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Abstract: Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover,
current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage,
are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous
coronary intervention (PPCI) has undoubtedly improved patient’s outcomes; however, the prevention
of long-term complications is still an unmet need. To face these hurdles and improve patient’s outcomes,
novel pharmacological and interventional approaches, alone or in combination, reducing myocardium
oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number
of clinical trials are ongoing to validate their efficacy on patient’s outcomes. Alternative options,
including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent
scar formation. However, due to the lack of long-term engraftment, more recently, great attention
has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV).
Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic
strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem
cells of different origin have been evaluated for their healing properties in ischemia reperfusion
(I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and
protection after I/R damage to track the paths through which more appropriate interventional and/or
molecular-based targeted therapies should be addressed. Moreover, it will provide insights on
novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge
for improving patient’s long-term complications. Finally, approaches for improving Exo healing
properties, and topics still unsolved to move towards Exo clinical application will be discussed.

Keywords: cardiac ischemic disease; cardiac regeneration; stem cells; exosomes; therapeutic
approaches

1. Introduction

The ischemic cascade was first described over 30 years ago [1]. The imbalance between myocardial
oxygen supply and demand translates into angina and myocardium necrosis if not promptly recognized
and treated in an acute setting. As a result, necrosis turns into fibrosis, which causes a reduction of both
myocardial contraction and left ventricular ejection fraction (LVEF), and eventually to heart failure
(HF). Several efforts have been devoted to reduce long-term mortality in patients with HF progression
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upon myocardial injury [2]. However, after primary percutaneous coronary intervention (PPCI) and
optimization of medical therapies, no further improvements in clinical outcomes have been achieved.
This has spurred the scientific community to search for alternative therapeutic options, which range
from pharmacological/interventional approaches to cell-based therapy [3]. Novel interventional
protocols have been proposed to reduce myocardial oxygen consumption and/or to improve heart
collateral blood supply. Moreover, clinical trials exploiting multitarget therapeutic options are ongoing
and they could represent a future challenge [4]. More recently, different cell sources and their derivatives,
including extracellular vesicles (EV), have been also investigated for their potential application [5,6].

EV are small vesicles with a lipid bilayer membrane that is secreted by almost all cell types. EV are
considered a novel paracrine and endocrine mechanism of cell-to-cell communication. The transfer of
their composite cargo, consisting of lipids, proteins, RNA, including mRNA [7], microRNA (miR) [8],
and long noncoding (lnc)RNA, drives their functional effects on target cells [9,10]. Exocarta (see at
www.exocarta.org) [11] or EVpedia (http://www.evpedia.org/) [12] provide the updated list of known
molecules that are carried by EV.

EV were first described as plasma membrane fragments released by platelets as part of
the coagulation process by Peter Wolf in 1967 [13]. From then, a number of studies have
provided evidence for their role in many biological processes, including inflammation, angiogenesis,
and coagulation [14–17]. More recently, the therapeutic potential of EV has been demonstrated in
different clinical settings [15,16,18,19]. Recently, their potential role in myocardial ischemia/reperfusion
(I/R) injury has been evaluated [20,21], which provides new insights that are exploitable for therapeutic
purposes. Indeed, EV have been proposed as a novel option to interfere with or prevent scar formation
in myocardial infarction (MI) [22–26].

The first part of this review will introduce the most relevant mechanisms of damage and
cardioprotection, as the therapeutic strategies are mainly based on specific targeting approaches.
Moreover, it will provide an overview on multitarget pharmacological/non-pharmacological approaches
and on the promising mechanical reperfusion techniques that were developed to protect myocardium
from I/R damage. In addition, recent advances in using EV for cardioprotection/cardiac regeneration
will be reported. Finally, approaches for improving EV healing properties and the hurdles still unsolved
for moving from bench to bedside will be discussed.

2. Reperfusion Injury

MI results from both coronary artery occlusion and reperfusion damage. The reperfusion time, the
presence of collateral vessels and the patient’s hemodynamic status dictate the fate of the myocardial
area at risk. However, despite advances in PPCI, the management of microvascular damage in the
reperfused myocardium remains a challenge. As originally demonstrated by Maroko et al. [27] and
further supported by a number of evidences [28–30], reperfusion strategies are crucial for myocardial
salvage. In current clinical practice reperfusion, when appropriate, is the cornerstone in the management
of acute coronary syndrome (ACS) [30,31]. The sooner blood flow will be restored, better outcomes
will be obtained, particularly regarding the overall mortality [32]. A brief description will be provided,
as several mechanisms contribute to myocardial salvage upon reperfusion.

2.1. Lethal Reperfusion Injury

The questioned concept of lethal reperfusion injury has been currently accepted, owing to the
results that were obtained by Zhao et al. [33]. The authors proved that a reduction of the infarct size
occurred in dogs that were subjected to post-conditioning strategies. In particular, they have shown
that a progressive reperfusion could be obtained by intermittent inflation of a balloon inside the infarct
related artery, just after blood reflow. Such a protocol clearly demonstrated that a reduction in the
infarct size was independent of the ischemic time, while being dependent on reperfusion itself.

www.exocarta.org
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2.2. Microvasculature Damage

Microvascular damage, also known as no-reflow phenomenon, was first described by
Kloner et al. [34], as a crucial determinant of myocardial injury. This phenomenon occurs in 10%
to 30% of ST elevation MI (STEMI) patients after reperfusion [35,36] and it is considered to be a
negative prognostic factor [37]. A number of hypotheses have been postulated for explaining the
no-reflow phenomenon: the release of cellular debris, the presence of platelet and leucocyte aggregates,
the vasospasm induced by vasoconstrictors released after reperfusion [38,39], myocardium edema [40],
and direct capillary destruction [34].

2.3. Mitochondrial Permeability Transition Pore (mPTP)

Independent of the mechanisms accounting for the reperfusion damage, mPTP opening is
considered to be the key driver of injury [41]. Briefly, mPTP is formed by a ring of the c subunits of the
adenosine triphosphate (ATP) synthase [42]. During ischemia, the metabolic shift towards anaerobiosis
promotes calcium overload and long-fatty acid accumulation, which would lead to mPTP opening.
However, the simultaneous reduction of cytosolic pH prevents this event [43]. When reperfusion
occurs, a sudden O2 influx, together with the production of reactive oxygen species (ROS) and pH
neutralization, promote mPTP opening [41,44]. This translates in ATP depletion and the loss of ionic
homeostasis [45].

mPTP opening drives cell towards necrosis (if stably opened) or apoptosis (if transiently opened),
depending on the release of cytochrome c or the activation of caspase-9 and 3 receptively [41].
The biological relevance of the mPTP functional state was demonstrated in preconditioning setting
while using the mPTP inhibitor, cyclosporine A [46]. Indeed, it was found that cyclosporine A,
by binding to its receptor, the mitochondrial cyclophilin D, was able to reduce the infarct size in MI
preclinical models [47]. However, both cyclosporine A [48] and TRO40303 [49] (a different mPTP
inhibitor), administered in two different clinical trials, failed to demonstrate any clinical benefits.
This suggests that a deep knowledge of the complex cascade controlling mPTP opening is still missing.

3. Cardioprotective Pathways

Apoptotic cell death is the final event occurring after I/R injury [50]. Therefore, interfering with or
preventing apoptotic cell death would prevent MI-associated damage and impact patient’s clinical
outcomes. A large number of receptors or intracellular signaling pathways that are involved in
cardioprotection have been described. Herein, a brief summary of the most relevant pathways will
be reported.

3.1. The Anti-Apoptotic Pro-Surviving Pathway: The “Reperfusion Injury Salvage Kinase” (RISK) Pathway

The RISK pathway, which encompasses the activation of the phosphoinositide 3-kinase (PI3K)-AKT
and Mitogen-Activated protein kinase (MEK)/Extracellular Signal-Regulated Kinase (ERK) cascade,
was first described by Yellon et al. [51]. However, from the original report, a number of effectors acting
on AKT [52,53] have been described, as to promote protection or damage, depending on their acute
or long-lasting activation [54]. In preclinical models of cardiac I/R, the activation of the RISK kinase
cascade occurs during both preconditioning cycles and early reperfusion [55], and it modulates the
mPTP functional state, by converging on the Glycogen Synthase Kinase-3β (GSK-3β) [56–58]. Moreover,
it has been shown that the overexpression of Phosphatase and Tensin Homolog (PTEN), which controls
the PI3K-AKT kinase activity [59], prevents protection driven by conditioning strategies [60], while its
suppression rescues cardioprotection [53,61]. Therefore, PTEN has been proposed as a potential I/R
target [62,63].
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3.2. The Survivor Activating Factor Enhancement (SAFE) Pathway

The SAFE pathway is an alternative survival kinase cascade that converges on the Signal Transducer
and Activator of Transcription-3 (STAT3). In mice, the inhibition of the mPTP opening [64] and the
expression of the mitochondrial protein Optical Atrophy-1 (OPA1) [65] are under the control of STAT3
tyrosine and serine phosphorylation [66,67], and they represent the most relevant mechanisms of
STAT3-mediated cardioprotection. Tumor Necrosis Factor Receptor-2 (TNFR2), via Janus Kinase (JAK),
is the most relevant mediator of STAT3 activation in cardiomyocyte [68–72]. Moreover, it has been
reported that the activation of ERK [40,41] and the inhibition of Forkhead Box O-1 (FOXO-1) [69]
contribute to the cross-talk between the RISK and the SAFE pathway [73,74]. However, as the SAFE
pathway in humans is under the control of STAT5, the role of STAT3 in this pathway is still a matter of
debate [75].

