
Trends in Cancer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin
Opinion
Immunogenomics of Colorectal Tumors: Facts
and Hypotheses on an Evolving Saga
Irene Catalano,1,2,3 Elena Grassi,2,3 Andrea Bertotti,1,2 and Livio Trusolino1,2,*
Highlights
Different mutational burden only

partially explains the different

response of MSI and MSS CRCs to

immunotherapy.

Neoantigen load, as measured us-

ing available prediction algorithms,

is not sufficiently accurate for im-

plementation into clinical decision

making.

Abundant immune infiltration in the

tumor tissue is likely to have
Immunotherapy with immune checkpoint inhibitors is an approved treatment option for a sub-

population of patients with colorectal cancers that display microsatellite instability. However,

not all individuals within this subgroup respond to immunotherapy, and molecular biomarkers

for effective patient stratification are still lacking. In this opinion article, we provide an overview

of the different biological parameters that contribute to rendering colorectal cancers withmicro-

satellite instability potentially sensitive to immunotherapy. We critically discuss the reasons why

such parameters have limited predictive value and the implications therein.We also consider that

a more informed knowledge of response determinants in this tumor subtype could help under-

stand themechanisms of immunotherapy resistance in microsatellite stable tumors.We conclude

that the dynamic nature of the interactions between cancer and immune cells complicates

conventional biomarker development and argue that a new generation of adaptive metrics,

borrowed from evolutionary genetics, may improve the effectiveness and reliability of clinical

decision making.
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high prognostic value, but not an

equally high predictive value

in terms of response to

immunotherapy.

The intrinsic characteristics of MSI

and MSS CRCs determine differ-

ences in their evolutionary paths,

which inevitably influence the way

the immune system sculpts tumor

clonal and subclonal dynamics.
Immunotherapy in Colorectal Cancer (CRC): Appearances Can Be Deceiving

Cancer cells produce mutated antigens, neoantigens (see Glossary), that are captured by and pre-

sented at the surface of dendritic cells, in association with major histocompatibility complex (MHC)

molecules. Dendritic cells deploy their cargo of tumor neoantigens to prime CD4+ T helper cells

and to trigger the activation of CD8+ cytotoxic T cells, which travel to the tumor. Upon infiltration

within the tumor microenvironment, activated cytotoxic T cells bind to the cancer cells and destroy

them by inducing apoptosis. Cancer cells can forestall this immune attack by expressing PD-L1, a

membrane-bound ligand that interacts with the PD-1 receptor exposed on effector T cells and, by do-

ing so, prompts T cell inactivation. Antibodies against PD-L1 or PD-1 intercept this inhibitory immune

checkpoint and re-engage immune-mediated cancer cell killing [1].

On the above premises, response to PD-L1 or PD-1 targeted agents is expected to occur in tumors

that: (i) contain many neoantigens, (ii) display an abundance of immune infiltrates, and (iii) express

high levels of PD-L1. This line of thinking offers a straightforward explanation to why immunotherapy

is specifically active in CRC with microsatellite instability (MSI); the DNA mismatch repair deficiency

that typifies such tumors makes cancer cells unable to correct errors that occur at microsatellite re-

gions during physiological DNA replication, thus favoring the accumulation of DNA mutations that

are likely to give rise to a great amount of immunogenic neoantigens [2–4] (Figure 1). Of note, MSI tu-

mors carry a prevalence of frame-shift mutations, which normally lead to a variably long string of newly

introduced amino acids before the DNA sequence runs into a stop codon. As such, frame-shift muta-

tions are predicted to be more antigenic than single nucleotide variations, which generate single

(hence, more neutral) amino acid substitutions [5]. Notwithstanding their immunostimulatory make-

up, only approximately 50% of MSI CRC tumors regress on treatment with immune checkpoint inhib-

itors (ICIs) [3]. Fromanopposite and complementary perspective,microsatellite stable (MSS) CRCs are

almost invariably refractory to immunotherapy. Still, they often exhibit large immune infiltrates [6,7],

may be composed of cancer cells with high PD-L1 expression [8], and may have a mutational burden

that, albeit less considerable than that borne by MSI cases, is not overtly different from that harbored

by other cancer types that respond better to ICIs [9]. Collectively, these observations underscore the

complexity of tumor susceptibility to immunotherapy and suggest that mechanisms of immune

evasion occur even when T cell stimulation is, in principle, resurrected by checkpoint blockade.

