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Abstract

Smart City is a paradigm rapidly evolving which brings with it new

ICT issues to address. Scholars described the smartness of a city as the

ability to bring together all its resources, to effectively and seamlessly

achieve the goals and fulfil the purposes it has set for itself. Public data

are a pillar on which its development is founded, and are the basis for

enabling real time decisions by stakeholders.

Torino As a Platform is the project that the City of Turin is devel-

oping to reach those goals: collecting data from IoT infrastructure, ap-

plication, utilities, companies and citizens reports to build a data driven

decision making platform that will support governance of the smart city.

The project realization bases its development on two main activities:

on one side realizing and delivering to communities an SDK with stan-

dard API for increasing and facilitating collection and reuse of data and

citizens participation. On the other side, developing a machine learning

framework with predictive algorithms that helps the governance of the

Smart City and visually supports the decision making process.

Inside this second activity, we studied a system to analyse temporal

trends of traffic flow within the boundaries of the city, and make predic-

tions about its status in short, medium and long period (15 minutes, 1

hour, and 2 hours).

City governance can use output of these predictions to implement

correct actions to address traffic issues.

Following previous work, we use a combined approach to analyse

historic data of vehicular traffic flow from the City of Turin: we test

different combinations of methods to develop a classifier framework for

traffic flow.

The framework analyses new upcoming data in real time, assigns

the event to a specific class, and visualizes it in an info-system to help

responsible offices to make decision about actions to be taken.

As next step to improve the system, we realize a predictive model

about traffic flow status in short, medium and long period, with the aim

to show future (possible) problematic events and permit to city gover-

nance the treatment of issues in advance.

Future work and further improvement is the integration of the system

with a database of actions taken in traffic issues treatment, with analysis

of impact by studying the deviation of real flow from the predicted one.

Aim of this integration is to build a knowledge base of possible actions

that can be taken in traffic issues with a grade of awaited result based

upon contexts and applications.
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Chapter 1

Introduction

Anthopoulos (2017) described Smart City as a paradigm rapidly evolving

which brings with it new ICT issues to address. In (Int, 2014) the Inter-

national Standards Organization (ISO) described the smartness of a city as

the ability to bring together all its resources, to effectively and seamlessly

achieve the goals and fulfil the purposes it has set for itself. Public data are a

pillar on which its development is founded, and are the basis for enabling real

time decisions by stakeholders.

A city can be defined as ‘smart’ when investments in human and social

capital, in traditional transport and modern communication infrastructure

point to efficient and sustainable development. Smart Cities are the result

of a dynamic process, which develops along six dimensions: smart economy,

smart people, smart mobility, smart environment, smart living and smart

governance. The day-to-day management of the Smart City activities involves

many decisions at the strategic, tactical and operational level. The managers

use the facilities of Decision Support Systems (DSS) for complex decision-

making (Chichernea, 2014).

Torino As a Platform is the project that the City of Turin is developing to

reach the following goal: collecting data from IoT infrastructure, application,

utilities, companies and citizens reports to build a data driven decision making

platform that will support governance of the smart city.
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The project realization bases its development on two main activities: on

one side realizing and delivering to communities an SDK with standard API

for increasing and facilitating collection and reuse of data and citizens’ par-

ticipation. On the other side, developing a machine learning framework with

predictive algorithms that helps the governance of the Smart City and visually

supports the decision making process. In Figure 1.1 we report the big picture

of the project.

Figure 1.1: TAaP full diagram

Inside the second activity of the project, we studied a system to analyse

temporal trends of traffic flow within the boundaries of the city, classify the

data and make predictions about its status in short, medium and long period

(15 minutes, 1 hour, 2 hours).

As final objective, the result of our work is an InfoVis system that output

traffic flows status and forecasts, with the aim of support the City governance

to implement correct actions to address traffic issues.

The remainder of this thesis is organized as follows.

The chapter 2 is an overview of previous work on vehicular traffic flow

modelling and classification.

In chapter 3, we describe the proposed approach to the problem of traffic

flow classification and forecasting.

