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Abstract

Linear least squares is one of the most widely used regression meth-
ods among scientists in many fields. The simplicity of the model allows
this method to be used when data is scarce and it is usually appealing
to practitioners that need to gather some insight into the problem by in-
specting the values of the learnt parameters. In this paper we propose
a variant of the linear least squares model that allows practitioners to
partition the input features into groups of variables that they require to
contribute similarly to the final result. We formally show that the new
formulation is not convex and provide two alternative methods to deal
with the problem: one non-exact method based on an alternating least
squares approach; and one exact method based on a reformulation of the
problem using an exponential number of sub-problems whose minimum is
guaranteed to be the optimal solution. We formally show the correctness
of the exact method and also compare the two solutions showing that the
exact solution provides better results in a fraction of the time required
by the alternating least squares solution (assuming that the number of
partitions is small).

1 Introduction

Linear regression models are among the most extensively employed statistical
methods in science and industry alike. Their simplicity, ease of use and perfor-
mance in low-data regimes enables their usage in various prediction tasks. As
the number of observations usually exceeds the number of variables, a practi-
tioner has to resort to approximating the solution of an overdetermined system.
Least squares approximation benefits from a closed-form solution and might be
the de-facto standard in linear regression analysis. Among the benefits of linear
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regression models is the possibility of easily interpreting how much each vari-
ate is contributing to the approximation of the dependent variable by means of
observing the magnitudes and signs of the associated parameters.

In some application domains, partitioning the variables in non-overlapping
subsets is beneficial either as a way to insert human knowledge into the regres-
sion analysis task or to further improve model interpretability. When consider-
ing high-dimensionality data, grouping variables together is also a natural way
to make it easier to reason about the data and the regression result. As an
example, consider a regression task where the dependent variable is the score
achieved by students in an University or College exam. A natural way to group
the dependent variables is to divide them into two groups where one contains
the variables which represent a student’s effort in the specific exam (hours spent
studying, number of lectures attended...), while another contains the variables
related to previous effort and background (number of previous exams passed,
number of years spent at University or College, grade average...). As an another
example, when analyzing complex chemical compounds, it is possible to group
together fine-grained features to obtain a partition which refers to high-level
properties of the compound (such as structural, interactive and bond-forming
among others).

In this paper, we introduce a variation on the linear regression problem
which allows for partitioning variables into meaningful groups. The parameters
obtained by solving the problem allows one to easily assess the contribution of
each group to the dependent variable as well as the importance of each element
of the group.

Our contributions include a formal non-convexity proof for the new Parti-
tioned Least Squares problem and two possible algorithms to solve it. One is
based on the Alternating Least Squares algorithm, where the optimization of the
parameters is iterative and can get trapped into local minima; the other is based
on a reformulation of the original problem into an exponential number of sub-
problems, where the exponent is the cardinality K of the partition. We prove
that solutions found by the second approach are globally optimal and test both
algorithms on data extracted from the analysis of chemical compounds. Our
experimental results show that the optimal algorithm is also faster, provided
that the size of the partition is small.

While to the best of our knowledge the regression problem and the algorithms
we present are novel, there has been previous work dealing with alternative for-
mulations to the linear regression problem. Partial Least Squares Regression
[8] parametrizes both the dependent and independent variables; Weighted Lin-
ear Regression minimizes the residuals’ weighted sum of squares. Partitioned
variables have also been the subject of previous work dealing with selecting
groups of features given a partitioning. Huang et al. provide a review of such
methodologies [6].
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Table 1: Notation
Symbol(s) Definition
(·)n n-th component of a vector
k, K k is the index for iterating over the K subsets belonging to the

partition
m, M m is the index for iterating over the M variables
X an N × M matrix containing the descriptions of the training

instances
A×B matrix multiplication operation (we also simply write it AB

when the notation appears clearer)
y a vector of length N containing the labels assigned to the ex-

amples in X
• wildcard used in subscriptions to denote whole columns or whole

rows: e.g., X•,k denotes the k-th column of matrix X and Xm,•
denotes its m-th row

∗ denotes an optimal solution, e.g., p? denotes the optimal solu-
tion of the PartitionedLS problem, while p?b denotes the optimal
solution of the PartitionedLS-b problem

P a M × K partition matrix, Pm,k ∈ {0, 1}, with Pm,k = 1 iff
variable αm belongs to the k-th element of the partition