Here, we discuss how different CRC genomic features can shape the tumor immune contexture

and, in turn, how the immunemicroenvironment can influence the genetic composition of cancer cells.
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Figure 1. The Interplay between Cancer Cells and Immune Cells Evolves over Time in Different Contexts

and Impacts the Efficacy of Immunotherapy.

A tumor in a hypothetical initial state characterized by a given mutational burden, neoantigen load, immune

infiltrate, and immunoediting score, can follow different paths. (i) The selective pressure applied by the active

immune infiltrate reduces the ratio between the observed neoepitopes and the expected ones

(immunoediting). The presence of an active infiltrate is assumed to be a permissive ground for response to

immunotherapy but timing should be accurate because immunoediting, at its limit, could theoretically abrogate

immunogenicity. (ii) Immune desertification reduces the amount of immune infiltrate and thus does not affect

the representation of neoantigens with respect to the total mutational burden. In this situation, immunotherapy

could hardly be beneficial. (iii) Tumors with a hypermutator phenotype due to deficient mismatch repair (dMMR)

produce more neoantigens and have more abundant immune infiltrates. This should sensitize them to

immunotherapy. (iv) An antigen dosage imbalance due to chromosomal instability (CIN) can result in loss of

genomic segments carrying immunogenic clonal mutations and/or in preferential HLA binding of self-peptides

over neoepitopes (Figure 2). This reduces the relative number of expressed neoantigens, even in the presence

of a high mutational burden, leading to less infiltrate. The immunoediting score formally does not account for

the expression of neoantigens, so in this case it will not change. Given the reduction in neoantigenic load,

immunotherapy is likely to be ineffective. In reality, all these mechanisms can coexist and coevolve along time,

making it difficult to find a single, static, predictive biomarker for immunotherapy response.

Glossary
Bayesian inference: statistical
inference method based on the
Bayes’ theorem, which defines the
probability of an event using prior
knowledge on the probability of
related events.
CD3: a T cell co-receptor involved
in the activation of naı̈ve CD8+

cytotoxic T cells and naı̈ve CD4+ T
helper cells. It is a common
immunohistochemical marker for
all T cells.
CD4: a co-receptor for the T cell
receptor that binds the invariant
part of class II MHC proteins on
antigen-presenting cells. It is ex-
pressed by T helper cells.
CD8: a co-receptor for the T cell
receptor that binds the invariant
part of class I MHC protein on
cells. It is expressed by cytotoxic T
lymphocytes.
Greedy algorithms: heuristic al-
gorithms that search for the global
optimal solution with a stepwise
exploration of the solution spaces
and, at each step, make the local
best choice.
Haplotype: a set of alleles clus-
tered on the same chromosome
and inherited together.
HLA: human leukocyte antigen
system, the gene complex en-
coding the major histocompati-
bility complex (MHC) proteins in
humans.
IFNg: an immunoregulatory,
proinflammatory cytokine pro-
duced predominantly by natural
killer cells and macrophages as
part of the innate immune
response, and by CD4+ Th1 and
CD8+ cytotoxic effector T cells.
IFNg activates macrophages and
stimulates the surface expression
of class I and class II MHC
molecules.
Integer programming: an optimi-
zation problem where variables
are restricted to integers to find a
solution that minimizes or maxi-
mizes a given expression and re-
spects some mathematical
constraints.
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Our considerations provide a perspective on both the opportunities and the hurdles afforded by

coupling genomic analyses with the assessment of immune cell representation and function in CRC.
MHC: major histocompatibility
complex, the genetic region en-
coding molecules involved in an-
tigen presentation to T cells. Class
I MHC molecules, expressed by
essentially all nucleated cells, bind
and present eight to ten amino
acid peptides to CD8+ cells. Class
II MHC proteins, expressed
primarily by professional
Tumor Mutational Burden and Neoantigen Load: The Importance of Being
Exposed

