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Abstract

We study the matrix models that result from localization of the partition func-
tions of N = 2 Chern-Simons-matter theories on the three-sphere. A large
class of such theories are conjectured to be holographically dual to M-theory
on Sasaki-Einstein seven-manifolds. We study the M-theory limit (large N and
fixed Chern-Simons levels) of these matrix models for various examples, and
show that in this limit the free energy reproduces the expected AdS/CFT result
of N3/2/Vol(Y )1/2, where Vol(Y ) is the volume of the corresponding Sasaki-
Einstein metric. More generally we conjecture a relation between the large N
limit of the partition function, interpreted as a function of trial R-charges, and
the volumes of Sasakian metrics on links of Calabi-Yau four-fold singularities.
We verify this conjecture for a family of U(N)2 Chern-Simons quivers based on
M2 branes at hypersurface singularities, and for a U(N)3 theory based on M2
branes at a toric singularity.
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1 Introduction

For a long time the low energy theory on multiple M2 branes had remained rather

mysterious, and consequently the AdS4/CFT3 correspondence poorly understood. A
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breakthrough occurred with the construction by Bagger-Lambert [1] and Gustavsson [2]

of new maximally supersymmetric Chern-Simons-matter theories, which they proposed

to describe the low energy limit of M2 branes. Inspired by these results, subsequently

Aharony et al (ABJM) [3] conjectured the equivalence of a certain N = 6 supersym-

metric Chern-Simons-matter theory with gauge group U(N)×U(N) and Chern-Simons

levels (k,−k) with the M-theory backgrounds AdS4×S7/Zk. In particular, the ABJM

theory is believed to describe N M2 branes at a C
4/Zk orbifold singularity. Despite

this improved understanding of the microscopic theory of multiple M2 branes, a field

theory derivation of the famous N3/2 scaling of the number of degrees of freedom [4]

on multiple M2 branes, in the large N limit, had remained elusive. Remarkably, in

[5] this AdS/CFT prediction has been confirmed by a purely field theoretic calculation

in the ABJM model. The large N limit of a BPS Wilson loop in this model was also

computed in [6].1 More recently in [7] and [8] similar results have been obtained for

classes of N = 3 Chern-Simons-quivers [9] with M-theory duals of the form AdS4× Y ,
where Y are tri-Sasakian manifolds [10]. The key to these results is the computation

of [11], showing that the path integral of a (Euclidean) superconformal field theory on

S3 localizes to a matrix integral. As we will review momentarily, the results of [11] are

effectively applicable to theories with N ≥ 3 supersymmetry.

N = 2 supersymmetric field theories in three dimensions are expected to share

certain properties with N = 1 supersymmetric field theories in four dimensions, since

the number of supercharges is the same. For the latter theories, the exact NSVZ beta

functions and a-maximization [12] provide stringent constraints on the R-symmetry of

superconformal theories, and indeed allow one to unambiguosly determine R-charges

and related trace anomaly coefficients in most cases. Vanishing of beta functions

and a-maximization may also be used as diagnostic tests of the existence of strongly

coupled superconformal fixed points. In the context of the AdS5/CFT4 correspondence,

a-maximization has a geometric counterpart in the volume minimization of Sasaki-

Einstein manifolds2 [15, 16, 17]. Intriguingly, it has been shown that the trial a function

and the reciprocal of the trial volume function are equal, even before being extremized

[18, 19]. The geometric results of [15, 16, 17] hold in any dimension, and hence crucially

also in seven dimensions. Via the AdS/CFT correspondence, this suggests that a large

class of N = 2 Chern-Simons-matter theories, characterized by having AdS4 gravity

1We would like to thank Takao Suyama for pointing out reference [6].
2See [13, 14] for extensions of these results to more general AdS5 geometries of Type IIB super-

gravity.
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duals, should in many ways behave similarly to N = 1 superconformal field theories in

four dimensions. However, until now this has remained only wishful thinking.

Very recently Jafferis [20] (see also [21]) has extended the results of [11] by showing

that the partition function Z of a general N = 2 supersymmetric field theory on S3

reduces to a matrix integral. Putting the theory on the three-sphere, in a manner which

preserves supersymmetry, requires the introduction of additional couplings between the

matter fields and the curvature of S3. These couplings are determined by a choice of R-

symmetry. One may now regard these as trial R-charges for a putative superconformal

fixed point. Furthermore, [20] conjectured that the R-charges of the matter fields at

the superconformal fixed point are determined by extremizing (the modulus of) the

partition function. If correct, this proposal gives support to the idea that Z plays

a similar role, for N = 2 field theories in three dimensions, to the central charge

function a in N = 1 field theories in four dimensions. In this paper we will initiate

an investigation of this idea by evaluating the relevant matrix integrals, in the large N

limit, in some N = 2 models. In particular, we will find supporting evidence for the

following:

Conjecture: For N = 2 Chern-Simons-matter gauge theories with candidate Sasaki-

Einstein gravity duals, in the large N limit the leading contribution to the free energy,

as a function of trial R-charges Ra, is related to the Sasakian volume Vol(Y )[ξ] as a

function of the Reeb vector field ξ via the formula

lim
N→∞

− log |Z[Ra]| = N3/2

√

2π6

27Vol(Y )[ξ]
. (1.1)

Here by “candidate Sasaki-Einstein dual” we mean that the field theory (at least)

possesses a branch of the Abelian vacuum moduli space that is an isolated Calabi-Yau

four-fold conical singularity [22, 23]. We refer the reader to [15, 16] for a detailed

explanation of the volume function Vol(Y )[ξ]. In (1.1) the trial R-charges should in

general be understood to be functions of the Reeb vector field ξ, as in [18]. The method

that we will use for computing the leading free energy in the large N limit follows very

closely [7]; in the latter reference this method was applied to compute the same quantity

for N = 3 matrix models, of the type studied in [11].

The rest of the paper is organized as follows. In section 2 we review relevant aspects

of N = 2 Chern-Simons-matter theories, localization of the partition functions of

such theories on S3 to matrix integrals, and the expected AdS/CFT dual gravitational
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results in M-theory. In section 3 we discuss the M-theory large N limit of the partition

functions of such theories, following similar methods to [6, 7]. In particular, we derive

general formulas for the leading one-loop contributions for non-chiral theories. Section 4

contains an explicit verification of (1.1) for a family of examples describing M2 branes

at certain hypersurface singularities [24]; these are in some sense a simple N = 2

generalization of the ABJM theory. In section 5 we verify the matching of functions in

(1.1) for a three node theory related to the suspended pinch point (SPP) singularity

[25]. In section 6 we briefly outline directions for future work. In Appendix A we

collect some series expansions used in the main text. Appendix B derives a technical

result on the range of validity of a Fourier series used in section 5.

Note: As this paper was being completed we learned of the paper [26], which we

understand has overlap with the results presented here.

2 Localization of N = 2 Chern-Simons-matter the-

ories on S3

2.1 N = 2 Chern-Simons-matter theories

We begin by reviewing the N = 2 Chern-Simons-matter theories of interest, following

[22]. Earlier foundational work on this topic includes [27, 3, 28].

A three-dimensional N = 2 vector multiplet V consists of a gauge field Aµ, a scalar

field σ, a two-component Dirac spinor χ, and another scalar field D, all transforming

in the adjoint representation of the gauge group G. This is simply the dimensional

reduction of the usual four-dimensional N = 1 vector multiplet. In particular, σ arises

from the zero mode of the component of the vector field in the direction along which

one reduces. The matter fields Φa are chiral multiplets, consisting of a complex scalar

φa, a fermion ψa and an auxiliary scalar Fa, which may be in arbitrary representations

Ra of G. An N = 2 Chern-Simons-matter Lagrangian then consists of three terms:

S = SCS + Smatter + Spotential . (2.1)

We will be interested in product gauge groups of the form G =
∏G

I=1U(NI), where

the Chern-Simons level for the Ith factor U(NI) is kI ∈ Z. If VI denotes the projection
of V onto the Ith gauge group factor, then in component notation the Chern-Simons
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action, in Wess-Zumino gauge, takes the form

SCS =
G
∑

I=1

kI
4π

∫

Tr

(

AI ∧ dAI +
2

3
AI ∧AI ∧AI − χ̄IχI + 2DIσI

)

, (2.2)

where the trace in (2.2) is normalized in the fundamental representation.

The matter kinetic term takes a simple form in superspace, namely

Smatter =

∫

d3x d4θ
∑

a

Tr Φ̄ae
VΦa

=

∫

d3x
∑

a

Dµφ̄aD
µφa − φ̄aσ

2φa + φ̄aDφa + fermions . (2.3)

In the second line we have expanded into component fields, and we have not written

the terms involving the fermions ψa. Dµ is the covariant derivative, and the auxiliary

fields σ and D are understood to act on φa in the appropriate representation Ra. In

this paper we shall mainly focus on theories with matter in bifundamental or adjoint

representations of a gauge group G =
∏G

I=1U(NI). In this case one can represent the

gauge group and matter content by a quiver diagram with G nodes, with a directed ar-

row from node I to node J corresponding to a bifundamental field in the representation

NI ⊗NJ ; when I = J this is understood to be the adjoint representation.

