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Abstract: The quality assessment of the green coffee that you will go to buy cannot be disregarded from
a sensory evaluation, although this practice is time consuming and requires a trained professional
panel. This study aims to investigate both the potential and the limits of the direct headspace
solid phase microextraction, mass spectrometry electronic nose technique (HS-SPME-MS or MS-EN)
combined with chemometrics for use as an objective, diagnostic and high-throughput technique to be
used as an analytical decision maker to predict the in-cup coffee sensory quality of incoming raw beans.
The challenge of this study lies in the ability of the analytical approach to predict the sensory qualities
of very different coffee types, as is usual in industry for the qualification and selection of incoming
coffees. Coffees have been analysed using HS-SPME-MS and sensory analyses. The mass spectral
fingerprints (MS-EN data) obtained were elaborated using: (i) unsupervised principal component
analysis (PCA); (ii) supervised partial least square discriminant analysis (PLS-DA) to select the ions
that are most related to the sensory notes investigated; and (iii) cross-validated partial least square
regression (PLS), to predict the sensory attribute in new samples. The regression models were built
with a training set of 150 coffee samples and an external test set of 34. The most reliable results were
obtained with acid, bitter, spicy and aromatic intensity attributes. The mean error in the sensory-score
predictions on the test set with the available data always fell within a limit of ±2. The results show
that the combination of HS-SPME-MS fingerprints and chemometrics is an effective approach that can
be used as a Total Analysis System (TAS) for the high-throughput definition of in-cup coffee sensory
quality. Limitations in the method are found in the compromises that are accepted when applying
a screening method, as opposed to human evaluation, in the sensory assessment of incoming raw
material. The cost-benefit relationship of this and other screening instrumental approaches must be
considered and weighed against the advantages of the potency of human response which could thus
be better exploited in modulating blends for sensory experiences outside routine.

Keywords: HS-SPME-MS-enose; coffee; prediction of in-cup sensory quality; chemometrics

1. Introduction

Coffee is universally considered a comfort food and is widely consumed because of its particular
flavour. The flavour of coffee is the result of the transformations of the harvested bean to the final
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roasted product. The chemical composition of coffee is variable, meaning that its sensory profile can
radically change according to species, origin, year of harvest and post-harvest treatment. Roasters
therefore need to constantly control the quality of their incoming beans.

Coffee is evaluated by its visual appearance; colour, bean uniformity, shape and size, number
of “defective beans” and taste. However, coffee beans may have a pleasant aspect, but present an
unpleasant taste because of contamination and chemical modification that may have occurred during
storage, processing and transport from origin to the roaster’s warehouse. Tasting, of course, plays
a fundamental role in coffee quality evaluation, meaning that “cupping” is routinely used [1–3],
to evaluate a lot (or a crop) for blend formulation, or “single origin” coffee and ultimately also to
determine its price [4]. Nevertheless, cup tasting is time-consuming as it requires a specialised panel,
who must be trained and aligned. Furthermore, the present trend in the food industry is to move panels
from routine to the development of new finished products with given or peculiar flavour characteristics.

Flavour can be considered the signature of a product [5–8], and defining a relationship between
chemical profile and aroma sensory impact is an important challenge for both the analytical and
industrial fields, as they aim to achieve an objective and fast routine evaluation of a product with an
automatic analytical procedure [9–14].

The use of rapid techniques in coffee analysis is constantly increasing. For instance, NIRS has
been used to discriminate between coffee species and blends [15], to define the roasting degree of
coffee beans and to quantify several bioactive coffee compounds, such as caffeine, trigonelline and
chlorogenic acids and to predict sensory attributes, such as acidity, body, bitterness and the quality of
espresso coffee [16,17]. Proton transfer reaction mass spectrometry (PTR-MS) and Laser Ionisation
Mass Spectrometry (REMPI/TOFMS) have been used on-line, coupled to a Probat roaster, to control the
roasting process, from volatile formation, and to study the kinetics of flavour development [18–23].

E-nose technology based on an array of electronic chemical sensors has also been attractive for
industry. E-noses have been used in coffee research to differentiate Robusta from Arabica beans and to
discriminate aromas via a fine-tuning process that involves altering the sensor materials [24]. The main
advantages of these technologies are their cost-effectiveness, the fact that they can be easily integrated
into a productive process, and the rapidity with which results can be obtained compared to traditional
chemical and chromatographic methods. Despite these features, only few applications in industry
have been described for these techniques, mainly because of the relatively low robustness, selectivity
and reproducibility of the sensors, the large amount of data required to calibrate instrumentation and
the resulting need for complex data analysis and algorithms [25–27].