In chapter 4, we describe the case study of City of Turin, its peculiarity,

issues and the datasets used.

In chapter 5, we describe the framework proposed, its development and

implementation.

In chapter 6, we analyse the results obtained by the framework in term of

classification, prediction and output visualization.
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Finally, chapter 7 summarizes the findings of the work and open to new

research question.
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Chapter 2

Related Works

Analysis of traffic flow is a long time life research theme, started when Lighthill

and Whitham (1955) presented a model based on the analogy of vehicles in

traffic flow and particles in a fluid. Since then, mathematical description of

traffic flow has been a lively subject of research, with studies focused on two

main aspect: traffic modelling and traffic forecasting.

2.1 Traffic modelling

Hoogendoorn and Bovy (2001) made a good state-of-the-art analysis of the

previous works on traffic modelling, focusing their attention on the nearly fifty

years of traffic flow theories and models.

All the studies analysed are mathematical models build to represent the

vehicular traffic flow trends in time and space.

They classified the discussed traffic models according to the following:

• Scale of the independent variables (continuous, discrete, semi-discrete).

• Level of detail (submicroscopic, microscopic, mesoscopic, macroscopic).

• Representation of the processes (deterministic, stochastic).

• Operationalisation (analytical, simulation).
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2.1. Traffic modelling

• Scale of application (networks, stretches, links, and intersections).

For our studies we put particular attention to: i) level of detail and ii)

scale of application.

Hoogendoorn and Bovy propose the following classification of traffic mod-

els according to the level of detail with which they represent the traffic systems:

1. Submicroscopic simulation models (high-detail description of the func-

tioning of vehicles’ subunits and the interaction with their surroundings).

2. Microscopic simulation models (high-detail description where individual

entities are distinguished and traced).

3. Mesoscopic models (medium detail).

4. Macroscopic models (low detail).

A microscopic simulation model describes both the space-time behaviour

of the systems’ entities as well as their interactions at a high level of detail.

Similar to the previous, the submicroscopic models describe the charac-

teristics of individual vehicles in the traffic stream. However, apart from a

detailed description of driving behaviour, also vehicle control behaviour is

modelled in detail.

A mesoscopic model does neither distinguish nor trace individual vehicles,

but specifies the behaviour of individuals, for instance in probabilistic terms.

Macroscopic flow models describe traffic at a high level of aggregation

without distinguishing its constituent parts. For example, the traffic stream

is represented using characteristics as flow-rate, density, and velocity.

Regarding the scale of application, they identified it as the area of appli-

cation of the model. For instance, the model may describe the dynamics of

its entities for a single roadway stretch, an entire traffic network, a corridor,

a city, etc. . .

Hoogendoorn and Bovy concluded that macroscopic models are suitable

for large scale, network-wide applications, where macroscopic characteristics

of the flow are of prime interest. They are very suitable for application in

model-based estimation, prediction, and control of traffic flow.
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2.2. Traffic forecasting

2.2 Traffic forecasting

On the other side, traffic forecasting, Vlahogianni et al. (2014) presented their

analysis of existing works in short-term traffic flow forecasting.

The combination of unprecedented data availability and the ability to

rapidly process these data has brought on immense development and accep-

tance of ITS technologies.

At the same time, a new research area, based on data driven empirical

algorithms, has been systematically growing in parallel to the well-founded

mathematical models that are based on macroscopic and microscopic theories

of traffic flow.

The field of short-term traffic forecasting has a long life; in the first part of

its development, most of the research employed statistical approaches to pre-

dicting traffic at a single point. Later, applications of data driven approaches

were the focal point in the literature.

The weight placed recently on empirical computational intelligence-based

approaches, including Neural and Bayesian Networks, Fuzzy and Evolutionary

techniques, can be considered as inevitable.

Particularly, most classical approaches have been shown to be ’weak’ or

inadequate under unstable traffic conditions, complex road settings, as well

as when faced with extensive datasets with both structured and unstructured

data (Vlahogianni et al., 2014, p. 2).

Vlahogianni et al. clarified that most effort in previous studies has gone

into: i) using data from motorways and freeways, ii) employing univariate

statistical models, iii) predicting traffic volume or travel time, and iv) using

data collected from single point sources.

