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Assessment of a clinically feasible Bayesian fitting algorithm using a simplified 

description of Chemical Exchange Saturation Transfer (CEST) imaging   

Purpose: Chemical Exchange Saturation Transfer (CEST) contrast is based on the 

exchange of protons between metabolites and water. Fitting a model based on the 

Bloch-McConnell (BM) equations to CEST spectra allows for the quantification of 

underlying parameters such as metabolite concentration and exchange rate while 

simultaneously correcting for main field inhomogeneity, direct water saturation and 

magnetization transfer. Employing a Bayesian fitting approach permits the integration 

of prior information into the analysis to incorporate expected parameter distributions 

and to prevent over-fitting. However, the analysis can be time consuming if a general 

numerical solution of the BM equations is applied.  

Methods: To achieve feasible computational times, we combined a Bayesian fitting 

algorithm with approximate analytical solutions of the BM equations. Simulated data, 

and data from Iodipamide and Taurine phantom measurements were fitted to evaluate 

the accuracy and speed of the suggested approach. Both continuous-wave (CW) and 

pulsed saturation with Gaussian pulses were considered.  

Results: An about 50-fold reduction of computational time was measured when fitting 

CW data with the analytical model. For pulsed saturation data, the reduction was more 

than 100-fold. In most cases the estimated parameters did not differ significantly from 

the parameters estimated with the general numerical solution. In one case the 

analytical algorithm converged to the ground truth, while the general algorithm did 

not.  



Conclusion: The increased speed of the algorithm facilitates the Bayesian analysis of 

CEST data within clinically feasible processing times. Other analytical models valid 

for different parameter regimes may be employed to extend the applicability to a 

wider range of CEST agents.  

 

1. Introduction 

Chemical Exchange Saturation Transfer (CEST) is an approach in magnetic resonance 

imaging (MRI) aiming to detect molecules containing exchangeable protons. The CEST 

contrast results from the selective saturation of these protons and their subsequent 

exchange with bulk water protons which in turn leads to a measurable reduction of the 

water signal. This CEST effect can be several orders of magnitude larger than the direct 

signal from the metabolites as measured with magnetic resonance spectroscopy (MRS) 

techniques, leading to enhanced sensitivity [1]. Various endogenous as well as exogenous 

CEST agents have been utilised in studies to investigate physiological parameters that are 

used as risk factors for the prediction of several pathologies[2–4]. For example, the 

endogenous CEST effect in Amide Proton Transfer (APT) imaging depends on the exchange 

rate of amide NH groups, which has been shown to be pH-dependent and capable of 

detecting pH deficits in stroke [5]. 

 

Several approaches have been adopted to quantify the CEST effect, such as, among others, 

the magnetization transfer ratio (MTR), the asymmetry magnetization transfer ratio 

(MTRasym), quantitative CEST (qCEST) [6], the Omega plot [7], QUEST and QUESP (quantifying 

exchange rates using the saturation time and saturation power dependencies) [8] and 



QUEST with ratiometric analysis (QUESTRA) [9]. In the case of MTR, the water proton signal 

Ssat which is obtained upon saturation at a single offset frequency is compared to the water 

signal without saturation S0. However, MTR might be overestimated due a direct effect on 

the water signal known as the “spill-over effect”. This effect is often symmetric with respect 

to the water frequency and can therefore be eliminated by means of an additional 

reference measurement at the negative offset frequency, which is exploited for MTRasym. A 

bias is introduced, however, if the reference measurement is influenced by non-symmetric 

effects caused by exchanging protons with overlapping resonance frequencies or slow 

exchange processes mediated via the Nuclear Overhauser Effect (NOE) [10]. Furthermore, 

these metrics quantify the magnitude of the CEST effect, but do not give much insight about 

the underlying parameters such as agent concentration or exchange rate. These parameters 

can be determined by qCEST, Omega plot, QUEST, QUESP and QUESTRA. In contrast to MTR 

and MTRasym, many acquisitions with varying saturation parameters (i.e. variations of the 

length and/or amplitude of the saturation pulse) are typically required which can result in 

long scanning times. 

 

CESTR* is another metric that has recently been developed [11] and which has potential to 

quantify pH differences between tumour and normal tissue in vivo without the need for 

exogenous contrast agents [12]. This metric is calculated based on parameters estimated by 

a Bayesian model-fitting method [13], which has previously been shown to permit the 

quantification of the APT effect in vivo, even in the presence of asymmetries in the Z-

spectrum arising from Magnetization Transfer (MT) or NOE-mediated contributions [11].  

 



In contrast to conventional least-squares fitting [14,15], Bayesian model-fitting of the Z-

spectrum provides a framework to combine prior information about the model parameters 

with the information inferred from the measured data, also referred to as the likelihood. 

The prior information reflects the expected values and uncertainties for each model 

parameter such as information available from previous experiments. Furthermore, this 

approach reduces the risk of over fitting which can arise when a large number of model 

parameters is estimated from fitting data with a low signal-to-noise ratio (SNR).  

 

One of the main limitations of the current Bayesian model-fitting approach for CEST is the 

long processing time which can be up to several hours per acquired section [11]. Especially 

in the clinic such long processing times are not feasible. The bottleneck of the algorithm is 

the evaluation of the model itself which is based on a numerical solution of the Bloch-

McConnell (BM) equations [16,17].  

 

On the other hand, analytical approximations of the BM equations which were shown to be 

valid for different ranges of physiological parameter values and experimental settings have 

been developed [18–23]. Here, we show that the processing time of the Bayesian model-

fitting approach can be reduced considerably by replacing the BM equations with analytical 

approximations without significantly affecting the resulting parameter distributions or the 

convergence of the algorithm. We evaluated the modified algorithm by comparing the 

estimated parameters to those obtained from the algorithm based on the numerical 

solution of the BM equations. This evaluation was performed on both simulated data and 

data from the measurement of phantoms. The analytical approximations that were applied 

in this study were derived by Zaiss et al. [24] for CEST data acquired with continuous-wave 



(CW) saturation and by Roeloffs et al. [22] for CEST data acquired with a pulsed saturation 

scheme. In the case of pulsed saturation, the analytical solution was further developed to be 

applicable to adiabatic Gaussian-shaped pulses.  

