
15 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Automatic refactoring of delta-oriented SPLs to remove-free form and replace-free form

Published version:

DOI:10.1007/s10009-019-00534-2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1717330 since 2019-11-25T10:02:18Z

International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Automatic Refactoring of Delta-Oriented SPLs
to Remove-free Form and Replace-free Form

Ferruccio Damiani · Michael Lienhardt · Luca Paolini

Received: 2018 / Accepted: 2018

Abstract Delta-Oriented Programming (DOP) is a flex-

ible transformational approach to implement Software

Product Lines (SPLs). In delta-oriented SPLs, variants

are generated by applying operations contained in delta

modules to a base program. These operations can add,

remove or modify named elements in a program (e.g.,

classes, methods and fields in a Java program). This

paper presents two notions of normal form for delta-

oriented SPLs. Both normal forms do not contain the

remove operation. Additionally, the second normal form

enforces a limitation on the use of the method-modify

operation. For each of the proposed normal forms an

algorithm for refactoring a delta-oriented SPL into one

that satisfies that normal form is described. The al-

gorithms are formalized for a core calculus for delta-

oriented SPLs of Java programs.

Keywords Delta-Oriented Programming · Feather-

weight Java · Software Product Lines · Automated

Refactoring

This work has been partially supported by: EU Horizon 2020
project HyVar (www.hyvar-project.eu, GA No. 644298) and
ICT COST Action IC1402 ARVI (www.cost-arvi.eu).

Ferruccio Damiani
University of Turin, Turin, Italy
E-mail: ferruccio.damiani@unito.it

Michael Lienhardt
ONERA, Palaiseau, France
E-mail: michael.lienhardt@onera.fr

Luca Paolini
University of Turin, Turin, Italy
E-mail: luca.paolini@unito.it

1 Introduction

A Software Product Line (SPL) is a set of similar pro-

grams, called variants, that are generated from a com-

mon code base [12]. A flexible and modular transfor-

mational approach to implement SPLs is the Delta-

Oriented Programming (DOP) [44] [3, Sect. 6.1.1]. A

DOP product line comprises a Feature Model (FM), a

Configuration Knowledge (CK), and an Artifact Base

(AB). The FM provides an abstract description of vari-

ants in terms of features (each representing an abstract

description of functionality): each variant is described

by a set of features, called a product. The AB provides

the (language-dependent) code artifacts used to build

the variants, namely: a (possibly empty) base program

and a set of delta modules (deltas for short) that are ap-

plied in sequence to the base program to transform it

into a variant of the SPL. The CK provides a mapping

from products to variants by describing the connection

between the code artifacts in the AB and the features in

the FM: it associates to each delta an activation condi-

tion over features and specifies an application ordering

between deltas. Delta orientation allows for the auto-

matic generation of its variants: once a product of the

FM is selected, the deltas with an activation condition

that are satisfied by the product are identified from the

CK and are applied to the base program according to

the application ordering in the CK to obtain the ex-

pected variant.

Each delta comprises delta operations that can add,

modify or remove named elements in the base program

(e.g., for Java programs, a delta can add, remove or

modify class interfaces, fields and methods [34]). As

pointed out in [45], thanks to this flexible operations,

DOP supports proactive (i.e., planning all products in

advance), reactive (i.e., developing an initial SPL com-

2 Damiani, Lienhardt, Paolini

prising a limited set of products and evolving it as soon

as new products are needed or new requirements arise),

and extractive (i.e., gradually transforming a set of ex-

isting programs into an SPL) SPL development [36].

In particular, DOP is particularly suited for SPL evo-

lution and extension, as modifying or adding variants

can straightforwardly be achieved by adding to the SPL

new deltas that modify, remove or add code on top of

the existing variants of the SPL. However, as pointed

out by Schulze et al. [46], a number of such SPL evolu-

tion and extension phases may introduce contradicting

add and remove operations, leading to SPLs that are

complex, and difficult to understand and to analyze.

Refactoring [22] is an established technique to re-

duce complexity and improve readability of programs.

It consists of program transformations that change the

internal structure of a program without altering its ob-

servable behaviour. In this paper, by refactoring a delta-

oriented SPL we mean changing its FM, CK or AB

without changing its products and variants [46,17,16].

In this paper, we present two notions of normal form

for delta-oriented SPLs of Java programs: the remove-

free form and the replace-free form. Both normal forms

do not contain the remove operation. Additionally, the

replace-free form enforces a limitation on the use of

the method-modify operation. For each of the proposed

normal forms an algorithm for refactoring a delta-orien-

ted SPL into an SPL that satisfies that normal form is

described. The SPLs produced by the refactoring algo-

rithms satisfy further constraints: they have an empty

base program and they contain only atomic deltas—a

delta is atomic if it contains a single operation (e.g., it

adds an empty class that extends Object, or it modi-

fies a class by either changing its extends-clause, or by

adding an attribute, or by modifying a method).

Actually, the refactoring of an SPL into atomic form

(i.e., an SPL that has an empty base program and con-

tains only atomic deltas) is performed as a preliminary

step by both refactoring algorithms. This preliminary

step simplifies the formulation of the refactoring al-

gorithms, which refactor an atomic SPL into atomic

remove-free form and into atomic replace-free form, re-

spectively. Both refactoring algorithms (including the

algorithm for refactoring into atomic form) leave the

feature model of the SPL unchanged.

Both refactoring algorithms transform an SPL with-

out requiring interaction with the developers of the

SPL. However, as discussed in Section 6, in order to

use refactoring in practice, it will be necessary to de-

velop suitable tools that connect the AB of the refac-

tored SPL to the AB of the original SPL and allow SPL

developers to do a review pass on the refactored SPL,

e.g., to merge some deltas that have the same activa-

tion condition and/or to reintroduce a non-empty base

program.

We present the refactoring algorithms for Imperative

Featherweight Delta Java (IF∆J) [7], a core calculus for

delta-oriented SPLs where variants are written in an

imperative version of Featherweight Java (FJ) [27].

In previous work [16], we have already proposed two

algorithms for refactoring IF∆J SPLs into remove-free

form and into replace-free form, respectively. These pre-

vious algorithms, which do not describe the preliminary

refactoring of an SPL into atomic form, are quite com-

plex to describe and understand. Instead, the refactor-

ing algorithms presented in this paper provide a better

understanding of the relations between the refactored

SPL and the original SPL, thus paving the way towards

the development of suitable tool support as advocated

in Section 6.

Organization of the Paper. Section 2 recalls Impera-

tive Featherweight Java (IFJ). Section 3 recalls delta-

oriented SPLs by means of the IF∆J language. Sec-

tion 4 formalizes the notion of atomic IF∆J SPL and de-

scribes a refactoring algorithm that converts any IF∆J

SPL into atomic form. Section 5 formalizes the notions

of IF∆J SPL in remove-free and in replace-free form,

and describes the associated refactoring algorithms. Sec-

tion 6 discusses the significance of the proposed refac-

toring algorithms. Section 7 discusses related work and

Section 8 concludes the paper by outlining possible fu-

ture work including also aspects concerning dynamic

reconfiguration.

2 Imperative Featherweight Java

The abstract syntax of IFJ programs is given in Fig-

ure 1—explanations are given in the caption. Follow-

ing Igarashi et al. [27], we use the overline notation for

(possibly empty) sequences of elements: for instance e

stands for a sequence of expressions e1, . . . , en (n ≥ 0).

The empty sequence is denoted by ∅. Moreover, when no

confusion may arise, we identify sequences of pairwise

distinct elements with sets, e.g., we write e as short for

{e1, . . . , en}. As usual, we identify the textual represen-

tations of IFJ programs modulo: (i) the order of class

declarations or attribute declarations, and (ii) renam-

ing of the formal parameters of methods. The follow-

ing notational convention entails the assumption that

classes declared in a program, attributes declared in a

class, and formal parameters declared in a method have

distinct names.

Notation 1 (Convention on sequences of named

declarations) Whenever we write a sequence of named

Refactoring of Delta-Oriented SPLs 3

P ::= CD Program

CD ::= class C extends C { AD } Class Declaration

AD ::= FD | MD Attribute (Field or Method) Declaration

FD ::= C f Field Declaration

MH ::= C m(C x) Method Header

MD ::= MH {return e; } Method Declaration

e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

Fig. 1: IFJ programs. A program P is a sequence of class declarations CD. A class declaration comprises the

name C of the class, the name of the superclass (which must always be specified, even if it is the built-in class

Object), and a list of attribute (field or method) declarations AD. Variables x include the special variable this

(implicitly bound in any method declaration MD), which may not be used as the name of a method’s formal

parameter. All fields and methods are public, there is no field shadowing, there is no method overloading, and

each class is assumed to have an implicit constructor that initializes all fields to null.
An attribute name a is either a field name f or a method name m. Given a class declaration CD we write dom(CD)

to denote the set of attribute names declared in CD. Given a program P, a class name C and an attribute name

a, we write dom(P), <:P, CP and lookupP(a, C) to denote, respectively: the set of class names declared in P; the

subtyping relation in P (which is always assumed to be acyclic); the class declaration CD of C in P when it exists;

and the declaration of the attribute a in the closest superclass of C (including C itself) that contains a declaration

for a in P, when it exists.

declarationsN (e.g., classes, attributes, parameters, etc.)

we assume that they have pairwise distinct names. More-

over, we write names(N) to denote the sequence of the

names of the declarations in N .