These limits can be overcome by non-separative MS methods, better known as mass
spectrometry-based electronic noses or MS-EN, which, when combined with headspace sampling,
provides a representative, diagnostic and generalised mass spectrometric fingerprint of the volatile
fraction of a sample, without prior chromatographic separation. With this approach, each m/z ratio
acts as a “sensor” whose intensity derives from the contribution of each compound that produces
that fragment. It was introduced by Marsili in 1999 [28] to study off-flavours in milk and, since then,
has been applied in the quality control of herbs and spices, in the authentication of food, to classify
defective products, and to predict the sensory properties of food [13,29–33].

The present study applies this method to the coffee headspace, as sampled by HS-SPME,
to develop an instrumental prediction model as an analytical decision maker for routine controls to
define in-cup sensory quality in accepting incoming samples [10,12,14,34]. Coffee samples underwent
sensory evaluation via monadic profiling, according to SCA [35] protocols, and were analysed using
HS-SPME-MS in combination with multivariate statistical analysis.
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2. Results and Discussion

2.1. Sensory Analysis

Sensory data show that the scores for aroma properties were spread over the full range (scale
0–10), although the highest values were poorly represented, as expected, because of the intrinsic
characteristics of the samples, such as species, origin, primary processing, and the life-span of the
study. The standard deviations (SD) of the attributes (Table 1) are very low considering the high
numbers of both of the samples investigated (184) and judges (6). A high Coefficient of Variation (CV)
was observed for some attributes, fruity, flowery and spicy, meaning that these sensory properties
were rated as very high or very low by the panel. CV relates the SD to the mean values of the aroma
properties and provides a more representative evaluation of the importance of SD. In addition, it is a
useful measure for comparing the dispersions of two or more attributes measured on different scales.

Table 1. Descriptive statistics for the sensory attributes of coffee samples.

Attributes Mean S.D. Minimum Maximum CV

Acid 1.79 1.68 0.10 7.80 0.93
Bitter 1.50 1.70 0.20 9.00 1.14

Aromatic Intensity 6.71 1.29 1.00 10.00 0.19
Flowery 1.08 1.76 0.00 9.00 1.62
Fruity 0.69 1.49 0.00 10.00 2.16
Nutty 1.41 2.06 0.00 9.00 1.46

Woody 1.36 2.02 0.00 8.00 1.49
Spicy 0.76 1.57 0.00 8.00 2.07

Overall Quality 6.63 1.46 0.60 10.00 0.22

ANOVA analyses and a post-hoc Tukey’s test provided information on the judges’ ability to
evaluate the sensory attributes. Figure 1 shows that judge 3 does not perform similarly to the others
for the aromatic intensity coffee property, and, together with judge 2, for acid notes, while judge 2 has
a different evaluation for bitter attribute compared to the others. All judges are, however, aligned in
rating the scores of the other attributes. These two judges were therefore not taken into consideration
for the attributes in which their variance was not comparable to the others. The score averages were
used as the “main scores” for the nine attributes in the following elaborations.
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Figure 1. ANOVA and post-hoc Tukey’s test results on the ability of the judges to rate the different
attributes. The same letter means that the judges involved rate the attributes in the same way at a
confidence level of 95%.
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2.2. How a TAS System Based on the MS-Enose Works

The platform adopted allowed experiments to be run with an high throughput Total Analysis
System (TAS) [36], which consisted of an autosampler for fully automated HS-SPME sample preparation
on-line, and was directly combined to a mass spectrometer (MS), through a void column that was
thermostatted in a GC oven, whose output signal (data) was elaborated on-line and then processed
using chemometric software. The HS-SPME-MS TIC (Total ion Current) pattern is a single peak whose
mass spectrum is representative of the fingerprints of the whole coffee volatile fraction (Figure 2).
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Figure 2. Schematic representation of the Total Analysis System (TAS) system used.

The corresponding mass spectral fingerprint is highly reproducible and ideally suited for further
chemometric elaboration as it only consists of whole masses [37,38].

Compared to conventional GC-MS, mass spectral fingerprints provide total information
about each sample and may even be more helpful and meaningful, in routine control screening,
than the characterisation of each individual component in that sample. The reliability of the mass
spectral fingerprint is demonstrated by the comparison of the high degree of overlap between the
average mass profile of an Arabica volatile fraction obtained using the non-separative techniques
(HS-SPME-MS-enose) and the average total spectrum over the total analysis time from a conventional
HS-SPME-GC-MS analysis, as reported in Figure 3.
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Figure 3. Analytical output signals of an Arabica roasted coffee sample from: (a) HS-SPME-MS-enose
profile; (b) average HS-SPME-MS-enose mass spectral fingerprint that corresponds to the TIC data
from MS-enose; (c) HS-SPME-GC-MS chromatogram; (d) average HS-SPME-GC-MS mass spectral
fingerprint of the whole chromatographic profile.