Finally, the superpotential term is

Spotential =

∫

d3x d2θW (Φ) + c.c.

= −
∫

d3x
∑

a

∣

∣

∣

∣

∂W

∂φa

∣

∣

∣

∣

2

+ fermions . (2.4)

One typically takes the superpotential to be a polynomial in the chiral fields Φa, and

we have included the couplings (which in general will be renormalized) in the definition

of W .

In [22, 23] the moduli spaces of vacua of such theories were studied. As usual this

means that all scalar fields take constant vacuum expectation values, and one seeks

absolute minima of the total potential. This is equivalent to imposing the F-terms

dW = 0, together with an appropriate Kähler quotient by the gauge group. The latter

is more subtle than the corresponding quotient for four-dimensional N = 1 gauge

theories, due to the effects of the Chern-Simons interactions. The result is that for a

large class of such theories, provided

G
∑

I=1

kI = 0 , (2.5)
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and one takes the ranks NI = N to be equal3 for all I = 1, . . . , G, then the moduli

space of vacua contains the symmetric product SymNX , where X is an affine Calabi-

Yau four-fold variety.

The simplest construction of N = 2 Chern-Simons-matter theories within this class

is to begin with the gauge group and matter content of a “parent” four-dimensional

N = 1 gauge theory which has a Calabi-Yau three-fold as Abelian moduli space [22],

and reinterpret this as a three-dimensional N = 2 theory by adding the Chern-Simons

interactions (2.2). This has an elegant string theory interpretation [30]: if the initial

four-dimensional gauge theory is the effective theory on N D3-branes probing a Calabi-

Yau three-fold singularity, then one can T-dualize along a worldvolume direction to

obtain a corresponding theory on D2-branes in Type IIA string theory. The addition

of Chern-Simons couplings may then be understood in terms of turning on Ramond-

Ramond two-form (and more generally four-form) flux and lifting to M-theory. One

can also add D6-branes in this set-up, which introduces new chiral matter fields in

fundamental representations of the gauge group factors [31, 32]. The resulting theories

are generally conjectured to be low energy effective field theories on N M2 branes

probing a Calabi-Yau four-fold singularity X .

In this gauge theory construction the Calabi-Yau four-fold X is topologically a cone

over a compact seven-manifold Y , and a Calabi-Yau metric on X of the conical form

gX = dr2 + r2gY , (2.6)

implies that Y is a Sasaki-Einstein manifold. The AdS/CFT correspondence conjec-

tures that the IR limit of the Chern-Simons-matter theory, for fixed Chern-Simons

levels and large N , is holographically dual to M-theory on the Freund-Rubin back-

ground AdS4 × Y with N units of ⋆G4-flux through Y , where G4 is the M-theory

four-form and ⋆ denotes the eleven-dimensional Hodge dual.

We note that one can relax the condition (2.5), which leads to theories that are

conjecturally dual to massive Type IIA string theory backgrounds [33]. This may be

understood in the same context as [30], via the effects of turning on Ramond-Ramond

fluxes in Type IIA on the Chern-Simons couplings on fractional branes. The results in

this paper presumably extend to these gravity backgrounds also, although they are no

longer described by Sasaki-Einstein geometry.

3In fact this is not really necessary. For a detailed discussion in a particular class of examples, see
[29, 24].
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2.2 Localization of the partition function to a matrix model

In [11] it was shown that the partition function of a superconformal Chern-Simons-

matter theory on S3 localizes to a matrix model. The derivation follows the usual

method of localization: one adds an appropriately chosen Q-exact operator to the

action of the theory, where Q is a supercharge with Q2 = 0. One can formally argue

that this does not affect the partition function, but at the same time it localizes fields to

certain constant values, for which the one-loop approximation is exact. More precisely,

in this case the adjoint scalar σ in the vector multiplet is localized to constant field

configurations, with all other fields being zero.

For the theories described in section 2.1, the gauge group is of the product form

G =
∏G

I=1 U(NI) and correspondingly σI is a Hermitian NI ×NI matrix. Up to gauge

equivalence σI is described by its NI real eigenvalues λIi , where i = 1, . . . , NI , and the

matrix model in question is then a multi-matrix model for these eigenvalues. Such

matrix models were subsequently studied by a number of authors [5, 6, 7, 34, 35]. In

particular, the matrix model for the ABJM theory was solved in [34, 5] in the limit in

which N is large and k/N is held fixed. In [7] instead the authors studied what we

will refer to as the M-theory limit of large N and k held fixed for the ABJM theory.

In addition they studied some closely related theories with N = 3 superconformal

symmetry, to which the same techniques apply.

In the present paper we are interested in the more general situation in which one has

some UV N = 2 Chern-Simons-matter theory, with action (2.1), which one believes

flows to a superconformal fixed point in the IR. In this case the results of [11] do not

directly apply, since at the fixed point the chiral matter fields Φa will in general not

have canonical scaling dimensions ∆ = 1
2
. Fortunately, this problem has recently been

addressed in [20]. Here the author considered N = 2 Chern-Simons-matter theories

with a choice of R-symmetry, with appropriate supersymmetry-preserving R-charge

dependent couplings to the curvature of S3, and showed that this partition function

on S3 still localizes as in [11]. The resulting partition function then depends on this

choice of R-symmetry. For a superconformal theory, one should of course choose this

to be the superconformal R-symmetry of the IR theory.

It is straightforward to apply the localization results of [11, 20] to the theories de-

scribed in section 2.1. As already mentioned, the adjoint scalars σI in the vector

multiplet localize to constant field configurations, and using the gauge freedom we

may parametrize these by their eigenvalues λIi . All other fields, and in particular the

7



chiral scalar fields φa, are localized to zero. The partition function then localizes to

the finite matrix integral

Z =
1

(
∏G

I=1NI !)

∫

(

G
∏

I=1

NI
∏

i=1

dλIi
2π

)

exp

[

i

G
∑

I=1

kI
4π

NI
∑

i=1

(

λIi
)2

]

exp [−Floop] , (2.7)

where the one-loop term is

exp [−Floop] =

G
∏

I=1

∏

i 6=j

2 sinh

(

λIi − λIj
2

)

· exp[−Fmatter] . (2.8)

Here the first exponential term in (2.7) is simply that of the Euclideanized Chern-

Simons action (2.2), localized onto the constant field configuration of the σI . The

localization renders the one-loop approximation to the path integral exact, and the

first term in (2.8) is precisely this one-loop contribution for the gauge sector of the

theory. As usual, this is a regularized determinant, derived from the action (2.2).

The matter sector contributes nothing at tree level, since the matter multiplets

localize to zero, but there is a one-loop determinant factor given by [20]

exp [−Fmatter] =
∏

a

detRa
exp [ℓ (1−∆a + iσ)] . (2.9)

Recall here that the index a labels chiral matter fields Φa in the representation Ra of

G. We have denoted the conformal dimension/R-charge of Φa by ∆a = ∆[Φa]. In (2.9),

the determinant in the representation Ra is understood to be a product over weights

ρ in the weight-space decomposition of this representation, and σ is then understood

to mean ρ(σ). For example, for a bifundamental field Φa = ΦBi in the representation

NI ⊗NJ we have

exp [−F (ΦBi)] =

NI
∏

i=1

NJ
∏

j=1

exp

[

ℓ

(

1−∆Bi + i
λIi − λJj

2π

)]

, (2.10)

while for an adjoint field ΦAd for the gauge group factor U(NI) we have

exp [−F (ΦAd)] =

NI
∏

i,j=1

exp

[

ℓ

(

1−∆Ad + i
λIi − λIj

2π

)]

. (2.11)

Finally, the function ℓ in (2.9) arises from the (zeta function) regularized one-loop

determinant of the matter action (2.3), and is given explicitly by

ℓ(z) = −z log
(

1− e2πiz
)

+
i

2

[

πz2 +
1

π
Li2
(

e2πiz
)

]

− iπ

12
. (2.12)
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Here Li2(ζ) denotes the dilogarithm function, defined as the analytic continuation of

Li2(ζ) =

∞
∑

m=1

ζm

m2
, |ζ | < 1 , (2.13)

to C \ [1,∞). The function ℓ(z) satisfies the simple differential equation

dℓ

dz
= −πz cot πz , (2.14)

together with the boundary condition that ℓ(0) = 0. For canonical scaling dimensions

∆ = 1
2
, this reduces to the original result of [11].

2.3 The M-theory limit of the free energy and volumes

We are interested in computing the free energy, F = − logZ, for these matrix models in

the limit in which the Chern-Simons levels kI , and in particular their greatest common

divisor k = gcd{kI}, are held fixed and N →∞. This is the M-theory limit, as opposed

to the ’t Hooft limit in which N/k is held fixed while N → ∞. For simplicity, here

we assume that the ranks of the gauge group factors are all equal, so NI = N for all

I = 1, . . . , G.