 

2. Theory 

Bayes theorem 
Bayesian model-fitting is based on Bayes theorem which combines the prior distribution 

𝑝𝑝(Θ) with the likelihood 𝑝𝑝(𝑆𝑆|Θ) to obtain the posterior distribution 𝑝𝑝(Θ|S): 

 𝑝𝑝(Θ|S) ∝ 𝑝𝑝(𝑆𝑆|Θ)𝑝𝑝(Θ). (1) 

 

The measured data is given by 𝑆𝑆 and the set of 𝑁𝑁 model parameters by Θ =

{Θ1, … ,Θi, … ,ΘN}. Assuming a model 𝑓𝑓(Θ) and additive Gaussian noise with standard 

deviation 𝜎𝜎𝑛𝑛, the likelihood can be expressed by the probability density function: 

 𝑝𝑝(𝑆𝑆|Θ) =  1
𝜎𝜎𝑛𝑛√2𝜋𝜋

𝑒𝑒
(𝑆𝑆−𝑓𝑓(Θ))2

2𝜎𝜎𝑛𝑛
2 . (2) 

In the context of CEST, 𝑆𝑆 represents one or multiple measured Z-spectra and Θ corresponds 

to the set of model parameters to be estimated by the fitting algorithm such as exchange 

rates and equilibrium magnetizations. Furthermore, the model is given by a numerical or, as 

applied in this study, analytical solution of the BM equations.  

Integrating the posterior distribution over all model parameters but one, Θi, renders the so-

called marginalized posterior 𝑝𝑝(Θi|𝑆𝑆) which reflects the estimated probability distribution 

for Θi. The mean of this distribution 𝑝𝑝(Θi|𝑆𝑆) can be interpreted as the expected value of Θi 

and credible intervals can be determined, e.g. the 𝜎𝜎-credible interval corresponds to the 

range of values within which Θi falls with a probability of 0.68.  



 

A Z-spectrum can be accurately described by a model 𝑓𝑓(Θ) which is based on the BM 

equations. If only one CEST agent is present a 2-pool-model with pool 𝑏𝑏 describing the agent 

and pool 𝑎𝑎 describing the bulk water can be applied. Each pool 𝑖𝑖 is modelled by its 

longitudinal and transverse relaxation rates 𝑇𝑇1𝑖𝑖 and 𝑇𝑇2𝑖𝑖, concentration 𝑀𝑀0𝑖𝑖, resonance 

frequency 𝜔𝜔𝑖𝑖 and forward proton exchange rate constant 𝑘𝑘𝑖𝑖𝑖𝑖 with pool 𝑗𝑗. A general 

numerical solution of the BM equations can be found in [25], however its evaluation is 

computationally demanding as it contains a matrix exponential [15]. Instead of the full 

model, two simplified approximations for the cases of CW saturation and pulsed saturation 

were applied here. 

CW saturation 
For CW saturation, the following approximate solution was used [24]: 

 𝑍𝑍(𝑡𝑡) =  (𝑃𝑃𝑧𝑧𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑍𝑍CWSS )exp (−R1ρ𝑡𝑡) + 𝑍𝑍CWSS . (3) 

 

𝑃𝑃𝑧𝑧 and 𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 are factors describing the projection of magnetization along the z-axis onto the 

direction of the effective magnetic field and vice versa. They are given by 𝑃𝑃𝑧𝑧 = 𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 =

cos(𝜃𝜃), where 𝜃𝜃 = tan−1 �𝜔𝜔1
𝛥𝛥𝜔𝜔
� is the angle between the effective magnetic field and the z-

axis. The parameters 𝜔𝜔1 and Δ𝜔𝜔 = 𝜔𝜔𝑟𝑟𝑧𝑧 − 𝜔𝜔𝑎𝑎 designate the CW saturation amplitude and 

frequency offset with respect to the resonance frequency of the water pool. The steady-

state value is given by 

 𝑍𝑍CWSS = cos2(𝜃𝜃) 𝑅𝑅1𝑎𝑎
𝑅𝑅1𝜌𝜌

 , (4) 



 and the longitudinal relaxation rate of the water pool in the rotating frame, including the 

contribution due to chemical exchange, by 𝑅𝑅1𝜌𝜌. An approximate analytical expression for 

𝑅𝑅1𝜌𝜌 is given in Appendix A. 

 
Pulsed saturation 
For pulsed saturation, we employ a solution termed ISAR2 derived in [22] for a series of 𝑛𝑛 

rectangular pulses of duration 𝑡𝑡𝑝𝑝, interleaved with delays of duration 𝑡𝑡𝑑𝑑, and here we 

extend it for the case of adiabatic Gaussian-shaped saturation pulses: 

 𝑍𝑍(𝑛𝑛) = (𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑆𝑆𝑆𝑆)𝛽𝛽𝑛𝑛𝑒𝑒−𝑅𝑅1𝜌𝜌𝑡𝑡𝑝𝑝𝑛𝑛 + 𝑍𝑍𝑆𝑆𝑆𝑆, (5) 

 

where 𝑍𝑍𝑖𝑖  is the initial normalized water magnetization.  

Furthermore: 

 𝛽𝛽 = 𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑃𝑃𝑧𝑧(𝑑𝑑𝑎𝑎𝑎𝑎 + 𝑑𝑑𝑎𝑎𝑎𝑎Ψ) (6) 

 

and 

 𝑍𝑍pulsedSS =  1 −
1−𝑃𝑃𝑧𝑧𝑃𝑃𝑧𝑧𝑒𝑒𝑓𝑓𝑓𝑓(𝑧𝑧𝑏𝑏−Ψ) exp(−𝑅𝑅1𝜌𝜌𝑡𝑡𝑝𝑝)−𝑍𝑍CW

SS �1−exp�−𝑅𝑅1𝜌𝜌𝑡𝑡𝑝𝑝�� 

1−𝑃𝑃𝑧𝑧𝑃𝑃𝑧𝑧𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑𝑎𝑎𝑎𝑎+Ψ𝑑𝑑𝑎𝑎𝑏𝑏)exp(−𝑅𝑅1𝜌𝜌𝑡𝑡𝑝𝑝)
. (7) 

 