Preclinical studies have demonstrated that PD-1/PD-L1 blockade cannot unleash antitumor T cell re-

sponses in the absence of fully primed and committed antigen-specific T cells [10,11]. But where are

these antigens from? Each tumor mutation, if not synonymous, can lead to the production of an

altered protein product, which, as such, is entitled to potentially act as a neoantigen. By this

reasoning, the mutational burden of a tumor could be considered as a surrogate of its antigenicity,
780 Trends in Cancer, December 2019, Vol. 5, No. 12



antigen-presenting cells such as
dendritic cells and macrophages,
bind and present 13–25 amino
acid peptides to CD4+ T cells.
Neoantigen: a newly expressed
tumor antigen that arises from
genetic alterations in tumor cells
and therefore is not present in
normal cells.
Neoepitope: the part of a neo-
antigen that is specifically recog-
nized by an antigen receptor.
Optimization problem: the prob-
lem of finding the best solution
from the set of possible solutions
that satisfies all constraints.
Th1 cells: a differentiation state of
CD4+ T effector cells character-
ized by production of IFNg (and
other cytokines) upon T cell acti-
vation and clonal expansion.
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based on the so-called ‘antigenic roulette’ theory whereby the probability of developing ‘winning

neoantigens’ increases proportionally to the extent of mutational burden [12]. Assessing the muta-

tional burden could thus give a measure of how aggressively a tumor would be attacked by an active

immune system, once suppressive brakes such as checkpoints molecules are pharmacologically

neutralized; in other words, tumor mutational burden could be interpreted as a biomarker of immu-

notherapy sensitivity.

The correlation between tumor mutational burden and response to checkpoint inhibitors has been

observed in different tumor settings [13,14] and has also received causal validation experimentally;

for example, artificially enhancing themutational burden in a CRC cell line through clustered regularly

interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9)-based

knockout of MLH1, a mismatch repair gene involved in correcting DNA replication errors, heavily

sensitized to immunotherapy in mouse models [15]. However, the clinical applicability of this associ-

ation cannot be generalized. In a recent meta-analysis of 27 different tumor types, mutational burden

has been found to justify only half of the differences observed in the objective response rate across

various cancers [9]; many tumor subtypes show a response to immunotherapy that is better than

would be predicted by mutational burden and others have a response that is lower than would be

predicted. The latter scenario paradigmatically applies to MSS CRC, in which the median number

of coding somatic mutations per megabase (a classical definition of tumor mutational burden) is

similar to that of renal-cell carcinoma and higher than that of mesothelioma and sarcoma; nonethe-

less, the response of MSS CRC to ICIs hovers around 0.5%, whilst it ranges between 10% and 25% in

the other settings [9]. This discrepancy suggests that MSS CRC tumors have a proclivity for conveying

immune suppressive cues that are not sufficiently antagonized by immunotherapy (Box 1). In general,

the limited correlation between tumor mutational burden and immunotherapy sensitivity translates

into a practical difficulty in defining thresholds that enable univocal patient stratification, with hetero-

geneous cutoffs proposed in different studies [16,17].

Tumor mutational burden may be inadequate in predicting immunotherapy sensitivity because it

only partially contributes to tumor neoantigen load. For a somatic DNA variant to turn into a neo-

antigen, it must be transcribed, translated, processed to be loaded onto MHC molecules, and

eventually recognized by a T cell receptor. This process is heavily influenced by how much the pro-

tein product differs from its wild type counterpart and by the HLA haplotype of the individual pa-

tients, which determines if and with what affinity the presentation of the antigen will occur (Box 2).