Consider matrix models arising from Chern-Simons-matter theories which flow to

superconformal fixed points, with holographic duals of the form AdS4×Y , as described
at the end of section 2.1. If the ∆a are taken to be the conformal dimensions/R-charges

at this fixed point, then the AdS/CFT correspondence predicts that to leading order

as N →∞ [36, 7]

F = − logZ = N3/2

√

2π6

27Vol(Y )
, (2.15)

where Vol(Y ) denotes the volume of the Sasaki-Einstein metric on Y . This formula

follows from the saddle point approximation to the gravitational partition function

on AdS4, regularized using counterterm subtraction. In particular, we see the famous

N3/2 scaling of the free energy of N M2 branes in the large N limit in (2.15). This

leads to a general concrete prediction: for a Chern-Simons-matter theory with Abelian

moduli space X , which is a cone over Y , the free energy of the corresponding localized

matrix model is related to the volume of a Sasaki-Einstein metric on Y via (2.15), in

the M-theory large N limit.
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This prediction has been confirmed for the ABJM theory in [34, 5, 7], and in the latter

reference even more remarkably it has been confirmed for a simple class ofN = 3 Chern-

Simons-matter theories [10] that are holographically dual to certain tri-Sasakian seven-

manifolds. The matrix models in these cases are somewhat simpler than the generic

case described in the previous subsection, as originally noted in [11]. In particular,

the combinations of ℓ-functions in (2.9) simplify to hyperbolic cosines for these N = 3

theories. Related to this, the fields all have canonical scaling dimensions of ∆ = 1
2
.

In this paper we wish to extend the correspondence further by checking that (2.15)

holds for N = 2 theories which are only conjectured to be superconformal in the IR

limit, with non-canonical scaling dimensions ∆ 6= 1
2
. In turn, this acts as an AdS/CFT

check on the field theory results of [20]. In fact, we will provide non-trivial checks of

our stronger conjecture (1.1).

3 The M-theory limit of Chern-Simons-matter ma-

trix models

In this section we discuss the M-theory large N limit of the partition function (2.7). In

sections 4 and 5 we shall compute this explicitly for families of Chern-Simons-matter

theories, and verify that (2.7) leads to precisely (2.15), where Vol(Y ) is the volume of

the appropriate Sasakian manifold.

3.1 Massive adjoint fields

Before beginning our general analysis, we pause to comment on how massive adjoint

fields should be treated in the partition function. As we shall see, this is relevant

for the An−1 theories discussed in section 4. Clearly, a theory with massive adjoint

scalar fields cannot itself be superconformal. However, after integrating these out the

theory may flow to a superconformal fixed point. How are we to treat such fields in the

UV partition function (2.7)? As we now explain, the matrix model partition function

effectively integrates out these fields for us.

Consider an adjoint scalar field ΦAd for a gauge group U(N). From (2.11) this

contributes

N
∏

i,j=1

exp

[

ℓ

(

1−∆Ad + i
λi − λj
2π

)]

(3.1)
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to the matrix model partition function. Since for a massive field ∆Ad = 1, this simplifies

to

exp[Nℓ(0)] ·
∏

i>j

exp

[

ℓ

(

i
λij
2π

)

+ ℓ

(

−iλij
2π

)]

, (3.2)

where we have defined λij = λi−λj. However, we now recall that ℓ(0) = 0, and in fact

it is easy to show more generally that

ℓ(iu) + ℓ(−iu) = 0 , u ∈ R . (3.3)

Thus the contribution (3.1) of a massive adjoint to the partition function is identically

equal to 1.

3.2 The saddle point approximation

The strategy for evaluating (2.7) in the M-theory limit will be to use the saddle point,

or stationary phase, approximation to the integral. Here N2 plays the role of 1/~, so

that the N →∞ limit is dominated by saddle point configurations that extremize the

quantum effective action. This is a somewhat standard technique, and we refer the

reader to the review [37] for further details.

The quantum effective action is

F = Fclassical + Floop , (3.4)

where Floop is defined by (2.8), (2.9) and

Fclassical = −i
G
∑

I=1

kI
4π

NI
∑

i=1

(

λIi
)2

(3.5)

is the localized Chern-Simons action. The saddle point approximation to the partition

function (2.7) is dominated by solutions to the equations of motion ∂F/∂λIi = 0. At

this point it will be convenient to assume that the matter content is described by a

quiver diagram with NI = N , I = 1, . . . , G, so that in particular all matter fields are in

bifundamental or adjoint representations of the gauge group U(N)G. A straightforward
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computation then gives

− ∂F

∂λIi
=

ikI
2π
λIi +

∑

j 6=i

coth
λI
i−λ

I
j

2
(3.6)

− i

2

∑

fixed I→J

N
∑

j=1

(

1−∆IJ + i
λI
i−λ

J
j

2π

)

cot
(

π(1−∆IJ) + i
λI
i−λ

J
j

2

)

+
i

2

∑

fixed I←J

N
∑

j=1

(

1−∆JI − i
λI
i−λ

J
j

2π

)

cot
(

π(1−∆JI)− i
λI
i−λ

J
j

2

)

.

Here the index I is fixed, and the sums are over outgoing arrows a = (I → J) or

incoming arrows a = (I ← J). The conformal dimension of a bifundamental field

from node I to node J is denoted ∆a = ∆IJ . Notice that an adjoint field with I = J

contributes to both terms in (3.6).

Let us analyze these equations of motion assuming that the eigenvalues grow in the

large N limit. More precisely, as we shall see the saddle point approximation is in

fact dominated by a complex solution, in which the eigenvalues λIi have an imaginary

part that is small compared to the real part. This is a common phenomenon: one is

effectively deforming the real integral in (2.7) into the complex plane in order to find

the steepest descent. Then more precisely we are assuming that the real parts ξIi = ℜλIi
of the eigenvalues grow4 with N , where we introduce the real and imaginary parts:

λIi = ξIi + iyIi . (3.7)

Using

cot(a+ ib) =
1− i tan a tanh b

tan a+ i tanh b
, (3.8)

together with

tanhw = sgn(ℜw) +O
(

e−2|ℜw|
)

, (3.9)

we see that we may approximate cot(a+ib) ≃ −i sgn(ℜb) for |ℜb| ≫ 0. Using this, the

4We shall be more precise about this later.
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equation of motion (3.6) simplifies to

− ∂F

∂λIi
≃ ikI

2π
λIi +

∑

j 6=i

sgn
(

ξIi − ξIj
)

−1
2

∑

fixed I→J

N
∑

j=1

(

1−∆IJ + i
λI
i−λ

J
j

2π

)

sgn
(

ξIi − ξJj
)

−1
2

∑

fixed I←J

N
∑

j=1

(

1−∆JI − i
λI
i−λ

J
j

2π

)

sgn
(

ξIi − ξJj
)

. (3.10)

We now introduce the continuum limit. Here the sums over N eigenvalues tend to

Riemann integrals as N → ∞. Again, this procedure is somewhat standard, and a

review may be found in [37]. We begin by defining functions ξI(s), yI(s), so ξI , yI :

[0, 1]→ R, via

ξI
[

1
N

(

i− 1
2

)]

= ξIi , yI
[

1
N

(

i− 1
2

)]

= yIi , i = 1, . . . , N . (3.11)

In the continuum limit where N →∞ the sums over N become Riemann integrals, so

for example

1

N

N
∑

j=1

f(ξj) −→
∫ 1

0

f(ξ(s)) ds . (3.12)

For each I = 1, . . . , G we may also introduce the density ρI(ξ) via

ρI(ξ
I(s))dξI = ds . (3.13)

These are G functions of a single real variable. Assuming that the real parts of the

eigenvalues dominate over the imaginary parts at large N , the leading order term in

(3.10) in the continuum limit gives

∑

fixed I→J

∫

(ξ − ξ′) ρJ(ξ′)sgn(ξ − ξ′)dξ′ =
∑

fixed I←J

∫

(ξ − ξ′) ρJ(ξ′)sgn(ξ − ξ′)dξ′ (3.14)

Differentiating this twice with respect to ξ then implies

∑

fixed I→J

ρJ (ξ) =
∑

fixed I←J

ρJ(ξ) , I = 1, . . . , G . (3.15)

Remarkably, these G linear equations for the G density functions ρI(ξ) take the form

of ABJ anomaly conditions, when thought of in the four-dimensional context. If one

considers the parent N = 1 four-dimensional quiver gauge theory, then it is a general
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result that there is a (b3(Y5) + 1)-dimensional space of solutions to (3.15); that is, the

skew part of the adjacency matrix of the quiver has a kernel of dimension b3(Y5) + 1.

Here b3(Y5) is the third Betti number of Y5, which is the link of the Calabi-Yau three-

fold singularity of the parent theory vacuum moduli space. Given (3.15), the leading

order part of the equation of motion (3.14) is then zero.