For sake of readability, in the examples presented

throughout the paper we use the Java syntax for oper-

ations on strings and sequential composition—encoding

in IFJ syntax is straightforward (see [7] for examples).

In the examples we also assume the existence of a built-

in class Int for representing integer values.

Example 1 (A program for expressions) We illustrate

the IFJ language with a simple program encoding the

following grammar of numerical expressions:

Exp ::= Lit | Add

Lit ::= non-negative-integers

Add ::= Exp “+” Exp

The program, presented in Figure 4 (top), consists of: a

class Exp representing all expressions; a class Lit repre-

senting literals; and a class Add representing an addition

between two expressions.

All these classes implement a method toInt that

computes the value of the expression, and a method

toString that gives a textual representation of the ex-

pression. Note that class Exp is too general to provide a

meaningful implementation of these methods. Indeed,

it is supposed to be used only as a type and should

never be instantiated.

3 Delta-Oriented SPLs

The IF∆J language builds upon IFJ [7], adding to it a

new layer for the implementation of the different DOP

elements. The abstract syntax of IF∆J SPLs is given in

Figure 2—explanations are given in the caption. Recall

that, according to Notation 1, we assume that the deltas

declared in an artifact base have distinct names, the

class operations in each delta act on distinct classes,

the attribute operations in each class operation act on

distinct attributes, etc.

In IF∆J there is no concrete syntax for the FM and

CK: it considers extensional representations. Namely, it

represents feature modelsM by pairs “(set of features,

set of products)” and configuration knowledge K by

pairs “(delta activation map, delta application order)”,

see the following two definitions.

Definition 1 (Feature model) A feature modelM is

a pair (F ,P) where Fx is a set of features and P ⊆ 2F

is a set of products.

Definition 2 (Configuration knowledge for a

delta-oriented SPL) CK for a delta-oriented SPL

L is a pair KL = (αL, <L) where: αL is a map that asso-

ciates to each delta name the set of products that acti-

vate it (the delta activation map); and <L is an ordering

between delta names (the delta application order).

We have now all the ingredients for defining the no-

tion of IF∆J SPL.

4 Damiani, Lienhardt, Paolini

LD ::= line L {M K AB} SPL Declaration

AB ::= P DD Artifact Base

DD ::= delta d{CO} Delta Declaration

CO ::= adds CD | removes C | modifies C[extends C′]{AO} Class Operation

AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 2: IF∆J SPLs. An SPL declaration comprises the name L of the product line, a feature model M, a

configuration knowledge K, and an artifact base AB. The artifact base comprises a (possibly empty) IFJ program

P, and a set of deltas DD. A delta declaration DD comprises the name d of the delta and class operations CO

representing the transformations performed when the delta is applied to an IFJ program. A class operation can

add, remove, or modify a class. A class can be modified by (possibly) changing its super class and performing

attribute operations AO on its body. An attribute operation can add or remove fields and methods, and modify

the implementation of a method by replacing its body. The new body may call the special method name original,

which is implicitly bound to the previous implementation of the method. FM, CK, AB (cf. the Introduction) of

an SPL named L are denoted by ML = (FL,PL), KL = (αL, <L) and ABL, respectively.

Definition 3 (Delta-oriented SPL) A delta-oriented

SPL L is an SPL defined by means of the syntax in Fig-

ure 2.

The description of the generator of an IF∆J SPL

(given in Definition 4 below) relies on the two following

auxiliary notions of applicable delta and application (of

an applicable) delta.

– A delta d is applicable to a program P iff each class

to be added does not already exist; each class to

be removed or modified already exists; and for ev-

ery class-modify operation: each method or field to

be added does not yet exist; each method or field

to be removed already exists; and each method to

be modified already exists and has the same header

specified in the method-modify operation.

– If a delta d is applicable to P, then the applica-

tion of d to P is the program, denoted by d(P),

obtained from P by applying all the operations in

d—otherwise d(P) is undefined.

Definition 4 (Generator of a delta-oriented SPL,

see [7]) The generator of L, denoted by GL, is the map-

ping that associates each product p inML with the IFJ

program dn(· · · d1(P) · · ·), where P is the base program

of L and d1, . . . , dn (n ≥ 0) are the deltas of L activated

by p (that are applied to P according to the application

order).1

Note that the generator GL may be partial since, for

some product of L, a delta di (1 ≤ i ≤ n) may not be ap-

1 We assume unambiguity of the considered delta-oriented
SPLs, i.e., for each product, any total order of the activated
deltas that respects the (possibly partial) order specified in
<L generates the same variant—see [37,7] for effective means
to ensure unambiguity.

plicable to the intermediate variant di−1(· · · d1(P) · · ·)
thus making GL undefined for that product.

Finally, since the rest of the paper focuses on the

presentation of transformation algorithms for delta-ori-

ented SPLs, we formalize the notion of equivalent SPLs,

so we can prove that our refactoring algorithms are cor-

rect, i.e., they do not change the semantics of the input

SPL.

Definition 5 (Delta-oriented SPL equivalence)

Two delta-oriented SPLs are equivalent whenever they

have the same feature model (see Definition 1) and gen-

erator (see Definition 4).

For sake of readability, in the examples presented

throughout the paper, the feature model is represented

by a feature diagram and the activation conditions of

the deltas are expressed as propositional logic formu-

las φ where propositional variables are features f (i.e.,

the mapping αL is represented as a mapping from delta

names d to propositional formulas φ). A formula φ rep-

resents the set of products

{f | φ evaluates to true when the variables f are true

and the other variables are false}

(see [4] for a discussion on other possible representa-

tions) and is described with the following syntax:

φ ::= true | f | φ⇒ φ | ¬φ | φ∧φ | φ∨φ | φYφ

where Y is the xor operator.

Example 2 (The Expression Product Line) We illustrate

the IF∆J language with an example derived from the

Expression Product Line (EPL) benchmark [41] (see

also [44]), where the base program is given in Figure 4

Refactoring of Delta-Oriented SPLs 5

(top). Consider the following grammar of numerical ex-

pressions that extends the one of Example 1 with nega-

tion:
Exp ::= Lit | Add | Neg

Lit ::= non-negative-integers

Add ::= Exp “+” Exp

Neg ::= “-” Exp

Two different operations can be performed on the ex-

pressions described by this grammar: printing, which

returns the expression as a string, and evaluating, which

returns the value of the expression, either as an integer

(Int) or as a literal expression (Lit).

Figure 3 shows the FM and CK of the EPL. Vari-

ability in the EPL can be described by two sets of fea-

tures: the ones concerned with the data are Lit (for

literals), Add (for the addition) and Neg (for the nega-

tion); the ones concerned with the operations are Print
(for the classic toString method), Eval1 (for the eval

method returning an int) and Eval2 (for the eval me-

thod returing a literal expression). The features Lit is

mandatory, while Add, Neg, Print, Eval1 and Eval2 are

optional. Moreover:

– as Eval1 and Eval2 define the same method, they are

mutually exclusive, and

– at least one feature concerned with operations (i.e.,

either Print or one one among Eval1 and Eval2) must

be selected.

The activation conditions of deltas in the CK men-

tion only concrete features (i.e., the leaves in the fea-

ture diagram representing the FM), while the following

propositional formula over concrete features provides

an alternative specification of the FM: Lit ∧ (Print ∨
(Eval1 Y Eval2).

The artifact base of the EPL is given in Figure 4.

The delta DNeg adds the class Neg with a simple setter.

The delta DNegPrint adds to class Neg the toString

method (relevant for the Print feature). The delta

DOptionalPrint adds glue code to ensure that the two

optional features Add and Neg cooperate properly: it

modifies the implementation of the toString method

of the class Add by putting parentheses around the tex-

tual representation of a sum expression, thus avoiding

ambiguity in printing. This delta illustrates the usage of

the special method original which allows here to call

the original implementation of the method toString,

and surround the resulting string with parentheses. The

delta DNegToint adds to class Neg the toInt method

(relevant for implementing the Eval feature).

The delta DEval1 (resp. DEval2) modifies the class

Exp by adding to them the eval method correspond-

ing to the Eval1 (resp. Eval2) feature: eval takes no

parameter and returns an Int (resp. a Lit object).