Expressions for 𝑑𝑑𝑎𝑎𝑎𝑎 and 𝑑𝑑𝑎𝑎𝑎𝑎 are given in Appendix B. The parameter Ψ represents the ratio 

of z-magnetizations of pool 𝑏𝑏 and 𝑎𝑎 at the end of the rectangular saturation pulse and can 

be expressed as: 

 Ψ = 𝑓𝑓𝑎𝑎(1− 𝛼𝛼𝑙𝑙𝑎𝑎𝑎𝑎), (8) 

 

where 𝛼𝛼𝑙𝑙𝑎𝑎𝑎𝑎 is the labelling efficiency: 



 𝛼𝛼𝑙𝑙𝑎𝑎𝑎𝑎(Δ𝜔𝜔) = 𝑅𝑅𝑒𝑒𝑒𝑒 (Δω)
𝑧𝑧𝑏𝑏𝑘𝑘𝑏𝑏𝑎𝑎

, (9) 

An analytical expression for the exchange-dependent relaxation rate 𝑅𝑅𝑧𝑧𝑒𝑒 is given by 

equation 13 in Appendix A.  

Extension to Gaussian-shaped pulses 
Equation 5 was derived for a train of rectangular pulses. In the following, we assume that 

shaped pulses can be treated in a similar manner as the integration of adiabatic spin-lock 

pulses [26,27]. To extend the ISAR2 approach for shaped pulses, reasonable assumptions for 

the parameters 𝑃𝑃𝑧𝑧 and 𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 , the effective 𝑅𝑅1𝜌𝜌 and the initial condition after the pulse given 

by Ψ have to be found.  

1. Assumption: Shaped pulses are adiabatic. This is given if [28]: �̇�𝜃 ≪ 𝜔𝜔𝑧𝑧𝑧𝑧𝑧𝑧. This allows the 

assumption 𝑃𝑃𝑧𝑧 = 𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 1.  

2. Assumption: The effective 𝑅𝑅1𝜌𝜌 decay during the pulse can be described by the mean value 

𝑅𝑅1𝜌𝜌����� given by: 

 𝑅𝑅1𝜌𝜌����� = 1
𝑡𝑡𝑝𝑝
∫ 𝑅𝑅1𝜌𝜌(𝜔𝜔1(𝑡𝑡))𝑑𝑑𝑡𝑡𝑡𝑡𝑝𝑝
𝑡𝑡=0  . (10) 

3. Assumption: The parameter Ψ represents the ratio of magnetizations of pool 𝑏𝑏 and 𝑎𝑎 at the 

end of the pulse and is given by equation 8 when rectangular pulses are considered. However, 

if the envelope of the RF pulse varies slowly with respect to 𝑘𝑘𝑎𝑎, the magnetization of pool 𝑏𝑏 

is determined by the last 𝐵𝐵1-value of the pulse, which is approximately 0 for a Gaussian 

shape. This corresponds to a labelling efficiency of 𝛼𝛼𝑙𝑙𝑎𝑎𝑎𝑎 = 0. Thus, for fast exchange, 

Ψ should be replaced by 𝑓𝑓𝑎𝑎. 

If the changes in the RF envelope are comparable to 𝑘𝑘𝑎𝑎 the state of pool 𝑏𝑏 becomes 

complicated, however Ψ must be somewhere between the upper bound Ψ𝑚𝑚𝑎𝑎𝑒𝑒 = 𝑓𝑓𝑎𝑎 and a 

lower bound given by the value predicted for a block pulse with the same average 𝑅𝑅𝑧𝑧𝑒𝑒�����, 



which is Ψ𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑓𝑓𝑎𝑎 −
𝑅𝑅𝑒𝑒𝑒𝑒�����

𝑘𝑘𝑏𝑏
. As a first guess, Ψ is replaced by Ψ� = 𝑓𝑓𝑎𝑎 −

𝑅𝑅𝑒𝑒𝑒𝑒�����

𝑘𝑘𝑏𝑏
𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡, where 

𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 is introduced as a heuristic parameter (0 < 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 < 1) that determines Ψ�  subject to 

Ψ𝑚𝑚𝑖𝑖𝑛𝑛 < Ψ� < Ψ𝑚𝑚𝑎𝑎𝑒𝑒. For the Gaussian pulses employed in the following experiments, the 

value of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 0.5 was chosen based on numerical simulations of the Bloch-McConnell 

equations (see Appendix C). 

 

3. Methods 

The convergence of the algorithm and accuracy of determined fit parameters were 

investigated by fitting the simplified model equations to simulated as well as phantom data 

for both CW saturation (equation 3) and pulsed saturation (equation 5).  

 

Simulation experiments 

Z-spectra were simulated by evaluating the general solution of the BM equations 

numerically [15] in Matlab (vR2016b). For pulsed saturation, Gaussian-shaped pulses were 

approximated by piecewise constant pulses, i.e. each pulse was split into 200 uniform 

segments of constant pulse amplitude.  

 

The simulation parameters describing the sample were chosen to represent typical values of 

APT phantoms. A two-pool model was assumed with one pool describing the amide proton 

and the other pool the water proton with the following parameters: 𝑇𝑇1𝑎𝑎 = 3𝑠𝑠, 𝑇𝑇2𝑎𝑎 = 1.5𝑠𝑠, 

𝑇𝑇1𝑎𝑎 = 1𝑠𝑠, 𝑇𝑇2𝑎𝑎 = 0.015𝑠𝑠 and 𝑘𝑘𝑎𝑎𝑎𝑎 = 30Hz. The equilibrium magnetizations were assumed as 

𝑀𝑀0𝑎𝑎 = 1 and 𝑀𝑀0𝑎𝑎 = 0.007 and the resonance frequency of the amide protons at 3.5ppm. 

The spectra were sampled at saturation frequency offsets Δ𝜔𝜔𝑎𝑎 from -6ppm to 6ppm in steps 



of 0.1ppm. White Gaussian noise with a standard deviation of 𝜎𝜎 = 0.02 was added to all 

simulated spectra before the fitting procedure.  

 

The parameter values of the pulse sequence and MRI scanner assumed for the CW 

saturation experiment were as follows: 𝐵𝐵0 = 7T, 𝐵𝐵1 = 3.2𝜇𝜇T and pulse duration 𝑡𝑡𝑝𝑝 = 10s. 