2.3. Signal Processing and Chemometric Workflow

The mass spectral fingerprint encompasses all the chemical information on the volatile fraction of
an analysed sample, while diagnostic and informative fragments can be correlated to a compound or a
class of compounds. The mass fingerprint is displayed on a plot that reports the mass fragments (m/z)
within the selected mass range on the X-axis, and the ion abundances for the mass fragments on the
Y-axis (Figure 3).

The use of chemometrics to extract the significant and useful information from the complex data
matrix, however, requires the profile to be precise, in particular when data monitoring is carried out
over a long period and when a mathematical model for classification or correlation has to be generated.
The chemometric tools adopted in this study were, in sequence: (i) Principal Component Analysis
(PCA) to identify outliers; (ii) Partial Least Square Discriminant Analysis (PLS-DA) carried out on
the sensory scaled samples (low-high score range) to identify the fragment ions that are most closely
related to each sensory attribute; and (iii) Partial Least Square Regression (PLS) to correlate chemicals
to sensory attributes, and to evaluate the ability of extracted chemical variables to predict sensory
scores. The data processing work-flow is reported in Figure 4.

The consistency of the SPME fibres over time was ensured by testing six fibres of the same lot with
a text mixture, and selecting those whose responses could not be distinguished using ANOVA; their
performance was periodically monitored using the same test mixture. Before chemometric processing,
the matrix was cleaned of ground fragments that may have interfered with data elaboration, e.g., the
fragments at m/z = 44 (CO2), m/z = 73, 133, 147 and 177 (system bleeding), and m/z = 149 (derived
from phthalates). The resulting data matrix was than subjected to internal normalisation vs. the most
abundant ion (m/z 43) and standardisation using Pareto scaling [39,40].

The HS-SPME-MS pattern is informative because the intensity of each ion (m/z) derives from the
contribution of all components that present that fragment in their ionisation pattern. Chemometric
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elaboration consists of a series of steps to “extract” significant information from the MS fingerprint for
further sensory score prediction.

The data matrix from the Pareto scaling was first submitted to an unsupervised exploratory
investigation using principal component analysis (PCA) to detect sample outliers. The samples were
found to be homogeneously distributed along the first three PCs with a cumulative explained variance
of 83.15%, and the data indicated two populations of samples on the first PC that were related to the
coffee species (Figure S1 in Supplementary Material). The fragment ions that derived from the volatile
fraction therefore provided information on the chemical diversity of the investigated set of samples.

A supervised Partial Least Square Discriminant Analysis (PLS-DA) was then applied to the
reprocessed MS spectral fingerprints on selections of samples that had the highest and the lowest scores
for each sensory attribute in order to extract ions that had a high impact on sample discrimination (low
vs. high scores). A cross-validation (CV = 5) was set to run the PLS-DA. The variable importance for
projection (VIPs) scores estimate the importance of each variable in the projection that was used in
a PLS-DA model, and is often used to select variables. VIPs higher than 1 and with a low standard
deviation were considered for the extraction of the relevant ions that described each sensory attribute.
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Table 2 shows the significant ions that were selected for each sensory attribute under investigation,
together with their VIP value and standard deviation. Results show that the total number of relevant
ions is different for each considered sensory attribute and, in particular, that sensory qualities share
several ions Table 2 and Figure 5.
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Table 2. Significant ions selected from the partial least square discriminant analysis (PLS-DA) by variable importance for projection (VIP) for each sensory attribute.