The delta DremExpLitToint removes the toInt me-

thod from the classes Exp and Lit when the feature

Eval is not selected (more explicitly, when none of the

features Eval1 and Eval2 is selected), and the delta

DremAddToint does the same for the class Add.

Similarly, DremExpLitPrint removes the toString

method from the classes Exp and Lit when the feature

Print is not selected, and DremAddToint does the same

for the class Add.

Finally, the delta DremAdd removes the class Add

from the program when the feature Add is not selected.

4 Refactoring Delta-Oriented SPLs into Atomic

Form

In this section, we present a first refactoring algorithm

that simplifies the inner structure of deltas, in order

to simplify as much as possible our main refactoring

algorithms. More precisely, this algorithm refactors a

delta-oriented SPL into atomic form, i.e., a normal form

where each delta contains one operation.

Definition 6 (Atomic SPL) An atomic SPL L (aSPL)

is an SPL defined by means of the syntax in Figure 5.

The syntax in Figure 5 describes a subset of lan-

guage described by the syntax in Figure 2. In particu-

lar, in the artifact base, the base program is empty and

each delta contains a single operation. We remark that

each attribute operation AO (cf. Figure 2) performs a

single operation, namely AO can be either adds AD or

removes a or modifies MD. Therefore, there are 6 pos-

sible atomic class operations: (empty) class-addition,

class-remove, extend-modification (where C′ cannot be

Object), attribute-addition, attribute-removal and me-

thod modification.

We start by devising an algorithm that refactors an

IF∆J SPL by replacing a given non-atomic delta by a

set of atomic deltas.

Algorithm 1 (Atomic refactoring of a delta) Let

L be an SPL containing a delta d with a body not atomic

(in the sense of Definition 6). The following items de-

scribe how to generate an SPL L? equivalent to L, where

d has been replaced by a sequence of atomic deltas.

– L? inherits the FM from L without modifications.

– L? inherits the AB of L, where d is replaced by a

sequence of atomic (freshly named) deltas d?1, ..., d
?
n

(where n ≥ 1) that produce the same modifications

of d whenever the list is applied in order. The de-

composition of d in the list d?1, ..., d
?
n is straightfor-

ward: (i) a class-remove operation is already atomic;

(ii) an attribute operation is already atomic up to an

6 Damiani, Lienhardt, Paolini

EPL

Data

Lit Add Neg

Operations

Print Eval

Eval1 Eval2

Legend:

Mandatory

Optional

OR

XOR

Abstract

Concrete

Activations:
Delta Activation
DNeg Neg
DNegPrint Neg ∧ Print
DOptionalPrint Add ∧ Neg ∧ Print
DNegToint Neg ∧ (Eval1 ∨ Eval2)
DEval1 Eval1
DEval2 Eval2

Delta Activation
DremExpLitToint ¬(Eval1 ∨ Eval2)
DremAddToint Add ∧ ¬(Eval1 ∨ Eval2)
DremExpLitPrint ¬Print
DremAddPrint Add ∧ ¬Print
DremAdd ¬Add

Order:
{DNeg} <L {DNegPrint, DOptionalPrint, DNegToint, DEval1}

<L {DEval2}
<L {DremExpLitToint, DremAddToint, DremExpLitPrint, DremAddPrint}
<L {DremAdd}

Fig. 3: Feature Model (top) and Configuration Knowledge (bottom) of the EPL

extend-modification that can be isolated in a suit-

able additional atomic operation; and (iii) a class

addition can be atomized in term of empty-class cre-

ation, extend-tuning, field and method additions.

– L? inherits the application condition of L, in the

sense that for every delta d in L the activation condi-

tions of d?1, ..., d
?
n are set to the activation condition

of d: we have αL?(d?i) = αL(d) for all 1 ≤ i ≤ n.

– L? inherits the application order of L, where d is re-

placed by d?1, ..., d
?
n totally ordered as listed. More

precisely: if d0, d1 6= d are deltas in L, then (i) d0<L?d1
iff d0<Ld1; (ii) d?i<L?d0 iff d<Ld0; (iii) d0<L?d

?
i iff

d0<Ld; and (iv) d?i<L?d
?
j iff 1 ≤ i < j ≤ n. ut

It is straightforward to check that the above proce-

dure is effective and, in particular, the following result

holds.

Lemma 1 (Correctness of the atomic refactoring

of a delta) Algorithm 1 describes a total transforma-

tion from an SPL L (with a total generator) into an

equivalent (in the sense of Definition 5) SPL L? con-

taining less non-atomic deltas.

Proof The termination of the algorithm is straightfor-

ward (i.e. the transformation is total). A generic delta

d is linearly decomposed in an ordered list of atomic

deltas d?1, ..., d
?
n performing the same modifications. Since

the ordered application of d?1, ..., d
?
n produces the same

modifications of d, the SPL L? is by definition equiva-

lent to L. ut

The following algorithm transforms any IF∆J SPL

into an equivalent atomic SPL.

Algorithm 2 (Atomic refactoring of an SPL) Let

line L {M K AB} be an SPL such that AB = P DD.

The following steps describe how to generate an aSPL

L? equivalent to L.

First, we transform L into another (non-atomic SPL)

L′ having an empty initial program as follows.

– L′ inherits the FM from L without modifications.

– L′ inherits the AB of L extended with a set of new

(freshly named) deltas. For each class Ci occurring in

P, we include a class-addition delta dPi that adds the

class dPi defined in P with all its fields and methods.

– L′ inherits the application condition of all deltas dif-

ferent from the new ones, by L. Moreover, the acti-

vation condition of dPi are set to true.

– L′ inherits the application order of L modified to

place before all new deltas to that coming from L.

No order is imposed between the new deltas.

Refactoring of Delta-Oriented SPLs 7

class Exp extends Object {
Int toInt() { return null; }
String toString() { return null; }
}

class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
Int toInt() { return this.val; }
String toString() { return this.val.toString(); }
}

class Add extends Exp {
Exp a;
Exp b;
Add setAdd(Exp x, Exp y) { this.a=x; this.b=y; return this; }
Int toInt() { return this.a.toInt().add(this.b.toInt()); }
String toString() { return this.a.toString() + ”+” + this.b.toString(); }
}

delta DNeg {
adds class Neg extends Exp {
Exp a;
Neg setNeg(Exp x) { a = x; return this; }
}}

delta DNegPrint { modifies Neg { adds String toString() { return ”−” + a.toString(); }}}

delta DOptionalPrint { modifies Add { modifies String toString() { return ”(” + original() + ”)”; }}}

delta DNegToint { modifies Neg { adds Int toInt() { return this.a.toInt().neg(); }}}

delta DEval1 { modifies Exp { adds Int eval() { return this.toInt(); }}}

delta DEval2 { modifies Exp { adds Lit eval() { return new Lit().setLit(this.toInt()); }}}

delta DremExpLitToint {
modifies Exp { removes toInt; }
modifies Lit { removes toInt; }
}

delta DremAddToint { modifies Add { removes toInt; }}

delta DremExpLitPrint {
modifies Exp { removes toString; }
modifies Lit { removes toString; }
}

delta DremAddPrint { modifies Add { removes toString; }}

delta DremAdd { removes Add }

Fig. 4: AB of the EPL: base program (top), deltas that add behaviour (middle) and deltas that remove behaviour

(bottom)

8 Damiani, Lienhardt, Paolini

aLD ::= line L {M K aAB} Atomic SPL Declaration

aAB ::= aDD Atomic Artifact Base

aDD ::= delta d{aCO} Atomic Delta Declaration

aCO ::= adds class C extends Object { } | removes C

| modifies C extends C′ { } | modifies C {AO} Atomic Class Operation

Fig. 5: Atomic SPL. Above, we assume that C′ cannot be Object. For sake of conciseness, we shorten the

class-addition and the extend-modification in adds class C extends Object and modifies C extends C′.

Finally, we transform each non-atomic delta of L′ into a

set of atomic deltas by repeatedly applying Algorithm 1

until all non-atomic deltas have been eliminated. ut

It is straightforward to see that the above proce-

dure is effective and, in particular, the following theo-

rem holds.

Theorem 1 (Correctness of the atomic refactor-

ing of an SPL) Algorithm 2 describes a total trans-

formation from an SPL (with a total generator) into an

equivalent (in the sense of Definition 5) atomic SPL.