The next-to-leading order term in (3.6) then gives

0 =

∫

ρI(ξ
′) sgn(ξ − ξ′) dξ′

−1
2

∑

fixed I→J

∫

(

1−∆IJ − yI (ξ)−yJ (ξ′)
2π

)

ρJ(ξ
′) sgn(ξ − ξ′) dξ′

−1
2

∑

fixed I←J

∫

(

1−∆JI +
yI (ξ)−yJ (ξ′)

2π

)

ρJ(ξ
′) sgn(ξ − ξ′) dξ′ . (3.16)

Using (3.15) the yI(ξ) terms cancel, and differentiating gives

2ρI(ξ) =
∑

fixed I→J

(

1−∆IJ + yJ (ξ)
2π

)

ρJ (ξ) +
∑

fixed I←J

(

1−∆JI − yJ (ξ)
2π

)

ρJ(ξ) . (3.17)

At this point we shall make the assumption that

ρI(ξ) = ρ(ξ) (3.18)

holds for all I = 1, . . . , G. This condition is satisfied for all the N ≥ 3 examples

discussed in [7], and as we shall see later also holds for the N = 2 An−1 theories by a

symmetry argument. As we shall also see, without the constraint (3.18) the behaviour

of the matrix model is qualitatively different. Notice that for theories with parents for

which b3(Y5) = 0, the condition (3.18) necessarily holds as the skew adjacency matrix

has a one-dimensional kernel. This kernel is due to gauge anomaly cancellation in four

dimensions, which for equal ranks NI = N is equivalent to the number of incoming

arrows equalling the number of outgoing arrows at each node. With (3.18), the last

equation becomes

2 =
∑

fixed I→J

(

1−∆IJ + yJ (ξ)
2π

)

+
∑

fixed I←J

(

1−∆JI − yJ (ξ)
2π

)

. (3.19)

One can now sum this equation over I. This gives

2G = 2
∑

all I→J

(1−∆IJ) +
∑

all I→J

yJ(ξ)− yI(ξ)
2π

. (3.20)
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Here the sums are over all matter content, or equivalently arrows a = (I → J) in the

quiver. The first factor of 2 arises because we double count every arrow in the quiver

(each arrow is incoming and outgoing to precisely one node each). The last term in

(3.20) is then zero due to four-dimensional gauge anomaly cancellation of the parent

theory: note that for a fixed node I an outgoing arrow contributes −yI(ξ), while an

incoming arrow contributes +yI(ξ). We thus derive the following constraint on the

conformal dimensions:

G =
∑

all I→J

(1−∆IJ) . (3.21)

Given (3.18), it follows that ℜλIi = ℜλJi ≡ ξi holds for all I and J . We may thus

write

λIi = ξi + iyIi , (3.22)

with ξi, y
I
i both real. At this point it is also convenient to order the eigenvalues in such

a way that ξi is monotonically increasing with i. We may then simplify the expression

(2.10) for F (ΦBi) for a generic bifundamental field ΦBi. We first rearrange the terms

in the products, separating the terms with i > j and i < j from those with i = j:

F (ΦBi) = F1(ΦBi) + F2(ΦBi) . (3.23)

Here

F1(ΦBi) =

N
∑

i=1

ℓ

(

1−∆Bi −
yIi − yJi

2π

)

. (3.24)

In fact this term will be subleading in the large N expansion, as we shall see momen-

tarily. Using the expressions for ℓ±(z) in Appendix A, we also compute

F2(ΦBi) =
1

2

∑

i 6=j

sgn(ξi − ξj)
(

1−∆I,J + i
λIi − λJj

4π

)

(λIi − λJj ) +

sums of exponentials . (3.25)

Here the sums of exponentials are precisely the sums over m in equations (A.7). Of

course, differentiating (3.25) with respect to λIi leads to the corresponding term in the

leading order equation of motion (3.10).
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3.3 Quantum effective action: non-chiral theories

For a general Chern-Simons-matter theory, the terms written in (3.25) are at leading

order in the large N expansion, and generically do not cancel on summing over all

matter content. In contrast to this, for the N ≥ 3 examples studied in [7] these terms

precisely cancelled. More generally, it is straightforward to see that this cancellation

always occurs for a non-chiral Chern-Simons-matter theory. In terms of quivers, this

means that for every arrow from node I to node J , there is a corresponding arrow

from node J to node I. At this point it is expedient to therefore restrict to non-chiral

theories. The matrix models in question will then closely resemble that for the ABJM

theory, but will nevertheless still be general enough to allow for non-trivial N = 2

theories with anomalous (and in fact irrational) dimensions ∆a of the chiral matter

fields.

Requiring that the Chern-Simons-matter theory be non-chiral has a number of in-

teresting consequences. Firstly, the terms depending on yJi in (3.19) cancel, leaving us

with the following set of constraints on conformal dimensions:

2 = 2
∑

fixed I↔J

(1−∆IJ) , (3.26)

where we have assumed5 that ∆IJ = ∆JI for each bifundamental pair. These are

precisely the conditions imposed by setting the G NSVZ beta functions in the four-

dimensional parent theory to zero. Remarkably, the same conditions must hold for non-

chiral Chern-Simons-matter theories, at least under the assumptions we have made thus

far. It is then straightforward to check that the terms written in (3.25) cancel, leaving

only the exponential sums. More precisely, the quadratic and constant terms cancel

pairwise between the two arrows going between I ↔ J , while the linear terms only

cancel on summing over the whole quiver, where one must also include the contribution

from the gauge sector one-loop term in (2.8).

Thus the terms written explicitly in (3.25) cancel for a non-chiral quiver, and we

are left with the sums of exponentials. For a fixed pair of arrows going between nodes

5For the explicit examples that we shall study in this paper this will follow from symmetry; more
generally one might have to relax this condition.
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I ↔ J , we compute the contribution

F2(ΦI↔J) =
∑

i>j

∞
∑

m=1

e−mξij

{

1

πm

[

ξij +
1

m

]

sin 2πm(1−∆)
[

eim(yIj−y
J
i ) + e−im(yIi−y

J
j )
]

− 2

m
(1−∆) cos 2πm(1−∆)

[

eim(yIj−y
J
i ) + e−im(yIi−y

J
j )
]

(3.27)

+
i

πm
sin 2πm(1−∆)

[

(yIi − yJj )e−im(yIi−y
J
j ) − (yIj − yJi )eim(yIj−y

J
i )
]

}

.

Here ∆ ≡ ∆IJ = ∆JI , and we have defined

ξij = ξi − ξj . (3.28)

In the continuum limit of the previous subsection, we have yI = yI(ξ) with density

function

ρ(ξ)dξ = ds . (3.29)

It is straightforward to apply this to the classical part of the action:

Fclassical = −i
G
∑

I=1

kI
4π

N
∑

i=1

(

λIi
)2

=
1

2π

G
∑

I=1

N
∑

i=1

kIξiy
I
i + lower order

−→ N

2π

∫

ξρ(ξ)
G
∑

I=1

kIy
I(ξ) dξ . (3.30)

At this point we will be more precise about the growth of ξi. Following [7], we write

the ansatz

ξi = Nαxi (3.31)

for the leading order behaviour of the real parts of the eigenvalues, where α > 0 is

some real constant. Then more precisely the last equation (3.30) becomes

Fclassical =
N1+α

2π

∫ x2

x1

xρ(x)
G
∑

I=1

kIy
I(x) dx+ o(N1+α) . (3.32)

We then notice that (3.24) is O(N), and is thus subleading to the classical action,

assuming α > 0. Of course, this is intuitively clear, since this term came from i = j in

the original sum over both i and j, and thus should be measure zero compared to this

latter term, in the continuum limit.

We turn next to the leading order contribution to (3.27) in the continuum limit. In

order to evaluate this, notice that since the sum over i > j leads to a double integral
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with x− x′ > 0, the latter may be evaluated in the large N limit essentially using the

representation of the delta function

δ(x) = lim
c→∞

c

2
e−c|x| . (3.33)

More precisely, consider the general equality
∫ x

x1

dx′e−mNα(x−x′)f(x, x′) =
1

mNα

[

e−mNα(x−x′)f(x, x′)
]x

x1

− 1

mNα

∫ x

x1

dx′e−mNα(x−x′) d

dx′
f(x, x′) , (3.34)

where we have made a trivial integration by parts. The first term is simply 1
mNα f(x, x)

plus a term which is exponentially suppressed in the large N limit. One has to use

this identity twice on the first term of (3.27), proportional to ξij = Nαxij , and once

for each of the remaining terms, to derive the leading order result

F2(ΦI↔J) =
4N2−α

π

∫ x2

x1

(ρ(x))2dx
∞
∑

m=1

[

1

m3
sin 2πm(1−∆) cosm

[

yI(x)− yJ(x)
]

− π

m2
(1−∆) cos 2πm(1−∆) cosm

[

yI(x)− yJ(x)
]

+
1

2m2

[

yI(x)− yJ(x)
]

sin 2πm(1−∆) sinm
[

yI(x)− yJ(x)
]

]

. (3.35)

The crucial point here is that the first term in the first line of (3.27) is naively of

order N2. However, the identity (3.34) implies that this leading contribution is itself

identically zero. One should then worry about subleading corrections to this term

coming from approximating the sum over N eigenvalues with an integral. However,

one can use the general estimate
∣

∣

∣

∣

∣

∫ 1

0

f(x(s))ds− 1

N

N
∑

i=1

f(xi)

∣

∣

∣

∣

∣

≤
sups∈[0,1] |f ′′(x(s))|

24N2
, (3.36)

with xi related to x(s) as in (3.11), to show this correction is subleading to (3.35).