3.3. Nitric Oxide and cGKI Pathway

Cyclic guanosine-monophosphate (cGMP) and cGMP-dependent protein kinase type I (PKG
aka cGKI) are known to prevent both I/R damage and cardiac remodeling [76]. The nitric oxide
(NO)–sensitive guanylyl cyclase (NO-GC aka s-GC) is the most relevant target of cGKI [77–80].
Cardiac cGKI exerts its cardioprotective effects [81] by opening the mitoBKCa, which results in
potassium influx [82] and mPTP closing. A direct effect of NO via S-nitrosilation of mitochondrial
proteins (mitoSNO) has been also suggested to play a role in this pathway [83].

3.4. Autophagy

Autophagy is a self-phagocytic phenomenon in which lysosomes degrade intracellular molecules
and organelles [84]. Autophagy is considered to be an adaptive and protective response of
cardiomyocytes to ischemia [85] and it is involved in cardioprotection that is induced by remote
ischemia preconditioning (rIPC) [86]. The inhibition of the mammalian target of rapamycin (mTOR),
via adenosine monophosphate (AMP)-activated protein kinase (AMPK), is the main mechanism that
is involved in autophagy [87]. Therefore, as expected, AKT-dependent mTOR activation prevents
autophagy [for a review on mTOR refer to [88]]. However, a beclin-dependent autophagy has been
shown to worsen tissue damage during reperfusion [85]. In particular, it has been reported that,
while partial beclin inhibition exerts beneficial effects, its knockdown increases cell death [85,88–90].

4. Current Strategies to Reduce Ischemic Damage and Reperfusion Injury

The failure to develop new therapeutic options that are able to effectively prevent reperfusion
injury fully reflects the complexity of this process. In the last decades, a number of different strategies
have been investigated (Figure 1). Herein, the most relevant pharmacological, non-pharmacological,
and interventional approaches will be discussed (Table 1).
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Table 1. Therapeutic strategies to reduce ischemic damage and reperfusion injury.

Study, Year Population (N) Design Treatment Primary Endpoints Results Refs

ISIS 2, 1988 Suspected acute MI
(17187)

Multicenter, double-blinded,
two-by-two factorial,
placebo-controlled,
randomized trial

Streptokinase vs. 1-month ASA
vs. both vs. neither

Vascular mortality at 5 weeks,
non-fatal reinfarction, bleeds

requiring transfusion, non-fatal
stroke, and cerebral hemorrhage.

The co-administration of
streptokinase and ASA reduced
vascular mortality compared to

single drug treatment (40% vs. 23%
vs. 20%).

[91]

Cure, 2001 UA/NSTEMI (12562)

Multicenter, double-blind,
parallel group,

placebo-controlled,
randomized trial

ASA + clopidogrel vs.
ASA + placebo

Composite of CV mortality,
non-fatal MI, or stroke.

Dual antiplatelet therapy reduced
CV mortality, non-fatal MI, or
stroke but increased the rate of

major bleeding

[92]

TRITON-TIMI 38,
2007 ACS (13608) Multicenter, double-blind,

randomized trial
ASA + prasugrel vs.
ASA + clopidogrel

CV mortality, non-fatal MI, or
non-fatal cerebrovascular events.

Prasugrel reduced CV morbidity
and mortality but increases

bleeding compared to clopidogrel
[93]

PLATO, 2009 ACS (18624) Multicenter, double-blind,
randomized trial

ASA + ticagrelor vs.
ASA + clopidogrel

Vascular mortality, MI, or
cerebrovascular events, major

bleeding.

Ticagrelor reduced the rate of CV
death, MI, or stroke without

increasing the rate of overall major
bleeding

[94]

METOCARD-CNIC,
2014

Anterior STEMI
undergoing PCI (270) Randomized trial Metoprolol iv Infarct size at 5–7 days

(underpowered).

Beta-blocker was associated with a
smaller infarct size compared with

control; improved LVEF at 6
months

[95]

VCU-ART, 2010 STEMI (10) Double-blind, placebo
controlled, randomized trial Anakinra vs. placebo Change in LVESVi at CMR and

echocardiography at 3 months.
Anakinra decreased LVESVi and

LVEDVi [96]

MRC-ILA Heart Study,
2014 NSTEMI (182)

Double-blind
placebo-controlled,
randomized trial

Anakinra vs. placebo AUC for CRP over the first 7 days.
Anakinra reduced CRP levels, but

increased the incidence of CV
events at 12 months

[97]

CANTOS, 2012 Post-MI and elevated
CRP (10061)

Double-blind, multi-center,
placebo-controlled,
randomized trial

Canakinumab (50, 150 or 300 mg) Composite of nonfatal MI, nonfatal
stroke, or cardiovascular death.

Canakinumab 150 mg reduced the
composite outcome mainly

reducing non-fatal MI; reduction in
lung cancer, but associated with

higher risk of fatal infections

[98]

AMISTAD-II, 2005 STEMI (2118)
Double-blind, multi-center,

placebo-controlled,
randomized trial

Adenosine infusion vs placebo
for 3 h before PPCI/fibrinolysis.

New congestive heart failure
beginning >24 h after

randomization, or the first
re-hospitalization for CHF, or
death from any causes within

six months.

No difference between placebo and
adenosine. Adenosine

dose-response relationship in
decreasing median infarct size.

[99]

AMISTAD-II post-hoc
analysis, 2006 STEMI (2118)

Double-blind, multi-center,
placebo-controlled,
randomized trial

Adenosine infusion vs placebo
for 3 h before PCI/fibrinolysis.

New congestive HF beginning
>24 h, or the first re-hospitalization
for CHF, or death from any causes

within six months. Endpoint
analyzed according to time of

reperfusion therapy.

Adenosine (<3.17 h) reduced
mortality at both 1 and 6 months as

well as the primary clinical
endpoint at 6 months, with no
distinction between adenosine

dose regimens.

[100]



Int. J. Mol. Sci. 2019, 20, 5024 6 of 36

Table 1. Cont.

Study, Year Population (N) Design Treatment Primary Endpoints Results Refs

David
Garcia-Dorado et al.,

2014
STEMI (201)

Double-blind,
placebo-controlled,
randomized trial

Intracoronary infusion of 4.5 mg
Adenosine vs saline immediately

prior to reperfusion

Percentage of total myocardial
necrotic mass assessed by CMR at

2–7 days post-reperfusion.

Intracoronary Adenosine
administration prior to PCI did not

limit infarct size.
[101]

Desmet et al., 2011 STEMI (112)
Prospective, double-blind,

placebo-controlled
clinical study

Intracoronary infusion 4 mg of
Adenosine or matching placebo
distal to the coronary occlusion
site immediately before initial

balloon inflation

Myocardial salvage defined as the
percentage of the area at risk

(AAR), which was not necrotic on
CMR at day 2 and 3.

No evidence of changes in
myocardial salvage. [102]

NIAMI, 2014 STEMI (229)
Double-blind, multi-center,

placebo-controlled,
randomized trial

IV administration of 70 mmol
sodium nitrite or matching

placebo over 5 min immediately
before PPCI

Difference in percentage of LV
myocardial mass between active

and placebo at 6–8 days
post-infarct assessed by CMR.

No reduction in infarct size [103]

Bøtker et al. 2010 STEMI (251) Prospective, single-center
randomized controlled trial

rIPC (intermittent arm ischemia
through four cycles of 5-min. of

inflation and deflation of a
blood-pressure cuff) vs nothing

before PPCI.

Myocardial salvage index at day 30
after primary percutaneous

coronary intervention, estimated
by G-SPECT.

rIPC before hospital admission
increases myocardial salvage. [104]

CONDI-2/ERIC-PPCI
2019 STEMI (5401) Single-blind, multi-center

randomized controlled trial

rIPC (intermittent arm ischemia
through four cycles of 5-min. of

inflation and deflation of a
blood-pressure cuff) vs. nothing

before PPCI.