Proof The termination of the algorithm is immediate:

it first transforms each class in the initial program into

a delta (this step finishes as the initial program has a fi-

nite number of classes); and then applies Algorithm 1 on

every delta of the resulting product line (this step fin-

ishes as there is only a finite number of deltas). Paten-

tly, the produced SPL is atomic. Namely, its initial pro-

gram is empty (it has been translated into deltas) and

each of its deltas is atomic (i.e., it follow the syntax
given in Figure 5). ut

Example 3 (Atomic refactoring of the EPL) Figures 6

and 7 present the CK and AB of the SPL produced by

the application of Algorithm 2 on the EPL presented

in Example 2. The different classes of the base pro-

gram of the EPL have been translated into a set of

atomic deltas. For instance, the deltas whose names

start with DLit construct the Lit class by: (i) creat-

ing the class (with the delta DLit); (ii) making it ex-

tend Exp (with the delta DLitExtends); (iii) creating

its field val (with the delta DLitVal); and (iv) creat-

ing its different methods (with the deltas DLitSetlit,

DLitToint and DLitTostring). Similarly, a set of deltas

with related names construct the Exp and Add classes.

Additionally, in the original EPL, the deltas DDNeg,

DremExpLitToint and DremExpLitPrint were not ato-

mic. Applying the Algorithm 2 on the EPL thus splits

each of these deltas into atomic deltas.

5 Refactoring Atomic Delta-Oriented SPLs into

Remove-free and Replace-free Forms

The two refactoring algorithms use the following auxil-

iary definition.

Definition 7 (Principal ideal of a delta) Let L be

an SPL and d be the name of a delta in it. The principal

ideal at d w.r.t. the application order of L, written ↓↓↓Ld,

is the set {d′ | d′ ≤L d}.

By exploiting the above notation we can reformu-

late the unambiguity assumption (cf. the footnote at

the end of Definition 4) with a local flavour: an SPL

L is unambiguous whenever any total order ≤t of the

activated deltas that respects the principal ideal of all

activated d (namely, each activated delta precedes the

deltas in ↓↓↓Ld) generates the same variant.

5.1 Refactoring into Remove-free Form

This refactoring consists in the transformation of an

atomic SPL into a remove-free one, i.e., an SPL where

deltas of the form removes C and modifies C {removes a}
have been eliminated. The following definition formal-

izes the notion of remove-free SPL.

Definition 8 (Remove-free aSPL) An aSPL is remove-

free iff it does not contain remove operations. More pre-

cisely, it is defined from the syntax in Figure 8.

The syntax in Figure 8 is a restriction of the syntax

provided in Figure 5. We eliminated both class-remove

and attribute-remove operations; then, we wrote explic-

itly the possible remaining attribute operations.

We structure our refactoring algorithm in three parts:

the first part eliminates a remove-class operation, the

second eliminates a remove-attribute operation, and the

third one combines both into the full refactoring algo-

rithm. The algorithm responsible for the elimination of

a remove-class operation is the following.

Algorithm 3 (Remove-class operation elimination

refactoring) Let L be an aSPL containing a delta d

defined as follows for some class name C:

Refactoring of Delta-Oriented SPLs 9

Activations:

Delta Activation
DExp True
DExpToint True
DExpTostring True
DLit True
DLitExtends True
DLitVal True
DLitSetlit True
DLitToint True
DLitTostring True
DAdd True
DAddExtends True
DAddA True
DAddB True
DAddSetadd True
DAddToint True
DAddTostring True

Delta Activation
DNeg Neg
DNegExends Neg
DNegA Neg
DNegSetneg Neg
DNegPrint Neg ∧ Print
DOptionalPrint Add ∧ Neg ∧ Print
DNegToint Neg ∧ (Eval1 ∨ Eval2)
DEval1 Eval1
DEval2 Eval2

Delta Activation
DremExpToint ¬(Eval1 ∨ Eval2)
DremLitToint ¬(Eval1 ∨ Eval2)
DremAddToint Add ∧ ¬(Eval1 ∨ Eval2)
DremExpPrint ¬Print
DremLitPrint ¬Print
DremAddPrint Add ∧ ¬Print
DremAdd ¬Add

Order:
{DExp, DLit, DAdd}
<L {DExpToint, DExpTostring,

DLitExtends, DLitVal, DLitSetlit, DLitToint, DLitTostring,
DAddExtends, DAddA, DAddB, DAddSetadd, DAddToint, DAddTostring}

<L {DNeg}
<L {DNegExtends, DNegA, DNegSetneg}
<L {DNegPrint, DOptionalPrint, DNegToint, DEval1}
<L {DEval2}
<L {DremExpToint, DremLitToint, DremAddToint, DremExpPrint, DremLitPrint, DremAddPrint}
<L {DremAdd}

Fig. 6: CK of the atomic version of the EPL

delta d { removes C }.

The following items describe how to generate an aSPL

L? equivalent to L, where d has been eliminated.

– L? inherits the FM from L without modifications.

– L? inherits the AB of L, where d is removed.

– L? inherits the application order of L, where d is

removed.

– L? inherits the application condition of L for all

deltas, except for the ones in ↓↓↓Ld that operate on

the class C (more precisely, deltas having one of the

following four shapes: adds class C extends Object,

modifies C extends C′, modifies C {adds AD} and

modifies C {modifies MD}). If d′ is one such delta

then its activation condition in L? is set to αL(d
′) \

αL(d).2 ut

It is clear that the above procedure is effective and, in

particular, the following result holds.

2 If the activation conditions of deltas are expressed by
propositional formulas over features, then the mapping αL

is represented as a mapping from delta names d to proposi-
tional formulas φ (cf. the explanation before Example 2) and
the activation condition is set to αL(d′) ∧ ¬αL(d).

Lemma 2 (Correctness of the remove-class op-

eration elimination refactoring) Algorithm 3 de-

scribes a transformation from an aSPL (inducing a to-

tal generator) into an equivalent aSPL (inducing a total

generator).

Proof The termination of the algorithm is immediate

and the produced SPL is atomic. Let D be the set of

deltas in ↓↓↓Ld that operate on the class C, we note that

αL(d) ⊆ ∪d′∈DαL(d
′) because the totality of the gener-

ator (cf. Definition 4) ensures that the class is added by

a delta before being removed, for each product in αL(d).

The modifications of the activation conditions of deltas

in D have two main effects: to avoid useless modifica-

tion of a class when it has to be removed and to ensure

that the generator is still well defined, because deltas

are still applied only in applicable cases (cf. notion de-

fined before Definition 4). ut

The following algorithm describes the elimination of

an attribute-remove operation.

Algorithm 4 (Remove-attribute operation elim-

ination refactoring) Let L be an aSPL containing

a delta d defined as follows for some attribute a and

class C:

10 Damiani, Lienhardt, Paolini

delta DExp { adds class Exp extends Object { }}
delta DExpToint { modifies Exp { adds Int toInt() { return null; }}}
delta DExpTostring { modifies Exp { adds String toString() { return null; }}}

delta DLit { adds class Lit extends Object { }}
delta DLitExtends { modifies Lit extends Exp { }}
delta DLitVal { modifies Lit { adds int val; }}
delta DLitSetlit { modifies Lit { adds Lit setLit(Int x) { this.val=x; return this; }}}
delta DLitToint { modifies Lit { adds Int toInt() { return this.val; }}}
delta DLitTostring { modifies Lit { adds String toString() { return this.val.toString(); }}}

delta DAdd { adds class Add extends Object { }}
delta DAddExtends { modifies Add extends Exp { }}
delta DAddA { modifies Add { adds Exp a; }}
delta DAddB { modifies Add { adds Exp b; }}
delta DAddSetadd { modifies Add { adds Add setAdd(Exp x, Exp y) { this.a=x; this.b=y; return this; }}}
delta DAddToint { modifies Add { adds Int toInt() { return this.a.toInt().add(this.b.toInt()); }}}
delta DAddTostring { modifies Add {
adds String toString() { return this.a.toString() + ”+” + this.b.toString(); }}}

delta DNeg { adds class Neg extends Object { }}
delta DNegExtends { modifies Neg extends Exp { }}
delta DNegA { modifies Neg { adds Exp a; }}
delta DNegSetneg { modifies Neg { adds Neg setNeg(Exp x) { a = x; return this; }}}

delta DNegPrint { modifies Neg { adds String toString() { return ”−” + a.toString(); }}}

delta DOptionalPrint { modifies Add { modifies String toString() { return ”(” + original() + ”)”; }}}}

delta DNegToint { modifies Neg { adds Int toInt() { return this.a.toInt().neg(); }}}}

delta DEval1 { modifies Exp { adds Int eval() { return this.toInt(); }}}}

delta DEval2 { modifies Exp { adds Lit eval() { return new Lit().setLit(this.toInt()); }}}

delta DremExpToint { modifies Exp { removes toInt; }}
delta DremLitToint { modifies Lit { removes toInt; }}

delta DremAddToint { modifies Add { removes toInt;}}

delta DremExpPrint { modifies Exp { removes toString; }}
delta DremLitPrint { modifies Lit { removes toString; }}

delta DremAddPrint { modifies Add { removes toString; }}

delta DremAdd { removes Add }

Fig. 7: AB of the atomic version of the EPL: deltas from the base program (top); deltas that add behaviour

(middle); and deltas that remove behaviour (bottom)—the deltas highlighted in grey are the same as in Figure 4

delta d { modifies C { removes a } }.