Copious HLA-binding prediction tools, mainly focused on class I MHC binders, are currently avail-

able. Because these packages have been developed using supervised learning approaches trained

on mass spectrometry experiments or protein structure and docking predictors [18], their output is

typically constituted by a number of candidates that vastly exceeds the representation of ‘real’ neo-

antigens capable of triggering functional antitumor responses in patients [19–24]. The suboptimal

performance of such algorithms hampers their implementation as neoepitope prediction tools for

routine treatment decisions.

Other parameters should also be taken into account for the evaluation of the quality of a neoantigen.

There is increasing evidence that neoantigens derived from clonal mutations or from tumors with low

levels of heterogeneity (thus present in a substantial fraction of cells) may elicit more effective im-

mune responses than neoantigens derived from subclonal mutations [25,26]. This notion may have

profound implications in the context of MSI CRC. On the one hand, the genetic instability inherent

in this tumor subtypemakes it prone to continuously produce potential neoantigens [27]; on the other

hand, dynamic neoantigen generation inevitably introduces a certain extent of subclonal diversity,

which could penalize immune stimulation. This assumption may account for the poor response to

immunotherapy displayed by a fraction of MSI CRCs. Tumors can also fail to present potentially

immunogenic neoepitopes, commonly due to the loss of b2-microglobulin (a subunit of class I

MHC) or the disruption of HLA alleles [28]. The fact that not all DNA mutations translate into neoan-

tigens; the observation that neoantigen frequency influences immunogenicity; and finally, the possi-

bility for cancer cells to disrupt the antigen presentation machinery, all attest to the shortcomings of

using conventional genomic profiling for immunotherapy response prediction.
Trends in Cancer, December 2019, Vol. 5, No. 12 781



Box 1. Different Routes for Immune Desertification

Tumors can proactively contrast immune cell infiltration [55]. In some cases, T cells are observed at the tumor

margins but do not penetrate the tumor tissue. Therefore, a potentially effective T cell-mediated immune

response is aborted by physical exclusion. In other cases, the tumor mass displays only a low degree of immune

infiltration, likely due to the presence of an immune-suppressive microenvironment that prevents further

recruitment and expansion of immune cells (Figure 1). With the exception of those with a high Immunoscore,

MSS CRCs are a prominent example of these so-called immune desert tumors; quite strikingly, MSS CRC tu-

mors may show even lower levels of cytotoxic T cell activation than the normal colonic mucosa [8].

One frequent cause of absent or sparse intratumoral T cell content is impaired immune cell extravasation

through changes in the cellular and molecular composition of the tumor-associated vasculature [56]. Another

route for manifestation of the T cell exclusion phenotype is activation of the b-catenin pathway, which results in

transcriptional repression of immunostimulatory chemokines. The limited availability of such chemokines

lessens the recruitment of dendritic cells and, in turn, reduces the attraction and activation of CD8+ cytotoxic

T cells [57]. This mechanism is of particular relevance in the CRC setting, in which b-catenin is frequently acti-

vated on a genetic basis. In particular, biallelic loss of APC (a gene that inhibits b-catenin activity) has been de-

tected in 62% of MSS cases and 20% of MSI cases, where it is typically associated with downregulation of T cell

infiltration [28,58]. The lower incidence of APCmutations in MSI tumors may account, among other factors, for

their higher susceptibility to immunotherapy.

Tumors can also oppose immune cell deployment through the production of soluble factors that thwart anti-

tumor immune responses [55]. In mouse models of MSS CRC, stromal fibroblasts have been found to secrete

copious amounts of TGFb, which blunts the recruitment and/or activation of CD3+ and CD4+ cells and down-

regulates the expression of IFNg effector molecules [46,47]. High TGFb levels correlate with transcriptional

traits of abrogated T cell differentiation in MSS CRC clinical gene expression datasets [46], suggesting that

TGFb-mediated immune suppression also occurs in humans. Interestingly, MSS CRC tumors that become resis-

tant to the EGFR antibody cetuximab (a standard-of-care therapy in patients with metastatic disease) feature a

higher content of stromal TGFb but also, somehow paradoxically, a more abundant infiltration of dendritic cells

and lymphocytes compared with their cetuximab-naı̈ve counterparts [49]. Whether these contrasting pheno-

types represent a synchronous balanced reaction to EGFR inhibition, or are part of a sequential adaptation

program in which the immunostimulatory switch precedes and is counteracted by immune suppressive stromal

remodeling, remains to be determined [59].