Flowery Fruity Acid Bitter Nutty Spicy Woody Aromatic Intensity Overall Quality

m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD

37 2.012 0.201 42 2.060 0.197 36 1.822 0.208 37 1.751 0.171 42 2.668 0.795 96 1.839 0.175 110 1.626 0.085 100 1.819 0.262 79 2.060 0.316
42 1.967 0.184 45 1.999 0.176 37 1.814 0.201 42 1.722 0.170 61 2.266 0.557 36 1.830 0.182 36 1.612 0.114 36 1.717 0.096 37 2.054 0.265
45 1.960 0.213 46 1.887 0.188 38 1.775 0.168 45 1.714 0.180 64 2.218 0.542 37 1.824 0.189 37 1.603 0.108 37 1.717 0.118 38 1.925 0.220
56 1.953 0.196 52 1.884 0.183 45 1.769 0.212 56 1.682 0.140 66 2.003 0.751 38 1.819 0.168 42 1.602 0.109 38 1.697 0.106 39 1.858 0.296
57 1.821 0.157 54 1.877 0.304 46 1.752 0.190 57 1.667 0.079 67 1.955 0.408 45 1.800 0.144 45 1.564 0.103 39 1.666 0.113 40 1.816 0.140
59 1.795 0.349 56 1.847 0.138 56 1.703 0.211 60 1.666 0.074 72 1.954 0.452 46 1.699 0.123 56 1.549 0.109 40 1.664 0.198 41 1.781 0.258
60 1.757 0.133 57 1.826 0.172 57 1.675 0.176 62 1.659 0.103 80 1.890 0.478 50 1.681 0.224 57 1.546 0.036 41 1.664 0.269 42 1.729 0.079
61 1.755 0.139 58 1.805 0.264 60 1.655 0.165 63 1.642 0.056 93 1.868 0.480 53 1.645 0.054 60 1.529 0.049 45 1.651 0.208 44 1.696 0.255
62 1.748 0.127 60 1.787 0.197 62 1.621 0.153 64 1.632 0.088 94 1.810 0.396 55 1.609 0.074 62 1.514 0.038 48 1.634 0.164 50 1.671 0.409
63 1.734 0.113 61 1.775 0.252 63 1.610 0.141 65 1.594 0.050 95 1.693 0.527 56 1.609 0.203 63 1.512 0.074 50 1.592 0.265 51 1.655 0.370
64 1.732 0.097 62 1.754 0.184 64 1.609 0.114 66 1.591 0.185 96 1.648 0.667 57 1.575 0.180 64 1.501 0.047 51 1.584 0.130 52 1.644 0.346
65 1.716 0.169 63 1.750 0.213 65 1.608 0.178 67 1.589 0.071 100 1.646 0.674 60 1.572 0.126 65 1.497 0.053 52 1.580 0.197 53 1.641 0.286
66 1.709 0.119 64 1.731 0.129 66 1.608 0.154 74 1.580 0.045 106 1.638 0.764 61 1.532 0.166 66 1.491 0.056 53 1.548 0.145 54 1.607 0.388
67 1.688 0.261 65 1.723 0.121 67 1.597 0.132 75 1.579 0.096 107 1.629 0.609 63 1.531 0.098 67 1.489 0.047 55 1.544 0.104 55 1.596 0.279
69 1.687 0.174 66 1.697 0.315 72 1.565 0.067 76 1.564 0.206 108 1.612 0.471 64 1.530 0.067 69 1.480 0.095 57 1.525 0.152 58 1.571 0.383
72 1.673 0.173 67 1.654 0.294 74 1.557 0.198 77 1.561 0.030 109 1.567 0.493 65 1.503 0.057 72 1.480 0.075 59 1.522 0.274 59 1.562 0.092
74 1.643 0.232 74 1.647 0.279 76 1.524 0.129 78 1.534 0.107 110 1.438 0.586 66 1.497 0.160 74 1.477 0.097 60 1.517 0.194 61 1.559 0.388
75 1.612 0.291 75 1.621 0.144 77 1.511 0.097 80 1.504 0.039 114 1.429 0.719 68 1.497 0.180 75 1.471 0.068 61 1.503 0.129 67 1.551 0.223
77 1.585 0.222 76 1.618 0.153 78 1.492 0.129 89 1.477 0.076 121 1.418 0.711 69 1.493 0.075 76 1.461 0.068 68 1.492 0.197 68 1.548 0.327
78 1.578 0.259 77 1.609 0.203 79 1.492 0.101 92 1.451 0.093 122 1.382 0.613 70 1.488 0.219 77 1.451 0.077 69 1.481 0.178 69 1.533 0.253
80 1.559 0.349 78 1.585 0.146 80 1.470 0.153 93 1.423 0.061 135 1.379 0.693 72 1.478 0.119 78 1.446 0.105 70 1.468 0.230 70 1.497 0.190
89 1.512 0.415 79 1.580 0.199 91 1.464 0.143 94 1.417 0.063 136 1.357 0.494 74 1.464 0.203 80 1.435 0.101 72 1.463 0.220 71 1.478 0.128
92 1.495 0.475 80 1.565 0.344 92 1.462 0.125 95 1.417 0.049 159 1.356 0.614 75 1.445 0.250 89 1.430 0.118 73 1.462 0.190 72 1.477 0.520
93 1.487 0.285 92 1.554 0.344 93 1.435 0.096 96 1.412 0.230 160 1.327 0.645 77 1.444 0.130 91 1.425 0.110 74 1.457 0.310 75 1.450 0.107
94 1.480 0.186 93 1.487 0.365 94 1.399 0.157 100 1.399 0.074 78 1.440 0.113 92 1.419 0.115 79 1.450 0.112 78 1.416 0.363
95 1.468 0.172 94 1.435 0.252 95 1.392 0.140 104 1.394 0.063 80 1.436 0.165 93 1.418 0.122 81 1.435 0.190 80 1.409 0.433
96 1.445 0.439 95 1.372 0.383 96 1.388 0.195 105 1.392 0.045 89 1.425 0.181 94 1.417 0.045 82 1.421 0.359 81 1.386 0.436
100 1.423 0.137 96 1.366 0.237 100 1.376 0.127 106 1.374 0.075 91 1.422 0.277 95 1.405 0.108 83 1.421 0.246 82 1.352 0.198
106 1.419 0.286 103 1.354 0.330 104 1.374 0.300 107 1.366 0.116 92 1.403 0.138 96 1.401 0.157 86 1.415 0.136 83 1.340 0.291
107 1.412 0.302 104 1.316 0.205 105 1.374 0.247 108 1.362 0.162 93 1.384 0.190 100 1.396 0.059 87 1.401 0.222 86 1.338 0.405
108 1.404 0.242 105 1.287 0.170 106 1.368 0.086 109 1.350 0.225 94 1.344 0.146 104 1.392 0.126 91 1.375 0.265 87 1.317 0.297
109 1.389 0.275 106 1.285 0.182 107 1.367 0.125 110 1.347 0.114 95 1.338 0.367 105 1.378 0.072 92 1.343 0.258 88 1.295 0.280
110 1.328 0.158 107 1.254 0.158 108 1.366 0.241 117 1.340 0.129 97 1.320 0.351 106 1.369 0.066 95 1.310 0.216 94 1.277 0.272
112 1.307 0.322 108 1.253 0.197 109 1.365 0.163 118 1.339 0.204 98 1.312 0.151 107 1.351 0.103 96 1.280 0.333 97 1.272 0.338
118 1.274 0.259 109 1.235 0.438 110 1.345 0.101 119 1.324 0.070 100 1.298 0.185 108 1.329 0.166 97 1.267 0.319 98 1.271 0.265
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Table 2. Cont.

