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Abstract

The microbiota composition of the offspring of women with gestational diabetes mellitus

(GDM), a common pregnancy complication, is still little known. We investigated whether the

GDM offspring gut microbiota composition is associated with the maternal nutritional habits,

metabolic variables or pregnancy outcomes. Furthermore, we compared the GDM offspring

microbiota to the microbiota of normoglycemic-mother offspring. Fecal samples of 29 GDM

infants were collected during the first week of life and assessed by 16S amplicon-based

sequencing. The offspring’s microbiota showed significantly lower α-diversity than the corre-

sponding mothers. Earlier maternal nutritional habits were more strongly associated with

the offspring microbiota (maternal oligosaccharide positively with infant Ruminococcus,

maternal saturated fat intake inversely with infant Rikenellaceae and Ruminococcus) than

last-trimester maternal habits. Principal coordinate analysis showed a separation of the

infant microbiota according to the type of feeding (breastfeeding vs formula-feeding), dis-

playing in breast-fed infants a higher abundance of Bifidobacterium. A few Bacteroides and

Blautia oligotypes were shared by the GDM mothers and their offspring, suggesting a mater-

nal microbial imprinting. Finally, GDM infants showed higher relative abundance of pro-

inflammatory taxa than infants from healthy women. In conclusion, many maternal condi-

tions impact on the microbiota composition of GDM offspring whose microbiota showed

increased abundance of pro-inflammatory taxa.

Introduction

It is well known that the maternal environment affects the offspring health. The newborn gut

microbiota is strongly influenced by maternal health and pregnancy conditions and partici-

pates in the development programming of the newborns [1–3]. Early disruption of the infant

microbiota has been associated with many inflammatory, immune-mediated, allergic, and
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dysmetabolic diseases in later life [1,4–5]. Children’s obesity, non-alcoholic hepatic liver dis-

eases, aberrant cardiac growth are, among others, the conditions that have been associated

with maternal/newborn dysbiosis [1,6–7]. Nevertheless, uncertainty still exists about the

microbiota offspring colonization, and both the modality and the timing of microbial exposure

for the fetus/newborn are controversial [8–11].

Gestational diabetes mellitus (GDM), the most frequent complication of pregnancy, has

been associated with increased risk for the offspring of developing dysmetabolic diseases,

such as obesity and diabetes mellitus [12]. Many prenatal and postnatal factors could deter-

mine an increased metabolic risk, such as epigenetic changes induced by in-utero exposure

to maternal hyperglycemia, impaired secretion of fetal hormones (insulin and leptin), or

fetal “mal-programming” of hypothalamic neuropeptidergic neurons, leading to hyperpha-

gia [13–14]. GDM was found to be associated with specific changes in the gut microbiota

composition [15–19]. The altered microbiome may be a bystander of the underlying meta-

bolic dysregulation that underpins the pathogenesis of gestational hyperglycemia, as well as

the consequence of the increased adiposity frequently co-existing in GDM patients [20–21].

However, the finding that a different microbial pattern precedes the onset of GDM leads to

the hypothesis that microbiota alterations might have a role in the pathogenesis of GDM

[22–23]. Even more important is the reporting that specific taxa associated with GDM can be

transmitted to the offspring and differentiate their gut microbiota from that of the offspring

of normoglycemic women [16,24–25].

The possibility of early modulation of the offspring gut microbiota by acting on specific

maternal factors and/or characteristics is of potential great interest. Nevertheless, only few

data are available about the associations between maternal characteristics and newborn micro-

biota pattern. Maternal fasting glucose concentrations were correlated positively with the rela-

tive abundance of phylum Actinobacteria and genus Acinetobacter, and negatively with the

phylum Bacteroidetes and the genus Prevotella [26]. We hypothesized that maternal dietary

habits and metabolic characteristics may impact on the offspring gut microbiota.