Their work was based on a set of ten challenges stemming from the chang-

ing needs of ITS (Intelligent Transportation System) applications.

Vlahogianni et al. concluded that researchers seem to be unprepared to

answer two important questions: are they confident that new models are bet-

ter, in terms of accuracy, than models developed in the past? Moreover, what

have they learnt about prediction that has significantly changed the perception

for traffic operations and management?

The above imply that both research and practice in short-term traffic

forecasting are entering a maturity phase, where models and methods must

be critically assessed to produce solid knowledge on the concepts and processes
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2.3. Studies with particular approach

involved with short-term traffic forecasting.

In this direction, a step into the future is towards enhancing the perfor-

mance and explanatory power of the prediction models through synergies with

classical statistics.

Statistics and artificial intelligence should act complementarily to improve

i) core model development and goodness of fit, ii) analysis of large data sets

and iii) causality investigation (Vlahogianni et al., 2014, p. 14).

2.3 Studies with particular approach

In the remainder of this chapter, we analyse some scholars’ works that ap-

proached issues similar to that we exposed in chapter 1.

Yu et al. (2013) pointed out that present study on urban road traffic con-

dition classification recognition mainly focuses on two aspects: one is road

traffic condition classification, which emphasizes traffic real-time data classi-

fication; the other is traffic condition recognition based on prior classification,

which lays stress on the method of traffic condition recognition.

They proposed a system based on SVM (Support Vector Machine) pattern

recognition algorithm by considering traffic multidimensional characteristics

in urban road traffic, but they focused the study on the performance and

accuracy of the method, not applying it to a real world case.

They based the study on three dimension: Traffic flow, Average speed, and

Share ratio. According to the indicators, urban road traffic conditions have

been studied by cluster analysis combined with existing theoretical research,

but they didn’t specify either, grouping in four class representing block flow,

congested flow, steady flow, and smooth flow respectively.

Under those set classes, a simulation obtained average speed, and share

ratio. They generated 50 samples per traffic condition, totalling 200 sets of

observational data, among which 40 samples were training data, and 10 sets

were detection data (Yu et al., 2013).

Petrovska and Stevanovic (2015) presented in their work an innovative

visual tool with the aim of detecting and avoiding road traffic congestion,

based on Google Maps data.

Their application focuses on urban roads congestion analysis, with links

and nodes (intersections) enclosed. Besides the spatial aspect, the study pays

7



2.3. Studies with particular approach

attention also to the temporal dimension of road link traffic by providing

stored time of the day analysis data when the congestion level was highest.

They suggested that knowing that traffic on a particular road is congested,

but not how congested it is, is not very much of help in making decision for

the traffic managers or road users. Therefore, they proposed an alternative

method to quantify actual road traffic congestion based on Google Maps Traf-

fic Layer. The users of the tool developed are supplied with an interface to

analyse traffic congestion data interactively, focusing on visualization methods

to study and analyse traffic congestion on small parts of a network (Petrovska

and Stevanovic, 2015, p. 1491).

Montazeri-Gh and Fotouhi (2011) used k-means clustering algorithm for

traffic condition recognition, collecting data from an ad-hoc hardware device

installed on a vehicle.

Their focus is on the application of driving and traffic condition infor-

mation in an intelligent Hybrid Electric Vehicle (HEV) control strategy. In

an advanced type of HEV control strategy, the controller adapts itself to the

current traffic condition to reduce fuel consumption and exhaust emissions.

Traffic Condition Recognition is a critical sub-system of this intelligent HEV

control strategy.

Stathopoulos and Karlaftis (2003) work concentrates on developing flexible

and explicitly multivariate time-series state space models using core urban

area loop detector data, limiting their case study to a 3-lane per direction

signalized arterial on the periphery of the core area of the city in a period of

5 months.

Using volume measurements from urban arterial streets near downtown

Athens, models were developed that feed on data from upstream detectors to

improve on the predictions of downstream locations.