It is straightforward to similarly compute the leading order contribution to the par-

tition function for an adjoint field of conformal dimension ∆:

F2(ΦAd) =
2N2−α

π

∫ x2

x1

(ρ(x))2dx

∞
∑

m=1

[

1

m3
sin 2πm(1−∆)

− π

m2
(1−∆) cos 2πm(1−∆)

]

. (3.37)
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The leading order contribution for the gauge sector one-loop term in (2.8) is

F2(gauge) = 2GN2−α

∫ x2

x1

(ρ(x))2dx

∞
∑

m=1

1

m2

=
π2GN2−α

3

∫ x2

x1

(ρ(x))2dx . (3.38)

Here we have used the expansion (A.8); recall that the linear term in (A.8) has already

been cancelled (see the paragraph after equation (3.26)). Notice that each U(N) gauge

group factor makes the same contribution, hence the overall factor of G in (3.38).

The sums over m in (3.35) and (3.37) may be evaluated in closed form using simple

Fourier series results. We shall do this for our examples in the following sections.

4 The U(N)2 An−1 theories

In this section we study the M-theory limit of the partition function for a particular

class of N = 2 non-chiral Chern-Simons-matter theories.

4.1 The quiver theories

In [24] a particular family of Chern-Simons-matter theories was studied in considerable

detail. For these theories the gauge group is G = U(N)k×U(N)−k, so that the number

of gauge group factors is G = 2, and we have denoted the Chern-Simons levels as

k1 = k = −k2. The matter content consists of bifundamental fields Aα, Bα, α = 1, 2,

transforming in the N⊗N and N⊗N representations of the two gauge group factors,

respectively, together with adjoint fields Ψ1, Ψ2 for each. The superpotential is

W = Tr
[

s
(

(−1)nΨn+1
2 +Ψn+1

1

)

+Ψ1(A1B1 + A2B2) + Ψ2(B1A1 +B2A2)
]

, (4.1)

where s is a coupling constant and n ∈ N is a positive integer. The superpotential is

invariant under an SU(2) flavour symmetry under which the adjoints ΨI are singlets

and both pairs of bifundamentals Aα, Bα transform as doublets. There is also a Z
flip
2

symmetry which exchanges Ψ1 ↔ Ψ2, Aα ↔ Bα, s ↔ (−1)ns. The quiver diagram is

shown in Figure 1.

The case n = 1 is special, since then the first two terms in (4.1) give a mass to the

adjoint fields Ψ1, Ψ2. At energy scales below this mass, we may therefore integrate

out these fields. On setting s = k/8π, one recovers the ABJM theory [3] with quartic
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Figure 1: The An−1 Chern-Simons quiver.

superpotential

WABJM =
4π

k
(A1B2A2B1 −A1B1A2B2) . (4.2)

This theory is superconformal with enhanced N = 6 supersymmetry. We may thus

regard this family of theories, which we refer to as theAn−1 theories, as a generalization

of the ABJM theory.

The Abelian (N = 1) moduli space of vacua of this theory, for k = 1, is the hyper-

surface singularity [24]

Xn =
{

zn0 + z21 + z22 + z23 + z24 = 0
}

⊂ C
5 . (4.3)

For n = 1 one easily sees that X1
∼= C

4, as one expects since the Abelian ABJM

theory with k = 1 describes a single M2 brane in flat spacetime. For n > 1 there is

an isolated singularity of Xn at the origin in C
5. For k > 1 one obtains instead the

quotient Xn/Zk, where the Zk action is free away from the origin. Then Xn/Zk is a

cone over a smooth compact Sasakian seven-manifold Yn/Zk. Recall that a Sasakian

metric on an odd-dimensional manifold Y is equivalent to the cone metric (2.6) being

Kähler.

The An−1 theories are not classically conformally invariant, as one immediately sees

from the non-quartic superpotential (4.1). However, one might be tempted to conjec-

ture that the quantum theories flow to a strongly coupled interacting superconformal

fixed point in the IR, at which (4.1) is marginal. At such a superconformal fixed point

the theory develops an R-symmetry, where the superpotential necessarily has R-charge

2. Since a chiral superfield Φa saturates the BPS bound that R[Φa] = ∆[Φa], where

∆[Φa] denotes the conformal dimension, it follows that at such a superconformal fixed

point we must have

∆Bi ≡ ∆[Aα] = ∆[Bα] =
n

n + 1
,

∆Ad ≡ ∆[Ψ1] = ∆[Ψ2] =
2

n + 1
. (4.4)

20



As explained in [24], this is problematic for n > 2, since TrΨI would then be gauge-

invariant chiral primary operators with conformal dimensions ∆[TrΨI ] =
2

n+1
, and this

violates the unitarity bound of ∆ ≥ 1
2
, with equality only for a free field, for n > 2.

Thus only for n = 2 could this conjecture be true. In [24] we conjectured instead that

the An−1 theories all flow to the same conformal fixed point for n > 2, in which the

coupling constant s = 0 and thus the Ψn+1
I terms are absent in the superpotential

(4.1). In this case the vacuum moduli space of the theory is C × Con/Zk, where

Con = {xy = uv} ⊂ C4 is the usual conifold three-fold singularity [24], and the link

Y certainly admits a (singular) Sasaki-Einstein metric. We shall present further field

theory evidence for this conjecture in section 4.5.

There is a gravitational dual to this [17]. In general the existence of Sasaki-Einstein

metrics, for example on links of hypersurface singularities, is a difficult unsolved prob-

lem. In [17] it was pointed out that there are some simple holomorphic obstructions,

which moreover have AdS/CFT dual interpretations. In particular, the unitarity bound

obstruction above is dual to the Lichnerowicz obstruction to the existence of Sasaki-

Einstein metrics described in [17]. One can then show that no Sasaki-Einstein metric

exists on the link Yn of Xn in (4.3), for n > 2. On the other hand, for n = 2 the quadric

hypersurface certainly admits a Ricci-flat Kähler cone metric, where the Sasaki-Einstein

metric on Y2 is the homogeneous V5,2 = SO(5)/SO(3) metric. In spite of this, certainly

there exist Sasakian, but non-Einstein, metrics on Yn, and the volumes of these man-

ifolds are then independent of the choice of such a metric [16]. One easily calculates

this volume using the techniques in the latter reference, to obtain

Vol(Yn) =
(n+ 1)4

16n3
Vol(S7) =

(n+ 1)4π4

48n3
. (4.5)

We stress again that for n = 2 this is the volume of the homogeneous Sasaki-Einstein

manifold V5,2, while for n > 2 it is the volume of any Sasakian metric on the link of

Xn (with canonical choice of Reeb vector field), although there is no Sasaki-Einstein

metric.

4.2 The partition function

The matrix model for the An−1 theories is easily obtained from the general formula

(2.7). We have gauge group G = U(N)k × U(N)−k, so that G = 2, and the partition

function is

Z[An−1] =
1

(N !)2

∫

(

N
∏

i=1

dλi
2π

dλ̃i
2π

)

exp

[

ik

4π

N
∑

i=1

(

λ2i − λ̃2i
)

]

exp [−Floop] , (4.6)
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where

exp [−Floop] =
∏

i 6=j

2 sinh
λij
2
· 2 sinh λ̃ij

2
·
∏

i,j

exp

[

2ℓ

(

1−∆Bi + i
λ̂ij
2π

)

+2ℓ

(

1−∆Bi − i
λ̂ij
2π

)

+ ℓ

(

1−∆Ad + i
λij
2π

)

+ ℓ

(

1−∆Ad + i
λ̃ij
2π

)]

. (4.7)

Here we have denoted the two sets of eigenvalues as λ1i = λi, λ
2
i = λ̃i, and have

introduced the notations

λij = λi − λj , λ̃ij = λ̃i − λ̃j , λ̂ij = λi − λ̃j . (4.8)

We also note from (4.4) that, provided s 6= 0, the marginality of the superpotential

(4.1) implies

1−∆Bi =
1

n+ 1
, 1−∆Ad =

n− 1

n+ 1
. (4.9)

For the time being we shall assume that s 6= 0, and thus that (4.9) hold, and return to

the case that s = 0 in section 4.5. The two factors of 2 before the ℓ functions in (4.7)

arise from the sum over α = 1, 2 on the bifundamental fields Aα, Bα.