Aims of the present observational study were therefore evaluating whether maternal nutri-

tional habits and/or metabolic variables and pregnancy outcomes of GDM patients are associ-

ated with the gut microbiota composition of their offspring. Furthermore, the gut microbiota

composition of these infants was compared to the gut microbiota of the offspring of healthy

normoglycemic women to evaluate possible differences between the two cohorts of newborns.

Materials and methods

Patients recruitment

All pregnant women routinely performed an oral glucose tolerance test at 24–28 gestational

weeks at the “Città della Salute e della Scienza” Hospital of Turin. The first 50 consecutive sub-

jects who met both the criteria for GDM according to international guidelines (fasting plasma

glucose�92 mg/dL and/or 1h post-test glycemia�180 mg/dL and/or 2h post-test glycemia

�153 mg/dL) and the inclusion criteria (see below) were enrolled [17]. Out of them, 41

women participated in an observational study aiming to evaluate the changes in gut micro-

biota composition across pregnancy [17]. The fecal samples of their offspring were collected in

the first week of life. Indeed, as the mode of collection and/or storage of the offspring stool

samples by 12 mothers resulted inappropriate, data of 29 infants (70.7%) could be analyzed

only (S1 Table). Inclusion criteria were: GDM diagnosed by a 75g oral glucose tolerance test

(OGTT) between 24–28 weeks gestational age and European origin with both parents born in

Europe. Women with twin pregnancy, any pathological conditions before or during pregnancy

(known diabetes mellitus, hypertension, cardiovascular, pulmonary, autoimmune, joint, liver
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or kidney diseases, thyroid dysfunction, cancer, any other disease/condition), no compliance

to the study protocol, on prebiotics/probiotics, antibiotics or any drug during pregnancy were

excluded. All the GDM patients received dietary counselling and the recommendation of per-

forming 30-min daily moderate exercise (i.e. brisk walking) and were instructed to self-moni-

tor finger-prick capillary blood glucose at least 4 times per day. Participants completed a 3-day

food record (2 weekdays and 1 weekend day) and the Minnesota-Leisure-Time-Physical Activ-

ity Questionnaire at enrolment and at the study end [17]. Detailed information on how to

record the food and drink consumed by using common household measures was provided to

all participants. Two dieticians checked all questionnaires for completeness, internal coherence

and plausibility [17].

Patients were considered to be compliant to the given dietary recommendations in the pres-

ence of all the following criteria: at least 20 g/day fiber consumption (or increasing fiber intake

more than 50% than enrolment), sugar reduction to less than 10% of total energy and abolition

of alcohol intake. Only 14 out of 41 (34.1%) of the patients were compliant to dietary recom-

mendations. Finally, all mothers were suggested to breastfeed their children. However, only 10

of them followed this suggestion. All the others declared to have used formulas without added

probiotic/prebiotic compounds.

In order to compare our offspring to infants from normoglycemic women, we have used

the recently released 16S rRNA gene sequence from 19 Italian infants collected in the first

week of life [27] (NCBI SRA, under BioProject ID PRJNA378341). Infants from healthy

women showed the following characteristic: (i) born from vaginal delivery, (ii) breastfed, (iii)

no use of antibiotic/probiotic during pregnancy [27]. We used as comparison the results of the

4th day of life.

Ethical aspects

The present study conforms to the principles outlined in the Declaration of Helsinki. The

study protocol was approved by the Ethics Committee of the “Città della Salute e della Scienza”

hospital of Turin (approval 707/2016). All patients provided written informed consent prior to

participation in the study protocol.

Data and samples collections

Anthropometric values, 3-days food record questionnaires, fasting blood samples (for the

determination of metabolic variables and C-reactive protein levels) and stool samples of the

mothers were collected both at the time of GDM diagnosis, at 24–28 weeks of gestational age,

and at 38 weeks, or before delivery, in the case of preterm delivery [17]. Fecal samples of the

offspring were collected between the 3rd and the 5th day of life, after meconium expulsion.

Data relative to the type of delivery, birth weight, gestational age and the type of feeding were

extracted from medical records.

Insulin therapy was added to diet when fasting blood glucose levels were consistently�90

mg/dL, 1-hour levels consistently�130 mg/dL, or 2-hour levels�120 mg/dL, according to

guidelines [28].