Cardiac death or hospitalisation
for heart failure at 12 months

rIPC does not improve clinical
outcomes [104]

Staat et al., 2005 STEMI (30)
Prospective, multi-center,

randomized, open-label, con-
trolled study

Post-conditioning after PPCI
performed within 1 min of reflow

by 4 cycles of 1 min. inflation
and deflation of the
angioplasty balloon

Infarct assessed by measuring total
creatinine kinase release over 72 h.

Post-conditioning reduced
infarct size. [105]

Thibault et al., 2008 STEMI (38) Prospective randomized
controlled trial

Post-conditioning after PPCI
performed within 1 min of reflow

by 4 cycles of 1 min. inflation
and deflation of the
angioplasty balloon.

Persistent infarct size reduction,
assessed by SPECT imaging with

rest-redistribution index at
6 months.

Post-conditioning affords
persistent infarct size reduction [106]

POST, 2013 STEMI (700) Multi-center, randomized,
open-label, blinded trial

Post-conditioning after PPCI
performed within 1 min of reflow

by 4 cycles of 1 min. inflation
and deflation of the
angioplasty balloon.

Complete ST-segment resolution
(percentage resolution of

ST-segment elevation >70%)
measured at 30 min after PCI

Post-conditioning did not improve
myocardial reperfusion in

STEMI patients
[107]

POST substudy, 2015 STEMI (111) Multi-center, randomized,
open-label, blinded trial

Post-conditioning after PPCI
performed within 1 min of reflow

by 4 cycles of 1 min. inflation
and deflation of the
angioplasty balloon.

Myocardial salvage measured by
CMR at day 3 after the index event.

Myocardial salvage index was
not improved. [108]
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Table 1. Cont.

Study, Year Population (N) Design Treatment Primary Endpoints Results Refs

DANAMI-3–iPOST,
2017 STEMI (1234) Multi-center, randomized

clinical trial

Conventional PPCI vs
post-conditioning performed as 4
cycles of 30-s balloon occlusions
and reperfusion after opening of

the infarct-related artery and
before stent implantation.

A combination of all-causes of
death and hospitalization for heart

failure at follow-up.

Post-conditioning during PPCI
failed to improve clinical

outcomes.
[109]

CRISP-AMI, 2011 STEMI (337) Multi-center, randomized
clinical trial

Initiation of IABP before PPCI
and continuation for at least 12 h
(IABP plus PPCI) vs PPCI alone.

Infarct size expressed as a
percentage of LV mass measured
by CMR 3 to 5 days after PPCI.

IABP plus PPCI compared with
PCI alone did not result in reduced

infarct size.
[110]

CRISP-AMI substudy,
2015 STEMI (36) Retrospective analysis

PPCI + IABP vs PPCI alone in
large myocardial infarction and

poor ST segment resolution

All-causes of mortality at six
months, and composite endpoint
of death, cardiogenic shock and

new or worsening HF at
six months.

IABP associated with decreased
six-month mortality in large

STEMI complicated by persistent
ischemia after PPCI

[111]

OxAMI-PICSO, 2018 STEMI (105)
Single-center,

investigator-initiated study,
prospective study

PICSO in patients with index of
microcirculatory resistance >40
compared to historical cohort

of controls.

Infarct size assessment within 48 h
after PPCI and at six months.

IMR-guided treatment with PICSO
may be associated with reduced

infarct size
[112]

ACS = acute coronary syndrome; AUC = area under the curve; CMR= Cardiac Magnetic Resonance; CRP = C-reactive protein; CV = cardiovascular; G-SPECT: by gated single photon
emission CT; IABP = intra-aortic balloon pump; IV= intravenous; LVEF = left ventricular ejection fraction; MI = myocardial infarction; NSTEMI = non-ST segment elevation myocardial
infarction; PPCI= primary percutaneous coronary intervention; rIPC= remote ischemic pre-conditioning; UA = unstable angina.
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Figure 1. Current and future strategies to reduce ischemia/reperfusion (I/R) damage.
Schematic representation of current pharmacological and interventional approaches to avoid long-term
complication in MI patients are reported. In addition, a schematic representation of Exosomes (Exo)
and Microvesicles (MV) is drawn. The possibility to exploit Exo and MV alone or in combination with
pharmacological or interventional therapeutic options will represent the future challenge.

4.1. Pharmacological Approaches

Historically, coronary artery disease (CAD) and myocardial ischemic damage were clearly defined
by the concept that “time is muscle”. Back-to-back studies demonstrated that early reperfusion
effectively protects myocardium from I/R damage. The demonstration that coronary thrombosis
is the most relevant mechanism of damage [113] has spurred the development of drugs that are
able to interfere with the burden of intracoronary thrombosis. Indeed, streptokinase was the first
intracoronary approach that was exploited for the treatment of acute MI, in 1976 [114]. Nevertheless,
despite improvement in managing CAD, it is becoming even more evident that unsolved issues
should be taken on. Multitarget pharmacological approaches and promising mechanical reperfusion
techniques have been developed to face this challenge.

4.1.1. Current Multitarget Therapy: Antiplatelet Drugs and Beta-Blockers

Platelets, besides playing a crucial role in the first phase of thrombus formation, undergo activation
during fibrinolysis. The efficacy of antiplatelet/thrombolytic combo treatment was first demonstrated by
the ISIS-2 trial [91], proving advantageous in terms of mortality in the arm of aspirin plus streptokinase
versus placebo or single drug. Afterwards, aspirin gained a central role in patients undergoing
PPCI, as mechanical reperfusion progressively replaced thrombolysis [115]. Aspirin mainly acts by
inhibiting the cyclooxygenase (COX). However, platelet activation and aggregation is under the control
of thromboxane A2 during thrombin formation. Therefore, the impact of combining aspirin and drugs
inhibiting the adenosine diphosphate receptor P2Y12, such as clopidogrel [92,116], prasugrel [93],
and ticagrelor [94], was established.

The effects of several beta-blockers have been investigated in order to reduce oxygen consumption
and decrease ischemic damage. However, only the intravenous administration of metoprolol before
PPCI was able to significantly reduce the infarct size in patients with STEMI [117]. The inhibition
of neutrophil-platelet interactions has been proposed to explain the metoprolol effect on reperfusion
damage [118].

4.1.2. Anti-Inflammatory Drugs

Given the pivotal role of inflammation in accelerating atherosclerosis and CAD, a number
of preclinical and clinical studies have been performed. In particular, due to the crucial role of



Int. J. Mol. Sci. 2019, 20, 5024 9 of 36

Interleukin-1 (IL-1) in mediating ischemia-induced inflammatory response, several IL-1 inhibitors
have been investigated in preclinical and clinical studies. In rats, the anti-IL-1b antibody, gevokizumab,
prevented HF progression [119]. Similarly, the administration of the IL-1 receptor antagonist, anakinra,
in STEMI patients, improved the LV volume indices [96,120]. However, while treatment with anakinra
was associated with a reduction of inflammatory markers, it caused a higher incidence of major
adverse cardiovascular events (MACE) at 12 months, in 182 Non–STEMI (NSTEMI) patients [97].
Canakinumab administered every three months led to a lower rate of recurrent cardiovascular events
and lung cancer; however, ahigher incidence of fatal infections was reported [98]. Data on potential
combo-treatment are still missing.

4.1.3. Adenosine and Sodium Nitrite

In pilot studies, adenosine administration was reported to reduce the infarct size [121,122].
The larger AMISTAD II trial confirmed this trend demonstrating that three hours adenosine infusion
(70 µg/kg/min.) impacts on the infarct size. However, it failed to prove clinical benefits [99]. A post-hoc
analysis in patients that were treated within 3.17 h from the onset of evolving anterior STEMI,
a significant protection against early and late mortality was proved [100]. Unfortunately, recent trials
analyzing the effects of high doses of adenosine administered intracoronary failed to demonstrate
real benefits on myocardial damage and microvascular perfusion [101,102]. Similar to adenosine,
the beneficial effects of Sodium Nitrite that were observed in MI preclinical studies were not validated in
a randomized clinical trial enrolling 229 STEMI patients undergoing PPCI [103]. Therefore, the impact
of adenosine and Sodium Nitrite are still a matter of debate. Further insight into the therapeutic
efficacy of these pharmacological options could be potentially unraveled by future combo-treatments.