4.3 Symmetries and saddle point equations

For the An−1 theories the equation of motion (3.6) may be written as

− ∂F

∂λi
=

ik

2π
λi +

∑

j 6=i

coth
λij
2

+

N
∑

j=1

λ̂ij

2π
sin 2π

n+1
− 2

n+1
sinh

λ̂ij

2
cosh

λ̂ij

2

sin2 π
n+1

+ sinh2 λ̂ij

2

+
1

2

N
∑

j=1

λij

2π
sin 2π(n−1)

n+1
− 2(n−1)

n+1
sinh

λij

2
cosh

λij

2

sin2 π(n−1)
n+1

+ sinh2 λij

2

. (4.10)

The corresponding equation of motion for λ2i = λ̃i is obtained via the replacements

λi ↔ λ̃i, k → −k. This is a remnant of the Z
flip
2 symmetry which exchanges Ψ1 ↔ Ψ2

and Aα ↔ Bα. In fact we note the following symmetries:

1. The equations of motion for λi and λ̃i are interchanged via λi ↔ λ̃i, k ↔ −k,
which as mentioned is the Zflip

2 symmetry of the An−1 Chern-Simons-matter the-

ory.
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2. The equations of motion for λi and λ̃i are interchanged via λ̃i ↔ λ̄i. In fact this

follows from the previous comment, together with the fact that the equation of

motion (4.10) is real up to the classical term involving the Chern-Simons level k.

3. The equations of motion are invariant under λi → −λi, λ̃i → −λ̃i.

These are the same symmetries possessed by the ABJM theory with n = 1 [7].

The approximate equation of motion (3.10) then becomes

− ∂F

∂λi
≃

(

1− 2

n + 1
− n− 1

n + 1

) N
∑

j=1

sgn(ξi − ξj) ,

= 0 , (4.11)

where we have assumed that ℜλi = ℜλ̃i = ξi, as in section 3.2. In the case at hand,

this is also related to a symmetry, namely Z
flip
2 . Since the action is invariant under this

symmetry, it is reasonable to expect that the same is true of the saddle point solution.

From the comments 1 and 2 above, this implies that λ̃i = λ̄i, which in particular implies

that ℜλi = ℜλ̃i. The vanishing of the coefficient in (4.11) is of course precisely the

single non-trivial NSVZ beta function relation, as expected from (3.26).

4.4 Evaluating the free energy

In this section we would like to evaluate the free energy in the M-theory large N limit.

In order to do so, it is convenient to use the Z
flip
2 symmetry of the theory and action.

From the comments made at the end of the previous subsection, this implies that

λi = Nαxi + iyi , λ̃i = Nαxi − iyi . (4.12)

In the continuum limit, this becomes y(x) ≡ y1(x) = −y2(x). We may then use the

general results in (3.35), (3.37), (3.38) to write the total

F2 =
4N2−α

π

∫ x2

x1

(ρ(x))2dx

∞
∑

m=1

[

2

m3
sin

2πm

n+ 1
cos 2my +

1

m3
sin

2πm(n− 1)

n+ 1

+
π

m2
+

2y

m2
sin

2πm

n+ 1
sin 2my − π(n− 1)

m2(n + 1)
cos

2πm(n− 1)

n + 1

− 2π

m2(n + 1)
cos

2πm

n + 1
cos 2my

]

. (4.13)
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The sums in this expression are simple Fourier expansions, and it is elementary to sum

them explicitly. For example, using

1

3
w3 = 4

∞
∑

m=1

(−1)m
m3

sinmw +
π2

3
w , −π < w < π , (4.14)

one easily shows that the first term in (3.35) is

∞
∑

m=1

2

m3
sin

2πm

n+ 1
cos 2my = − 1

12

(

π(n−1)
n+1

+ 2y − 2πǫ
)

[

(

(n−1)π
n+1

+ 2y − 2πǫ
)2

− π2

]

− 1

12

(

π(n−1)
n+1

− 2y
)

[

(

π(n−1)
n+1

− 2y
)2

− π2

]

. (4.15)

The range on y for the first term in (4.15) is

− πn

n+ 1
< y <

π

n+ 1
, ǫ = 0 ,

π

n+ 1
< y <

π(n+ 2)

n + 1
, ǫ = 1 , (4.16)

while for the second term it is

− π

n+ 1
< y <

πn

n + 1
. (4.17)

Notice that the range (4.17) has non-empty overlap with both choices of range in (4.16).

Using similar arguments it is straightforward to derive

F2 =
4N2−α

π

∫ x2

x1

(ρ(x))2dx

{

2π

(n + 1)3
[

n2π2 − (n+ 1)2y2
]

+
π2ǫ(ǫ− 1)

3

[

π

n + 1
[2ǫ(n + 1) + 2− n]− 3y

]

}

. (4.18)

Remarkably, for ǫ = 0 or ǫ = 1 this dramatically simplifies to the same expression

F2 =
4N2−α

π

∫ x2

x1

(ρ(x))2dx
2π

(n + 1)3
[

n2π2 − (n+ 1)2y2
]

. (4.19)

We see that the classical term (3.32) scales as N1+α to leading order, while the one-loop

term F2 in (4.19) scales as N2−α. In order to obtain non-trivial critical points in the

large N limit we thus need 1 + α = 2 − α, or α = 1
2
. Altogether, the free energy is

then, to leading order in the M-theory large N limit, given by

F = N3/2

[

k

π

∫

dxxρ(x)y(x) +

∫

dx(ρ(x))2h[y(x)]− µ

2π

(
∫

dxρ(x)− 1

)]

. (4.20)
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Here we have introduced a Lagrange multiplier µ for the density, and defined

h[y] ≡ 8

(n+ 1)3
[

n2π2 − (n+ 1)2y2
]

. (4.21)

The Euler-Lagrange equations for a critical point are simply

4πρ(x)h[y(x)] = µ− 2kxy(x) , (4.22)

πρ(x)h′[y(x)] = −kx . (4.23)

Computing h′ = −16y/(n+ 1) one easily obtains the solution

ρ(x) =
(n + 1)3µ

32n2π3
, y(x) =

2kn2π2x

(n+ 1)2µ
. (4.24)

Noting that the action is invariant under x ↔ −x, it follows that x1 = −x2 and the

constraint equation is

∫ x∗

−x∗

ρ(x)dx = 1 ⇒ µ =
16n2π3

(n+ 1)3x∗
. (4.25)

In turn this gives

y =
k(n+ 1)x∗

8π
x . (4.26)

A sketch of these functions is shown in Figure 2.

x
*

ρ(x)

0

y(x)

x
*

Figure 2: Sketch of ρ(x), which is zero for |x| > x∗ and takes the constant value ρ = 1
2x∗

for |x| < x∗. The function y(x), shown in red, is linear in this latter region.
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It is now a simple matter to substitute this back into the action and integrate, to

obtain

F = N3/2

[

4n2π2

(n+ 1)3x∗
+
k2(n+ 1)

48π2
x3∗

]

. (4.27)

Finally, we must extremize over the endpoints of the eigenvalue distribution, so that

dF/dx∗ = 0 implies

x∗ =
2π

n+ 1

√

2n

k
, y(x∗) =

nπ

n + 1
. (4.28)

Looking back to (4.16), (4.17), we see that the full solution for y(x) lies in the range

of validity of the Fourier expansions we have made, provided we take ǫ = 1 for the

y > π/(n+ 1) region in Figure 2, and ǫ = 0 for the y < π/(n+ 1) region. The leading

saddle point free energy is hence

F = N3/2k1/2
8πn3/2

3
√
2(n + 1)2

. (4.29)

For n = 1 this is the ABJM result of [34, 5, 7]. We then see that

F (n = 1)

F (n)
=

√

(n + 1)4

16n3
, (4.30)

which is exactly the expected square root of the volume given by (2.15), (4.5).

4.5 The superconformal theory for n > 2

As discussed in section 4.1, for n > 2 in fact the superpotential (4.1) cannot be marginal

with s 6= 0, due to the Lichnerowicz/unitarity bound. In [24] we therefore conjectured

that for n > 2 the coupling sΨn+1
I is irrelevant in the IR, and thus one should set s = 0

at the conformal fixed point. This then alters the above computation. The constraint

∆[W ] = 2 imposes

∆Ad = 2(1−∆) , (4.31)

where we have set ∆ ≡ ∆Bi. Equation (4.31) is also equivalent to (3.26), which is the

leading order saddle point equation. It is then straightforward to redo the computation

of the previous section, with the weaker condition (4.31). One finds the free energy is

still given by (4.20), but where the function h[y] in (4.21) is

h[y] = 8(1−∆)(π2∆2 − y2) . (4.32)
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Of course, setting ∆ = n
n+1

reproduces the function (4.21). The rest of the computation

proceeds in much the same way, and one finds the free energy

F (∆) = N3/2k1/2
4π
√

2∆3(1−∆)

3
. (4.33)

As in [20] this is a function of ∆, which one should regard as a trial R-charge. Following

the latter reference, extremizing F with respect to ∆ gives for the conformal field theory

∆ = ∆Bi =
3

4
, ∆Ad =

1

2
. (4.34)

Notice that this is formally equal to the previous result for n = 3.