Mothers were instructed to collect the stool samples and all materials were provided in a

convenient, refrigerated, specimen collection kit (VWR, Milan, Italy) [17]. The fecal samples

were transferred to the sterile sampling containers using a polypropylene spoon (3 spoons of

about 10 g) and immediately stored at 4 ˚C. The specimens were transported to the laboratory

within 12 hours of collection at a refrigerated temperature. Containers were immediately

stored at −80 ˚C for DNA extraction. No storage medium was used [17].
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In the case of infants from normoglycemic mothers, fecal samples have been reported to be

collected from diapers using standard sterile collection tubes [27].

Fecal DNA extraction and sequencing

Total DNA from the feces collected was extracted using the RNeasy Power Microbiome KIT

(Qiagen, Milan, Italy) following the manufacturer’s instructions. One microliter of RNase
(Illumina Inc. San Diego. CA) was added to digest RNA in the DNA samples, with an incuba-

tion of 1 h at 37 ˚C. DNA was quantified using the QUBIT dsDNA Assay kit (Life Technolo-

gies, Milan, Italy) and standardized at 5 ng/μL. DNA was used as a template in a PCR reaction

in order to amplify the V3-V4 region of the 16S rRNA gene [29]. Library preparation and

sequencing (2X250bp) was performed as already reported [17].

Bioinformatics analyses

Paired-end reads were first assembled using FLASH software and quality filtering using

QIIME 1.9.0 software [30] and the pipeline already reported [17]. OTUs picked at 97% of simi-

larity were rarefied to the lowest number of sequences per sample. The OTU table obtained

through QIIME displays the higher taxonomy resolution that was reached; when the taxonomy

assignment was not able to reach the genus, family name was displayed.

In order to identify sub-OTUs populations in our offspring cohort, reads assigned to genera

Blautia, Bacteroides and Bifidobacterium were extracted and entropy analysis and oligotyping

were carried out [31] since these were the only OTUs showing higher level of entropy able to

obtain sub-OTUs. After the first round of oligotyping, high entropy positions were chosen (-C

option): 8, 12, 113, 223, 224, 247, 432, 433 for Blautia; position 8, 12, 40, 74, 75, 116, 117, 124,

129, 130, 390, 397, 452 and 453 were chosen for Bacteroides; while position 8, 12, 14, 81, 114,

115, 158, 159, 160, 328, 329, 389, 437, 438, 439, 440, 441, 442, 443 and 444 were chosen for Bifi-
dobacterium. In order to reduce the noise, each oligotype should appear in at least 10 samples,

occur in more than 1.0% of the reads for at least ten samples, represent a minimum of 750

reads in all samples combined, and have a most abundant unique sequence with a minimum

abundance of 50. A cladogram of representative sequences was generated using the ANVIOs

software [32].

Statistical analyses

Gut microbiota α-diversity was calculated by the diversity function of the vegan package [33]

in R environment (http://www.r-project.org). ADONIS and ANOSIM statistical test were used

to detect significant differences in the overall microbial community by using the unweighted

UniFrac distance matrices or OTU table. Offspring variables were compared with maternal

variables by paired-sample t-test, or Wilcoxon matched pairs test, as appropriate. Differences

in infant gut microbiota between mothers who were compliant or not to the dietary recom-

mendations, or between the GDM offspring and healthy-women offspring were calculated by

t-Student test or Mann-Whitney test. Pairwise Spearman’s non-parametric correlations were

used to study the relationships between the infant relative abundance of microbial taxa and

maternal dietary and metabolic variables. The degree of agreement (concordance) among

maternal oligotypes at enrolment, maternal oligotypes at the study-end and infant oligotypes

was assessed by the Friedman ANOVA & Kendall’s test.

Multiple regression analyses were performed to evaluate the associations between infant

microbial taxa abundance (dependent variable) and maternal nutrient intakes or laboratory

variables, after adjusting for gestational weight change, breastfeeding and Cesarean section

(Statistica, ver. 7.0; StatSoft Inc., Tulsa, OK, USA).