Flowery Fruity Acid Bitter Nutty Spicy Woody Aromatic Intensity Overall Quality

m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD m/z VIP SD

119 1.239 0.301 110 1.228 0.315 115 1.335 0.174 120 1.309 0.120 103 1.267 0.209 109 1.327 0.085 98 1.255 0.134 99 1.251 0.228
120 1.211 0.231 113 1.223 0.272 117 1.329 0.109 121 1.291 0.165 104 1.260 0.425 112 1.303 0.099 99 1.214 0.393 111 1.213 0.446
121 1.202 0.215 117 1.221 0.308 118 1.318 0.150 122 1.284 0.120 105 1.254 0.371 113 1.285 0.088 109 1.210 0.424 112 1.206 0.226
122 1.186 0.459 118 1.220 0.228 119 1.309 0.263 123 1.283 0.120 106 1.219 0.136 115 1.285 0.175 110 1.185 0.510 113 1.190 0.333
123 1.176 0.525 119 1.206 0.375 120 1.292 0.207 124 1.276 0.125 107 1.209 0.231 116 1.258 0.144 111 1.133 0.324 123 1.187 0.382
124 1.150 0.193 120 1.187 0.329 121 1.288 0.164 125 1.274 0.081 108 1.180 0.122 117 1.255 0.153 112 1.131 0.483 125 1.143 0.411
126 1.112 0.242 121 1.180 0.249 122 1.268 0.196 131 1.265 0.137 109 1.173 0.196 118 1.244 0.121 116 1.109 0.305 126 1.120 0.353
134 1.100 0.479 122 1.167 0.391 123 1.265 0.186 132 1.263 0.195 110 1.168 0.209 119 1.230 0.179 126 1.055 0.445 138 1.096 0.196
135 1.093 0.381 123 1.156 0.277 124 1.225 0.167 134 1.259 0.141 112 1.148 0.203 120 1.224 0.128 140 1.036 0.459 139 1.068 0.285
136 1.085 0.304 124 1.146 0.348 125 1.215 0.186 135 1.231 0.118 115 1.146 0.138 121 1.223 0.125 141 1.025 0.370 140 1.063 0.585
137 1.072 0.387 125 1.145 0.401 129 1.195 0.207 136 1.175 0.145 117 1.142 0.142 122 1.214 0.232 166 1.014 0.527 141 1.060 0.184
139 1.053 0.336 132 1.132 0.187 134 1.173 0.166 137 1.174 0.160 118 1.131 0.188 123 1.206 0.130 161 1.028 0.269
146 1.044 0.371 134 1.102 0.327 135 1.139 0.155 145 1.160 0.137 119 1.124 0.224 124 1.205 0.111
147 1.040 0.379 135 1.101 0.322 136 1.138 0.241 146 1.157 0.176 120 1.108 0.210 125 1.188 0.156
150 1.021 0.471 136 1.099 0.220 137 1.125 0.411 150 1.138 0.122 121 1.102 0.257 127 1.177 0.157
160 1.018 0.521 137 1.097 0.306 145 1.108 0.348 151 1.137 0.271 122 1.098 0.253 131 1.176 0.106
164 1.002 0.467 145 1.092 0.248 146 1.096 0.246 152 1.126 0.146 123 1.085 0.199 132 1.168 0.190