4.2. Non-Pharmacological Approaches

4.2.1. Ischemic Pre-Conditioning

The role of ischemic pre-conditioning was first described by Murry et al. [123]. They have shown
that transient cycles of induced ischemia, followed by reperfusion substantially reduced the infarct size
in dogs [123]. In addition, remote ischemic preconditioning (rIPC), consisting in four cycles of 5-min.
brachial cuff inflations, resulted as effective as pre-conditioning performed during the occurrence of
acute MI [104]. Unfortunately, the CONDI-2/ERIC-PPCI trial failed to demonstrate the improvement
of clinical outcomes (cardiac death or hospitalization for HF at 12 months) of rIPC in STEMI patients
undergoing PPCI [124]. The rIPC as a part of a multitarget therapy might be the future challenge. As a
matter of fact, exenatide, in combination with rIPC (COMBAT-MI trial) (COMBinAtion Therapy in
Myocardial Infarction trial) (NCT02404376), is ongoing and hopefully will provide new insight.

4.2.2. Ischemic Post-Conditioning

In human studies, post-conditioning has been obtained by performing cycles of 1-min. inflation
and 1-min. deflation of the angioplasty balloon, just after reperfusion by direct stenting. This approach
was proved to reduce Creatine Kinase (CK), a surrogate marker of the infarct size, in a prospective,
randomized, controlled, multicenter study [105]. Moreover, long-term benefits in LVEF recovery were
reported [106]. Nevertheless, Cardiac Magnetic Resonance (CMR) failed to demonstrate clear-cut
benefits in terms of outcomes and myocardial recovery in larger randomized trials [107,108]. Moreover,
when evaluated in STEMI patients during PPCI, it failed to prove advantages in the composite outcomes,
including death from any cause and hospitalization for HF [109]. Again, a combo-treatment involving
rIPC and post-conditioning (CARIOCA trial: Combined Application of Remote and Intra-Coronary
Ischemic Conditioning in Acute myocardial infarction) (NCT03155022) is ongoing, and the results will
be provided in 2021.
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4.3. Interventional Strategies

Interventional approaches are spreading in cardiology, and new invasive therapeutic options
have been investigated to avoid I/R injury. The reduction of myocardial oxygen consumption or an
improvement of heart collateral blood supply were expected.

4.3.1. Left Ventricle Unloading

An improvement of myocardial salvage was reported using Intra-Aortic Balloon Pump (IABP)
before reperfusion in the first preclinical studies [125,126]. Unfortunately, the Counterpulsation to
Reduce Infarct Size Pre-PCI Acute Myocardial Infarction (CRISP AMI) trial [110] failed to demonstrate
a reduction in the infarct size, in patients with anterior STEMI, without shock at presentation,
and routinely undergoing to IABP before PPCI. However, a significant reduction of mortality in a
subgroup of the CRISP AMI patients, with ST segment deviation >15 mm and persistent ischemia,
has been reported [111].

Alternative approaches, such as the Impella® heart pump, are under investigation. In preclinical
studies, trans-valvular left ventricle unloading with Impella® was found to limit MI and promote the
expression of genes that are associated with mitochondrial respiration [127]. Evidence of feasibility
and safety was provided by the Door-To-Unload in STEMI Pilot Trial (DTU-STEMI), involving patients
with anterior STEMI without shock and randomized in two arms: patients with LV unloading with
Impella® followed by immediate reperfusion and patients that were subjected to 30 min. LV unloading
before reperfusion [128]. Similarly, ECMO (extracorporeal membrane oxygenation) have also provided
interesting insights in terms of cardiac protection, although its application is associated with a number
of complications, thus should be limited to high risk setting [129].

4.3.2. Pressure-Controlled Intermittent Coronary Sinus Occlusion (PICSO®)

PICSO® consists of a balloon-tipped catheter that is placed into the coronary sinus (CS). It has been
shown that a balloon, alternately inflated and deflated, can intermittently increase the CS pressure and
induce venous blood redistribution via collaterals. The high expression of vascular endothelial growth
factor (VEGF) and hemoxigenase was found in experimental approaches applying PICSO® [130].
Moreover, the reactivation of embryonic signaling pathways that are associated with both the induction
of shear stress and blood flow pulsatile stretch have been proposed as the most relevant mechanisms
that are associated to PICSO®-mediated beneficial effects [131]. Recently, the feasibility of PICSO® in
patients with ACS and positive physiological index of microvascular dysfunction was reported [112].
Further studies will provide new data.

5. EV and Cardioprotection

The lack of effective cardioprotective treatments has spurred both biologists and clinicians to
move towards the progressive development of concepts for future therapeutic options. Cell-based
therapies have drawn the path towards a new class of therapeutic strategies [132,133]. In the last
decade, different stem cells, including mesenchymal stem cells (MSCs), adipose-derived stem cell
(ADSCs), cardiac-derived progenitor cells (CPCs), embryonic stem cells (ESCs), cardiospheres-derived
cells (CDCs), and induced pluripotent stem cells (iPSCs) have been proposed as cell-based therapy for
cardiac repair after MI [132,134–136]. Cardiomyocyte (CM) proliferation, angiogenesis, and cardiac
progenitor cell expansion have been deeply investigated [137,138]. However, increasing evidences
have suggested that the beneficial effects that are derived from stem cell administration mainly relied
on paracrine mechanisms that are also mediated by EV [139,140].

According to the Minimal Information for Studies of EV (MISEV) classification, three different
EV subclasses have been identified. These subclasses include Exosomes (Exo), Microvesicles (MV),
and Apoptotic Bodies [141].
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Exo, the smallest EV, ranging from 30 to 100 nm, were first described by Pan and Johnstone [142,143].
Exo are generated and released as multivesicular bodies by a mechanism that is known as the endosomal
sorting complex required for transport (ESCRT) [144–147]. A combination of several exosomal markers
are commonly used for their characterization [148].

Mid-size EV range from 100 to 1000 nm and include microvesicles (MV), microparticles,
or ectosomes. In this review, this EV subclass will be referred as MV. The most accepted mechanism of
formation and release is the shedding after membrane budding [147]. Therefore, their cell of origin is
defined by specific surface markers [149].

The largest EV, also known as apoptotic bodies, range from 800 to 5000 nm [147] and will not be
discussed in this review.

In the last decades, EV have emerged as crucial mediators of biological signals among different cells
to regulate discrete biological processes. As their action mainly recapitulates that of their cell of origin,
a number of studies have been performed to investigate the healing properties of EV derived from
different cell sources on scar formation and HF progression upon I/R damage [23]. When compared to
stem cells, EV are theoretically more feasible, non-toxic, non-immunogenic, can be produced on a large
scale, and can be adequately stored prior to their use.

6. MV and Cardioprotection

Circulating MV have been implicated in several physiological functions, such as the coagulation,
reticulocyte maturation, angiogenesis, tissue repair, and inflammation [150–152]. In CAD, MV enriched
in proinflammatory and procoagulant components have been mainly involved in the progression of
atherosclerosis and the activation of coagulation [153–155]. Moreover, in ACS and atherosclerotic
patients, the increased number of MV derived from platelets and endothelial cells (ECs) have suggested
their potential use as disease biomarkers [14].

The role of MV in I/R damage is however controversial, since their effects could depend not only
on the cell of origin, but also on the microenvironment of releasing cells. Herein, the protective or
damaging effects exerted by MV derived from different cell types will be described (Table 2).

Table 2. MV role in ischemic myocardium.

Source Animal Model Administration
Effects

Mechanisms Refs
In Vitro In Vivo

Platelet Rat
MI Intramyocardial Angiogenesis

EC proliferation Angiogenesis VEGF-PDGF—bFGF
RISK pathway [152]

Platelet from rat
undergoing rIPC

Rat
I/R Intravenous - Improved cardiac function

Increase of MV
circulating in

periferial blood.
Undefined

[156]

EV from coronary blood
after rIPC

Langendorf—mode
isolated heart Intracoronary - Decrease of infarct size Undefined [157]

MV isolated after IPC in
periferial rat blood Rat LAD ligation Intravenous -

Decrease of infarct size
Reduced cardiomyocyte

apoptosis

Decrease of caspase-3
and -12 activity

Reduced endoplasmic
reticulum stress

[158]

MV isolated after IRC in
periferial rat blood Rat coronary ligation Intravenous

Failure to decrease infarct
size compared to MI alone

without MV
[159]

MV isolated from
HUVEC after H/R H9c2 cardiomyocytes Incubation in vitro Increased

apoptosis -
Higher level of ROS

and lipid peroxidation
Bcl-2 inhibition

[160]

Cardiac MV isolated from
cardiac ischemic tissue Rat coronary ligation

Incubation in vitro
of MV with Ly6+

monocyte

Modulation of
inlammation . Increased release of Il6

and CCL2 and CCL7 [161]