GDM offspring gut microbiota composition
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The post-hoc power estimated on partial R2 according to the multivariate linear regression

model adjusted for maternal weight change, breastfeeding and Cesarean section was 0.80 with

α = 0.05. A P value of 0.002 or lower was considered as statistically significant.

Results

Maternal and infant gut microbiota composition

The microbial richness (alpha diversity index) was lower in infant stools than in the corre-

sponding maternal samples, and fewer taxa were present in the offspring (Fig 1). An increase

in the rarefaction measure across pregnancy was evident in GDM patients. The number of

observed species was significantly different between mother samples (both at enrolment and at

the study-end) and the corresponding offspring samples (for the Chao-1 diversity index, P for

paired data<0.001). The decrease in the complexity and the number of taxa observed in off-

spring samples was not a consequence of the lower number of infant sequences because the

analysis was performed by using a rarefied down-sampling operational taxonomic unit (OTU)

table.

Patients with GDM showed a predominance of Firmicutes (increasing during the gesta-

tional period) and Bacteroidetes (whose relative abundance decreased), while the infant gut

microbiota was characterized by an increased relative abundance of Actinobacteria and Pro-

teobacteria (Fig 2).

Hierarchical clustering analysis at genus level (S1 Fig) showed a separation between the

infant microbiota and the mother microbiota (anosim P<0.01). Infants displayed a higher

abundance of Bifidobacterium, Streptococcus, Escherichia, Staphylococcus and Enterococcaceae
while mothers had a more complex microbiota composition (S1 Fig).

Fig 1. α-diversity measures of fecal microbiota. Boxplots describe α-diversity measures of fecal microbiota of GDM

patients at enrolment (red bars), of GDM patients at the study end (green bars) and of their offspring (blue bars).

Individual points and brackets represent the richness estimate and the theoretical standard error range, respectively.

https://doi.org/10.1371/journal.pone.0226545.g001
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Infant gut microbiota and maternal dietary habits and laboratory variables

No clear separation of the infant gut microbiota was observed (anosim P> 0.05) according to

the maternal compliance to dietary recommendations (S2 Fig). The correlation plot between

maternal nutrient intakes and infant gut microbiota showed a higher number of significant

associations with maternal variables at enrolment than at the study-end (Fig 3).

Maternal oligosaccharides derived mainly from dairy products, cereals, fruit and vegetables,

while saturated fatty acids (SFA) derived mainly from meat and cheese. In a multiple regres-

sion model, after adjusting for weight change, breastfeeding and Cesarean section, associations

between infant Ruminococcus with maternal oligosaccharide (positive association) and with

maternal intake of SFA (inverse association) were found, even if not reaching the defined

cutoff of p-values. The inverse relationship between Rikenellaceae and maternal SFA intake

remained statistically significant (Table 1). In the multivariate model, no significant associa-

tion between infant gut microbiota and maternal dietary habits at the study-end was found.

The direct association between maternal fasting glucose at enrolment and Enterococcus
(Rho = 0.49) was no longer confirmed in the multivariate model, while the inverse association

between Clostridiales and maternal changes across pregnancy (delta) in glycated hemoglobin

(HbA1c) levels was statistically significant (Table 1). No significant association between mater-

nal anthropometric or metabolic variables and the gestational changes in these variables and

infant gut microbiota composition was found. Two out of 29 women were treated with insulin;

none received metformin. After adjusting for insulin treatment, the results of the multiple

regression analyses did not change.