Pk the set of all indices in the k-th element of the partition:
{m|Pk,m = 1}

k[m] index of the partition element to which αm belongs, i.e.: k[m]
is such that m ∈ Pk[m]

◦ Hadamard (i.e., element-wise) product. When used to multiply
a matrix by a column vector, it is intended that the columns of
the matrix are each one multiplied (element-wise) by the column
vector

� Hadamard (i.e., element-wise) division
� element-wise larger-than operator: α � 0 is equivalent to αm ≥

0 for m ∈ 1..M
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2 Model description

Let us consider the problem of inferring a linear least squares model to predict
a real variable y given a vector x ∈ R. We will assume that the examples are
available at learning time as an N ×M matrix X and N × 1 column vector y.
We will also assume that the problem is expressed in homogeneous coordinates,
i.e., that X has an additional column containing values equal to 1, and that the
intercept term of the affine function is included into the weight vector.

The standard least squares formulation for the problem at hand is to mini-
mize the quadratic loss over the residuals, i.e.:

minimizew‖Xw − y‖22

This is a problem that has the closed form solution w = (XTX)−1XTy. As
mentioned in Section 1, in many application contexts where M is large, the
resulting model is hard to interpret. However, it is often the case that domain
experts can partition the elements in the weights vector into a small number
of groups and that a model built on this partition would be much easier to
interpret. Then, let P be a “partition” matrix for the problem at hand (this is
not a partition matrix in the linear algebra sense, it is simply a matrix containing
the information needed to partition the features of the problem). More formally,
let P be a M×K matrix where Pm,k ∈ {0, 1} is 1 iff feature number m belongs to
the k-th partition element. We will also write Pk to denote the set {m|Pm,k = 1}.

Here we introduce the Partitioned Least Square (PartitionedLS) problem, a
model where we introduce K additional variables and try to express the whole
regression problem in terms of these new variables (and in terms of how the
original variables contribute to the predictions made using them). The simplest
way to describe the new model is to consider its regression function:

f(X) =

(
K∑
k=1

βk
∑
m∈Pk

αmxn,m + t

)
n

(1)

where (·)n denotes the n-th component of the vector being built. The first
summation is over theK sets in the partition that domain experts have identified
as interesting, while the second one iterates over all variables in that set. We
note that the m-th α weight contributes to the k-th element of the partition only
if it belongs to it. As we shall see, we require that all α values are not smaller
than 0 and that ∀k :

∑
m∈Pk

αm = 1. Consequently, the expression returns a
vector of predictions calculated in terms of two sets of weights: the β weights,
which are meant to capture the magnitude and the sign of the contribution of the
k-th element of the partition, and the α weights, which are meant to capture how
each feature in the k-th set contributes to it. We note that the α weight vector
is of the same length as the vector w in the least squares formulation. Despite
this similarity, we prefer to use a different symbol because the interpretation
of (and the constraints on) the α weights are different with respect to the w
weights.
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It is easy to verify that the definition of f in (1) can be rewritten in matrix
notation as:

f(X) =

(
K∑
k=1

βk
∑
m

Pm,kαmxn,m + t

)
n

= X× (P ◦α)× β + t (2)

where ◦ is the Hadamard product extended to handle column-wise products.
More formally, if Z is a A×B matrix, 1 is a B dimensional vector with all entries
equal to 1, and a is a column vector of length A, then Z◦a , Z◦(a×1T ); where
the ◦ symbol on the right hand side of the definition is the standard Hadamard
product. Equation (2) can be rewritten in homogeneous coordinates as:

f(X) = X× (P ◦α)× β (3)

where X incorporates a column of 1 and we consider an additional group (with
index K + 1) having a single αM+1 variable in it. Given the constraints on α
variables, αM+1 is forced to assume a value equal to 1 and the value of t is
then totally incorporated into βK+1. In the following we will assume that the
problem is given in homogeneous coordinates and that the constants M and K
already count the additional group and variable.

Definition 1. The partitioned least squared (PartitionedLS) problem is formu-
lated as:

minimizeα,β‖X× (P ◦α)× β − y‖22
s.t. α � 0

PT ×α = 1

In summary, we want to minimize the squared residuals of f(X), as defined
in (3), under the constraint that for each subset k in the partition, the set
of weights form a distribution: they need to be all nonnegative as imposed
by α � 0 constraint and they need to sum to 1 as imposed by PT × α = 1
constraint.