Trends in Cancer
Immune Infiltrate in CRC: Enough Is Not Enough

A correlation between neoantigen load and immune infiltrate has been repeatedly documented

[29,30]. On this basis, it is not coincidental that MSI CRCs, with their high mutational burden and anti-

genic load, show an active immune microenvironment [6,31,32]. Both gene expression analyses and

histopathological immunophenotyping have demonstrated that MSI CRCs exhibit higher densities of

Th1 cells with massive IFNg production, effector-memory T cells, and in situ proliferating T cells than

their MSS counterparts [6,33]. Moreover, MSI CRCs are frequently infiltrated with mutation-specific

cytotoxic T cells, confirming the presence of active neoantigens. Efforts have been made to develop

a universal standardized scoring system, named Immunoscore, for the categorization of the immune

infiltrate [7]. This method, which is based on the quantification of two lymphocyte populations (CD3

and CD8) both at the tumor center and at the invasive margins, has proven to explain some biological

features of colorectal tumors. MSI CRCs usually have a more favorable prognosis compared with MSS

tumors and display a high Immunoscore in the majority of cases. A subgroup of MSS CRCs with good

prognosis also have a high Immunoscore. Hence, Immunoscore shows an advantage over MSI status

as a biomarker of recurrence and survival, given that it also predicts outcome in MSS CRC patients [6].

The higher prognostic significance of Immunoscore compared with MSI status does not reflect into a

higher predictive value for stratifying patients likely to respond to immunotherapy. The range of MSS

CRCs with high Immunoscore varies from 21% to 50% [6,7], but a comparable response rate to ICIs has

never been registered in individuals with such tumors. Thus, a high Immunoscore appears to be indic-

ative of an immune contexture that has sufficient strength to mitigate tumor progression, but not

enough competence to unleash the potential of immune checkpoint blockade. It should be also
782 Trends in Cancer, December 2019, Vol. 5, No. 12



Box 2. HLA Typing Algorithms

Determining HLA alleles is necessary to identify which products of missense somatic mutations can be effi-

ciently presented by MHC molecules, a prerequisite for mutant peptides to become potential neoantigens.

Pioneer methodologies were based on restriction fragment length polymorphism (i.e., on the use of restriction

enzymes recognizing polymorphic restriction sites in linkage disequilibrium with different HLA alleles) and on

deconvolution of the individual alleles using lengths of the digested fragments [60]. Now, next-generation

sequencing (NGS) enables identification of somatic mutations and HLA alleles with a single assay. Given the

clinical relevance of accurate HLA typing, not only for cancer immunotherapy but also in other clinical settings,

such as transplantation medicine, several efforts have been devoted to obtaining an NGS-tailored protocol

that reaches the same performance as sequence-based typing, the clinical gold standard. This assay, which

is based on DNA PCR amplification and Sanger sequencing, is afflicted with high costs, labor-intensiveness,

and a certain degree of inaccuracy [61].