Fig 2. Phylum-level abundance profiles. Boxplots describe the relative abundance of phyla in GDM patients at enrolment (red

bars), in GDM patients at the study end (green bars) and in the infants (blue bars).

https://doi.org/10.1371/journal.pone.0226545.g002
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Fig 3. Spearman’s rank correlation of OTUs dietary information and blood variables. Spearman’s rank correlation matrix of

OTUs with> 0.2% abundance in at least 10 fecal samples, dietary information and blood variables. The colors of the scale bar denote

the nature of the correlation, with 1 indicating a perfectly positive correlation (dark blue) and -1 indicating a perfectly negative

correlation (dark red) between the two datasets. Only correlations with P-values<0.002 are shown. Data at enrolment (plot A) or at

study-end (Plot B).

https://doi.org/10.1371/journal.pone.0226545.g003

Table 1. Statistically significant associations between infant microbiota composition and maternal variables by Spearman’s correlations for continuous variables

(left) and multiple regression analyses (right).

Rho Beta 95% CI P
Dietary habits at enrolment
Oligosaccharides

Ruminococcus 0.55 0.09 0.04 0.14 0.005

Saturated fatty acids (%kcal)

Rikenellaceae -0.61 -0.24 -0.37–0.11 0.001

Ruminococcus -0.44 -0.76 -1.21–0.31 0.004

Maternal laboratory variables
Delta HbA1c

Clostridiales -0.49 -0.32 -0.48–0.16 <0.001

Breastfeeding�

Bifidobacterium - 22.9 10.1 35.7 0.0017

Model adjusted for maternal weight change, breastfeeding, and Cesarean section;

�Model adjusted for maternal weight change and Cesarean section

https://doi.org/10.1371/journal.pone.0226545.t001
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Infant gut microbiota and delivery outcomes and breastfeeding

No significant associations between infant gut microbiota and delivery (Cesarean section vs
vaginal delivery) was found.

Ten out of the 29 (34.5%) newborns were breastfed by their mothers, while 19 (65.5%)

were formula-fed. We observed a non-significant reduction in microbial richness in breastfed

infants when compared to infants fed with artificial milk.

The β–diversity calculation based on unweighted UniFrac distance matrices assessed by

Principal coordinate analysis (PCoA) showed a separation of the infant microbiota only as a

function of the type of feeding (breast vs formula) as confirmed by ANOSIM and ADONIS sta-

tistical test (P<0.001) (Fig 4).

At phylum level, we observed that breastfed infants showed a higher abundance of Actino-

bacteria and Proteobacteria, while in formula-fed infants we observed a higher proportion of

Firmicutes phyla (Fig 5A). At genus level, breastfed infants displayed an increased abundance

of Escherichia and Bifidobacterium, while formula-fed infants had a varied microbiota mainly

composed of Bacteroides, Clostridium, Enterococcaceae, Escherichia, Faecalibacterium, Staphy-
lococcus and Streptococcus (Fig 5B). In multiple regression analyses, a significant association

between breastfeeding and the relative abundance of Bifidobacterium in the infant gut micro-

biota was found (β = 22.9; 95%CI = 10.1–35.7; P = 0.0017).

Gut microbiota signature at sub-genus level

In order to explore the possible mother-to-infant gut microbiota transmission at sub-OTUs

level, we carried out oligotyping on sequences of Blautia, Bacteroides and Bifidobacterium
since these were the only genera showing a Shannon entropy index sufficient to identify all

Fig 4. Principal coordinates analysis (PCoA) of unweighted UniFrac distances matrix for 16S rRNA gene sequence data. Infant

artificially-fed (blue dots) or breast-fed (red dots).

https://doi.org/10.1371/journal.pone.0226545.g004
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nucleotide positions that would resolve the oligotypes. We considered the dominant oligotypes

shared by mothers and their offspring only to explore possible mother-to-child oligotype

transmission. We then selected the oligotypes which were present in at least 5 mother-to-child

pairs. We found 18 oligotypes for Bacteroides, 30 for Blautia, and 81 for Bifidobacterium. Only

for Bifidobacterium, oligotypes of the offspring were taken into account, since resolving Bifido-
bacterium in mothers was not possible. A high inter-individual diversity in the Bifidobacterium
oligotypes was observed in the offspring samples (S3 Fig). We observed that the relative

Fig 5. Relative phylum-level abundance profiles. Phylum-level abundance profiles of breastfed infants and artificially

fed infants (Panel A); relative genus-level abundance of breastfed infants and artificially fed infants (Panel B).

https://doi.org/10.1371/journal.pone.0226545.g005
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abundance of the Blautia oligotypes increased during the pregnancy and were lower in the

infants (S4A Fig). A high degree of mother-offspring concordance was found for B11

(P = 0.008) and B42 (P<0.001); both were identified as Blautia wexlerae by best BLASTn

match. A reduction in the relative abundance of Bacteroides oligotypes was observed across

pregnancy while few oligotypes were observed to be dominant in the offspring samples

(S4B Fig).