Unfortunately we do not know a closed form solution for this problem. Fur-
thermore, the problem is not convex and hence hard to optimally solve using
standard out-of-the-box solvers. The following theorem states this fact formally.
Due to space constraints we do not provide the proof in full details.

Theorem 1. The PartitionedLS problem is not convex.

Proof. (sketch) It suffices to show that the Hessian of the objective function
is not positive semidefinite. By Schwarz’s theorem, since the loss function has
continuous second partial derivatives, the matrix is symmetric and we can apply
the Sylvester criterion for checking positive definiteness. In practice, we prove
that Hessian is not positive semidefinite by showing that not all leading principal
minors are larger than zero. In our specific case, the second minor can be shown
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to assume values smaller than zero and this proves the theorem. Let us denote
with L the objective of the PartitionedLS problem

L = ‖X× (P ◦α)× β − y‖22

=
∑
n

(∑
k

βk
∑

αm∈Pk

αmxn,m − yn

)2

Consider the vector containing all the variables of the PartitionedLS problem
in the following order: (α1, β1, α2, β2, . . . , αK , βK , αK+1, αK+2, . . . , αM ) and as-
sume the problem is not trivial, i.e., that m > 1, k > 1. In the following, without
loss of generality, we will assume that α1 ∈ P1. Under these assumptions, to
prove that the second minor is smaller than zero, amounts to prove that:

H11H22 −H12H21 =
∂2L

∂α1∂α1

∂2L

∂β1∂β1
− ∂2L

∂α1∂β1

∂2L

∂β1∂α1

=
∂2L

∂2α1

∂2L

∂2β1
−
(

∂2L

∂α1∂β1

)2

< 0

By working out the details of the partial derivatives, one ends up with the
expression:

H11H22 −H12H21 =

(
2β2

1

∑
n

x2n,1

)
2
∑
n

( ∑
m∈P1

αmxn,m

)2

−

[
2
∑
n

xn,1

(
β1
∑
m∈P1

αmxn,m + ρα,β(n)

)]2
, (4)

where ρα,β(n) is a short hand for
∑
k βk

∑
m∈Pk

αmxn,m − yn. To simplify the
algebra, let us now assume that for all n, k :

∑
m∈Pk

αmxn,m is equal to a
constant c. We notice that albeit being a strong assumption, it does not hinder
the generality of the result since to prove that the Hessian is not semidefinite it
suffices to find a single configuration of the problem in which it is not. Under
this assumption, ρα,β(n) = c

∑
k βk − yn:

(4) =4Nc2β2
1

∑
n

x2n,1 −

[
2
∑
n

xn,1

(
β1c+ c

∑
k

βk − yn

)]2

=4Nc2β2
1

∑
n

x2n,1 −

[
2β1c

∑
n

xn,1 + 2c

(∑
k

βk

)(∑
n

xn,1

)
− 2

∑
n

xn,1yn

]2
.

We end the proof by noticing that the expression on the left of the minus sign
is constant w.r.t. β2 . . . βK , while the part on the right of the minus sign can be
made arbitrarily large by varying those variables. This shows that for a certain
configuration of βk values, the expression can be made negative.
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In the following we will provide two algorithms that solve the above problem.
One is an alternating least squares approach which scales well with K, but it is
not guaranteed to provide the optimal solution. The other one is a reformulation
of the problem through a (possibly) large number of convex problems whose
minimum is guaranteed to be the optimal solution of the original problem. Even
though the second algorithm does not scale well with K, we believe that this
should not be a problem since the PartitionedLS is by design well suited for small
K values (otherwise the main reason inspiring its creation would cease to exist
since for large K values the new model would not be much more interpretable
than the original one).

3 Algorithms

3.1 Alternating Least Squares approach

In the PartitionedLS problem we aim at minimizing a non convex objective,
where the non convexity depends on the multiplicative interaction between α
and β variables in the expression ‖X× (P ◦α)× β − y‖22. Interestingly, if one
fixes α, the expression X× (P ◦α) results in a matrix X′ that does not depend
on any variable. Then, the whole expression can be rewritten as a problem
pα = ‖X′β − y‖22 which is the convex objective of a standard least squares
problem in the β variables. In a similar way, it can be shown that by fixing β
one also ends up with a pβ convex optimization problem.

