [11]. However, it should
be noted that three major issues may limit the efficacy of TKI-based therapies. First, in rare cases,
BCR-ABL develops mutations that render CML resistant to TKI treatment [12]; second, TKIs based
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therapies are unable to completely eradicate the disease, due to the resistance of CML stem cells to
TKI [13]; third, CML blast crisis, and other Ph+ leukemias such as ALL, are barely unaffected by TKI
therapy [14].

As a consequence, the understanding of those mechanisms that promote CML maintenance
should identify novel targets and novel therapies to enforce TKI-based regiments.

Shuttling appears to be an essential process to look at in the CML context, due to the ability
of c-ABL and BCR-ABL to shuttle between the nucleus and the cytoplasm. BCR-ABL was indeed
described as a cytoplasmic protein although it contains three nuclear localization sequences (NLS) [15]
and a nuclear export sequence (NES) [16]. Various studies have clearly demonstrated that c-ABL,
one of the partner of the chimeric BCR-ABL protein, is indeed a shuttling protein, especially upon DNA
damage [17]. The presence of BCR protein in the fusion with ABL was conversely shown to promote a
cytoplasmic localization, due to the binding with actin [18] and a specific conformation status with the
kinase domain [19]. Several years ago, it was however shown that the inhibition of BCR-ABL by TKI
was also associated with the enrichment of BCR-ABL into the nucleus [20], and that this localization was
further augmented by the concomitant treatment with leptomycin B, a known nuclear export inhibitor.
Authors demonstrated that only kinase-defective BCR-ABL or TKI-inhibited BCR-ABL entered the
nucleus, while active full length BCR-ABL was unable [20,21]. Notably, nuclear BCR-ABL was shown
to promote apoptosis in CML cellular models [20] and primary samples [22] when reactivated upon
TKI removal. All together these data clearly point to the issue that the leading oncogene of CML may
turn into a suicide gene, when delocalized, and that shifting cellular compartments is achievable with
the combination of various drugs.

These observations point to the relevance of studying nuclear-cytoplasmic shuttling in CML and
therefore this review will investigate the nuclear-cytoplasmic scenario of proteins and RNAs molecules
in CML.

2. Shuttling Tumor Suppressors

2.1. PTEN

The tumor suppressor PTEN is one of the most frequently mutated/deleted tumor suppressors in
cancer. PTEN is known to play a role both in the cytoplasm, as a negative regulator of the PI3K-AKT
pathway, and in the nucleus where it targets other pathways [23,24]. Shuttling from the nucleus and the
cytoplasm was associated with PTEN mono-ubiquitination [25,26] or sumoylation [27]. The regulation
of PTEN shuttling through mono-ubiquitination is modulated by the de-ubiquitinase USP7 [25].
We demonstrated that BCR-ABL is able to promote USP7 activation through tyrosine phosphorylation,
allowing to affect PTEN cellular compartmentalization [28,29]. Notably, we observed differential PTEN
cellular compartmentalization in the stem cell pool, where it is predominantly nuclear, when compared
to a predominant cytoplasmic localization in the more differentiated cells [28]. This observation may
contribute to explain the quiescence of the stem cell pool and provide implications from the therapeutic
standpoint, as specifically reviewed [30].

2.2. Foxo

The Forkhead box O (FOXO) is one subfamily of the fork head transcription factor family with
important roles in tumorigenesis [30,31]. FOXOs proteins have been extensively studied as PI3K-Akt
targets with remarkably roles in cancer [32] and indeed as potential candidates for therapies [33].

In CML, FOXO proteins were shown to be nuclear excluded [34,35], and to play a pivotal role in
mediating the quiescence of CML stem cells. In particular, FOXO1 and FOXO3a were shown to be
inactivated and delocalized into the cytoplasm by BCR-ABL. Notably, treatment with TKI reduces
FOXO phosphorylation, favoring relocalization to the nucleus. As a consequence, active FOXOs
can modulate the expression of Cyclin D1, ATM and other genes that promote cell cycle arrest and
apoptosis induction. Various mechanisms have been described to promote FOXO shuttling between
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the nucleus and the cytoplasm [36] and some drugs have also been described to affect shuttling [37]. It
is worth to note that changes in FOXO differentiate the CML stem cell pool from the progenitor pool,
as observed for PTEN. Such variations in localization may therefore be utilized to target the stem cell
fraction [13].