Comparison between gut microbiota from GDM offspring and healthy

women offspring

The gut microbiota of our offspring was compared with those of 19 breastfed infants from

healthy normoglycemic women. A higher α-diversity was evident in the latter (for the Chao-1

diversity index, P = 0.001). However, when comparing to those infants the 10 breastfed infants

from GDM women, no significant difference in α-diversity was found. At phylum level, we

observed higher abundance of Actinobacteria and Bacteroidetes in the offspring from GDM

women (S5A Fig) (P<0.001). At genus level, higher abundance of Staphylococcus, Ralstonia,

Lactobacillus and some members of Enterobacteriaceae were observed in the offspring from

healthy women (S5B Fig).

In the comparison between the two groups of breastfed infants, the offspring of GDM

women showed a significantly higher relative abundance of Escherichia and Parabacteroides
(P<0.001).

Discussion

The microbiota of infants from GDM women showed a low complexity, a high inter-individ-

ual variability, and was influenced by early maternal nutrition and breastfeeding. Intriguingly,

in comparison with the offspring of healthy women, our infants showed a higher relative abun-

dance of pro-inflammatory taxa, in particular Escherichia and Parabacteroides. A few mother-

to-child oligotype transmissions were found.

The offspring gut microbiota composition substantially differs from the microbiota compo-

sition of their GDM mothers, being the former characterized by limited species-level complex-

ity (i.e. a lower α-diversity) and a greater inter-individual variability of genus abundance (i.e. a

higher β-diversity), as already reported [22,34–39]. The microbiota complexity indeed pro-

gressively increases with the infant growth, with the gradual development of a microbial com-

munity resembling the adult microbiota at the age of 3 years with a lower inter-individual

variability [40–41]. Actinobacteria and Proteobacteria dominated the gut microbiota of our

infants from GDM women, similarly to the infants of healthy mothers and in accordance with

previous reports [36–37,42–43]. The relative abundance of these phyla has been reported to be

higher in the meconium of GDM newborns compared to offspring from healthy controls [26].

Bifidobacterium, Streptococcus, Escherichia, Staphylococcus and members of the Enterococca-
ceae family displayed a higher relative abundance in the feces of our GDM infants. Accord-

ingly, these bacteria have been detected in the feces or meconium of full-term newborns in

several studies [24,34,35–37,39,44–48].

A distinct microbial composition was found in our breastfed GDM offspring when compar-

ing them with breastfed neonates from healthy controls, consistent with literature [16,24–25].

In particular, a significantly higher relative abundance of Escherichia and Parabacteroides was

found in our GDM infants. These taxa can be considered as pro-inflammatory and have been

found to be higher in the meconium of babies from T2DM mothers [24]. Furthermore, Para-
bacteroides have been reported to be enriched in GDM patients when compared to healthy

subjects [18]. In our previous study [17], we have observed an increased, though not

GDM offspring gut microbiota composition
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statistically significant, relative abundance of Parabacteroides across pregnancy from enrol-

ment to study end. Similarly, Escherichia is more abundant in pregnant overweight women,

particularly in GDM patients [49–50] Diabetes has been considered as an inflammatory dis-

ease and, not surprisingly, the offspring microbiota may be influenced by this pregnancy path-

ological condition; a direct transmission from mother to child of some pro-inflammatory taxa

like Parabacteroides or Escherichia might be hypothesized, even if the contribution of not ana-

lyzed environmental conditions could not be ruled out.