These observations naturally lead to the formulation of an alternating least
squares solution where one alternates between solving pα and pβ. In Algorithm 1
we formalize this intuition into an algorithm where, after initializing α and β
randomly, we iterate T times. At each iteration we take the latest estimate
for the α variables and solve the pα problem based on that estimate, we then
keep the newly found β variables and solve the pβ problem based on them. At
each iteration the overall objective is guaranteed not to increase in value and
we conjecture convergence to some stationary point as T →∞.

3.2 Reformulation as a set of convex subproblems

Here we show how the PartitionedLS problem can be reformulated as a set
of convex problems such that the problem of achieving the smallest objective
attains the global optimum of the original problem.

Definition 2. The PartitionedLS-b problem is a PartitionedLS problem in
which the β variables are substituted by a constant vector b ∈ {−1, 1}K , and
the normalization constraints over the α variables are dropped:

minimizeα‖X× (P ◦ b)×α− y‖22
s.t. α � 0

We note that the above definition actually defines 2K minimization prob-
lems, one for each of the possible b vectors. Interestingly, each one of the
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Algorithm 1: Alternating least squares solution to the PartitionedLS problem.
The notation const(α) (respectively const(β)) is just to emphasize that the
current value of α (respectively β) will be used as a constant in the following
step.

1 function PartitionedLS-alternating(X,y,P)

2 α = random(M)

3 β = random(K)

4
5 for t in 1 . . . T
6 a = const(α)
7 p∗ = minimizeβ(‖(X× (P ◦ a)× β − y‖22))
8
9

10 b = const(β)
11 p∗ = minimizeα(‖(X× (P ◦α)× b− y‖22,
12 α � 0,

13 PT ×α = 1)
14 end

15
16 return (p∗,α,β)
17 end

minimization problems can be shown to be convex by the same argument used
in Section 3.1 (for fixed β variables) and we will prove that the minimum at-
tained by minimizing those problems corresponds to the global minimum of the
original problem. We also show that by simple algebraic manipulation of the re-
sult found by a PartitionedLS-b solution, it is possible to write a corresponding
PartitionedLS solution attaining the same objective.

The main breakthrough here derives from noticing that in the original for-
mulation the β variables are used to keep track of two facets of the solution: i)
the magnitude and ii) the sign of the contribution of each subset in the partition
of the variables. With the b vector keeping track of the signs, one only needs to
reconstruct the magnitude of the β contributions to recover the solution of the
original problem.

To do so, let us start by calculating a normalization vector β̄ containing in
β̄k the normalization factor for variables in partition subset k:

β̄ =

( ∑
m∈P k

αm

)
k

= PT ×α.

Then, the vector α̂ (containing the α variables as defined in the original prob-
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Algorithm 2: PartitionedLS-b solution to the PartitionedLS problem. The func-
tion extract min retrieves the (ṗ, α̇, β̇) tuple in the results array attaining the
lowest ṗ value.

1 function PartitionedLS-optimal(X,y,P)

2 results = []

3

4 for ḃ in {1,−1}K

5 ṗ = minimize α̇(‖(X× (P ◦ α̇)× ḃ− y‖22), α̇ � 0)
6

7 results += (ṗ, α̇, ḃ)
8 end

9
10 p∗,α, b = extract_best(results)

11
12

13 β̄ = PT ×α
14 α̂ = (P ◦α� β̄T )× 1

15 β̂ = b ◦ β̄
16

17 return (p∗, α̂, β̂)
18 end

lem) can be recovered by dividing each αm by β̄k[m]:

α̂ =

(
αm
β̄k[m]

)
m

=

K∑
k=1

(
(P ◦α)� β̄T

)
•,k

=
(
P ◦α� β̄T

)
× 1,

and the β̂ vector (containing both signs and magnitudes of the contribution
of each subset in the partition) can be reconstructed simply by taking the
Hadamard product of b and β̄:

β̂ = b ◦ β̄.

The complete algorithm, which detects and returns the best solution of the Par-
titionedLS-b problems over all possible b vectors, is reported in Algorithm 2.

The following lemma (whose proof we omit due to space constraints) shows

that a PartitionedLS solution using α̂ and β̂ has the same objective value as
the PartitionedLS-b solution using the given b and α values.