They concluded noting that the multivariate modelling of flow, speed and

occupancy data in urban areas is a complex and tedious process. Data from

different detectors are not only highly correlated among themselves but are

also related to prevailing traffic conditions, which tend to exhibit high short-

term fluctuation. In addition, during large parts of the day, traffic is highly

congested, approaching unstable conditions.

Thianniwet et al. (2009) proposed a classification system of road traffic

congestion based on Decision Tree Algorithm and Sliding Windows, collecting

from a notebook date, time, latitude, longitude, and vehicle velocity from GPS

8



2.3. Studies with particular approach

and capturing images of road traffic condition by a video camera, on a test

vehicle.

The vehicle passed through overcrowded urban areas approximately 30

kilometres within 3 hours. In the experiment, they gathered the congestion

levels from 11 subjects with driving experience up to 10 years. They watched

a 3-hour video clip of road survey and rated the congestion levels into three

levels, light, heavy, and jam.

Then, the concluded congestion levels from 11 subjects were calculated

using majority vote. The judged congestion levels were then synchronized

with velocity collected by the GPS device.

Other works focused on particular condition and data, e.g. traffic accident

analysis, traffic congestion or car sharing data (Shanthi, 2012; Sohn and Lee,

2003; Pecherková and Nagy, 2017; Vanǐs and Urbaniec, 2017; Zhang et al.,

2016; Pagani et al., 2017).
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Chapter 3

Research approach: issues,

context and innovation

In this thesis research we tried to study the following research questions:

1. How implement a classification framework that uses historical data of

vehicular traffic flow;

2. Use of results of classification process for the prediction of future status

of traffic flow;

3. Focus on the pratical case of a large city and on support to its manage-

ment;

The research we approached in this thesis presents some peculiarities.

First, the context in which we are operating: we want to analyse the

traffic flow inside the city boundaries, in a complex urban scenario. Every

road has peculiarities, as different number of lanes, presence of traffic lights,

intersections, different speed limits or other limitations, e.g. traffic permitted

only in certain hours.

Second, we start the analysis from the data collected by city traffic man-

agement, in particular from loops present in city roads, in the last 3 years for

10



the historical database, and open data service, via XML web download, for

real-time data.

Third, our objective is building a framework comprehensive of a model for

classifying traffic flow, e.g. from fast to high, of a method to predict future

class assignemnt, and of a system that visualises results of previous steps.

At the end, the result we want to produce is an InfoVis system that outputs

the traffic status and its forecasts to support city traffic manager to address

eventual issues.

In this context major issues we have faced in our studies are: i) managing

the large amount of data, ii) building a correct training set for the classification

algorithm, and iii) realizing a simple InfoVis system to be presented to public

managers.

Point i) was partially approached as described in chapter 4, and, in con-

junction with ii), guided the first step in the framework’s realization.

Indeed, the still high number of records remained after data cleaning phase,

the high number of different stations where data were collected, and the differ-

ences in road’s topology, made very difficult every manual labelling approach.

For every point, we had to analyse about 300000 records, by the two

dimensions of speed and flow, to identify possible classes of traffic, and then

label a sufficient number of examples to build a good training set.

So, we proposed a combined approach to analyse historical data of traffic

flow: i) use of an unsupervised algorithm, like clustering methods, to label

instance of traffic data, and ii) use of a supervised classify algorithm, trained

by previously labelled dataset, to assign class to data instances.

With the first step, we simplified the labelling task: we left to the clustering

algorithm the identification of coherent groups of speed and flow combinations,

and we built with results obtained a training set with dimension of the whole

data set.

We then used those training sets to build the classification model, testing

two different algorithms.

We developed the framework of classification and forecasting using Weka

tools for the machine learning algorithms, and a simple web based applica-

tion for the info-vis system, realized with the standard AMP stack (Apache,

MySQL, PHP).

11



3.1. Use of an unsupervised algorithm for labelling data instances

3.1 Use of an unsupervised algorithm for labelling

data instances

As unsupervised learning algorithm we used K-means clustering. The goal

of this algorithm is to find groups in the data, with the number of groups

represented by the variable K.