We may now compare with the dual gravity analysis. As shown in [24], the vacuum

moduli space of the theory with s = 0 is C× Con/Zk. This certainly admits a Ricci-

flat Kähler cone metric, namely the product of the flat metric on C times the conifold

metric. More generally, one can compute the volume of a (singular) Sasakian metric on

the link Y using the results of [17]. Realizing the conifold as the quadric hypersurface

Con = {z21 + z22 + z23 + z24 = 0} ⊂ C4, we may compute the character of the action of

(C∗)2 on C×Con, where the first copy of C∗ acts with weight one on C and the second

C∗ acts with weight one on each zi, i = 1, . . . , 4. In the notation of [17], this gives

C(q0, q,C× Con) =
1− q2

(1− q0)(1− q)4
, (4.35)

where (q0, q) are coordinates on (C∗)2. The volume, as a function of the Reeb vector

field, is then given by setting q0 = e−tξ0 , q = e−tξ and taking the limit of t−4 times

(4.35) as t→ 0. This gives

Vol(ξ0, ξ) =
2

ξ0ξ3
Vol(S7) , (4.36)

where Vol(S7) denotes the volume of the round metric on S7. One can easily check

that the holomorphic (4, 0)-form on C× Con has charge 4 if and only if

ξ0 = 4− 2ξ , (4.37)

which is precisely the geometric analogue of (4.31). Indeed, in the field theory ∆Ad =

ξ0/2, ∆ = ξ/2, which follows straightforwardly from the field theory description of the

vacuum moduli space. We thus obtain the geometric formula

Vol(∆) =
1

16∆3(1−∆)
Vol(S7) . (4.38)
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Remarkably, this precisely agrees with (4.33) and our conjecture (1.1); that is, the free

energy is related to the Sasakian volume of Y , even before extremizing with respect to

the trial R-charges.

This result adds further support to the conjecture made in [24] for the n > 2 theories.

Notice that at this conformal fixed point ∆Ad = 1
2
. Naively this contradicts the Lich-

nerowicz obstruction of [17], since it is stated there that ∆Ad = 1
2
can hold only for the

round metric on S7. However, the Lichnerowicz theorem of [17] is here circumvented

precisely because the link Y is singular. In fact certainly there is a Sasaki-Einstein

metric on Y , which is known explicitly; but it has an S1 locus of conical singularities.

5 The U(N)3 SPP theory

In this section we study a different non-chiral Chern-Simons-matter theory, this time

with U(N)3 gauge group. We compute the partition function, as a function of the trial

R-charges [20], explicitly in the large N limit, and verify that it satisfies our general

Sasakian volume conjecture (1.1). Note that although the Sasaki-Einstein metric is not

known in explicit form in this case, its existence is guaranteed by the results of [38].

5.1 The quiver theory

The theory of interest is a G = U(N)2k × U(N)−k × U(N)−k Chern-Simons-quiver

theory, where the vector of Chern-Simons levels is (2k,−k,−k). Thus G = 3. The

matter content consists of the following bifundamental fields:

A1 : N⊗N⊗ 1 , A2 : N⊗N⊗ 1 ,

B1 : 1⊗N⊗N , B2 : 1⊗N⊗N ,

C1 : N⊗ 1⊗N , C2 : N⊗ 1⊗N . (5.1)

We also include an adjoint scalar field Ψ for the first gauge group factor. The super-

potential is

W = Tr [Ψ (A1A2 − C1C2)− A2A1B1B2 + C2C1B2B1] . (5.2)

The quiver diagram is shown in Figure 3.

As a four-dimensional N = 1 quiver gauge theory, this describes the low energy

dynamics of N D3-branes at the suspended pinch point (SPP) singularity [39]. The

latter is the (non-isolated) three-fold hypersurface singularity given by {x2y = uv} ⊂
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Aα

Ψ

B

2k

-k
α

-k

Cα

1

23

Figure 3: The SPP Chern-Simons quiver.

C
4. From the general results of [22], [30], the corresponding three-dimensional Chern-

Simons-quiver theory is expected to describe N M2 branes probing a related toric

Calabi-Yau four-fold singularity. This Abelian moduli space was studied in both [30]

and [25].

Assuming the theory has a superconformal fixed point at which (5.2) is marginal, it

follows from ∆[W ] = 2 that

2 = 2∆[A] + 2∆[B] , 2 = 2∆[C] + 2∆[B] , 2 = 2∆[A] + ∆[Ψ] .(5.3)

Here we have taken, by symmetry, ∆[A1] = ∆[A2] = ∆[A], etc. This leads to

∆[B] = ∆ , ∆[A] = ∆[C] = (1−∆) , ∆[Ψ] = 2∆ . (5.4)

In fact in this example the superpotential constraints (5.3) are precisely equivalent to

the vanishing of the four-dimensional NSVZ beta functions (3.26). Recall that the latter

are equivalent to the leading order saddle point equations for the partition function.

5.2 The Sasakian volume function

Until now it has not been possible to determine ∆ at the superconformal fixed point

using a purely field theory computation. However, one can determine ∆ using the

AdS/CFT correspondence together with the volume minimization of [15]. In the latter

reference it is shown how to uniquely determine the volume of a Sasaki-Einstein metric

on the link of a toric Calabi-Yau singularity by minimizing a certain rational function.

The latter is the volume of a general Sasakian metric as a function of the Reeb vector

field ξ, which is holographically dual to the R-symmetry. This volume function is easily

computed using the toric data of the Calabi-Yau singularity, and referring6 to equation

6In [25] the authors have normalized the Reeb vector field so that the holomorphic (4, 0)-form on
the cone over Y has charge 2, so that the superpotential then also has charge 2 (see the discussion

29



(5.39) of [25] we see that in the present example (with k = 1)

Vol(Y )[∆] =
4− 3∆

32∆(1−∆)2(2−∆)2
Vol(S7) , (5.5)

where we have simplified somewhat the expression given in [25]. Here ∆ is geometrically

parametrizing the choice of Reeb vector field in the Sasakian metric on Y . However, this

may be related to the field theoretic ∆ using the correspondence between bifundamental

fields in the Chern-Simons-quiver theory and M5 branes wrapped on (links of) certain

toric divisors. More precisely, the AdS/CFT correspondence gives

∆[Φ] =
NπVol(ΣΦ)

6Vol(Y )
, (5.6)

where geometrically a bifundamental field Φ defines a line bundle over the moduli space,

which is equivalent to a toric divisor C(ΣΦ) with ΣΦ ⊂ Y a codimension two subspace

of Y . Again, the volume of ΣΦ may be computed using [15], and this identifies ∆ in

(5.5) with the dimension ∆ = ∆[B].

We note that in this case minimizing (5.5) gives [25] the conformal dimension7

∆ =
1

18

[

19− 37
(

431− 18
√
417
)1/3
−
(

431− 18
√
417
)1/3

]

≃ 0.319 . (5.7)

5.3 Evaluating the free energy

Our goal in this section is to reproduce the geometric formula (5.5), and hence following

[20] also (5.7), from a purely field theoretic computation. We simply apply the general

results described in section 3.

Recall that with G = 3 gauge group factors we will have three sets of eigenvalues

λ1i , λ
2
i , λ

3
i , where i = 1, . . . , N . Our choice of Chern-Simons levels in this example was

determined by requiring the Z2 symmetry of the matter content and superpotential to

extend to the whole Chern-Simons-matter theory. This Z2 acts by exchanging A and

C fields and correspondingly the second and third U(N) factors. Assuming that the

saddle point solution is invariant under this Z2 symmetry of the theory, we may thus

after their equation (4.3)). In fact in order to obtain the correctly normalized volume this should be
charge 4 [15], [16]. Since the Sasakian volume function in this dimension is homogeneous degree −4,
one should thus rescale all volumes in [25] by 2−4 = 1

16
in order to obtain the correct normalization.

This factor will be crucial later when we compare to the large N partition function for this model.
7Note that although ∆ < 1/2, this does not violate the unitarity bound because there is no gauge

invariant operator with this dimension.
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take

y1i ≡ yi , y2i = y3i ≡ wi , (5.8)

where recall that the eigenvalues are λIi = Nαxi + iyIi . It it then straightforward

to apply the general results (3.32), (3.35), (3.37), (3.38) to obtain the leading order

partition function at large N . In particular, the one-loop contribution is

F2 =
2N2−α

π

∫ x2

x1

(ρ(x))2dx

∞
∑

m=1

[

2

m3
sin 2πm(1−∆)− 2π

m2
(1−∆) cos 2πm(1−∆)

+
1

m3
sin 2πm(1− 2∆)− π

m2
(1− 2∆) cos 2πm(1− 2∆) +

3π

m2
(5.9)

+
4

m3
sin 2πm∆cosmu− 4π

m2
∆cos 2πm∆cosmu+

2

m2
u sin 2πm∆sinmu

]

.

Here the first line comes from the B fields, the second line from the adjoint Ψ and the

gauge sector (the last term), while the last line comes from the A and C fields. We

have also introduced the quantity

u ≡ y − w . (5.10)

One can sum the Fourier series as before. Again, the classical and one-loop contribu-

tions are at the same order, thus leading to non-trivial solutions, only for α = 1
2
. This

leads to

F = N3/2

[

k

π

∫

dxxρ(x)u(x) +

∫

dx (ρ(x))2h[u(x)]− µ

2π

(
∫

dxρ(x)− 1

)

]

,(5.11)

where

h[u] = 2∆
[

2π2(∆− 1)(∆− 2)− u2
]

. (5.12)

Importantly, as we discuss in Appendix B, this is valid only for u in the range

− 2π(1−∆) < u < 2π(1−∆) . (5.13)

Solving the Euler-Lagrange equations following from (5.11) we find the solution

ρ =
µ

16π3∆(1−∆)(2−∆)
, u(x) =

4π2k(1−∆)(2−∆)x

µ
, (5.14)
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where without loss of generality let us take k > 0. Notice that ρ > 0 implies µ > 0.