Lemma 1. (Rewriting Lemma) Let α be a vector of m positive values, b ∈
{−1, 1}K a vector of K signs, and β̄ a vector of K non zero values. Let also α̂,
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β̂ be such that:

α̂ =

(
αm
β̄k[m]

)
m

for m ∈ {1 . . .M}

and
β̂ =

(
bkβ̄k

)
k

for k ∈ {1 . . .K}.

Then:
X× (P ◦α)× b = X× (P ◦ α̂)× β̂.

Corollary 1. Under the hypotheses of the Rewriting Lemma it holds:

‖X× (P ◦ α̂)× β̂ − y‖22 = ‖X× (P ◦α)× b− y‖22 (5)

Theorem 2. Let p∗ be the optimal value of the PartitionedLS problem and let
pb∗ be the value attained by the PartitionedLS-b algorithm (Algorithm 2). Then,
p∗ = pb∗ .

Proof. We first show that p∗ ≥ pb∗ , then we show that pb∗ ≤ p∗ and conclude
that p∗ = pb∗ . In the following let:

• b∗ be the best sign vector as found by Algorithm 2 and let αb∗ be the
corresponding α vector (i.e., αb∗ , b

∗ attain the pb∗ solution);

• α̂∗, β̂
∗

be the values attaining the p∗ solution.

Notice that Corollary 1 of the Rewriting Lemma implies that for sign vector
b = β̂ � β̄ and αb =

(
αmβ̄k[m]

)
m

:

p∗ = ‖X× (P ◦ α̂∗)× β̂
∗
− y‖22 = ‖X× (P ◦αb)× b− y‖22.

Since the pb∗ solution is the best solution over all the possible sign vectors, it
holds that:

‖X× (P ◦αb)× b− y‖22 ≥ ‖X× (P ◦αb∗)× b∗ − y‖22 = pb∗ .

Vice-versa by Corollary 1 of the Rewriting Lemma it holds that for α̂, β̂ as given
in the Rewriting Lemma assumptions, it holds that:

pb∗ = ‖X× (P ◦αb∗)× b∗ − y‖22 = ‖X× (P ◦ α̂)× β̂ − y‖22.

Since p∗ is the global optimum for the PartitionedLS problem, it holds:

‖X× (P ◦ α̂)× β̂ − y‖22 ≥ ‖X× (P ◦ α̂∗)× β̂
∗
− y‖22 = p∗
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4 Regularization

The PartitionedLS model presented so far has no regularization mechanism in
place and, as such, it risks overfitting the training set. Since the α values are
normalized by definition, the only parameters that need regularization are those
collected in the β vector. Then, the regularized version of the objective function
simply adds a penalty on the size of the β vector:

‖X× (P ◦α)× β‖22 + η‖β‖22 (6)

where the squared euclidean norm could be substituted with the L1 norm in
case a LASSO-like regularization is preferred.

The objective expressed in (6) can be used in Algorithm 1 as is, but it
needs to be slightly updated so to accommodate the differences in the objective
function when used in Algorithm 2. In this second case, in fact, the correct
expression for the ‖β‖22 regularization term becomes: ‖PT × α‖22 since the
optimization program does not maintain an explicit list of β variables. We notice
that since the regularization term is convex, it does not hinder the convexity of
the optimization problems in both algorithms presented in this paper.

5 Experiments

While the main motivation of the proposed approach is interpretability, we do
not provide here any direct measurement of this property. Unfortunately, in-
terpretability is not easily measurable since its very notion has not yet been
clearly defined and a multitude of different definitions coexist. Instead, we sim-
ply argue that the smaller ”grouped” model better matches one interpretability
definition based on transparency (in both the simulatability and decomposability
meanings, see [7]). In the following we will focus on the algorithmic properties
of the two algorithms we presented in this paper, showing how they behave so
to provide some insight about when one should be preferred over the other.

In order to assess the advantages/disadvantages of the two algorithms pre-
sented in this paper, we apply them to solve the block-relevance analysis pro-
posed in [4, 3]. We will assess the two algorithms on a dataset [2] containing
82 features describing measurements over simulated (VolSurf+ [5]) models of
44 drugs. The regression task is the prediction of the lipophilicity of the 44
compounds. The 82 features are partitioned into 6 groups according to the kind
of property they describe. The six groups are characterized in [3] as follows:

• Size/Shape: 7 features describing the size and shape of the solute;

• OH2: 19 features expressing the solute’s interaction with water molecules;

• N1: 5 features describing the solute’s ability to form hydrogen bond in-
teractions with the donor group of the probe;

• O: 5 features expressing the solute’s ability to form hydrogen bond inter-
actions with the acceptor group of the probe;
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• DRY: 28 features describing the solute’s propensity to participate in hy-
drophobic interactions;

• Others: 18 descriptors describing mainly the imbalance between hy-
drophilic and hydrophobic regions.