The pulsed saturation experiment was simulated with: 𝐵𝐵0 = 7T, 𝑛𝑛 = 50 Gaussian pulses of 

duration 𝑡𝑡𝑝𝑝 = 0.1s, standard deviation 𝜎𝜎𝑝𝑝 = 0.017𝑠𝑠 and an average amplitude of 𝐵𝐵1 =

3.2𝜇𝜇T. The duty cycle was DC = 0.98. The means and precisions (defined as the inverses of 

the variances) of the prior distributions are shown in table 1. 

 

Furthermore, data sets of multiple Z-spectra with varying saturation powers were simulated 

for CW and pulsed saturation, since the availability of multiple Z-spectra at different 𝐵𝐵1 

permits the simultaneous estimation of exchange rate and concentration of CEST pools 

[7,8,11,29,30]. The average amplitudes were 𝐵𝐵1 = 0.5, 1.0, 2.0, 5.0 and 10.0 μT. All other 

parameter values were the same as for the single Z-spectra. The assumed prior distributions 

are shown in table 1.  

 

Phantom experiments 

For continuous-wave saturation experiments a 15mM Iodipamide in phosphate-buffered 

saline (PBS) solution was measured on a 7T MRI scanner Bruker Avance 300 (Bruker, 

Ettlingen, Germany), 𝐵𝐵1 = 1.5, 2.0, 3.0 and 6.0 μT and 𝑡𝑡𝑝𝑝 = 5s. The pH was adjusted to 

pH = 7.4 and the temperature to 𝑇𝑇 = 37°C. Frequency offsets were between -10ppm and 

10ppm in steps of 0.1ppm. The saturation was followed by a fast spin-echo sequence with 

centric encoding (repetition time TR/echo time TE/number of excitations NEX/RareFactor = 



10s/3.5ms/2/64). 𝑇𝑇1 relaxation times were measured using a Rapid Acquisition with 

Relaxation Enhancement (RARE) sequence with eleven repetition times in the range 50-

10000ms. 𝑇𝑇1 measurements were performed in a central axial plane with the following 

parameters: TE/NEX/RareFactor = 11ms/3/2, matrix = 128x128, FOV = 30x30mm2, slice 

thickness = 3mm, total acquisition time = 1h 7min. Prior distributions assumed for the 

Bayesian fit are shown in table 2. 

 

To obtain pulsed saturation data, we measured 12.5, 25.0, 50.0 and 100.0 mM Taurine in 

water solution which consisted of titrated 0.1% PBS with pH = 6.2 and temperature 𝑇𝑇 =

23°C. The data set was acquired on a 9.4T Agilent MRI scanner using a transmit/receive RF 

coil with 33mm inner diameter (Rapid Biomedical, Germany). The saturation consisted of 

151 Gaussian pulses of duration 𝑡𝑡𝑝𝑝  =  0.05𝑠𝑠, standard deviation 𝜎𝜎𝑝𝑝 =  0.017 and duty cycle 

of DC = 0.98. The average saturation amplitudes were B1 =

 0.78, 1.17, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. Each spectrum  

was sampled at 77 equally spaced frequency offsets between −6ppm and 6ppm. The 

readout sequence was a single-slice 2D-GRE sequence with a field of view of 20 × 20mm2, 

matrix size of 64 × 64, TR = 5s, TE = 1.3ms and slice thickness of 4mm. An Inversion recovery 

EPI sequence was used to quantify 𝑇𝑇1. A global adiabatic inversion pulse (flip angle of 180°, 

duration 2ms) was applied at the frequency of water followed by 20 equally spaced 

inversion times from 8.1ms to 7.5s. The other parameters were as follows: 𝑇𝑇𝑅𝑅 =  15s, 

𝑇𝑇𝑇𝑇 =  25.5ms, slice thickness of 2mm, field of view of 20 × 20mm2 and matrix size of 64 × 

64. For the quantification of 𝑇𝑇2 the Carr Purcell Meiboom Gill (CPMG) sequence was used. It 

consisted of a 90° excitation pulse (sinc pulse of 2ms duration) in x-direction followed by 15 

refocusing pulses in y-direction (flip angle of 180°, sinc shape and duration of 1.6ms). The 



other parameters were: TR = 3s, τCPMG = 8.33ms, slice thickness of 2mm, field of view of 20 × 

20mm2 and matrix size of 64 × 64.  

 

For each phantom, mean Z-spectra at various saturation powers were obtained by 

averaging the measured intensities in a circular region of interest (ROI) covering the 

phantom vials’ cross sections. Additionally, pixel-wise fits were performed on the Taurine 

data. The Z-spectra were normalized by the average signal of the 5 most negative frequency 

offsets in order to reduce the impact of noise.  

 

For the implementation of the fitting algorithm the Variational Bayesian (VB) algorithm 

available in the FMRIB Software Library (v5.0) was used. We extended the model library by 

replacing the full BM model by the simplified models described by equations 3 and 5. Fits 

were also performed with the full BM model (according to [11]) to compare the accuracy of 

parameter estimates and processing times between the two models.  

 

4. Results 

 

The simulated Z-spectra and fits obtained with the modified algorithm are shown in figure 1. 

The individual Z-spectra simulated for a single 𝐵𝐵1 (figure 1a and 1b) are well described by 

the fitted spectrum. The standard deviation of the fit residuals was 𝜎𝜎𝑟𝑟𝑧𝑧𝑠𝑠 = 0.019 for CW and 

𝜎𝜎𝑟𝑟𝑧𝑧𝑠𝑠 = 0.029 for pulsed saturation. The ground truth parameter values are included in the 

𝜎𝜎-credible intervals of the posterior distributions of 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝑇𝑇2𝑎𝑎 (table 1). In comparison, 

fitting the BM equations numerically also led to matching parameter estimates.  



 

Z-spectra simulated at multiple B1 values (figure 1c and d) are also well described by the 

fitted model (𝜎𝜎𝑟𝑟𝑧𝑧𝑠𝑠 = 0.02), though larger residuals are observable at higher B1 (𝜎𝜎𝑟𝑟𝑧𝑧𝑠𝑠 =

0.05), especially close to on-resonance. The ground truth values agreed with the estimates 

resulting from the fit of the CW saturation as well as the pulsed saturation data (table 1). 