No differences in the Firmicutes-to-Bacteroidetes ratio, indicating an increased risk for

developing obesity [51], was found neither between the breast-fed GDM infants when com-

pared to the formula-fed GDM infants, nor between breast-fed GDM infants vs breast-fed

infants form normoglycemic women.

The microbiota in the first days of life of our GDM offspring might be one of the contribut-

ing factors to the 2- to 8-fold increased future risk of dysmetabolic diseases of those offspring

when compared to offspring of healthy women [52]. We observed that the infant gut micro-

biota composition is influenced by nutritional maternal habits. The offspring relative abun-

dance of Ruminococcus was directly associated with the maternal intake of oligosaccharides

and inversely with the maternal intake of SFA, as previously reported in infants from healthy

women [53]. The Ruminococcus genus produces both butyrate and a bacteriocin, ruminococ-

cin A, able to inhibit the growth of the potentially harmful Clostridium species, therefore

potentially playing a beneficial role for the newborns [54]. Furthermore, maternal SFA intake

was inversely associated with the relative abundance of Rikenellaceae, a butyrate-producers

family [55] that has been related to favorable metabolic outcomes and a healthy gut [56–57].

These associations are remarkable and could explain the previously reported adverse impact of

SFA on maternal [58] and neonatal health [59–60] even if did not reach the established signifi-

cance threshold, after multiple adjustments.

Nutritional recommendations were given to our women between 24–28 weeks of gesta-

tional age, at the time of the oral glucose challenge test and GDM diagnosis [17]. Only 34.1%

of our participants resulted compliant to the nutritional advice; indeed, dietary adherence and

nutritional habits at the end of pregnancy did not influence the offspring microbiota. Con-

trarily to a few previous human studies showing that the infant gut microbiota was associated

with the last-trimester maternal diet [61], we found stronger associations between infant gut

bacteria composition and early maternal nutrition. Even if the mechanisms by which the

maternal diet affects the offspring microbiota remain unclear, the nutritional habits of late

pregnancy might have a lower impact, owing to the lower maternal-fetal time of contact and

seeding possibility in a period when fetal growth is already advanced. This hypothesis needs

to be confirmed by further studies. Our results indeed highlight the importance of a proper

maternal nutrition, low in SFA and with a high content of fiber and prebiotic oligosaccharides,

starting from early pregnancy and probably even before gestation, in order to favorably modu-

late the offspring microbiota.

Many other factors have been reported to influence and shape the neonatal microbiota dur-

ing intrauterine life [62–63], among which those that are more frequently implicated are

maternal glycemic status [24], weight gain during pregnancy [64], pre-pregnancy BMI [64–

65], and antibiotic use [66]. We failed to demonstrate any associations between maternal

anthropometric indexes with the offspring microbiota composition, indeed the insulin resis-

tance and hyperglycemia of our participants, all suffering from GDM, may have obscured

these relationships. Furthermore, other studies did not show relationships between maternal

BMI or clinical characteristics and the infant microbiota composition [24–25].

We found an inverse association between Clostridiales and HbA1c changes across preg-

nancy. The Clostridiales order includes several genera and in particular Roseburia and
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Faecalibacterium prausnitzii, both butyrate-producing bacteria with beneficial functions,

which have been found to be reduced in GDM women [15,18,22].

The microbiota of our GDM offspring did not meaningfully vary according to the way of

delivery. Contrasting data are available about this topic, since a different microbial pattern

[43,67–69] or no differences [8,24,36] have been reported between C-section-delivered infants

and vaginally-delivered infants. It could be hypothesized that the exposure to an adverse envi-

ronment in our GDM offspring could have had a major role on their gut microbiota, partly

overshadowing the effects of the exposure during birth. Furthermore, the influence of delivery

mode on the infant microbiota rapidly decline after delivery [40,70] and is quickly overridden

by the role of lactation [39,71–72].