The following items describe how to generate an aSPL

L? equivalent to L, where d∗ has been eliminated.

– L? inherits the FM from L without modifications.

– L? inherits the AB of L, where d is removed.

– L? inherits the application order of L, where d is

removed.

– For the application conditions we consider two sub-

cases.

Refactoring of Delta-Oriented SPLs 11

aLD ::= line L {M K aAB} Atomic SPL Declaration

aAB ::= aDD Atomic Artifact Base

aDD ::= delta d{aCO} Atomic Delta Declaration

aCO ::= adds class C extends Object | modifies C extends C′

| modifies C {adds AD} | modifies C {modifies MD} Atomic Operation

Fig. 8: Remove-Free SPL. In this syntax, C′ cannot be Object.

1. Case where a is a field. Let d1, . . . , dn (where

n ≥ 0) be the deltas of the shape

modifies C {adds AD}

that occur in ↓↓↓Ld, where the name of AD is a.

We set the activation condition of these deltas

in L? as follows: αL?(di) = αL(di) \ αL(d) for all

1 ≤ i ≤ n. All other deltas in L? inherit the

activation conditions from L.

2. Case where a is a method. Let d1, . . . , dn (where

n ≥ 0) be the deltas of the shape

modifies C {adds MD}

that occur in ↓↓↓Ld, where the name of MD is a.

Moreover, let dn+1, . . . , dn+m (for some m ≥ 0)

be the deltas of the shape

modifies C {modifies MD}

that occur in ↓↓↓Ld∗, where the name of MD is

a. We set activation condition of these deltas in

L? as follows: αL?(di) = αL(di) \ αL(d) for all

1 ≤ i ≤ n+m. All other deltas in L? inherit the

activation conditions from L. ut

The above procedure is effective and, in particular, the

following result holds.

Lemma 3 (Correctness of the remove-attribute

operation elimination refactoring) Algorithm 4 de-

scribes a transformation from an aSPL (inducing a to-

tal generator) into an equivalent aSPL (inducing a total

generator).

Proof The termination of the algorithm is immediate

and the resulting SPL is atomic. The deltas d1, . . . , dn
(n ≥ 0) of the shape modifies C {adds a} that oc-

cur in ↓↓↓Ld are the ones that can play some role in the

applicability of modifies C {removes a}. In particu-

lar, since the generator is total it must happen that

∪ni=1αL(di) ⊆ αL(d), viz. a is certainly added before

being modified by d. If a is a method then, after the

addition, it can be (uselessly) modified by a delta of

the shape modifies C {modifies MD} that occurs in

↓↓↓Ld. The restriction of the activation conditions of the

considered deltas in ↓↓↓Ld avoids the activation of addi-

tions/modifications of attributes, in all cases in which

a is removed. ut

We can now present the following algorithm, that

transforms any IF∆J aSPL into an equivalent remove-

free aSPL.

Algorithm 5 (Remove-free refactoring of an

aSPL) Let L be an aSPL. In order to generate a remove-

free aSPL L? equivalent to L, apply repeatedly the Al-

gorithms 3 and 4 until all remove-operations have been

eliminated from L. ut

Theorem 2 (Correctness of the remove-free re-

factoring of an aSPL) Algorithm 5 describes a trans-

formation from an aSPL (inducing a total generator)

into an equivalent remove-free aSPL (inducing a total

generator).

Proof This result is a direct consequence of Lemma 2

and Lemma 3. ut

It is worth observing that Algorithm 5 eliminates

all the deltas comprising a remove operation, and only

changes the activation condition of some of the remain-

ing deltas.

Example 4 (Remove-free refactoring of the atomic EPL)

The application of Algorithm 5 on the atomic version

of the EPL presented in Example 3 removes the deltas

in the bottom part of Figure 7 and modifies the appli-

cation conditions of some of the deltas as illustrated in

Figure 9.

5.2 Refactoring into Replace-free Form

We now discuss the refactoring algorithm that removes

the modifies operation that does not call original. We

call the SPL without such delta operation replace-free

SPL, as formalized in the following definition.

Definition 9 (Replace-free aSPL) An aSPL is re-

place-free whenever it is remove-free (see Definition 8)

and it does not contain any method-modifications op-

erations that do not call original (cf. caption of Figu-

re 2).

12 Damiani, Lienhardt, Paolini

Activations:
Delta Activation

DExp True
DExpToint Eval1 ∨ Eval2
DExpTostring Print

DLit True

DLitExtends True

DLitVal True

DLitSetlit True
DLitToint Eval1 ∨ Eval2
DLitTostring Print
DAdd Add
DAddExtends Add
DAddA Add
DAddB Add
DAddSetadd Add
DAddToint Add ∧ (Eval1 ∨ Eval2)
DAddTostring Add ∧ Print

Delta Activation

DNeg Neg

DNegExends Neg

DNegA Neg

DNegSetneg Neg

DNegPrint Neg ∧ Print

DOptionalPrint Add ∧ Neg ∧ Print

DNegToint Neg ∧ (Eval1 ∨ Eval2)

DEval1 Eval1

DEval2 Eval2

Fig. 9: Activation conditions for the deltas of the remove-free version of the EPL—the activation conditions

highlighted in grey are the same as in Figure 6, in particular: the activation condition of the delta DOptionalPrint

(written in red) has been processed by the algorithm and the produced activation condition is equivalent to the

original one, while all the other activation conditions highlighted in grey have not been processed by the algorithm

Like previously, we structure our refactoring algo-

rithm in two parts: the first one changes a delta contain-

ing a method-replace operation into a delta containing

a method-add operation, and the second one applies the

first one on all such deltas, thus changing them all.

Algorithm 6 (Replace-method operation elimi-

nation refactoring) Let L be a remove-free aSPL con-

taining a delta d defined as follows for some class C and

some method MD named m that does not call original:

delta d{modifies C {modifies MD}}

The following items describe how to generate an aSPL

L? equivalent to L, where d has been replaced with a new

delta d′ containing the operation modifies C {adds MD}.

– L? inherits the FM from L without modifications.

– L? inherits the AB of L, where d is replaced by d′.

– L? inherits the application order of L, where d is

replaced by d′. More precisely, if d0, d1 6= d, d′ then:

(i) d0<L?d1 iff d0<Ld1; (ii) d′<L?d1 iff d<Ld1; and

(iii) d0<L?d
′ iff d0<Ld.

– Let d1, . . . , dn (where n ≥ 0) be all deltas of the

shape modifies C {adds MD′} that occur in ↓↓↓Ld∗ and

add a method named m. Let dn+1, . . . , dn+m (where

m ≥ 0) be all deltas of the shape

modifies C {modifies MD′}

that occur in ↓↓↓Ld∗ and redefine m. We set the ac-

tivation condition of these deltas in L? as follows:

αL?(di) = αL(di) \ αL(d) for all 1 ≤ i ≤ n + m. All

other deltas d′′ in L? inherit the activation condi-

tions from L, i.e. αL?(d′′) = αL(d
′′). ut

The above procedure is effective and, in particular, the

following lemma holds.

Lemma 4 (Correctness of the replace-method

operation elimination refactoring) Algorithm 6 de-

scribes a transformation from a remove-free aSPL (in-

ducing a total generator) into an equivalent remove-free

aSPL in which a method-replace operation has been re-

placed by a method-add operation.

Proof It is straightforward to see that the algorithm

terminates and that the resulting SPL is atomic. The

deltas d1, . . . , dn (n ≥ 0) of the shape

modifies C {adds MD′}

that occur in ↓↓↓Ld are the ones that can play some role

in the applicability of modifies C {modifies MD}. In

particular, since the generator is total it must happen

that αL(d) ⊆ ∪ni=1αL(di), viz. a method is certainly

added before to be modified. Moreover, the method af-

ter the addition can be modified by a delta of the shape

modifies C {modifies MD′} that occurs in ↓↓↓Ld. The re-

striction of the activation conditions of the considered

deltas in ↓↓↓Ld avoids the activation of additions/modi-

fications of the method in all cases where the method

was replaced. ut

Refactoring of Delta-Oriented SPLs 13

We can now present the following algorithm, that

transforms any IF∆J remove-free aSPL into an equiv-

alent replace-free aSPL

Algorithm 7 (Replace-free refactoring of a re-

move-free aSPL) Let L be an aSPL. In order to gener-

ate a monotone-free aSPL L? equivalent to L, eliminate

all operations modifies C {modifies MD} not involving

original by repeatedly applying Algorithm 6. ut
It is worth observing that Algorithm 7 transforms

each of the deltas comprising a replace-method opera-

tion into a delta comprising an add-method operation,

and only changes the activation condition of some of

the remaining deltas.