Fitting the BM equations numerically led to matching estimates in the case of CW 

saturation, however, the numerical fit of pulsed saturation data yielded estimates that 

diverged significantly from the ground truth.  

 

Large differences in processing times between analytical and numerical algorithm were 

observed. For CW saturation, the algorithm based on the simplified analytical forward 

model was 51 times faster than the numerical forward model when a single B1 Z-spectrum 

was fitted and 48 times faster for the fitting of multiple B1 Z-spectra. For pulsed saturation, 

the analytical solution led to a 127-fold decrease in processing time for the single Z-

spectrum data set and a 108-fold decrease for the multiple B1 Z-spectra data set.  

 

The CW saturation Z-spectra of Iodipamide and the corresponding fits obtained with 

analytical and numerical models are shown in figure 2. The fits were obtained with a fixed 

relaxation time 𝑇𝑇1𝑎𝑎 = 3.3s as determined by the Inversion Recovery sequence. The 

estimated probability distributions for 𝑀𝑀0𝑎𝑎, 𝑘𝑘𝑎𝑎𝑎𝑎, 𝜔𝜔𝑎𝑎, 𝜔𝜔𝑎𝑎and 𝑇𝑇2𝑎𝑎 are shown in table 2. Both 

algorithms led to matching estimates for 𝑀𝑀0𝑎𝑎, 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝜔𝜔𝑎𝑎, but 𝛥𝛥𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 and 𝑇𝑇2𝑎𝑎 are 

significantly different.  

 



The averaged Z-spectra of the Taurine phantoms and the corresponding fits are shown in 

figure 3. The modelled Z-spectra describe the measured data reasonably well and residuals 

are negligible, except close to on resonance and at small concentrations. Assuming a fixed 

relaxation time 𝑇𝑇1𝑎𝑎 = 3.2s, the fit based on the simplified analytical equations yielded the 

parameter estimates for Taurine concentrations of 12.5, 25.0, 50.0, 100.0mM shown in 

table 3.  

The resulting parameter maps of pixel-wise fits of the Taurine Z-spectra are shown in figure 

4. For 𝑀𝑀0𝑎𝑎, 𝑀𝑀0𝑎𝑎, 𝑘𝑘𝑎𝑎𝑎𝑎, 𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 and 𝜔𝜔𝑎𝑎we obtained smooth parameter maps in each 

phantom, except from a few pixels at the edges of the plastic tubes. In accordance 

with the fit results of the averaged Z-spectra, 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝑀𝑀0𝑎𝑎 increase with the Taurine 

concentration. The 𝑇𝑇2𝑎𝑎 map is smooth only for the low concentration phantom, but 

more erroneous estimates were observed the higher the concentration. 

 

5. Discussion 

 

In this study, a Variational Bayesian algorithm for fast Bayesian inference [13] has been 

applied to fit CEST data. In contrast to a previous approach based on a general solution of 

the BM equations [11], we used simplified analytical models with the aim to reduce 

processing time. To assess the processing times as well as the convergence and accuracy of 

this evaluation, the algorithm was applied to Z-spectra obtained from simulations as well as 

phantom experiments under both CW and pulsed saturation. The results show that the 

simplified algorithm converges to a solution that describes the data well and which allows to 



estimate parameters with an accuracy and precision that is comparable with the previous 

algorithm. 

 

With this approach, it was however possible to considerably reduce processing time. The 

approximately 50-fold reduction of computational time for CW saturation can largely be 

attributed to the reduced complexity of the applied analytical solution. In more details, the 

numerical solution requires the relatively time-consuming calculation of a matrix 

exponential, whereas equation 3 comprises only basic arithmetic operations. As the 

Variational Bayesian algorithm iteratively updates the parameter estimates until 

convergence, the respective solutions are evaluated for each update.  

 

In the case of pulsed saturation, the reduction of processing time was greater (up to 127-

fold), although the analytical formula for pulsed saturation (equation 5) is more complex 

than the analytical formula for CW saturation. This great reduction is possible because the 

numerical solution requires a separation of the pulse shape into multiple intervals with 

approximately constant amplitude, each of which requires the numerical evaluation of 

equation 5. In contrast, with the simplified model the averaging of 𝑅𝑅1𝜌𝜌 over the pulse shape 

makes it possible to obtain the parameter update for each iteration with only one 

evaluation of equation 5.  

 

Assuming the processing times observed in the simulated experiments, the time required 

for fitting a single slice of 100×100 pixels is reduced from 5.6 hours to 6.5 minutes in the 

case of continuous-wave saturation. Fitting a slice of these dimensions with pulsed 

saturation would be infeasible with the numerical solution (~44 days) and would take 8.3 



hours with the analytical approximation. Such improvements in processing time might be 

crucial when quantitative CEST methods are considered for clinical routine. Note that we 

would expect such processing times to be further reduced using implementations on 

computer graphics cards. 

 

The accuracy of the fit results was comparable to the accuracy obtained with the previous 

algorithm [11]. In the simulation study the observed residuals (~2%) for CW saturation Z-

spectra fits were dominated by the added Gaussian noise. For pulsed saturation, larger 

residuals (<5%) were observed, which can be attributed to the assumptions made by the 

analytical model. Particularly the application of effective parameters, averaged over the 

pulse shape, and the choice of the heuristic value 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 are likely to cause the observed 

deviations.  

Only relatively small deviations were observed between the means of the posterior 

distributions and the ground truth (< 4% for kba and T2b). As these deviations fall within the 

𝜎𝜎-credible intervals of the estimated posterior distributions, they are likely due to the 

influence of noise. This is supported by the deviations resulting from the numerical 

algorithm, which are of similar magnitude.  

 

When the solute concentration was additionally set as a free parameter for the 

simultaneous fitting of multiple Z-spectra at varying B1, the numerical solution led to wrong 

parameter estimates for the pulsed saturation data. It can be assumed that the algorithm 

converged to a locally optimal solution, rather than the global optimum. Providing more 

specific prior information about expected parameters could help to avoid this behaviour.  