2.3. P53

The tumor suppressor p53 is recognized as one the most important tumor suppressors in
cancer [38]. While generally known as a transcriptional factor, it was also shown to play a role in the
cytoplasm [39]. As a consequence, shuttling of p53 from the nucleus to the cytoplasm affects its role
in tumorigenesis [7,40,41]. The tumor suppressor p53 is essential in CML pathogenesis, even if TP53
mutations were discovered only during the progression of the disease [42,43]. In a recent observation,
p53 protein was clearly described as a master regulator of CML stem cells, in a tight correlation with
c-Myc [44]. In line with these observations, we have shown that BCR-ABL favors p53 nuclear exclusion,
causing inactivation of its tumor suppressive functions [45]. In accordance, p53 was shown to be mostly
cytoplasmic in CML CD34 positive cells, with a further cytoplasmic accumulation upon imatinib and
treatment with DNA-damaging agents [46]. Similarly, cytoplasmic p53 was shown to accumulate in
CML progenitor cells, upon treatment with an inhibitor of SIRT1 [47]. While these works have shown
p53 accumulation in the cytoplasm of CML cells, it is worth to note that others did not confirm such
localization [44]. However, CML is a disease characterized by a highly complex mixture of cells at
different stages of differentiation and therefore it could be speculated that the localization of p53 in the
cytoplasm or in the nucleus may depend on the differentiation status of the cells, as we have observed
for PTEN [28]. A further investigation is indeed required to better assess how and when p53 shuttles
between the nucleus and the cytoplasm of CML cells.

2.4. P27

p27 is an inhibitor of the cyclin-dependent kinases and is therefore involved in the regulation
of cell cycle [48]. As the majority of cell cycling inhibitors, p27 functions are tightly regulated at
transcriptional and post-transductional level, as reviewed [49]. Furthermore, shuttling into the
cytoplasm was shown to abrogate p27 function as inhibitor of cyclin. Mechanisms that affects stability
or cellular compartmentalization of p27 may indeed affect tumorigenesis. In a recent report, BCR-ABL
was shown to promote p27 shuttling from the nucleus to the cytoplasm in a kinase independent
manner [50]. Notably, beside the loss of the tumor suppressive function in the nucleus, the localization
in the cytoplasm affects p27 functionality promoting an oncogenic role, although the mechanism still
must be identified. Some reports have suggested the ability of p27 to modulate RhoA activity [51].

3. BCR-ABL-Dependent Shuttling of RNA-Binding Proteins

The regulation of mRNA processing can rapidly and efficiently modulate the function of specific
proteins, without altering gene expression [52]. Indeed, different types of cancer are characterized by
the modulation of RNA-binding proteins (RBP), that are responsible of the processing, nuclear export,
regulation of stability, and translation of mRNA molecules [53]. Among various processes, nuclear
export of specific mRNA molecules is associated with neoplastic transformation. Not surprisingly,
altered expression of some RBPs with nuclear-cytoplasmic shuttling activity has been shown in
BCR/ABL leukemogenesis [54]. In particular, the expression of RNA-binding proteins regulates various
cellular processes and indeed it appears clear that the deregulation of the expression of RBP may affect
leukemogenesis, through the impairment of mRNA metabolism. As a consequence, several RBPs have
been implicated in the pathogenesis and in the progression of CML [55,56].
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4. Ribonuclear Proteins

4.1. hnRNP A1

hnRNP A1 is a ubiquitously expressed hnRNP, and is directly involved in the nucleocytoplasmic
trafficking of mRNA molecules [57]. Primarily, hnRNP A1 is nuclear, but it shuttles continuously
between the nucleus and the cytoplasm, where dissociates from its mRNA [58]. hnRNP A1
expression is higher in transformed cell lines compared to normal and differentiated tissues [59].
In BCR/ABL-expressing cells hnRNP A1 protein levels are markedly increased as well as in
CML-BC samples compared to CML-CP samples and appears to correlate with BCR/ABL levels [60].
Mechanistically, hnRNP A1 is activated and stabilized by the PI3K and BCR/ABL-regulated PKC,
with further increase in its ability to shuttle mRNAs from the nucleus.