146 1.074 0.213 148 1.092 0.371 164 1.112 0.214 124 1.084 0.296 134 1.145 0.166
150 1.039 0.274 150 1.077 0.204 126 1.056 0.303 135 1.131 0.146
152 1.006 0.280 151 1.046 0.225 132 1.037 0.488 136 1.119 0.226
164 1.001 0.272 152 1.031 0.405 134 1.036 0.420 137 1.114 0.208

160 1.028 0.231 135 1.034 0.318 139 1.107 0.152
164 1.011 0.142 136 1.023 0.331 146 1.092 0.169

137 1.016 0.487 148 1.089 0.250
145 1.015 0.500 150 1.086 0.218
150 1.015 0.383 151 1.082 0.300
151 1.010 0.214 152 1.017 0.183
164 1.001 0.384 160 1.014 0.263

164 1.003 0.129

Total number

52 56 58 53 24 63 64 46 47
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Figure 5. The importance and occurrence of each selected mass fragment (m/z) in the partial least
square (PLS) regression model of every sensory attribute.

A PLS model was built for each single sensory attribute to verify the relationship between the
chemical ion fragments (m/z) (i.e., the chemical components of the volatile fraction) and the sensory
profile, and to predict the sensory scores. Figure 5 shows that the ions selected from the PLS-DA and
used to design the corresponding regression model for each sensory feature are involved in more than
one feature.

For example, the typical base fragment of organic acids m/z 60 in coffee (the most abundant
of them being acetic acid and 3-methyl butanoic acid), is depicted in 7/9 regression models, while
m/z 150/152, predominantly related to methoxy phenols, are only present in 4/9 regression models.
This result is in agreement with results reported in Ribeiro et al., who underlined the importance of
the co-participation of several volatiles in describing various sensory features in fifty three Arabica
coffees [41].

Moreover, the mass spectral fingerprint provides some information on the volatiles that characterise
the samples. For example, m/z 108 is mainly related to several alkylated pyrazines and pyrrole
derivatives, m/z 95/96 are associated to furfuryl products, and 135/137/150/152 are primarily related to
methyl-ethyl pyrazine and methoxy phenols.

The ability of the VIP-selected ions to describe the sensory characteristics of samples can be
visualised for the most fruity and woody samples in the heat-map in Figure 6, which shows a clear
discrimination between the samples with these two sensory profiles thanks to mass fingerprinting. The
rows indicate the m/z ions, and the columns the investigated samples. The colour scale varies from blue
(low abundance) to red (high abundance). A hierarchical cluster analysis (HCA) of both the rows and
columns shows that volatile distributions differ according to their normalised response across samples.
Figure 6 highlights that the ion-intensity ratios across samples in place of the different quality volatiles
is very effective to discriminate the two cluster of samples linked to their sensory peculiarity [3,42,43].

The ions selected using PLS-DA were then used as independent variables to evaluate the
relationship with sensory data and the ability to predict scores (dependent variables) of each sensory
attribute by developing a specific and optimised regression model for each feature. All sensory notes
have been modelled through a PLS algorithm; the evolution of each sensory note over the sample
sets has been related a different number of variables (Table 2). The flexibility of the prediction model
for each sensory attribute was evaluated in samples that covered a range of seasonality, origins and
crops and then tested the models with an external test set (Table 3). Acid, Bitter, Spicy and (to a lesser
extent) aromatic intensity and flowery PLS prediction models show good performance. The R2 values
indicate that nearly more than 50% of the variance in the measured scores is explained by the models
(i.e., the selected mass spectral fragments used to describe the model). This is quite a good result in
consideration of the high variability of the training set. The goodness of the predictive capability is
confirmed by the acceptable values of the root mean squared errors (RMSECV and RMSEP) reported
for these attributes. The limit of acceptability for predicted values has been strictly fixed by the sensory
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panel, in ±1 score points. All RMSECV values are within or close to this interval while prediction on
new samples show RMSEP slightly higher in particular for the overall quality and to a lesser extent for
woody and nutty.
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The models so far developed, however, still require nine different data elaborations. This is a
serious limit for routine HS-SPME-MS-enose applications that can only be overcome with a unique
multi-note sensory-score prediction model. The variable selection for the multi-note model was carried
out by combining the matrices (ions fingerprints) used for the single-note prediction models. Fragment
ions from the single-model note, without repetitions, were selected, the x matrix was then simplified
and the number of variables reduced according to VIP values. This variable reduction was carried out
to reduce the statistical noise, and maximise the information provided by each single note chemical
fingerprint. According to the VIP values (VIP > 0.8), 78 ions out of 104 in the volatile fraction were
retained in building the model, thus allowing the multidimensional structure of the prediction model
to be simplified with negligible loss in performance.