 



For the multiple B1 Z-spectra fits, the deviation between ground truth and the means of the 

posterior distributions increased to up to 10% for CW saturation and up to 20% for pulsed 

saturation, however these increases were captured within the σ-credible intervals, whose 

larger width can be attributed to the degree of correlation between solute concentration 

and exchange rate that has been reported in other studies [31].  

 

In order to fit the Iodipamide Z-spectrum, 6 model parameters were estimated by the 

analytical and numerical algorithms (table 2). The comparison shows deviations of the 

posterior distribution which are included in the σ-credible intervals and are therefore not 

significant for 𝑀𝑀0𝑎𝑎, 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝜔𝜔𝑎𝑎. On the other hand, the differences of Δ𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧  (≈0.014ppm) 

and 𝑇𝑇2𝑎𝑎 (≈ 22ms) don’t fall within the credible intervals. As discussed in regard to the 

deviations in the simulated study, these discrepancies can be explained either by 

convergence issues (local optima) or by the limited range of validity of the assumptions of 

the analytical model. The latter is less likely, since equations 3-13 were shown to be in good 

agreement with the numerical solution of the BM equations in [24] for the parameters 

estimated here. The increased asymmetry of the residuals with respect to the water peak in 

the numerical solution (figure 2b) suggests that the B0 correction by estimating Δ𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 was 

not successful, resulting in a local optimum and the observed significant biases in Δ𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 

and 𝑇𝑇2𝑎𝑎 .  

The determined relative Iodipamide equilibrium magnetizations (𝑀𝑀0𝑎𝑎,  = 2.6(3)·10−4 and 

𝑀𝑀0𝑎𝑎,  = 2.9(4)·10−4 for analytical and numerical solutions respectively) are in agreement with 

the expected value of a 15mM solution, assuming that both Iodipamide and water 

molecules have 2 exchanging proton sites (𝑀𝑀0𝑎𝑎 =  15𝑚𝑚𝑚𝑚∙2𝑝𝑝𝑟𝑟𝑜𝑜𝑡𝑡𝑜𝑜𝑛𝑛𝑠𝑠
55𝑚𝑚∙2𝑝𝑝𝑟𝑟𝑜𝑜𝑡𝑡𝑜𝑜𝑛𝑛𝑠𝑠

≈ 2.7 ∙ 10−4).  



The transverse relaxation time of Iodipamide 𝑇𝑇2𝑎𝑎 was determined with large uncertainty by 

both, numerical and analytical algorithm. This is due to the small influence of 𝑇𝑇2𝑎𝑎 on the 

shape of the Z-spectrum. 

The increased magnitude of residuals close to the water peak was also observed in the 

simulation experiments and can be attributed to the breakdown of the model assumption of 

negligible rotation of the water magnetization about the effective magnetic field. This effect 

becomes more important for shorter pulse duration 𝑡𝑡𝑝𝑝, higher 𝐵𝐵1 and longer 𝑇𝑇2𝑎𝑎. 

Furthermore, it is also possible that the fixed value for 𝑇𝑇1𝑎𝑎 deviates sufficiently from its true 

value to contribute to the larger residuals at the water peak.  

  

The Z-spectra of Taurine solutions of different concentrations were acquired with pulsed 

saturation. As expected, a linear relation was measured between the Taurine concentration 

and 𝑀𝑀0𝑎𝑎 (figure 5a). Furthermore, a linear relation was found between exchange rate and 

concentration (figure 5b), which is in line with recently reported previous measurements 

based on non-Bayesian fits [32].  

The estimates of 𝑇𝑇2𝑎𝑎 show small differences of the transverse relaxation time of water 

between the phantoms and larger credible intervals at higher concentration. The increased 

credible intervals can be explained by a stronger correlation between 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝑇𝑇2𝑎𝑎 at higher 

concentrations, as both parameters influence the width of the water peak in a similar way. 

At large exchange rates, as observed in the phantoms with high Taurine concentration, 𝑘𝑘𝑎𝑎𝑎𝑎 

dominates the width of the water peak and makes the estimation of 𝑇𝑇2𝑎𝑎 more difficult. On 

the other hand, when 𝑘𝑘𝑎𝑎𝑎𝑎 is small, the width of the water peak is dominated by 𝑇𝑇2𝑎𝑎, which 

can therefore be estimated more accurately.  



The influence of 𝑇𝑇2𝑎𝑎 on the Z-spectra is negligible under the chosen experimental settings, 

which means that an accurate estimation of this parameter is not possible.  

The parameter maps of 𝑀𝑀0𝑎𝑎 , 𝑀𝑀0𝑎𝑎, 𝑘𝑘𝑎𝑎𝑎𝑎 and 𝜔𝜔𝑎𝑎 (figure 4 a-d) agree with the fit results 

obtained from the fit of the averaged Z-spectra. The map of Δ𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 corresponds to the 

measured 𝐵𝐵0 map and reveals inhomogeneities of up to ±0.15ppm. In this way, an 

additional acquisition of a 𝐵𝐵0 map and pre-processing of the Z-spectra can be avoided. The 

𝑇𝑇2𝑎𝑎 map confirms the interpretation that a large exchange rate reduces the accuracy of the 

𝑇𝑇2𝑎𝑎 estimation, leading to unrealistic parameter estimates of more than 4s for many pixels.  

 

To date, the Variational Bayesian algorithm on which this study is based [13] is the only 

Bayesian algorithm incorporating the BM equations that has been applied to fit Z-spectra.  

The main limitation of the proposed method compared to the previous implementation 

originates from the assumptions of the employed analytical solution, which is valid only for 

slow and intermediate exchange regimes. While the agents chosen in this study fulfil this 

requirement, other agents, especially at high pH, might yield very different estimates when 

fitted with either the analytical or the numerical solution, due to violation of the 

assumptions made when deriving the analytical solutions. Furthermore, the analytical 

solutions employed in this study were developed for a two-pool model and need to be 

extended to three or more pools to be applicable to in vivo data. However, other analytical 

solutions exist for different exchange regimes and multiple pools [18–23,33] and/or may be 

developed in the future that can be combined with Bayesian model-fitting approaches to 

reduce processing times. Problems related to the correlation between model parameters 

such as agent concentration and exchange rate are not mitigated by employing improved 

analytical solutions, as the correlation stems from the data acquisition itself. Instead, 



improving the sampling strategy can lead to a smaller degree of correlation in the data. An 

improved sampling strategy might also be advantageous to reduce the measurement time 

[34]. Sampling the full Z-spectrum might not be feasible in a clinical setting, especially when 

3D images are desired.  