NGS algorithms are divided into two main categories: those that align reads on a reference made of all the

known variable alleles of MHC loci, obtained from the IMGT/HLA database [62]; and those that perform a

de novo assembly of the reads before comparing them with the known alleles. All algorithms are meant to

find the alleles with the highest probability of having generated the sequenced reads, employing Bayesian

inference, greedy algorithms, or integer programming to solve this optimization problem. Finding the right

solution is, however, a challenge, owing to similarities of the loci sequences, our still incomplete knowledge of

all the existing HLA alleles, and HLA codominance in heterozygous individuals. A recent study has bench-

marked the performance of several HLA typing methodologies [61]; the median success rate, defined as the

number of alleles with correct determination divided by the number of all determined alleles, is 61% (range,

12%–99%). The best performing tools are OptiType, an alignment-based approach that includes information

from intron sequences (at present, it is only available for class I MHC) [63]; and PHLAT, again an alignment-

based method that considers the distribution of HLA alleles in the human population when evaluating those

that most likely have originated a given set of reads [64]. An extensive evaluation of all these approaches in

the context of cancer is still missing, so it remains unclear whether complex scenarios, for example, somatic

mutations and chromosomal rearrangements that involve HLA loci, will be properly addressed with the existing

packages.
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considered that solid tumors may display intralesional spatial heterogeneity for markers of active im-

mune infiltration, as reported in non-small cell lung cancer [25]. If also present in CRC, this character-

istic might explain the poor predictive power of Immunoscore, which is inevitably influenced by the

selection bias of tissue sampling.
Immune Evasion: Showing Off Does Not Pay Off

The fact that not all tumors with an abundant and active immune infiltrate respond to ICIs highlights how

preponderant the mechanisms of immune evasion are in cancer. This is not surprising, considering the

high grade of plasticity that enables cancer cells to adapt to and survive adversemicroenvironmental con-

ditions. The interaction between the immune system and cancer cells has its inception in the early stages

on neoplastic transformation and develops along the tumor natural history through a continuous, dy-

namic, and evolving course of events. This interaction is classically divided into three subsequent phases

[34]: (i) elimination, when premalignant lesions are culled by effector immune cells that recognize tumor

neoantigens; (ii) equilibrium, a variably lasting condition in which the growth of incipient tumors is coun-

terbalanced by an ongoing anticancer immune response that is steadily becoming ineffective; (iii) escape,

the moment when neoplastic cells elude immune surveillance to establish progressive lesions. Hence, by

definition, a cancer that becomes clinically manifest in an immunocompetent subject must have imple-

mented some mechanisms to evade immune pressure.

The incessant sculpting of cancer cells by the immune system is defined as genetic immunoediting, a

Darwinian evolutionary process whereby cell clones expressing antigenic neoepitopes are dramati-

cally depleted while poorly immunogenic, hardly recognizable cancer cell subpopulations become

positively selected (Figure 1). The tumor cell population adjustment caused by genetic immunoedit-

ing can be measured analytically as a reduction in the ratio between observed and expected
Trends in Cancer, December 2019, Vol. 5, No. 12 783
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neoantigen rates (‘immunoediting score’) [8]. The weight of genetic immunoediting in shaping tumor

evolution can be captured by the recently described correlation between class I/II MHC genotypes

and oncogenic mutational patterns [35,36]. Mutations that are poorly presented by MHC molecules

have been shown to occur at a higher frequency in tumors, most probably because they have less

immunological relevance. Similarly, disruption of HLA alleles is associated with an enrichment of pre-

dicted antigens binding the HLA lost allele, likely because peptides that are no longer presented

evade negative selective pressure [37]. Thanks to the availability of scores that measure the likelihood

and efficacy of peptide presentation, built on in silico tools that predict peptide binding affinities, the

assessment of interindividual variation in HLA genotypes can provide information on the prevalence

of mutations in cancer at the single-patient level [38].

In the case of CRC, the longitudinal analysis of multiple metastases in two patients has revealed that im-

munoedited tumor clones tend to be eliminated over time [39]. Albeit counterintuitive, this finding could

beexplainedby considering that immunoeditedcancer cell subpopulations are remnants of thepersisting

activity of a ‘hot’ immune microenvironment, which can still target weakly immunogenic cell variants as

soon as they accrue novel neoantigens as a consequence of DNA replication. Besides being molded by

time, the dynamic interplay between CRC cells and the immune system also experiences spatial diversifi-

cation; indeed, independentmetastatic lesions in the samepatientwere found todisplayaheterogeneous

repertoire of neoantigenic subclones and different immunoediting scores [39].