The regression model was built with a training set of 150 objects and an external test set of 34.
The leave-p-out cross-validation method (n = 20) was used to select a suitable number of components
from the PLS regression and to reduce the errors when the calibration model was used for the feature
predictions of unknown samples. The results of the developed multi-note regression model for the
prediction of sensory-attribute scores show that acid, bitter and spicy notes were the most reliable as
they present a lower root mean square error in prediction (RMSEP). However, the mean error in the
sensory-score prediction RMSEP in the external test set with these data fall within the range of ±2
(Table 3). The other attributes show discrete to good fitting between chemical and sensory data from
the R2val values, and a better ability to predict the scores of the training and internal evaluation set,
but fail to meet the expectation limit for acceptability given by the panellist (±1) when used to estimate
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new samples Table 3 and Figure 7. The high errors in prediction, in particular for samples with high
sensory scores, probably occurred because of the unbalanced samples (i.e., the number of high scored
samples was lower than that of the low scored ones for some attributes such as fruity, nutty, woody),
making this part of the score range less well represented in the sample sets.

Table 3. Multi-note model performance summary.

Single-Note Model Performance Multi-Note Model Performance

Sensory Note Model Factors R2val RMSEV RMSEP Model Factors R2val RMSEV RMSEP

Acid 3 0.663 1.129 0.946 3 0.856 0.726 1.192
Bitter 4 0.817 1.142 1.063 4 0.936 0.626 1.315
Woody 4 0.669 1.570 1.725 4 0.884 1.003 2.306
Flowery 4 0.746 1.038 1.345 4 0.907 0.651 1.964
Fruity 4 0.661 1.026 1.499 2 0.790 0.785 1.598
Spicy 1 0.792 0.963 1.209 3 0.784 0.977 1.194
Nutty 6 0.544 1.506 1.661 4 0.893 0.864 1.891

Aroma intensity 1 0.557 0.936 1.296 4 0.764 0.627 1.642
Overall quality 4 0.556 0.936 2.120 4 0.756 0.726 2.239

The low predictive ability for new set of samples may be due to: (a) the different species, origin
seasonality and post-harvest treatments compared to other published work [23,41]; (b) the high noise
caused by an unbalanced pool of samples for some attributes, such as nutty or flowery; (c) the difficulties
linked to an excessively general lexicon to define the notes; and (d) compromises in the abilities of
modelling for each sensory characteristic must be considered when building a multi-note model.
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Figure 7. Comparison of the measured sensory profiles (from the panel) and predicted sensory profiles, from the developed model, of a selection of external test set
samples. Sensory and chemical data were pre-processed using pareto scaling.
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3. Materials and Methods

3.1. Samples

One hundred and eighty four coffee samples, with distinctive sensory notes, originating from
a number of different countries were analysed. Coffee samples were kindly supplied by Lavazza
S.p.A. (Turin, Italy). The roasting degree of each sample was carefully measured by ground bean light
reflectance, with a single-beam Color Test 2 instrument Neuhaus Neotec (Genderkesee, Germany) at a
wavelength of 900 nm, on 25–30 g of ground coffee. The roasting degree was set at 55◦ Nh, in order to
be close to the international standardisation protocol for cupping [35]. Samples were roasted no more
than 24 h before cupping and left at least 8 h to stabilise.

3.2. Descriptive Sensory Analysis of Coffee Aroma

The samples were submitted to sensory evaluation by a panel of six coffee experts. Aroma quality
was assessed for a set of nine attributes, namely flowery, fruity, woody, nutty, spicy, acidity, bitterness,
aroma intensity and overall quality. The quality and intensity of each attribute were simultaneously
evaluated, on a scale from 0 to 10. ANOVA analysis with a post-hoc test were run to verify panel
alignment on each attribute. Average scores from experts whose evaluations were similar were used as
the “main scores” for the investigated attributes.