 

6. Conclusion 

A Bayesian fitting algorithm based on approximate analytical solutions of the BM equations 

has been employed to fit Z-spectra. A considerable reduction of processing times was 

observed, while the accuracy of estimated parameters was maintained in simulated and 

phantom experiments. The application of other analytical solutions might further improve 

the performance of the algorithm.  
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Appendix A 

For small population fractions (𝑓𝑓𝑎𝑎 = 𝑚𝑚0𝑏𝑏
𝑚𝑚0𝑎𝑎

≪ 1), the parameter 𝑅𝑅1𝜌𝜌 can be regarded as the 

rate which is perturbed by chemical exchange expressed by the exchange-dependent 

relaxation rate 𝑅𝑅𝑧𝑧𝑒𝑒: 

 𝑅𝑅1𝜌𝜌 = 𝑅𝑅𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑅𝑅𝑧𝑧𝑒𝑒, (11) 

 



where 𝑅𝑅𝑧𝑧𝑧𝑧𝑧𝑧 is the unperturbed relaxation rate in the rotating frame, i.e. without exchange, 

which can be approximated by [35]: 

 𝑅𝑅𝑧𝑧𝑧𝑧𝑧𝑧 = cos2(𝜃𝜃)𝑅𝑅1𝑎𝑎 + sin2(𝜃𝜃)𝑅𝑅2𝑎𝑎. (12) 

The following assumptions are made to obtain a simplified expression for 𝑅𝑅𝑧𝑧𝑒𝑒: 

1. The influence of 𝑅𝑅1𝑎𝑎 and 𝑅𝑅2𝑎𝑎 on 𝑅𝑅𝑧𝑧𝑒𝑒 is negligible, 

2. 𝑅𝑅1𝑎𝑎 ≪ 𝑅𝑅1𝑎𝑎 and 𝑅𝑅1𝑎𝑎 ≪ 𝑘𝑘𝑎𝑎𝑎𝑎, 

3. 𝑅𝑅𝑧𝑧𝑒𝑒 can be linearized in 𝑘𝑘𝑎𝑎𝑎𝑎. 

 

Under these assumptions, 𝑅𝑅𝑧𝑧𝑒𝑒 can be approximated by: 

 𝑅𝑅𝑧𝑧𝑒𝑒 =  
𝑅𝑅𝑧𝑧𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒

𝛤𝛤2
4

𝛤𝛤2
4 + 𝛥𝛥𝜔𝜔𝑎𝑎

2
 (13) 

 

 with  

 
𝑅𝑅𝑧𝑧𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒 = 𝑓𝑓𝑎𝑎𝑘𝑘𝑎𝑎𝑎𝑎 sin2(𝜃𝜃)

(𝜔𝜔𝑎𝑎 − 𝜔𝜔𝑎𝑎)2 + 𝑅𝑅2𝑎𝑎
𝑘𝑘𝑎𝑎𝑎𝑎

(𝜔𝜔12 + 𝛥𝛥𝜔𝜔2) + 𝑅𝑅2𝑎𝑎(𝑘𝑘𝑎𝑎𝑎𝑎 + 𝑅𝑅2𝑎𝑎)

𝛤𝛤2
4

 

 

(14) 

and   

 𝛤𝛤 = 2�𝑘𝑘𝑏𝑏𝑎𝑎+𝑅𝑅2𝑏𝑏
𝑘𝑘𝑏𝑏𝑎𝑎

𝜔𝜔12 + (𝑘𝑘𝑎𝑎𝑎𝑎 + 𝑅𝑅2𝑎𝑎)2. (15) 

Here, Δωb = 𝜔𝜔𝑟𝑟𝑧𝑧 − 𝜔𝜔𝑎𝑎 is the difference between the frequency of the CW irradiation and 
the resonance frequency of pool 𝑏𝑏.  

Appendix B 

Expressions for 𝑑𝑑𝑎𝑎𝑎𝑎 and 𝑑𝑑𝑎𝑎𝑎𝑎 were presented in [22], as part of the biexponential solution of 
the BM equations for 𝐵𝐵1 = 0 (no saturation) and negligible transverse magnetization (𝑀𝑀𝑖𝑖𝑒𝑒 =
𝑀𝑀𝑖𝑖𝑖𝑖 = 0):  



 𝑑𝑑𝑎𝑎𝑎𝑎 =  
(𝜆𝜆1 + 𝑅𝑅1𝑎𝑎 + 𝑘𝑘𝑎𝑎𝑎𝑎) exp(𝜆𝜆1𝑡𝑡𝑑𝑑) − (𝜆𝜆2 + 𝑅𝑅1𝑎𝑎 + 𝑘𝑘𝑎𝑎𝑎𝑎)exp (𝜆𝜆2𝑡𝑡𝑑𝑑)

𝜆𝜆1 − 𝜆𝜆2
 (16) 

 𝑑𝑑𝑎𝑎𝑎𝑎 =
𝑘𝑘𝑎𝑎(exp(𝜆𝜆1𝑡𝑡𝑑𝑑) − exp(𝜆𝜆2𝑡𝑡𝑑𝑑)

𝜆𝜆1 − 𝜆𝜆2
 (17) 

 

Expressions for 𝜆𝜆1 and 𝜆𝜆2 are: 

 𝜆𝜆1 = −
1
2

(𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑎𝑎 + 𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎 + �(𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑎𝑎 + 𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎)2 − 4(𝑘𝑘𝑎𝑎𝑅𝑅1𝑎𝑎 + 𝑘𝑘𝑎𝑎𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎𝑅𝑅1𝑎𝑎) (18) 

 𝜆𝜆2 = −
1
2

(𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑎𝑎 + 𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎 − �(𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑎𝑎 + 𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎)2 − 4(𝑘𝑘𝑎𝑎𝑅𝑅1𝑎𝑎 + 𝑘𝑘𝑎𝑎𝑅𝑅1𝑎𝑎 + 𝑅𝑅1𝑎𝑎𝑅𝑅1𝑎𝑎) (19) 