A clear separation of infant microbiota according to the type of feeding (breast milk vs for-

mula) was evident, as previously reported [5,73]. In particular, our formula-fed infants showed

increased microbial complexity and levels of strict anaerobes and facultative anaerobes, and

higher abundance of Firmicutes, such as Clostridium, Streptococcus and Staphylococcus, in line

with literature [2,70,74–75]. On the other hand, our breastfed infants showed a less complex

microbiota with higher abundance of Proteobacteria and Actinobacteria, being the latter

mainly derived from the Bifidobacterium genus that resulted to be strongly associated with

breastfeeding, accordingly with most studies [2,75–78]. The higher abundance of Bifidobacter-
ium in breast-fed infants can be explained by the presence of human milk oligosaccharides

(HMOs), sugar polymers with prebiotic effects that promote the growth of specific microbial

communities, including Bifidobacterium spp. with beneficial protective effects on the infant

health [79–81]. A higher, though not significantly different abundance of Proteobacteria was

evident in our breast-fed infants when compared to formula-fed infants. Literature is discor-

dant on this topic, since either a higher abundance of Proteobacteria, in particular of Entero-
bacteriaceae, has been reported in formula-fed infants [82] or the opposite was observed, in

particular a decrease in the relative abundance of Proteobacteria in non-breast-fed vs breast-

fed infants [83]. Differences in breastmilk microbiota and HMOs content, maternal diet and

type of formula milk used across populations might be responsible for these heterogeneous

results.

A possible vertical mother-to-child transmission of maternal gut bacteria has already

been reported, even if, to date, certainty about the way of intrauterine microbial acquisition

is lacking [37,84–85]. Besides breastfeeding and vaginal microbiota, also placenta and amni-

otic fluid have been reported to be a vehicle for this transmission [22,86]. By using the oligo-

type pipeline, the transmission of different sub-OTUs from our mothers to their infants was

observed in line with data of a recent metagenomic study confirming that mother’s domi-

nant strains were transmitted to their children [42]. In particular, we have found a few

Bacteroides and Blautia oligotypes significantly shared by the GDM mothers and their off-

spring, suggesting a maternal microbial imprinting. On the other hand, the infant Bifidobac-
terium oligotypes of the newborns were not present in the feces of the GDM women, and

this directs towards a post-natal acquisition. Indeed, the infant Bifidobacteria mostly derive

from breast-feeding, being either isolated from human milk and vertically transmitted [86–

87] or induced by the milk prebiotic HMO [88]. The Bifidobacterium oligotypes were highly

different among infants but only one third of them was breastfed and the human milk has a

heterogeneous composition and contains variable amounts of glycans and bifidogenic oligo-

saccharides [72,89].

In conclusion, the gut microbiota changes might be one of the conditions determining the

increased metabolic risk of the GDM offspring with both pre and postnatal effects, since in

utero exposure to maternal nutrition and dysmetabolic conditions, and post-natal breastfeed-

ing can both modulate the offspring microbial community.
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Several limitations of the present study should be recognized. The sample size was low,

the standard errors were wide, and we could analyze the fecal samples of only 70.7% of the

offspring of the initially enrolled women. Therefore, we might not have detected modest differ-

ences in bacterial composition. Many associations that we found to be not statistically signifi-

cant, could have become so if we had analyzed a larger sample. However, the post-hoc power

was 0.80 with α = 0.05; furthermore, we have set-up a lower p-value cut-off value (p<0.002) as

statistically significant. In doing so, we have considered only the strongest associations; how-

ever, we cannot exclude the possibility that a type II error could have occurred.

Infant fecal samples were collected between the 3rd and the 5th days of life. We cannot

exclude that the difference of a few days could have influenced the results due to the high insta-

bility of the infant microbiota.

Conclusions

Early maternal eating habits and breastfeeding may have a significant influence on the fetal gut

microbiota composition of infants from GDM women. These results are worthy to be repli-

cated in larger studies owing to their potential practical implications on the health of future

generations.
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nez E. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during

the first month of life. PLoS One 2013, 8, e66986. https://doi.org/10.1371/journal.pone.0066986 PMID:

23840569
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