Genetic immunoediting appears to be a relatively commonhallmark of CRC, but it is less prevalent inMSS

tumors [40]. One possibility is that the low absolute number of accumulated mutations in MSS tumors

makes it difficult to accurately calculate the immunoediting score. Another interpretation stems from

the notion, discussed above, that heterogeneous tumors with multiple subclonal neoantigens are less

immunogenic than tumors with a dominance of clonal neoantigens [25,26]. Chromosomal instability

(CIN), which typifies MSS CRC, is characterized by widespread somatic copy number alterations (SCNAs)

that may contribute to mutational/neoantigen heterogeneity, thus rendering these tumors more resilient

to the immune attack (Figures 1 and 2A). In CIN cases of lung cancer, for example, more than 13% of sub-

clonal mutations (range, 0%–56%) are due to SCNA loss of genomic segments carrying clonal mutations

[41]. This result has been confirmed in a recent study demonstrating that 50% of lung cancers show evi-

dence of at least one historically clonal neoantigen being subclonally lost owing to subclonal copy num-

ber events [42]. In addition, high levels of arm and chromosome SCNAs could cause a general dosage

imbalance against potential neoantigens, or neoantigen competitive disadvantage for loading onto

MHC compared with the great amount of self-peptides without de novo mutations (Figures 1 and 2B).

All these mechanisms afford cancer cells with the ability to survive immune attack, even in the presence

of an abundant immune infiltrate. Other routes that tumors can take to evade immune surveillance rely on

the physical or functional exclusion of immune cells from the tumor tissue, either through production of

immune suppressive cues by stromal and inflammatory cells or because of architectural abnormalities in

the vasculature (Box 1).
Therapeutic Implications: Some Like It Hot

All the above considerations highlight the pervasiveness of resistance to immunotherapy, but they

also offer some hints on potential mechanisms to improve therapeutic response. One possibility to

turn immune ‘cold’ tumors into ‘hot’ tumors is to enhance stromal inflammation. For instance, exper-

iments in a number of preclinical models have shown that antiangiogenic agents can sensitize to PD-1

checkpoint blockade by promoting tumor necrosis (with the ensuing potentiation of antigen presen-

tation by intratumoral phagocytes) and by facilitating the extravasation of effector T cells as a conse-

quence of therapy-induced blood vessel normalization [43]. However, this approach is likely to be

unproductive in CRC, as CRC liver metastases typically become vascularized by the nonangiogenic

mechanism of vessel cooption (a process whereby tumors incorporate pre-existing vessels from

the surrounding tissues rather than stimulating new vessel sprouting) [44]. Depletion of protumori-

genic macrophages [45] and inhibition of TGFb [46,47] have been also demonstrated to boost im-

mune cell activation in CRC xenografts or genetically modified mice. In a complementary perspec-

tive, weakly antigenic CRC cell lines can become more immunogenic when treated with DNA
784 Trends in Cancer, December 2019, Vol. 5, No. 12
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Figure 2. Somatic Copy Number Alterations (SCNAs) Affect Clonality and Dosage Imbalance of

Neoepitopes versus Self-Peptides.

(A) A focal deletion in a DNA locus harboring a previously clonal, and possibly antigenic, somatic mutation reduces

the fraction of cells with that mutation. Subclonal mutations are less immunogenic than clonal mutations. (B) Arm or

whole chromosome amplifications can create an imbalance in the expression of germline versus mutated alleles

(encoding self-epitopes and neoepitopes, respectively), lowering the relative number of neoepitopes presented

to the immune system.
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mutagenic agents, such as temozolomide [15], or with drugs that trigger immunogenic cell death (a

modality of cancer cell death that renders dying cells visible to immune cells). In this context, the

EGFR antibody cetuximab is known to induce immunogenic cell death in CRC cells [48]; accordingly,

cetuximab-treated CRC tumors in metastatic patients have more abundant lymphocytic infiltration

than the treatment-naı̈ve counterparts [49] (Box 1).