 

 

Appendix C 

 

Figure 6 shows the dependence of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 based on the exchange rate 𝑘𝑘𝑎𝑎𝑎𝑎 and the average 

pulse amplitude 𝐵𝐵1. For large 𝑘𝑘𝑎𝑎𝑎𝑎 it is obvious that 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 approaches 1, whereas 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 

approaches 0 for small 𝑘𝑘𝑎𝑎. In the intermediate regime of amide exchange rates, a value of 

𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 ≈ 0.5 is a reasonable choice. In figure 7 the effect of this choice of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the 

analytical solution is shown for different saturation powers and assuming an exchange rate 

of 𝑘𝑘𝑎𝑎𝑎𝑎 = 30Hz. Note that the analytical solution is closer to the numerical solution for 

𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 0.5 than for 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 0 or 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 1. For faster exchange rates the influence of 

𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the Z-spectrum is negligible (Figure 8). Hence, 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 0.5 was chosen for all fits 

in this study.  
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Figure 1: Fit results of simulated data sets obtained with the simplified analytical 

equations for a two-pool model of an amide in water solution: single B1 continuous-

wave saturation (a), single B1 pulsed saturation (b), multiple B1 continuous-wave 

saturation (c) and multiple B1 pulsed saturation (d). The single 𝐵𝐵1 Z-spectra were 

simulated with an average amplitude of 𝐵𝐵1 = 3.2μT. For multiple 𝐵𝐵1 Z-spectra we 

employed 𝐵𝐵1 = 0.5, 1.0, 2.0, 5.0 and 10.0 μT. 

  

 

  



Figure 2: Z-spectra of a 15mM Iodipamide in PBS solution at pH = 7.4 and T = 37◦C. 

The fit was obtained with the simplified analytical equations (a) and the numerical 

model (b).  

  

 

  



Figure 3: Z-spectra of 12.5mM (a), 25.0mM (b), 50.0mM (c), 100.0mM(d) Taurine in 

PBS solutions at pH = 6.2 and T = 23◦C. The saturation pulse average amplitude was 

varied with  B1 =  0.78, 1.17, 1.57, 1.96, 2.35, 2.74, 3.13, 3.52, 3.91, 4.31 μT. The fits were 

obtained with the simplified analytical equations for a two-pool model.   

 

  



Figure 4: Parameter maps obtained from pixel-wise Bayesian fits of Z-spectra at 

multiple 𝐵𝐵1 of Taurine in PBS solutions at pH = 6.2 and T=23◦C a) 𝑀𝑀0𝑎𝑎, b) 𝑀𝑀0𝑎𝑎, c) 

𝑘𝑘𝑎𝑎𝑎𝑎 in Hz, d) 𝜔𝜔0,𝑜𝑜𝑧𝑧𝑧𝑧 in ppm, e) 𝜔𝜔𝑎𝑎 in ppm, f) 𝑇𝑇2𝑎𝑎 in s. The Taurine concentrations 

from the bottom tube to the top tube are: 12.5mM, 25.0mM, 50.0mM, 100.0mM. The 

maps were masked to include only those pixels showing the Taurine phantom vials.  

 

  



Figure 5: The figures show the linear dependencies between Taurine concentration 

and the means of the distributions of the equilibrium magnetization of the Taurine 

pool M0b (a) and the exchange rate kba (b), respectively as estimated by the fit. The 

error bars correspond to the 𝜎𝜎-credible intervals. The linear regression lines are 

weighted least squares lines where the weights are inverse variances of the estimated 

parameter distributions.  

  

  



Figure 6: Dependence of the ideal value of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the exchange rate and the 

average saturation amplitude. The value was calculated according to 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 =

 Ψ𝑚𝑚𝑎𝑎𝑒𝑒−Ψ
Ψ𝑚𝑚𝑎𝑎𝑒𝑒−Ψmin

, where Ψ = 𝑚𝑚𝑧𝑧𝑏𝑏�𝑡𝑡=𝑡𝑡𝑝𝑝�
𝑚𝑚𝑧𝑧𝑎𝑎(𝑡𝑡=𝑡𝑡𝑝𝑝)

 was calculated by solving the 2-pool BM equations 

numerically. The simulation parameters were the same as those of the simulation 

experiment described in the Methods chapter. 

 

 

  



Figure 7: Comparison of the effect of different values of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the analytical 

solution for pulsed saturation with Gaussian pulses at different average saturation 

amplitudes. The left column shows full Z-spectra and the right column shows a 

magnification of the solute peak. The simulation parameters were the same as those of 

the simulation experiment described in the Methods chapter, in particular 𝑘𝑘𝑎𝑎𝑎𝑎 =

30Hz. At this exchange rate, 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 = 0.5 is a reasonable choice.  

 

  



Figure 8: Comparison of the effect of different values of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the analytical 

solution for pulsed saturation with Gaussian pulses at different average saturation 

amplitudes. Regarding the simulation parameters, the only difference to Figure 7 is 

the exchange rate which was increased to 𝑘𝑘𝑎𝑎𝑎𝑎 = 300Hz. The figure shows that at 

faster exchange rates, the influence of 𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 on the analytical Z-spectrum is 

negligible. Note, that the analytical Z-spectra overlap and are therefore almost not 

distinguishable.  

 

  



Table 1: Comparison between the ground truth of the BM simulations and the 

parameter estimates returned by the Bayesian algorithm with the numerical and the 

analytical models. The uncertainty in brackets indicates the standard deviation of the 

Gaussian posterior distribution and refers to the last digits of the mean, e.g. 

0.0157(14) =  0.0157 ± 0.0014. The processing times were measured on a 2.9GHz 

Intel Core i5 processor.  

 

Table 2: Estimated parameters corresponding to the fits in figure 2 of the Iodipamide 

solution with the analytical and numerical models. The values correspond to the 

means of the posterior distributions of the estimated parameters. The values in 

brackets represent their standard deviations. 

 



Table 3: Estimated parameters corresponding to the fits in figure 3 of Taurine 

solutions at different concentrations, obtained with the analytical solution.  
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