MV collected from MSC
overxpressing GATA-4

Cardiomyocyte after
H/R Incubation in vitro Reduced

apoptosis -
miR-221

overexpression
modulation of PUMA

[162]

EC = endothelial cells; EV= extracellular vesicles; HUVEC = Human umbilical vein endothelial cell;
H/R = hypoxia/reoxigeniation; IPC = ischemic preconditioning; IRC = ischemic remote conditioning
I/R = ischemia/reperfusion; LAD = left anterior descending artery; MI = myocardial infarction; MiR = microRNA;
MSC = mesenchymal stem cell; MV = microvesicles; PUMA = p53 upregulated modulator of apoptosis; rIPC = remote
ischemic pre-conditioning; RISK = Reperfusion Injury Salvage Kinase.
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6.1. Platelet-Derived MV (PMV)

PMV were the first identified MV [13]. PMV are generally characterized by the expression of
CD61 [163]. It has been shown that platelets release MV in response to several stimuli [164]. The Scott
syndrome, which is an haemorrhagic disorder characterized by impaired MV formation, provided
evidence for the relevance of PMV during coagulation [165]. PMV, by interacting with ECs, play a
relevant role in the development and progression of atherosclerosis and vascular damage [155]. It has
been reported that the elevation of PMV and EC-derived MV reflects the size of the injured myocardium
during I/R, which suggests their possible application as biomarkers [166].

However, PMV can also play a beneficial role in I/R setting. Indeed, it has been reported that PMV
locally injected induce angiogenesis and stimulate post-ischaemic revascularization in a rat model of
MI. This protective effect relies on VEGF-mediated activation of the RISK Pathway [152].

In addition, PMV have been also involved in rIPC-mediated cardioprotection [156]. rIPC is able
to increase the release of MV from platelet, ECs, erythrocyte, and leukocyte [163]. MV and PMV that
are isolated after rIPC are able to reduce apoptosis in CMs [157], by inhibiting endoplasmic reticulum
stress [158]. However, PMV that was isolated after rIPC failed to induce any protective effect in a
different study [159]. Therefore, the role of PMV in rIPC is still debated.

6.2. Endothelial-Derived MV (EMV)

EMV, expressing CD144 or CD31, play an important role as markers of endothelial activation in
several pathological conditions [167], and, as expected, their release is markedly increased during I/R
damage [166]. However, they should be considered more than a simple marker of ischemia, as EMV
released in this setting generate pro-apoptotic and pro-oxidative signals in CMs [160].

6.3. Other MV

MV can be released by different cells after I/R and can exert discrete actions. CM-derived MV
after AMI (marked by the expression of Caveolin 3 and Troponin T) are internalized by infiltrating
monocytes and regulate the local inflammatory response [161]. MV, released by MSCs overexpressing
GATA-4, were found to be cardioprotective. This cardioprotective effect relies on MV enriched in
miR-221, which reduces cell apoptosis by silencing the pro-apoptotic protein PUMA [162].

7. Exo and Cardioprotection

Exo that are derived from different stem cell sources are known to act by releasing their composite
cargo, including lipids, proteins, and genetic information into recipient cells [168]. For cardiac
regeneration, Exo miR cargo is the most extensively evaluated [21].

Although Exo can be released from different stem cells, it has been reported that Exo released
by MSCs and CPCs are much more effective in term of cardioprotection and cardiac regeneration.
Moreover, it has been demonstrated that stem cell-Exo exert their healing effects by a fine-tune
control of processes involved in autophagy and inflammation. Therefore, cardioprotection, autophagy,
and inflammation will be considered as showcases of Exo actions, and the MSC- and CPC-Exo
properties will be much more deeply discussed. Finally, relevant data on the role of cardiac telocytes
(CT) in cardioprotection will be briefly reported (Table 3).
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Table 3. Exo in cardioprotection/cardioregeneration.

Donor Cells Animal Model Administration
Effects

Mechanisms Refs
In Vitro In Vivo

Mesenchymal stem cell (MSC)

MSC-conditioned medium
(MSC-CM) Mouse I/R Intravenous Undefined Reduction of infarct size Undefined [169]

MSCs following ischemic
preconditioning (EXOIPC)

C57BL/6J mouse
LAD ligation Intramyocardial Anti-apoptosis Reduction of cardiac fibrosis miR-22 targets methyl CpG binding

protein 2 (Mecp2) [170]

MSC overexpressing GATA-4
(ExoGATA-4)

Mouse
LAD ligation Intramyocardial

Increase of CM survival, reduction of
CM apoptosis and preservation of
mitochondrial membrane potential

Recovery of contractile function
reduction of the infarct size

Anti-apoptotic miRs (e.g., miR-19a), by
reducing PTEN expression drive the
activation of the Akt-ERK signalling

pathway

[171]

Endometrium-derived
mesenchymal stem cells

(EnMSCs)

Mouse
MI Intramyocardial Anti-apoptosis

Angiogenesis

Anti-apoptotic effects
Angiogenesis

myocardial salvage and
improvement of cardiac function

mir-21, PTEN, Akt pathway [172]

MSCs Rat
I/R Intramyocardial Anti-apoptosis

Autophagy
Increase sautophagy, reduction of

apoptosis and myocardial infarct size AMPK/mTOR and Akt/mTOR pathway [173]

Transplanted MSCs Mouse
MI Transplantation Autophagy reduction Autophagy reduction miR-125b modulates p53-Bnip3

signalling [174]

Human-derived MSCs Isolated rat heart I/R Intramyocardial Autophagy and apoptosis inhibition Cardiac function recovery BCL2 up-regulation [175]

Adipose-derived MSCs
(ADMSCs) Mouse I/R Intramyocardial Anti-apoptosis Reduction of infarct size Wnt/β-catenin signaling pathway [176]

B2M deletion-human Umbilical
Cord Mesenchymal Stem Cells

(B2M-UMSC)

Rat
MI Intramyocardial Undefined Cardiac fibrosis inhibition,

cardiac function recovery mir-24/Bim pathway [22]

MSCs Mouse
I/R Intramyocardial Anti-inflammation

Treg polarization
Anti-inflammation,

delayed ischemic damage mir-181a (lentiviruses), c-Fos inhibition [177]

Atorvastatine-pretreated MSCs
(MSCATV-Exo)

Mouse
MI Intramyocardial Angiogenesis

Anti-apoptosis

Cardiac function improvement,
infarct size reduction, anti-apoptotic

effects, angiogenesis and
anti-inflammation

lncRNA H19 regulation of miR-675,
activation of VEGF and ICAM-1 [178]

MSC transduced with lentiviral
CXCR4

Rat
MI Intramyocardial Anti-apoptosis

Angiogenesis
Angiogenesis, infarct size reduction,
improvement of cardiac remodelling

IGF-1α and pAkt up-regulation, active
caspase 3 downregulation, VEGF

enhancement
[179]

MSCs Mouse
LAD ligation Intramyocardial Angiogenesis Angiogenesis,

heart function preservation miR-132, RASA1 gene [180]

Cardiac stem cells (CSCs)
preconditioned with MSC-EXO

Mouse
LAD ligation Intramyocardial Proliferation, migration, and tube

formation of c-kit+ CSCs
Angiogenesis, reduction of fibrosis,

LV function recovery
Upregulation of miR-147, let-7i-3p,

miR-503-5p, and miR-362-3p [181]
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Table 3. Cont.

Donor Cells Animal Model Administration
Effects

Mechanisms Refs
In Vitro In Vivo

Cardiac-derived progenitor cell (CPC)

CPCs Mouse
MI/R Intramyocardial Anti-H2O2 induced apoptosis Anti-apoptotic effects miR-451 [182]

CDC-conditioned medium
(CDC-CM)

Mouse
MI Intramyocardial Angiogenesis, anti-apoptotic effects

and proliferation
Reduction of the scar mass,

improvement of cardiac function

miR-146a, suppression of Irak1 and
Traf6 (TLR pathway), NOX-4 and

SMAD4 (TGF-β pathway)
[183]

Human derived-CPCs Mouse
LAD ligation Intramyocardial Anti-apoptotic effects and

angiogenesis

Reduction of the scar mass,
angiogenesis, improvement of

cardiac function

miR-210 -> down-regulation of ephrin
A3 and PTP1b

miR-132 -> down-regulation of
RasGAP-p120
miR-146a-3p

[184]

Human derived CPCs and bone
marrow-derived mesenchymal
stem/progenitor cells (BMCs)

Rat
MI and I/R Intramyocardial Anti-apoptotic effects (CPCs >

BMCs)

Reduction of the scar size,
improvement of LVEF (CPCs>

BMCs) in I/R model (CPCs only)
Angiogenesis

PAPP-A (Exo-CPC), IGF-1 release,
activation of the Akt-ERK signaling

pathway
[185]