Theorem 3 (Correctness of the replace-free

refactoring of a remove-free aSPL) Algorithm 7 de-

scribes a transformation from a remove-free aSPL (in-

ducing a total generator) into an equivalent replace-free

aSPL.

Proof The proof follows by Lemma 4. ut

Example 5 (Application of Algorithm 7) Consider a ver-

sion of the atomic remove-free EPL of Example 4, where

the delta DOptionalPrint has been changed as follows:

delta DOptionalPrint {
modifies Add {
modifies String toString() {

return ”(” + this.a.toString() + ”+”
+ this.b.toString() + ”)”;

}}}

This new version of the delta DOptionalPrint does not

call original and thus the refactoring Algorithm 7

transforms its modify-method operation into an add-

method operation. Additionally, the activation condi-

tion of the delta DAddTostring is changed in order

not to be in conflict with the new method-add op-

eration. Figure 10 shows the definition of the delta

DOptionalPrint and the activation condition of the

delta DAddTostring after the application of Algorithm 7.

6 Discussion

The overall behaviour of the refactoring algorithms pre-

sented in this paper can be summarized as follows.

– Algorithm 2 splits each delta in atomic deltas. It

does not change atomic deltas. Therefore, it behaves

like the identity when applied to an SPL that is

already in atomic form. It may increase the size of

the CK and of the AB by a small constant factor.

The correspondence between the original and the

refactored SPLs is straightforward and suitable tool

support can track it and provide to the developers

of the SPL the two views.

– Algorithm 5 eliminates remove operations from an

aSPL. It does not change remove-free deltas. There-

fore, it behaves like the identity when applied to an

SPL that is already in remove-free form. It does not

increase the size of the AB. Clearly, this refactoring

improves the comprehensibility of the aSPL.

– Algorithm 7 transforms a remove-free aSPL by tran-

sforming each replace-method operation into an add-

method operation. It does not change replace-free

deltas. Therefore, it behaves like the identity when

applied to an SPL that is already in replace-free

form. It does not increase the size of the AB. Also

this refactoring improves the comprehensibility of

the SPL, since the semantics of a modify-method

operation that does not call original is conceptu-

ally more similar to that of a method-add operation.

These refactoring algorithms transform an SPL without

requiring interaction with the developers of the SPL.

However, in practice, SPL developers should do a final

revision pass on the refactored SPL to improve its com-

prehensibility. For instance, to rename some deltas, to

merge some deltas that have the same activation con-

dition or to reintroduce a non-empty base program—

an accordingly revised version of CK and AB of the

remove-free EPL of Example 4 is illustrated in Fig-

ure 11 and Figure 12, respectively (cf. the original ver-

sion of CK and AB the EPL of Example 2 in Figure 3

and Figure 4, respectively). In order to assist SPL de-

velopers during this final revision pass, it will be useful

to develop suitable tool support that tracks the connec-

tion between the CK/AB of the refactored SPL and the

CK/AB of the original SPL.

Both the remove-free form and the replace-free form

could facilitate performing further simplifications that

reduce the size of the AB like, e.g., detecting and merg-

ing equivalent deltas with different names.

7 Related Work

To the best of our knowledge, refactoring of delta-orien-

ted SPLs has been studied only in the works by Schulze

et. al [46], by Haber et al. [23], and in our previous

work [17]. Schulze et. al present a catalogue of refac-

toring algorithms and code smells for delta-oriented

SPLs of Java programs [34], while Haber et al. con-

sider similar refactoring primitives for delta-oriented

SPLs of software architectures. Most of the refactorings

presented in [46] are based on object-oriented refactor-

ings [22]. Two of their refactorings are related to ours:

Resolve Modification Action replaces a modifies opera-

tions that does not call original with an adds opera-

tion, by modifying the activation condition of previous

14 Damiani, Lienhardt, Paolini

delta DOptionalPrint {
modifies Add {
adds String toString() {
return ”(” + this.a.toString() + ”+” + this.b.toString() + ”)”;

}}}

Activations:
Delta Module Activation
DAddTostring Add ∧ ¬Neg

Fig. 10: Delta DOptionalPrint (top) and activation condition of the delta DAddTostring (bottom) in the replace-

free version of the EPL

Activations:

Delta Activation
DExpLitToint Eval1 ∨ Eval2
DExpLitTostring Print
DAdd Add
DAddToint Add ∧ (Eval1 ∨ Eval2)
DAddTostring Add ∧ Print

Delta Activation
DNeg Neg
DNegPrint Neg ∧ Print
DOptionalPrint Add ∧ Neg ∧ Print
DNegToint Neg ∧ (Eval1 ∨ Eval2)
DEval1 Eval1
DEval2 Eval2

Order:
{DAdd}
<L {DExpLitToint, DExpLitTostring, DAddToint, DAddTostring, DNeg}
<L {DNegPrint, DOptionalPrint, DNegToint, DEval1}
<L {DEval2}

Fig. 11: CK of the revised refactored EPL

modifies and adds operations; and Resolve Removal

Action eliminates removes operations also by chang-

ing the application condition of previous modifies and

adds operations. However, the refactoring algorithms

proposed in this paper perform an overall transforma-
tion on the whole SPL. In our previous work [17] we

proposed algorithms to refactor any delta-oriented SPL

into an equivalent one that follows guidelines that make

type checking more efficient [15].

The Feature-Oriented Programming (FOP) [5] [3,

Sect. 6.1] SPL implementation approach can be de-

scribed as a restriction of DOP where deltas are as-

sociated one-to-one with features and have limited ex-

pressive power: they can add and modify program ele-

ments, however, they cannot remove them (see, e.g., [45]

for a detailed comparison between DOP and FOP).

Refactoring algorithms for FOP have been proposed

in [2,39]. They focus on decomposing existing programs

into features in order to support extractive SPL devel-

opment [36]. Instead, our refactoring algorithms (like

those proposed in [46] and [23]) focus on improving the

structure of existing delta-oriented SPLs. The variant-

preserving refactorings for FOP proposed by Schulze

et al. [47] are essentially a subset of the refactoring of

DOP proposed in [46].

Monteiro and Fernandes [42] presented a catalogue

of refactorings for aspect-oriented programming written

in AspectJ [33]. This work does not focus on SPLs and

does not take variability into account. Instead, Kästner

and Kuhlemann [32] propose a tool that supports refac-

toring legacy Java applications into features and gen-

erates an SPL implemented in the Jak language for

FOP [5] or AspectJ.

Borba et al. [8] present a language-independent the-

ory of SPL refinement for justifying stepwise and com-

positional product line evolution. This work has the

same aim as our work, that is, supporting evolution

and refactorings of SPLs. However, it focuses on feature

model and configuration knowledge, while our work fo-

cuses on configuration knowledge and artifact base.

8 Conclusion and Future Work

In this paper, we introduced refactoring algorithms that

aim at improving the comprehensibility of delta-oriented

SPLs of Java-like programs. We have presented the

refactoring algorithms for the Imperative Featherweight

Refactoring of Delta-Oriented SPLs 15

class Exp extends Object { }

class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
}

delta DExpLitToint {
modifies Exp { adds Int toInt() { return null; }
modifies Lit { adds Int toInt() { return this.val; }
}}

delta DExpLitTostring {
modifies Exp { adds String toString() { return null; }
modifies Lit { adds String toString() { return this.val.toString(); }
}}

class Add extends Exp {
Exp a;
Exp b;
Add setAdd(Exp x, Exp y) { this.a=x; this.b=y; return this; }
}

delta DAddToInt { modifies Add { adds Int toInt() { return this.a.toInt().add(this.b.toInt()); }}}
delta DAddToString { modifies Add {
adds String toString() { return this.a.toString() + ”+” + this.b.toString(); }}}

delta DNeg {
adds class Neg extends Exp {
Exp a;
Neg setNeg(Exp x) { a = x; return this; }
}}

delta DNegPrint { modifies Neg { adds String toString() { return ”−” + a.toString(); }}}

delta DOptionalPrint { modifies Add { modifies String toString() { return ”(” + original() + ”)”; }}}}

delta DNegToint { modifies Neg { adds Int toInt() { return this.a.toInt().neg(); }}}}

delta DEval1 { modifies Exp { adds Int eval() { return this.toInt(); }}}}

delta DEval2 { modifies Exp { adds Lit eval() { return new Lit().setLit(this.toInt()); }}}

Fig. 12: AB of the revised refactored EPL: base program (top); deltas from the base program of the original EPL

(middle); and deltas that add behaviour (bottom)

Delta Java (IF∆J) core calculus for delta-oriented SPLs.