Interference with hnRNP A1 shuttling activity resulted in down-regulation of C/EBPalpha,
the major regulator of granulocytic differentiation, Bcl-XL, an important survival factor for hematopoietic
cells and SET, the inhibitor of protein phosphatase 2A (PP2A) [60].

4.2. Fus

FUS is a hnRNP protein also known as hnRNP P2, originally discovered as the N-terminal part of
a fusion gene with CHOP in myxoid liposarcoma carrying the translocation t(12;16). FUS is primarily
localized in the nucleus where it is involved in nucleocytoplasmic shuttling of specific RNA [61,62].
BCR/ABL kinase activity is essential for FUS expression and DNA-binding through the induction
of the nuclear PKC−II Isoform, that prevents its degradation. Ectopic FUS expression in 32Dcl3
cells was associated with proliferation and reduced sensitivity to apoptotic stimuli. On the contrary,
FUS down regulation reduces proliferation and enhances the susceptibility of BCR/ABL-expressing
cells to apoptosis. These effects mostly depend on decreasing level of G-CSFR, suggesting that FUS
interferes with the export of G-CSFR mRNA to the cytoplasm [63].

5. BCR/ABL-Dependent Shuttling of Non-Coding RNA

Several recent studies provide evidences that BCR-ABL regulates the traffic of exosomes, riches in
RNA and proteins, between cells and the bone marrow microenvironment. Exosome traffic is not to
be considered as a classical nuclear-cytoplasmic shuttling, but it is a mechanism through which the
nucleus of a cell communicates with the cytoplasm of surrounding cells [64]. Therefore, we describe it
as an “atypical” form of nuclear-cytoplasmic shuttling. In this section, we include some examples of
miRNA that are delivered from the nucleus of one cell to the surrounding cells.

5.1. miRNA-126

It was demonstrated that the CML LAMA84 cell line releases exosomes into the medium
culture [65] and that these exosomes are able to modulate gene expression of endothelial cells through
the release of miRNAs by exosomes. In particular, the analysis of miRNAs expression profile showed
that miR-126 was highly enriched in LAMA84 exosomes. Ectopic expression of miR-126 in LAMA84
and co-culture with Human umbilical vein endothelial cells (HUVEC) demonstrated the shuttle of
miR-126 in endothelial cells, where it down-modulates two target genes, CXCL12 and VCAM1 [66].

5.2. miRNA-210

Cellular and exosomal miRNA profiling of K562 cells cultured in hypoxic conditions allowed to
identify in miR-210 one of the most upregulated miRNA. Exosomal miR-210 was shown to target the
gene codifying Ephrin-A3, an anti-angiogenic factor able to modulate VEGF signaling [67].
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5.3. miRNA-92a

miR-92a is secreted from K562 leukemia cells and is shuttled to endothelial cells. Treatment with
exosomal miR-92a was shown to regulates integrin α5 in HUVEC endothelial cell model. In this
context miR-92a works as one of the effectors of the migration and the formation of angiogenetic
structures [68].

6. Discussion

Overall, this review has pointed out the relevance of nuclear-cytoplasmic shuttling in CML, as
well as it was defined in other cancers [69]. Various tumor suppressors, oncogenes and nucleic acids
have been shown to shuttle from various cellular compartments in CML, promoting changes in the
behaviors of the cells. Notably, shuttling of these proteins and mRNA was shown to be induced by
BCR-ABL itself and to cooperate with BCR-ABL in the pathogenesis and/or maintenance of CML.
Targeting shuttling mechanisms was conversely associated with the restoration of the normal cellular
compartmentalization and functions of the proteins described in this review. Therefore, shuttling
appears to be a perfect target in those scenarios where the inhibition of BCR-ABL is insufficient to
promote eradication of the cancer: in the presence of BCR-ABL mutations that impair sensitivity to TKI,
in the stem cell pool and in CML blast crisis/Ph+ ALL. Due to the tremendous impact of the inhibitor
of Xpo1 in multiple myeloma [6], we may expect that targeting the nuclear-cytoplasmic machinery
may be translated into Ph+ leukemias to provide new therapeutic chances.
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