CDCs Mouse
I/R Intracoronary Protection against oxidative stress Reduction of infarct size Y RNA fragment (EV-YF1) induces IL-10

secretion [186]

Human-derived CDCs Pig
Acute and chronic MI

Intracoronary
Intramyocardial Undefined

Reduction of infarct size (Acute MI)
Reduction of the scar size (Chronic

MI)

Alteration of pro-inflammatory and
pro-fibrotic pathway [187]

Mouse-derived CPCs Mouse CMs
Oxidative stress Undefined Anti-apoptotic effects Undefined

miR-21 downregulates PDCD4,
inhibition of caspase 3/7-mediated

apoptosis
[188]

Mouse-derived CPCs Mouse
LAD ligation Intravenous Angiogenesis Angiogenesis

Infarct size reduction
miR-322 (transfection), Nox2-dependent

H2O2 production [189]

CXCR4-overexpressing CPC
(ExoCXCR4)

Rat
I/R Intravenous Anti-apoptotic effects Infarct size reduction,

LV function improvement Increased cardiac homing [190]

Embryonic Stem Cell (ESC)

Mouse-derived ESCs Mouse
MI Intramyocardial CPC survival, proliferation,

and cardiac commitment

Neovascularization, cardiomyocyte
survival, reduction of fibrosis.
CPC survival, proliferation,

and cardiac commitment

miR-294, induced expression of cyclins
(E1, A2, and D1) [191]

Adipose-derived stem cell (ADSC)

ADSCs Mouse
MI Intramyocardial Reduction of autophagy, apoptosis

and inflammatory response Reduction of autophagy

miR-93-5p-mediated suppression of
hypoxia-induced autophagy and

inflammatory cytokine expression by
targeting Atg7 and Toll-like receptor 4

(TLR4)

[192]

miR-146a-modified ADSCs Mouse
LAD ligation Intravenous Anti-apoptotic anti-inflammatory,

and anti-fibrotic effects
Anti-apoptotic, anti-inflammatory,

and anti-fibrotic effects Downregulation of EGR1 [193]

miR-126-overexpressing ADSCs Mouse
LAD ligation Intravenous Anti-inflammatory, anti-fibrotic,

angiogenesis
Reduction of infarct size and cardiac

fibrosis, angiogenesis
Spred1, PI3KR2/VEGF signalling

pathway [194]
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Table 3. Cont.

Donor Cells Animal Model Administration
Effects

Mechanisms Refs
In Vitro In Vivo

Cardiomyocyte (CM)

AMI patients CMs H9C2 cardiomyoblasts Undefined Autophagy Undefined

Inhibition of miR-30a or release of Exo
increased expression of the core

autophagy regulators beclin-1, Atg12,
and LC3II/LC3I

[195]

Cardiac telocyte (CT)

Mouse-derived CTs Mouse
LAD ligation Intramyocardial Undefined

Infarct size reduction,
Cardiac function improvement

Angiogenesis

CTs and endothelial cell contact
VEGF and NOS2 secretion

Various miRNA
[196,197]

Dendritic cell (DC)

Murine cultured bone marrow
derived DCs (BMDCs)

Mouse
MI Intravenous Activation of CD4(+) T cells Improvement of cardiac function Increased expression of chemokines and

cytokines (IFN-γ and TNF) [198]

Plasma

Human coronary serum from
ischemic patients

Mouse
Limb ischemia Intramuscular Endothelial cell proliferation,

migration and tube formation Angiogenesis miR-939-iNOS-NO pathway [199]

ADMSCs = adipose-derived MSCs; ADSC = adipose-derived stem cell; AMI = acute myocardial infarction; B2M-UMSC = B2M deletion-human Umbilical Cord Mesenchymal Stem Cells;
BMCs = bone marrow-derived mesenchymal stem/progenitor cells; BMDCs = murine cultured bone marrow derived DCs; CDC = cardiosphere-derived cell; CDC-CM = CDC-conditioned
medium; CM = cardiomyocyte; CPC = cardiac-derived progenitor cell; CSCs = cardiac stem cells; CT = cardiac telocyte; DC = dendritic cell; EnMSCs = endometrium-derived
mesenchymal stem cells; ESC = embryonic Stem Cell; I/R = ischemia/reperfusion; LAD = left anterior descending artery; LV = left ventricle; MI = myocardial infarction; MiR = microRNA;
MSC = mesenchymal stem cell; MSCATV-Exo = atorvastatine-pretreated MSCs; MSC-CM = MSC-conditioned medium.
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7.1. Cardioprotection

7.1.1. MSC-Exo

MSCs are nonhematopoietic multipotent stromal cells that are isolated from bone marrow able to
differentiate towards mesodermal lineages [133]. Lim et al. [169] first demonstrated that cardioprotection
induced by human MSC-conditionated medium (MSC-CM) and was mediated by Exo [200,201].
More recently, it has been shown that GATA-4 overexpression or ischemic preconditioning commit
MSCs to release Exo able to prevent apoptosis, to reduce infarct size, and to improve cardiac function
after MI [169–171]. The anti-apoptotic effect was attributed to miR-19a and miR-22 enriched in Exo [202].
Moreover, it has been reported that MSC-Exo mitigate oxidative stress and induce cardioprotection
by activating the PI3K/AKT signalling pathway [203]. The results from a meta-analysis corroborated
these data [204]. Among the miRs carried by Exo, miR-21 is one of the most relevant miR involved in
cardioprotection [205]. In particular, it has been shown that miR-21 plays a crucial role in the activation
of the RISK pathway by triggering AKT activation via PTEN downregulation [206–209]. As a matter
of fact, MSC-Exo, enriched in miR-21 [172], activate AKT and GSK-3β [201,203] and inhibit mPTP
opening-induced apoptosis.

miR-144 belongs to a cluster of miRs (miR-144/451) induced by GATA-4 [210]. Both miR-144 and
miR-451 confer protection against in vitro I/R injury by targeting the COX-2 pathway [210]. miR-144
promotes cell survival through the phosphorylation of AKT, GSK-3β, and p44/42 MAPK [210,211].
miR-144 also attenuates cardiac I/R injury by targeting FOXO-1 [212], a protein that is involved in
cardiomyocyte apoptosis. The finding that miR-144 was enriched in Exo recovered after rIPC and the
loss of rIPC-mediated cardioprotection in miR144/451 knock-out mice support the crucial role of this
miR cluster in rIPC-mediated cardioprotection [213].

7.1.2. CPC-Exo

CPCs consist of a heterologous cell population resident in the adult heart, quiescent in physiological
conditions, while being capable of undergoing differentiation into myocytes and vascular cells
upon injury [214,215]. When cultured in suspension, CPCs form spherical aggregates, denoted
as cardiospheres (CDCs) [216]. Similar to CPCs, CDCs release Exo displaying cardioprotective
properties [217]. Indeed, it has been reported that the injection of both CPC- and CDC-Exo into the
infarct border zone reduces the number of apoptotic CMs and prevents scar formation. CPC- and
CDC-Exo enriched in miR-146 were also found to inhibit oxidant stress-induced cell death in rat CMs.
Moreover, CPC-conditioned medium, containing Exo enriched in miR-210, reduce CM apoptosis via
the downregulation of ephrin A3 and protein-tyrosine-phosphatase 1 (PTP1b), [182–184].

Recently, the presence of the pregnancy-associated plasma protein-A (PAPP-A), a protease
that regulates the release of active insulin growth factor-1 (IGF-1), has been suggested to exert
cardioprotective action upon CPC-Exo treatment [185]. Moreover, in rats that were exposed to
I/R, treatment with CDC-Exo reduces macrophage infiltration and inhibits CM apoptosis [186].
This cardioprotective effect was confirmed in pigs that were subjected to I/R injury and treated with
CDC-Exo [187]. The enrichment of miR-21 and miR-451 in CPC-Exo also reduced scar formation
by inhibiting caspase 3/7-mediated apoptosis in CMs [188]. A relevant functional recovery was also
observed in mice, treated with ESC-Exo [191]. Indeed, the intramyocardial delivery of ESC-Exo
improves CM survival by inducing cyclin A2, D1, D2, E1 mRNA expression, and promoting neovessel
formation at day 5 after MI [191].