This dataset, while not high-dimensional in the broadest sense of the term,
can be partitioned into well-defined, interpretable groups of variables. Previous
literature which employed this dataset has indeed focused on leveraging the
data’s structure to obtain explainable results [4].

We used as training/test split the one proposed in [2] and set the regulariza-
tion parameter η to 1.0 (since we are not aiming at finding the most accurate
regressor, we did not investigate other regularization settings).

For this particular problem, the number of groups is small and the optimal
algorithm needs to solve just 26 = 64 convex problems. It terminates in 0.90
seconds reaching a value of the regularized objective function of about 6.679.
For what concerns the approximated algorithm, we ran it in a Multistart fashion
with 100 randomly generated starting points. We repeated the experiment using
two different configurations of parameter T (number of iterations), setting it to
20 and 100, respectively. For each configuration we kept track of the cumulative
time and of the (“cumulative”) best solution found. As one would expect,
increasing the value of parameter T slows down the algorithm, but allows it to
converge to better solutions. Figure 1 reports the best objective value found
by the algorithms plotted against the time (reported on a logarithmic scale to
improve visualization) necessary to get to such a solution. The experiments
show that Algorithm 2 retrieves a more accurate (actually the globally optimal)
answer in a fraction of the time. Indeed, it is straightforward to observe that, in
typical scenarios1, the only times where the alternating least squares approach
outperforms the optimal algorithm in terms of running time is for cases where
the total number of iterations (convex subproblems solved) is smaller than the
2K subproblems needed by Algorithm 2 to compute the optimal solution. In
our admittedly limited experimentation, this leads to solutions that grossly
approximate the optimal one. Our conclusion is that the optimal algorithm
is likely to be preferable in most cases. The exceptions are the cases where
the number of groups is large or the cases where the time required to solve a
single convex problem is very large and approximate solutions do not hinder
the applicability of the result in the application at hand. For what concerns the
cases with a large number of groups, we argue that this setting defies the main
motivation behind employing a model such as the one we presented.

1In this informal argument we are assuming that each convex problem requires about the
same amount of time to be solved. While this is not guaranteed, we believe that it is very
unlikely that deviations from this assumption would lead to situations very different from the
ones outlined in the argument.
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Figure 1: Plot of the behavior of the two proposed algorithms. The Partitio-
nedLS-alternating algorithm has been repeated 100 times following a Multistart
strategy and in two settings (T=20 and T=100). Each point on the orange and
green lines reports the cumulative time and best objective found during these
100 restarts.

6 Conclusions

In this paper, we presented an alternative least squares linear regression for-
mulation and two algorithms to solve it: one iterative, one optimal. In our
experimentation, we found the optimal algorithm to be faster, although its time
complexity grows exponentially with the number of groups. Our model enables
scientists and practitioners to group features together into partitions model-
ing higher level abstractions which are easier to reason about. In the future,
we would like to perform an extensive experimentation on high-dimensionality
data to better understand the tradeoff between our Alternating Least Squares
and exact approaches when the number of groups is higher. In contrast with the
choice we made in this paper (where we focused on a dataset showcasing a real
application of the methodology), in this new experimentation we will use more
broadly available datasets. Even though the datasets and groupings will appear
to be less justified, the new setting will allow us to better study in which cases it
may be more beneficial to recover a lower-quality solution in a shorter amount
of time, rather than striving for an optimal solution using the exact algorithm
(Algorithm 2). We also plan to investigate branch-and-bound strategies to avoid
the explicit computation of all 2K sub-problems in the optimal algorithm.

A Julia [1] implementation of the algorithms is available at https://gith

ub.com/ml-unito/PartitionedLS; the code for the experiments can be down-
loaded from: https://github.com/ml-unito/PartitionedLS-experiments.
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This latter repository also contains the dataset we used in our experiments in
the format required to be loaded from the programs. Due to technical rea-
sons, the original dataset presented in [2] is no longer available for download.
The authors confirmed that they are willing to provide the data to interested
researchers if contacted directly.
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