In IF∆J there is no concrete syntax for FM and CK:

it considers extensional representations. In future work

we plan to specialize the proposed algorithms by con-

sidering concrete representations for FM and CK and

to evaluate their computational complexity.

The toolchain of the HyVar project [10,38] supports

the development of delta-oriented SPLs where the vari-

ants are statecharts [25] expressed in the format sup-

ported by Yakindu Statechart Tools [28]. In par-

ticular, delta-oriented SPLs of statecharts have been

formalized by means of the core textual languages FSL

(that capture the key ingredients of Yakindu stat-

echarts) and F∆SL (for delta-oriented SPLs of FSL

statcharts) [38]. In future work we would like to adapt

the refactoring algorithms presented in this paper to

F∆SL SPLs and to integrate them into the HyVar tool-

chain. Recently, Wille et al. [48] proposed a variability

mining procedure that, given a set S of models (writ-

ten in a given modeling language, e.g., statecharts) gen-

erated by clone-and-own industrial practice [20], semi-

automatically identifies variability information (i.e., com-

16 Damiani, Lienhardt, Paolini

mon and varying parts) on the elements of S, and then

extracts from S a delta-oriented SPL of models. The

procedure, which can be applied to different modeling

languages, generates a delta language specifically tai-

lored to transforming models in the analyzed modeling

language. The procedure is evaluated by two case stud-

ies with industrial background that consider a set of

MATLAB/Simulink models and a set of Rational Rhap-

sody statechart models, respectively. In future work we

would like to adapt this variability mining procedure to

extract delta-oriented SPLs expressed in the language

of the HyVar toolchain and to evaluate whether apply-

ing the refactoring algorithms presented in this paper

to the extracted SPLs produces some benefit.

FineFit [21] is an approach for model-based testing

of Java programs which relies on the notion of data re-

finement [43] to compare the state of the model with the

state of the system under test (SUT). DeltaFineFit [13]

is a recently proposed model-based testing approach for

delta-oriented SPLs written in DeltaJ [34,49] (a pro-

totypical language for delta-oriented programming of

SPLs of Java programs). DeltaFineFit integrates data-

refinement-based testing into delta-oriented SPL devel-

opment by ensuring that each product is generated to-

gether with its FineFit model, thus enabling the fully

automated testing of all the products of an SPL.3 In

future work we would like to explore whether applying

the DeltaFineFit approach to SPLs that are in remove-

or replace-free form could result in the generation of

tests that are more efficient to execute.

The Abstract Behavioural Specification (ABS) lan-

guage [11] is a delta-oriented modeling language that

has been successfully used in industry [31,26,1,14]. In

future work we would like to formulate our refactoring

algorithms for ABS and to implement them as part of

of the ABS toolchain (http://abs-models.org/) and

to apply them on concrete industrial case studies, in

other to evaluate whether they allow to improve the

comprehensibility of the considered SPLs.

Dynamic software product lines [24,9,6] address en-

gineering adaptive systems by using a dedicated vari-

ability model describing all possible configurations a

system may adapt to at runtime. Dynamic DOP [19]

extends DOP with the capability to switch the imple-

mented product configuration at runtime. A dynamic

delta-oriented SPL is a delta-oriented SPL with a dy-

namic reconfiguration graph that specifies how to switch

between different feature configurations. Dynamic DOP

3 When the number of products is too large, testing all
the products is unfeasible. This could be addressed by us-
ing, e.g., sample-based SPL testing techniques [30,29,40,35],
where a subset of products—covering relevant combinations
of features—is generated and tested by applying single system
testing techniques.

has been formalized by means of a core calculus that

extends IF∆J [18] and we are planning to implement

dynamic DOP for ABS. In future work it would be in-

teresting to evaluate whether considering SPLs that are

in remove- or replace-free form could improve the effi-

ciency of dynamic reconfiguration.

Acknowledgements We thank the anonymous reviewers
for comments and suggestions for improving the presentation.

References

1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B.,
Schlatte, R., Tapia Tarifa, S.L., Wong, P.Y.H.: Formal
modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time
ABS. Service Oriented Computing and Applications
8(4), 323–339 (2014). DOI 10.1007/s11761-013-0148-0

2. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba,
P., Lucena, C.: Refactoring product lines. In: Proceed-
ings of the 5th International Conference on Generative
Programming and Component Engineering, GPCE ’06,
pp. 201–210. ACM, New York, NY, USA (2006). DOI
10.1145/1173706.1173737

3. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-
Oriented Software Product Lines: Concepts and Im-
plementation. Springer (2013). DOI 10.1007/
978-3-642-37521-7

4. Batory, D.: Feature models, grammars, and propositional
formulas. In: Proceedings of International Software Prod-
uct Line Conference (SPLC), LNCS, vol. 3714, pp. 7–20.
Springer (2005). DOI 10.1007/11554844\ 3

5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-
wise refinement. IEEE Transactions on Software Engi-
neering 30, 355–371 (2004). DOI 10.1109/TSE.2004.23

6. ter Beek, M., Legay, A., Lluch Lafuente, A., Vandin,
A.: A framework for quantitative modeling and anal-
ysis of highly (re)configurable systems. IEEE Trans-
actions on Software Engineering (2018). DOI:
10.1109/TSE.2018.2853726

7. Bettini, L., Damiani, F., Schaefer, I.: Compositional
type checking of delta-oriented software product lines.
Acta Informatica 50(2), 77–122 (2013). DOI 10.1007/
s00236-012-0173-z

8. Borba, P., Teixeira, L., Gheyi, R.: A theory of software
product line refinement. Theoretical Computer Science
455, 2 – 30 (2012). DOI 10.1016/j.tcs.2012.01.031. In-
ternational Colloquium on Theoretical Aspects of Com-
puting 2010

9. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A.,
Hinchey, M.: An overview of dynamic software product
line architectures and techniques: Observations from re-
search and industry. Journal of Systems and Software
91(0), 3 – 23 (2014). DOI 10.1016/j.jss.2013.12.038

10. Chesta, C., Damiani, F., Dobriakova, L., Guernieri, M.,
Martini, S., Nieke, M., Rodrigues, V., Schuster, S.: A
toolchain for delta-oriented modeling of software prod-
uct lines. In: T. Margaria, B. Steffen (eds.) Leverag-
ing Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications: 7th
International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part II, Lec-
ture Notes in Computer Science, vol. 9953, pp. 497–511.

Refactoring of Delta-Oriented SPLs 17

Springer International Publishing, Cham (2016). DOI
10.1007/978-3-319-47169-3 40

11. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E., Schaefer,
I., Schäfer, J., Schlatte, R., Wong, P.: Modeling spatial
and temporal variability with the HATS abstract behav-
ioral modeling language. In: Formal Methods for Eternal
Networked Software Systems, Lecture Notes in Computer
Science, vol. 6659, pp. 417–457. Springer International
Publishing (2011). DOI 10.1007/978-3-642-21455-4 13

12. Clements, P., Northrop, L.: Software Product Lines:
Practices & Patterns. Addison Wesley Longman (2001)

13. Damiani, F., Faitelson, D., Gladisch, C., Tyszberowicz,
S.: A novel model-based testing approach for software
product lines. Software & Systems Modeling 16(4), 1223–
1251 (2017). DOI 10.1007/s10270-016-0516-2

14. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.:
A unified and formal programming model for deltas and
traits. In: Fundamental Approaches to Software Engi-
neering - 20th International Conference, FASE 2017, Held
as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Lecture Notes in Com-
puter Science, vol. 10202, pp. 424–441. Springer (2017).
DOI 10.1007/978-3-662-54494-5\ 25

15. Damiani, F., Lienhardt, M.: On type checking delta-
oriented product lines. In: Integrated Formal Meth-
ods: 12th International Conference, iFM 2016, LNCS,
vol. 9681, pp. 47–62. Springer (2016). DOI 10.1007/
978-3-319-33693-0\ 4

16. Damiani, F., Lienhardt, M.: Refactoring delta-oriented
product lines to achieve monotonicity. In: Proceed-
ings 7th International Workshop on Formal Methods
and Analysis in Software Product Line Engineering, FM-
SPLE@ETAPS 2016, Eindhoven, The Netherlands, April
3, 2016., EPTCS, vol. 206, pp. 2–16 (2016). DOI
10.4204/EPTCS.206.2

17. Damiani, F., Lienhardt, M.: Refactoring delta-oriented
product lines to enforce guidelines for efficient type-
checking. In: T. Margaria, B. Steffen (eds.) Leveraging
Applications of Formal Methods, Verification and Val-
idation: Discussion, Dissemination, Applications - 7th
International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part II, Lec-
ture Notes in Computer Science, vol. 9953, pp. 579–596
(2016). DOI 10.1007/978-3-319-47169-3 45