7.2. Autophagy

Exo can trigger both activation or the inhibition of autophagy [218]. It has been reported
that MSC-Exo promote cardioprotection during I/R by inducing autophagy through the AMPK
pathway [173]. The enrichment of miR-30a in CM-derived Exo restrains beclin-pathway and autophagy,
while the inhibition of miR-30 expression prolongs autophagy and cell survival in an in vitro model of
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I/R [195]. MSC-Exo enriched in miR-125b and ADSC-Exo enriched in miR-93-5p were found to reduce
autophagy and improve cell survival [174,192]. The anti-apoptotic protein BCL-2 inhibits autophagy
and actively participates in the cross-talk between autophagy and the RISK/SAFE pathway, by acting
as a STAT3 downstream effector [87,175]. Indeed, BCL-2 is a crucial node in cardioprotection that is
mediated by Exo derived from different cell types, including ADSCs, MSCs, and human umbilical
cord-derived MSCs (huMSCs) [22,175,176]. miR-24 was found to be enriched in huMSC-Exo [219].
miR-24 controls the cardioprotective pathways, by modulating the expression of both Bim, and the
autophagy-related gene 4a (ATG4A). Therefore, miR-24 has been proposed as a therapeutic target of
I/R injury [220].

7.3. Modulation of Inflammation

As demonstrated by knocking-down CD4, the activation of CD4+ T-Helper has a beneficial effect
in reducing LV dilation after MI [221]. Exo derived from Dendritic cells (DC-Exo), by enhancing CD4+

activation and guiding the inflammatory response toward the Th1 pathway, exert a beneficial effect on
post-MI cardiac function [198]. Immune suppression was also obtained when B cells were subjected to
cardiac-EC-Exo [222]. Moreover, miR-181a enriched MSC-Exo drives Treg differentiation and limits I/R
damage [177]. Finally, it has been shown that β2-microglobulin knock-down in huMSCs, translates
into the release of Exo more effectively than the wild types in inhibiting cardiac fibrosis. This effect
also relies on the immune response modulation [219].

7.4. Cardiac Telocytes (CTs)-Exo

Particular attention has been recently focused on the role of CT-Exo in cardioprotection [223].
Telocytes, are specific interstitial cells, which were identified in different organs and tissues [224].
Telocytes have been described in all cardiac layers and in the stem cell niches [225]. In the last ten years,
their role in cardiac protection has been explored, as the cross-talk between CPCs and CTs contributes
to cardiac regeneration [226]. In MI preclinical model, CT replacement significantly decreases the
infarct size and improves cardiac function by inducing pro-angiogenic signals [196]. CTs promote
angiogenesis by releasing Exo enriched in a number ofmiRs, including: miR-let-7e, miR-10a, miR-21,
miR-27b, miR-100, miR-126-3p, miR-130a, miR-143, miR-155, and miR-503 [197,227].

8. Exo and Cardiac Regeneration

After damage tissue regeneration depends on the expansion of resident stem-progenitor cells,
however, as compared to the fetal heart, a low self-renewal capability has been reported in the adult
human heart [228]. Therefore, the most relevant challenge in cardiology would be the development
of strategies that are able to rescue tissue damage after I/R injury by expanding cells or recovering
their derivatives with regenerative properties. The identification of resident cardiac stem cells
(CSCs) and the possibility to reprogram fibroblasts into CMs have opened a promising field of
research [133,229,230]. However, transplanted in vitro-cultured CSCs poorly engraft. Moreover, the
tumorigenic potential of transplanted CSCs represents an additional ethical hurdle to move toward
their clinical application [231–233]. To solve these issues, novel strategies exploiting Exo to enhance
CSC proliferation or to reprogram fibroblasts in vivo have been proposed [133]. Moreover, the role of
Exo in promoting angiogenesis and cardiac regeneration will be discussed, as new vessel formation is
instrumental for tissue regeneration [217].

8.1. Angiogenesis

8.1.1. CPC-Exo

It has been reported that the intramyocardial injection of CPC-Exo increases vessel density, reduces
scar size, and improves LVEF recovery in preclinical MI models. These effects have been associated
with miR-132 Exo content, which promotes neovessel formation by regulating the expression of the
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RasGAP-p120 protein [184,187]. A different study demonstrated that miR-322 engineered CPC-Exo
promote angiogenesis by activating the Nox-2 pathway in ECs both in vitro and in vivo [189]. Moreover,
the in vivo injection of CXC Chemokine Receptor 4 (CXCR4) enriched Exo, as released by engineered
CPCs, besides increasing Exo cardiac homing, boosts local angiogenesis [190]. CDC-Exo have been also
shown to stimulate angiogenesis and to decrease programmed cell death. In addition, they promote
CM proliferation, thus improving cardiac function and cell viability after MI. Enrichment of miR-146
and miR-22 in CDC-Exo mediates these effects [183].

8.1.2. MSC-Exo

The pro-angiogenic effect of MSC-Exo has been linked to the enrichment in PDGF (platelet-derived
growth factor), EGF (epidermal growth factor), FGF (fibroblast growth factor), NF-kB [234], and in the
extracellular matrix metalloproteinase inducer (EMMPRIN), a key regulator of matrix metalloproteinase
activities [235]. However, Exo proangiogenic action could be improved through engineering or
preconditioning approaches. Indeed, Exo that are released by MSCs pre-treated with atorvastatin are
much more active in inducing angiogenesis. This depends on Exo cargo enriched in lncRNA H19.
H19 transferred to ECs and CMs acts as a precursor by releasing one of its exon, miR-675. miR-675
induces EC and CM survival by regulating VEGF and ICAM-1 expression [178,236]. CXCR4 engineered
MSCs also release pro-angiogenic Exo. This effect mainly relies on the Exo mediated activation of the
IGF-1α/PI3K/AKT pathway [179]. Electroporated MSC-Exo enriched in miR-132 were also found to be
effective in promoting angiogenesis [180].

8.1.3. ADSC-Exo

Adipose cells have been exploited as a source of MSCs and their role in promoting angiogenesis
has been asserted in several studies [237]. ADSC-Exo have been shown to prevent apoptosis after MI
and promote angiogenesis [176,192]. These effects could be boosted by enriching ADSC in miR-126
and miR-146a [193,194].

8.1.4. Plasma-Exo

It has been reported that Exo derived from plasma of MI patients boost ECs proliferation, migration,
and tube formation via miR-939-iNOS-NO-mediated pathway, both in vitro and in vivo. Such Exo
have different cell of origin. It has been postulated that they can be released by CMs that were subjected
to ischemic stress or from resident cardiac ECs [199]. Indeed, EC-Exo enriched in miR-214 were found
to promote angiogenesis [238].

8.2. Cardioregeneration

As extensively reported, scar formation should be prevented and tissue damage restored to
improve long-term patient’s outcomes. This implies that efforts should be directed to the identification
of cells or much better their derivatives able to induce cardiac regeneration by expanding resident
CSCs. A number of studies have been published. Herein, only data that unquestionably demonstrated
the contribution of stem cell-Exo in promoting regeneration by expanding resident CSCs have
been reported.

It has been shown that ESC-Exo promote cardiac repair after MI by supporting angiogenesis and
increasing the survival and proliferation of c-kit+ CSC both in vitro and in vivo. miR-294, enriched in
ESC-Exo, mediates CSC expansion [191].

MSC-Exo also improve proliferation of c-kit+ CSC in vitro and enhance their engraftment after
transplantation. The improved engraftment depends on MSC-Exo expressing miR-760 and miR-326,
which induce the angiogenic switch and myocyte differentiation [181].
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9. Therapeutic Device by Manipulating Exo

Exo possess several therapeutic advantages when compared to stem cells. They are biocompatible,
non-immunogenic, non-tumorigenic, and more stable in the circulation. Moreover, they cross the
blood–brain barrier (BBB) [168]. The lipid layer of Exo provides protection from circulating enzymes,
while the expression of surface protein provides an efficient homing and drug delivery to target cells,
which minimizes potential side effects. However, several hurdles have to be solved before we can move
to clinical application. Herein, the most relevant approaches for achieving this goal will be examined.

9.1. Exo Isolation and Production

The isolation method is still tricky. While various techniques have been evaluated, currently the
most widely accepted is the differential ultracentrifugation. Differential ultracentrifugation provides
high Exo purity, and is thereby optimal for research purposes. However, it requires special equipment
and the low-yield still remains the main drawback for the transition to clinical application [141].
Additional approaches, such as microfluidic-based techniques [239–241], are under investigation to
deal with this issue. However, further standardization is required [141].