3.3. Head Space Solid Phase Micro Extraction Sampling

Volatiles were sampled using HS-SPME and an MPS-2 multipurpose sampler (Gerstel, Mulheim
a/d Ruhr, Germany) which was integrated online with an Agilent 7890 GC coupled to a 5975 MS
detector (Agilent, Little Falls, DE, USA). One point five grams of ground roasted coffee in a 20 mL
vial were directly sampled by HS-SPME for 10 min at 50 ◦C at a stirring speed of 350 rpm. The SPME
fibre was a PDMS/DVB df 65 µm, and 1 cm long (Supelco, Bellefonte, PA, USA). After sampling, the
recovered analytes were thermally desorbed, by heating the fibre for 5 min at 250 ◦C, into the GC
injector body, from where they were transferred on-line to the gas-chromatographic column. All
samples were analysed in duplicate.

3.4. MS-eNose Instrument Set-Up

The GC oven and injector were maintained at 250 ◦C; injection mode, split; split ratio, 1/10; carrier
gas, helium; flow rate, 0.4 mL/min; fibre desorption time and reconditioning, 3 min. The transfer
column was uncoated deactivated fused silica tubing (dc = 0.10 mm, length = 6.70 m) from MEGA
(Legnano, Italy).

MSD Conditions: ionisation, EI mode at 70 eV; temperatures: ion source: 230 ◦C, transfer line:
280 ◦C. Standard tuning was used and the scan range was set at m/z 35–350 with a scanning rate of
1.000 amu/s.

3.5. Data Acquisition and Elaboration

Data were acquired and processed using an Agilent MSD Chem Station ver. E.02.01.1177 (Agilent,
Little Falls, DE, USA). Raw data were transformed using RapidDataInterpretation software by Gerstel
(Gerstel, Mulheim a/d Ruhr, Germany). This is a post-run macro that expands the scope of the function
of the Agilent ChemStation software, which allows the 3-dimensional raw data supplied by the mass
spectrometry (retention time, m/z fragmentation and intensities) to be reduced to 2-dimensional data
that can then be properly used by statistical software for further elaboration. The intensities of a sample
are added as a function of the masses. The result is a data matrix of 91,980 data in which the rows
report the samples and the columns report the intensity assigned to each mass.

Chemometric analyses were carried out using Pirouette software ver. 4.5 (Infometrix, Inc., Bothell,
WA, USA). Principal component analysis (PCA), Partial Least Square Discriminant Analysis (PLS-DA)
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and Partial Least Square (PLS) regression were used. Heat map visualisation, One-way ANOVA and
t-tests were performed on the sensorial results using XLSTAT (Addinsoft, New York, NY, USA).

4. Conclusions

The results show that the combination of HS-SPME-MS fingerprints and chemometrics is a
promising technique for use as a TAS system working as a high throughput solution for the prediction
of the in-cup coffee sensory quality of incoming coffee beans. Sensory quality control and evaluation is
crucial if the coffee industry is to satisfy the ever-increasing demand for coffee with specific sensory
attributes. The described methods would allow trained panellists to be exempted (at least partially)
from routine tasting and focus their activity on new products and sensory attributes. The ambitious
challenge of this study was based on the exploration of the ability of this analytical approach to
predict in-cup coffee quality, including representative coffee samples of different origins, species and
postharvest treatments, as occurs in industry quality control upon the acceptance of incoming beans.
The study has demonstrated that this approach and the use of a multi-note model to predict global
coffee sensory profiles requires a number of compromises, in terms of model robustness and acceptance
of the errors in prediction. The high errors in prediction, in particular for samples with high sensory
scores, probably occurred because the number of high scored samples was lower than that of the low
scored samples, making this part of the score range less well represented in the sample sets. A second
explanation may involve the sensory scores measured by the panel; high scores are more difficult to
define and require a precise alignment.

As a general consideration, the main limit of this study is the number of coffee samples, which is
only a snapshot of the number of coffees that may be processed in a plant, and is therefore not sufficient
to obtain fully reliable and robust models. Automatic screening to predict the cup-quality of the raw
material requires a huge repository of sensory and instrumental data. Furthermore, this approach
operates, in terms of chemometric data processing, within an order of magnitude of hundreds of
samples with similar qualities, as shown by Ribeiro on fifty three Arabica coffees and Lindinger on
18 espresso coffees (Ristretto and Lungo types). For higher numbers of samples, other data mining
approaches should be considered in the development of the prediction tool, e.g., artificial neural
networks and deep learning algorithms [23,41,43].

Supplementary Materials: The following is present in supplementary material available online, Figure S1: PCA
scores plots of coffee samples.
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as a Tool for Determination of Authenticity of PDO Cheese, Oscypek. Food Anal. Methods 2015, 8, 2211–2217.
[CrossRef]
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