Tumors that initially respond to ICIs may become insensitive to therapy after a certain amount of time

(a condition known as secondary, or acquired, resistance). Intriguingly, some of the mechanisms respon-

sible for intrinsic refractorinessmay be also involved in the onset of secondary resistance, including loss of

expression of PD-1/PD-L1, class I MHC, or IFNg [50]. Protein downregulation can be due to promoter

methylation [51,52], a notion that has spurred the design of several clinical trials with ICIs and epigenetic

drugs [52]. While the majority of such trials are being conducted in melanoma patients, some are recruit-

ing subjects with various types of advanced solid tumors. It will be interesting to see whether these

combinations will be active in CRC.
Concluding Remarks

The criteria proposed so far for the enrichment of patients potentially responsive to immunotherapy are

based on static parameters, extrapolated from a freeze-frame of the tumor along its natural history: the

mutational load of a biopsy, the quality and quantity of the immune infiltrate, or the expression of immune

checkpoints in an archival surgical sample. The information obtained from such an approach, although

easily amenable toclinical implementation, doesnotgrasp thedynamicnatureof the interactionsbetween
Trends in Cancer, December 2019, Vol. 5, No. 12 785



Outstanding Questions

Is the identification of static and

generalizable biomarkers of

response to immunotherapy

feasible?

How can we bridge the gap be-

tween predicted neoantigens and

those that are actually functional?

Why do some MSI CRCs not

respond to immunotherapy and to

what extent can this resistance

be related to their high

heterogeneity?

Why is the response of MSS CRCs

to immunotherapy worse than any

biologically sound parameter

would predict and to what extent

can this resistance be attributed to

their SCNAs?

Is it possible to experimentally and

computationally model the coevo-

lution of cancer cells and the im-

mune system in order to obtain a

time- and space-resolved

illustration of tumor progression

from a global immunogenomic

perspective?
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the tumor ecosystem and organismal immunity and limits the biological understanding of how these two

entities coevolve from cancer onset to full-blown progression. A time-resolved picture of the landscape of

mutations and neoantigens, coupled with an appraisal of the specificity and strength of the immune

response as it impacts upon the tumor, would be key to address the many open issues that complicate

our interpretation of sensitivity and resistance to immunotherapy. This knowledge would be particularly

crucial for CRC, a tumor settingwhere the different evolutionary paths ofMSI andMSS subtypes inevitably

lead to divergent dynamic interactions with the immune system over time (see Outstanding Questions).

Methodologically, an endeavor of this kind implies the development of both experimental and computa-

tional tools. Cocultures of primary tumor epithelia en blocwith endogenous, syngeneic tumor-infiltrating

lymphocytes are feasible and, at least in principle, upgradable into even more holistic models by intro-

ducingadditional immunecomponents from lymphnodesor blood [53]. The availability of such cocultures

is expected to streamline future investigations by providing a manipulatable platform to explore hetero-

typic crosstalks basally and under drug pressure. Analytical metrics to study neoantigen subclonal dy-

namics are also emerging and can be further improved by capitalizing on the wealth of algorithms that

are routinely employed for delineating the clonal and mutational evolution spectra of cancer cells. At

the clinical level, longitudinal monitoring of circulating tumor DNA (ctDNA) may provide important infor-

mation on how tumor mutational burden and neoepitope prevalence change along time spontaneously

and over the course of immunotherapy [54]; moreover, the current availability of technologies tomeasure

ctDNAmethylationpatternswill proveuseful todetectandstudyepigeneticmechanismsof resistance [54].

Ultimately, experimental, analytical, and clinical models that incorporate the evolutionary constraints

imposed by the immune microenvironment in time and space will catalyze future efforts to disentangle

the links between tumor genetic instability and heterogeneity, dynamic neoantigen production, and im-

munoediting. This knowledge will be a prelude to actualizing the promise of precision immunotherapy.
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