18. Damiani, F., Padovani, L., Schaefer, I., Seidl, C.: A
core calculus for dynamic delta-oriented programming.
Acta Informatica 55(4), 269–307 (2018). DOI 10.1007/
s00236-017-0293-6

19. Damiani, F., Schaefer, I.: Dynamic delta-oriented pro-
gramming. In: Proceedings of the 15th International
Software Product Line Conference, Volume 2, SPLC ’11,
pp. 34:1–34:8. ACM, New York, NY, USA (2011). DOI
10.1145/2019136.2019175

20. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S.,
Becker, M., Czarnecki, K.: An exploratory study of
cloning in industrial software product lines. In: Proceed-
ings of the 2013 17th European Conference on Software
Maintenance and Reengineering, CSMR ’13, pp. 25–34.
IEEE Computer Society, Washington, DC, USA (2013).
DOI 10.1109/CSMR.2013.13

21. Faitelson, D., Tyszberowicz, S.S.: Data refinement based
testing. Int. J. Systems Assurance Engineering and
Management 2(2), 144–154 (2011). DOI 10.1007/
s13198-011-0060-y

22. Fowler, M.: Refactoring: Improving the design of exist-
ing code. In: Extreme Programming and Agile Meth-

ods - XP/Agile Universe 2002, Second XP Universe
and First Agile Universe Conference Chicago, IL, USA,
August 4-7, 2002, Proceedings, p. 256 (2002). DOI
10.1007/3-540-45672-4 31

23. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Evolv-
ing delta-oriented software product line architectures. In:
R. Calinescu, D. Garlan (eds.) Large-Scale Complex IT
Systems. Development, Operation and Management, pp.
183–208. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012). DOI 10.1007/978-3-642-34059-8 10

24. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dy-
namic software product lines. Computer 41(4), 93–95
(2008). DOI 10.1109/MC.2008.123

25. Harel, D.: Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8(3), 231 –
274 (1987). DOI https://doi.org/10.1016/0167-6423(87)
90035-9

26. Helvensteijn, M., Muschevici, R., Wong, P.Y.H.: Delta
modeling in practice: a Fredhopper case study. In: Proc.
of VAMOS’12, pp. 139–148. ACM (2012). DOI 10.1145/
2110147.2110163

27. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java:
A minimal core calculus for Java and GJ. ACM TOPLAS
23(3), 396–450 (2001). DOI 10.1145/503502.503505

28. Itemis: Yakindu statechart tools. http://www.itemis.

com/en/yakindu/state-machine/
29. Johansen, M.F., Haugen, O., Fleurey, F.: Properties

of realistic feature models make combinatorial test-
ing of product lines feasible. In: Proceedings of the
International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), pp. 638–652.
Springer-Verlag, Berlin, Heidelberg (2011). DOI 10.1007/
978-3-642-24485-8 47

30. Johansen, M.F., Haugen, O., Fleurey, F.: An algorithm
for generating t-wise covering arrays from large feature
models. In: Proceedings of the 16th International Soft-
ware Product Line Conference - Volume 1, SPLC ’12,
pp. 46–55. ACM, New York, NY, USA (2012). DOI
10.1145/2362536.2362547

31. Kamburjan, E., Hähnle, R.: Uniform modeling of railway
operations. In: Proc. of FTSCS 2016, CCIS, vol. 694, pp.
55–71. Springer (2017). DOI: 10.1007/978-3-319-53946-
1 4

32. Kästner, C., Kuhlemann, M.: Automating feature-
oriented refactoring of legacy applications. In: In ECOOP
Workshop on Refactoring Tools (2007)

33. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., Griswold, W.G.: An Overview of AspectJ.
In: ECOOP 2001— Object-Oriented Programming, Lec-
ture Notes in Computer Science, vol. 2072, pp. 327–354.
Springer (2001). DOI 10.1007/3-540-45337-7\ 18

34. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bet-
tini, L., Damiani, F.: DeltaJ 1.5: delta-oriented program-
ming for Java. In: International Conference on Princi-
ples and Practices of Programming on the Java Platform
Virtual Machines, Languages and Tools, PPPJ ’14, pp.
63–74 (2014). DOI 10.1145/2647508.2647512

35. Kowal, M., Schulze, S., Schaefer, I.: Towards efficient
spl testing by variant reduction. In: Proceedings of the
4th International Workshop on Variability & Composi-
tion, VariComp ’13, pp. 1–6. ACM, New York, NY, USA
(2013). DOI 10.1145/2451617.2451619

36. Krueger, C.: Eliminating the Adoption Barrier. IEEE
Software 19(4), 29–31 (2002). DOI 10.1109/MS.2002.
1020284

37. Lienhardt, M., Clarke, D.: Conflict detection in delta-
oriented programming. In: Leveraging Applications of

18 Damiani, Lienhardt, Paolini

Formal Methods, Verification and Validation. Technolo-
gies for Mastering Change: 5th International Symposium,
ISoLA 2012, Proceedings, Part I, pp. 178–192 (2012).
DOI 10.1007/978-3-642-34026-0\ 14

38. Lienhardt, M., Damiani, F., Testa, L., Turin, G.: On
checking delta-oriented product lines of statecharts. Sci-
ence of Computer Programming 166, 3 – 34 (2018). DOI
10.1016/j.scico.2018.05.007

39. Liu, J., Batory, D., Lengauer, C.: Feature oriented refac-
toring of legacy applications. In: ICSE, pp. 112–121.
ACM (2006). DOI 10.1145/1134285.1134303

40. Lochau, M., Goltz, U.: Feature interaction aware test
case generation for embedded control systems. Electronic
Notes in Theoretical Computer Science 264(3), 37–52
(2010). DOI 10.1016/j.entcs.2010.12.013

41. Lopez-Herrejon, R., Batory, D., Cook, W.: Evaluating
Support for Features in Advanced Modularization Tech-
nologies. In: A.P. Black (ed.) ECOOP 2005 - Object-
Oriented Programming, LNCS, vol. 3586, pp. 169–194.
Springer (2005). DOI 10.1007/11531142\ 8

42. Monteiro, M.P., Fernandes, J.M.: Towards a catalogue of
refactorings and code smells for aspectj. In: A. Rashid,
M. Aksit (eds.) Transactions on Aspect-Oriented Soft-
ware Development I, pp. 214–258. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2006). DOI 10.1007/11687061 7

43. de Roever, W.P., Engelhardt, K.: Data Refinement:
Model-oriented Proof Theories and their Comparison,
Cambridge Tracts in Theoretical Computer Science,
vol. 46. Cambridge University Press (1998). DOI
10.1017/CBO9780511663079

44. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tan-
zarella, N.: Delta-Oriented Programming of Software
Product Lines. In: J. Bosch, J. Lee (eds.) Software Prod-
uct Lines: Going Beyond (SPLC 2010), Lecture Notes in
Computer Science, vol. 6287, pp. 77–91. Springer Berlin
Heidelberg (2010). DOI 10.1007/978-3-642-15579-6\ 6

45. Schaefer, I., Damiani, F.: Pure delta-oriented program-
ming. In: Proceedings of the 2Nd International Workshop
on Feature-Oriented Software Development, FOSD’10,
pp. 49–56. ACM, New York, NY, USA (2010). DOI
10.1145/1868688.1868696

46. Schulze, S., Richers, O., Schaefer, I.: Refactoring delta-
oriented software product lines. In: Proceedings of the
12th Annual International Conference on Aspect-oriented
Software Development, AOSD ’13, pp. 73–84. ACM, New
York, NY, USA (2013). DOI 10.1145/2451436.2451446

47. Schulze, S., Thüm, T., Kuhlemann, M., Saake, G.:
Variant-preserving refactoring in feature-oriented soft-
ware product lines. In: Proceedings of the Sixth Inter-
national Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, pp. 73–81. ACM, New
York, NY, USA (2012). DOI 10.1145/2110147.2110156

48. Wille, D., Runge, T., Seidl, C., Schulze, S.: Extrac-
tive software product line engineering using model-
based delta module generation. In: Proceedings of the
Eleventh International Workshop on Variability Mod-
elling of Software-intensive Systems, VAMOS’17, pp. 36–
43. ACM, New York, NY, USA (2017). DOI 10.1145/
3023956.3023957

49. Winkelmann, T., Koscielny, J., Seidl, C., Schuster, S.,
Damiani, F., Schaefer, I.: Parametric deltaj 1.5: Prop-
agating feature attributes into implementation arti-
facts. In: Gemeinsamer Tagungsband der Workshops
der Tagung Software Engineering 2016 (SE 2016), Wien,
23.-26. Februar 2016., CEUR Workshop Proceedings, vol.
1559, pp. 40–54. CEUR-WS.org (2016)