Now, if we assume that this solution is valid in an interval [−x∗, x∗] ⊂ [−x∆, x∆], where

u(x∆) ≡ u∆ = 2π(1−∆) , (5.15)

we get a contradiction, since it then turns out that u(x∗) > u∆. Hence this solution

can be valid only in the interval [−x∆, x∆], while in [−x∗,−x∆]∪ [x∆, x∗] we necessarily
have a different solution. Following [7], in fact u(x) is frozen to the constant boundary

value u = u∆ in the interval [x∆, x∗], and correspondingly frozen to the other boundary

value u = −u∆ in the interval [−x∗,−x∆]. The resulting continuous, piecewise-linear

function is shown in red in Figure 4. Thus F is not extremized with respect to u(x) in

the range [−x∗,−x∆] ∪ [x∆, x∗], but only with respect to ρ(x) at fixed u = ±u∆. One

finds the Euler-Lagrange equation solution

ρ(x) =
µ− 4πk(1−∆)|x|
16π3∆2(1−∆)

for x ∈ [−x∗,−x∆] ∪ [x∆, x∗] . (5.16)

The value of x∆ is easily determined from (5.15), while x∗ can be fixed by demanding

that ρ(x∗) = 0, giving

x∆ =
µ

2πk(2−∆)
> 0 , x∗ =

µ

4πk(1−∆)
> 0 , (5.17)

respectively.

x
*

x
*

xΔxΔ

ρ(x)

0

u(x)
uΔ

uΔ

Figure 4: Sketch of the piecewise-linear functions u(x), ρ(x).

We can then compute the on-shell F as a function of µ:

F =
N3/2µ3(4− 3∆)

192kπ5(2−∆)2(1−∆)2∆
. (5.18)
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Next, µ may be determined by imposing the normalization of ρ(x), giving

µ2 =
64kπ4∆(1−∆)2(2−∆)2

(4− 3∆)
. (5.19)

Finally, substituting this back into F we obtain

F = N3/2k1/2
8π

3
(2−∆)(1−∆)

√

∆

4− 3∆
, (5.20)

which, remarkably, agrees with the conjectured relation (1.1) and the Sasakian volume

(5.5).

6 Discussion

In this paper we have reproduced for the first time the expected N3/2 scaling of the

number of degrees of freedom in N = 2 superconformal field theories arising on a large

number N of M2 branes, where the conformal dimensions of matter fields are different

from the canonical value ∆ = 1
2
. We have also reproduced the volumes of certain

Sasaki-Einstein seven-manifolds, thereby providing non-trivial tests of some conjec-

tured AdS4/CFT3 dualities [25, 24]. More generally, we conjectured a relation between

the large N limit of the partition function, interpreted as a function of trial R-charges,

and the volumes of Sasakian metrics on links of Calabi-Yau four-fold singularities.

The method [7] that we have developed here applies to the general class of non-chiral

quiver theories. These share some essential properties with N = 3 theories, albeit

with superpotentials that are more arbitrary and not restricted to quartic interactions.

Consequently, the scaling dimensions of the matter fields at the superconformal point

are not restricted to be 1
2
. However, we believe that this is merely a technical difficulty

and that an extension of the methods of this paper will allow one to tackle general

N = 2 Chern-Simons-matter quivers. In particular, it will be important to justify

more carefully some of the assumptions we and [7] have made about the scaling of

eigenvalues in the large N limit. Although this ansatz reproduces the correct gravity

results in the cases studied so far, and is supported by numerical results [7], clearly a

more detailed understanding is desirable. This ansatz might need modification in more

general classes of Chern-Simons-matter theories.

It would be interesting to distill a simple general procedure for determining the

R-charges of an arbitrary N = 2 Chern-Simons-quiver theory. This will presumably

involve extracting an expression for the large N free energy, as a function of the trial
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R-charges. Recall that in a-maximization for four-dimensional theories one is given a

simple function (a cubic polynomial) of the trial R-charges to begin with. Again, the

results of [15, 16] imply, via the AdS/CFT correspondence, that the square of the large

N free energy must be a polynomial function of the trial R-charges, at least in models

with candidate gravity duals. It would be very interesting to prove our conjecture, at

least in sub-classes such as toric theories, using strategies analogous to those used in

[18, 19]. Finally, it would be interesting to apply the matrix model techniques of [5, 8]

to the theories studied in this paper.
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A Expansions

Recall the definition

ℓ(z) = −z log
(

1− e2πiz
)

+
i

2

[

πz2 +
1

π
Li2
(

e2πiz
)

]

− iπ

12
. (A.1)

It is convenient to introduce the variable

ζ = e2πiz = e−2πℑz (cos 2πℜz + i sin 2πℜz) . (A.2)

Then for ℑz > 0 we have the expansions

log(1− ζ) = −
∞
∑

m=1

ζm

m
,

Li2(ζ) =

∞
∑

m=1

ζm

m2
, (A.3)

so that

ℓ(z) =
iπ

2

(

z2 − 1
6

)

+

∞
∑

m=1

(

z

m
+

i

2πm2

)

e2πimz . (A.4)
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On the other hand, for ℑz < 0 we have the expansions

log(1− ζ) = iπ + log ζ −
∞
∑

m=1

1

mζm
,

Li2(ζ) =
π2

3
− iπ log ζ − 1

2
(log ζ)2 −

∞
∑

m=1

1

m2ζm
, (A.5)

so that

ℓ(z) = − iπ
2

(

z2 − 1
6

)

+
∞
∑

m=1

(

z

m
− i

2πm2

)

e−2πimz . (A.6)

In summary, we have the following two series expansions for the function ℓ(z):

ℓ+(z) =
iπ

2

(

z2 − 1
6

)

+

∞
∑

m=1

(

z

m
+

i

2πm2

)

e2πimz , for ℑz > 0 ,

ℓ−(z) = − iπ
2

(

z2 − 1
6

)

+

∞
∑

m=1

(

z

m
− i

2πm2

)

e−2πimz , for ℑz < 0 . (A.7)

We also note the following expansion. Writing 2 sinh w
2
= ew/2(1− e−w), we have

log
(

2 sinh w
2

)

=
w

2
−
∞
∑

m=1

1

m
e−mw , for ℜw > 0 . (A.8)

B More on the range of u in section 5.3

By a reasoning similar to that in section 4.4, we find that the Fourier series in (5.10)

may be resummed to the expression

h[u] =
2

3

[

2π2
(

3∆3 − 9∆2 + 3∆(2 + p(1 + p) + q(1 + q))− (B.1)

(1 + p+ q)(p+ q + 2p2 + 2q2 − 2pq)
)

+ 3πu(q(1 + q)− p(1 + p))− 3∆u2

]

,

where a priori p and q are arbitrary integers. This is valid only if both conditions

−π < π(1− 2∆) + u+ 2πp < π ,

−π < π(1− 2∆)− u+ 2πq < π , (B.2)

hold simultaneously. Notice that when (p, q) take the values (0, 0), (−1, 0) and (0,−1)
the expression (B.1) simplifies to

h[u] = 2∆
[

2π2(∆− 1)(∆− 2)− u2
]

. (B.3)
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Rewriting (B.2) as

− 2π(1−∆+ p) < u < 2π(∆− p) ,
−2π(∆− q) < u < 2π(1−∆+ q) , (B.4)

the analysis can be split into two cases, and we have

− 2π(∆− q) < u < 2π(∆− p) for p+ q + 1 > 2∆ , (B.5)

−2π(1−∆+ p) < u < 2π(1−∆+ q) for p+ q + 1 < 2∆ , (B.6)

where the two cases coincide when 2∆ = p + q + 1. In order for the interval in (B.5)

to be as large as possible, the integers p and q should be “as negative as possible”.

However, if for example p = 0, q = −1 we have ∆ < 0, hence they cannot be negative.

The largest interval is thus obtained for p = q = 0 and we have

− 2π∆ < u < 2π∆ for p = 0, q = 0 . (B.7)

Similarly, in order for the interval in (B.6) to be as large as possible, the integers p and

q should be as large (and positive) as possible. At this point, let us take a short-cut

and use the information that ∆ ∼ 0.32 < 1/2 for the superconformal fixed point. Then

notice that if q = p = 0 we would have ∆ > 1/2, so at least one of p, q must be negative

and we have the two solutions

2π∆ < u < 2π(1−∆) for p = −1, q = 0 , (B.8)

−2π(1−∆) < u < −2π∆ for p = 0, q = −1 . (B.9)

Remarkably, in all cases the function h[u] simplifies to the expression (B.3). Therefore,

putting everything together, we conclude that the range of validity (at least when

∆ < 1/2) of (B.3) is

− 2π(1−∆) < u < 2π(1−∆) , (B.10)

as claimed in section 5.3.
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