The selection of robust sources of Exo is still a matter of debate for their production and scalability.
As plasma is enriched in Exo (~1010/mL), and plasma-derived Exo have been reported to induce
cardioprotection [139], plasma-Exo derived from healthy donors were first investigated [242]. However,
risks of contamination and potential side effects have raised concerns in their clinical application [243].
Therefore, stem cells that were cultured in vitro are currently considered to be the safer and more
manageable Exo source. As extensively reported, the Exo cell of origin dictates their specific effects.
However, differences in the Exo yield have been reported when diverse cell sources have been cultured
in vitro. High Exo production (~1013/mL) has been reported for CPCs [244] and MSCs [245]. This has
provided the feasibility for manufacturing. Good Manufacturing Practices (GMP) for the production
of therapeutic-oriented Exo have been therefore drawn up [for a complete review of the state-of-art
of Exo manufacturing see [246]]. The immortalization of MSCs by c-myc transfection has been also
used to obtain a stable cell line, enabling a scalable manufacturing procedure to therapeutic Exo
mass-production [247]. However, the risk that is associated with the transfer of tumorigenic cues could
raise ethical concerns.

9.2. Exo Targeting to Increase Cardiac Homing

Cell targeting is still a crucial issue, since the liver homing impairs Exo tissue distribution after
intravenous injection [248]. Consistently, in pig subjected to MI, intramyocardial injection was found
to be much more effective than intracoronary delivery in terms of microvascularization and scar
formation [187]. However, the risk that is associated with intramyocardial injection should be prevented
if translation to the clinic would be pursued. In addition, Exo are more promptly internalized by
ECs and fibroblasts than CMs, hampering the possibility to directly induce CM proliferation [139].
Moreover, Exo have a fast clearance in vivo due to the lack of support of the extracellular environment
and the scavenger action of macrophages [248,249]. Therefore, the boost of Exo survival after in vivo
injection is still required. huMSC-Exo encapsulation in functional hydrogels, which mirror the presence
of extracellular matrix proteins, is a novel strategy for increasing Exo stability and survival after in vivo
injection. This approach was found effective in improving myocardial function [250].

New delivering approaches that are based on Exo surface modification have been proposed.
Data on cardiac-homing peptide (CHP)-tagged Exo have provided promising results on cardiac
homing to the infarct area, induction of CM proliferation, angiogenesis, and scar size [251]. A 15%
increase of Exo delivery was also reported in both in vitro and in vivo experiments while using Exo
expressing the cardiac-targeting peptide (CTP) bound to Lysosomal-associated membrane protein
2b (Lamp2b) [170,252]. The CXCR4 expression on CPC-Exo was found to enhance CM targeting
and induce cardioprotection [190]. Finally, a significant increase in Exo delivery into the ischemic
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myocardium was obtained by tagging MSC-Exo with the CSTSMLKAC peptide sequence, also named
ischemic myocardium-targeting peptide (IMTP) [170,253].

Novel approaches for increasing Exo targeting have been proposed in cancer. Drug-loaded Exo
targeting cancer cells has been tested. The most intriguing approach so far provided is magnetic-field
Exo targeting, as obtained by iron-oxide nanoparticle preloading [254,255]. Further studies are required
to deeply investigate the feasibility of this approach in different clinical settings, including I/R.

9.3. “Drug” Loaded Exo

Exo contain many active components, including proteins and RNAs. Insight into the components
that play a role in their regenerative capacity is still under investigation. Even if Exo could be
considered a feasible therapeutic option by themselves, their functional capability could be optimised
by modifying their cargo. Owing to their effect on epigenome, miRs are the most studied component of
the Exo cargo, and the manipulation of their expression is the most promising approach in regenerative
medicine. Indeed, many preclinical studies have been performed by upregulating the expression
of specific miRs in Exo to induce cardiac regeneration. Ischemic preconditioning, either in vitro or
in vivo, is an effective method for upregulating the expression of specific miRs in Exo [170,211–213].
Moreover, MSC preconditioning with statins was also found effective in enhancing cardioprotection
and angiogenesis by changing Exo lnc-RNA and miR cargo [178].

More selective methods involve direct cell manipulation by genetic approaches. Knocking-down
β2-microglobulin in MSC using the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) strategy [219], or upregulating the expression of sonic hedgehog in human CD34+ (SHH) [256]
have been shown to enhance Exo biological effects, by modifying their miR cargo. The transfection of
stem cells in vitro with modified lentivirus or plasmids [177,179,194,257] is probably the most effective
strategy to load selected miRs in Exo. Different Exo producing cells, including MSCs and ADSCs, have
been modified to this purpose [193,194].

Cell overexpression of selected miRs to obtain Exo enrichment has been extensively exploited
and investigated in preclinical models recapitulating different clinical settings [21,217]. More recently,
the possibility to selectively transfer miRs in Exo has been provided. In particular, the identification
of SYNCRIP, a protein that is involved in miR exosomal sorting process, has been described [258].
The authors have elegantly demonstrated that SYNCRIP binds miR by recognizing specific hEXO
sequences in miR [259]. Further studies improving Exo-specific miR loading would be the challenge
for biotechnological applications and therapeutic approaches in the future.

Alternatively, extracellular loading strategies have been proposed, as the EV electroporation [260].
miR-132, loaded in MSC-Exo by electroporation, has been successfully delivered both in vitro and
in vivo. Moreover, its expression was associated with new vessel formation and the preservation of
cardiac function after MI [180]. The same approach has been employed to load miR-322 in CPC-Exo [189].
Although of interest, all of these Exo engineering approaches raised concerns. Multiple miRs could be
up- or downregulated in Exo upon ischemic, drug preconditioning, or genetic manipulation. Moreover,
direct Exo electroporation might lead to the loss of native protective miRs or proteins impairing Exo
effectiveness. These issues should be solved before Exo clinical application.

10. Conclusions

Current therapeutic approaches to prevent or reduce long-term complications in MI patients pose
a heavy social and healthcare burden. Pharmacological and non-pharmacological approaches, alone or
in combination, have provided advantages in preventing ischemia-induced damage and improving
patient’s outcomes. Interventional approaches as new invasive therapeutic options have been
investigated. In particular, trans-valvular left ventricle unloading with Impella® provided promising
results in a preclinical study [127] and evidence of feasibility and safety in the Door-To-Unload in STEMI
Pilot Trial (DTU-STEMI) [128]. Likewise, the feasibility of PICSO® in a subset of ACS patients has
been reported [112]. Moreover, multitarget approaches have been proposed and the combo-treatment
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that involves rIPC and post-conditioning (CARIOCA trial: Combined Application of Remote and
Intra-Coronary Ischemic Conditioning in Acute myocardial infarction) (NCT03155022) is ongoing
and will provide new results in 2021. However, the management of microvascular damage and
HF progression are still a clinical challenge. This has spurred researchers and clinicians to explore
novel therapeutic approaches able to interfere with or prevent scar formation and HF progression.
Alternative therapeutic options, including stem cell-based therapies, have been proposed to support
tissue regeneration and ameliorate long-term complications [133]. However, particular attention
has been devoted to their paracrine derivatives, such as Exo and MV, due to the lacking long-term
stem cell engraftment. Their proangiogenic and cardioprotective properties have been extensively
reported [21,132,133,217]. It has been suggested that Exo that are released from the heart after rIPC are
required for cardioprotection, sustaining the relevance of mechanisms involving vesicular transfer in
cardioprotection [157,211,261]. It has also been suggested that circulating Exo and MV, in humans and
rats, are protective in a Langendorff-perfused rat heart [157]. Therefore, plasma-Exo/MV themselves
appear to be necessary for endogenous cardioprotective mechanisms. However, ultimate insight into
their functional role is mandatory for defining their mode of action.

A number of miRs that were carried by Exo derived from different cell sources has been reported
to drive cardioprotection [11,12,192,207,257]. Moreover, the optimization of their protective role
have been extensively investigated and different approaches proposed to efficiently modify their
cargo [21,180,257]. Of note, although limited, specific RNA-binding- proteins and miR consensus
sequences that were involved in Exo loading have been described [258]. Insight into the molecular
mechanisms regulating this process may allow the production of Exo engineered with specific subsets
of miRs able to modulate the expression of genes involved in cardioprotection in a tailored way.
However, so far, the knowledge and the proof of concept for the most cost-efficient sorting of Exo-miR
package to produce Exo with a specific cargo are still missing.

Moreover, Exo-based drug development would require optimization, including the identification
of feasible cell sources for a large production of functional Exo, as well as standardisation in production.
Indeed, the standardization of protocols for Exo production to achieve reproducibility, large scalability,
quality control, and legislation are still an unmet need. Moreover, a GMP-compliant production
of therapeutic Exo has to deal with several hurdles, even though some studies provide interesting
perspectives [244–246]. Finally, while different clinical trials are currently ongoing to evaluate their
potential application, the standardization of clinical protocols for different stem cell-derived Exo
requires further improvements, including feasibility and safety. As multitarget therapies lie ahead for
the treatment of several clinical settings, the possibility to combine knowledge and mode of action of
new interventional therapeutic options and Exo would be the future challenge to generate ready-to-use
pharmacological tools (Figure 1).
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