The algorithm takes as input the number of clusters and the data set, that

is the collection of features for each data point. The algorithms starts with

initial estimates for the centroids, which can either be randomly generated

or randomly selected from the data set.

The algorithm then iterates between two steps:

1. Data assigment step: Each centroid defines one of the clusters. In this

step, each data point is assigned to its nearest centroid, based on the

squared Euclidean distance.

2. Centroid update step: In this step, the centroids are recomputed. This

is done by taking the mean of all data points assigned to that centroid’s

cluster.

The algorithm iterates between steps one and two until a stopping crite-

ria is met (i.e., no data points change clusters, the sum of the distances is

minimized, or some maximum number of iterations is reached).

The results of the K-means clustering algorithm are:

• The centroids of the K clusters,

• Labels for the training data.

Rather than defining groups before looking at the data, clustering allowed

to find and analyse the groups that have formed organically. Examining the

centroid values it’s possible to qualitatively interpret what kind of group each

cluster represents.

There is no method for determining exact value of K, but an accurate

estimate can be obtained using the following techniques.

One of the metrics that is commonly used to compare results across dif-

ferent values of K is the mean distance between data points and their cluster

centroid. Since increasing the number of clusters will always reduce the dis-

tance to data points, increasing K will always decrease this metric, to the

12



3.2. Use of a supervised classify algorithm to assign classes

extreme of reaching zero when K is the same as the number of data points.

Thus, this metric cannot be used as the sole target. Instead, mean distance

to the centroid as a function of K is plotted and the ”elbow point”, where the

rate of decrease sharply shifts, can be used to determine K. (MacQueen, 1967)

3.2 Use of a supervised classify algorithm to

assign classes

After having labeled the training set with the algorithm previously described

we tested two different classification algorithms.

3.2.1 Decision Trees

Decision trees are simple but intuitive models that utilize a top-down approach

in which the root node creates binary splits until a certain criteria is met. This

binary splitting of nodes provides a predicted value based on the interior nodes

leading to the terminal (final) nodes.

In this classification context, decision tree outputs a predicted target class

for each final node produced.

3.2.2 Naive Bayes

Naive Bayes is a simple technique for constructing classifiers: assign class

labels to problem instances, the vectors of feature values, where the class labels

are drawn from some finite set. There is not a single algorithm for training such

classifiers, but a family of algorithms based on a common principle: all naive

Bayes classifiers assume that the value of a particular feature is independent

of the value of any other feature, given the class variable. (John and Langley,

1995)

3.3 Info-vis system

Obtained the classification framework, we used it to classify data gathered in

real-time from the open data systemof the traffic management.

We proposed a simple web based service that show the places where data

are collected, the classes of traffic flow assigned, and a forecast for next classes.

13



3.3. Info-vis system

This service is oriented to support monitoring and decision of the traffic man-

agement officers of the city.

14



Chapter 4

Case study and dataset: City

of Turin

In this chapter we describe the case study we adopted to apply the research

approach presented in chapter 3, while in the next chapter 5 we describe the

framework built.

4.1 Data sources

As previously described in chapter 3, we want to analyse the traffic flow inside

the city boundaries, in a complex urban scenario. We chose the City of Turin

as our case study.

We gathered historical data from ‘5T Consortium’, a public society that

manages public and private mobility services for City of Turin.

We received a dataset of about 40 million records, collected from more than

100 loops detector stations, disseminated in the city boundaries, covering a 3

years period from January 2015 to December 2017.

The principal traffic data we took in consideration consist in:

• mean speed (Km/Hr),

• flow (Veh/Hr),

15



4.2. Data cleaning

• accuracy (percentage).

The data are calculated by the manager in 5 minutes aggregation, and

accompanied by geolocation of stations (longitude and latitude), road infor-

mation (name and POI identification), and direction of flow (positive or neg-

ative).

The accuracy parameter explains in percentage the data validity.

For the real time analysis, we gathered data from 5T OpenData web ser-

vice, which publishs the same type of information in XML format at prede-

termined time interval (http://opendata.5t.torino.it/get_fdt).

Those data are available about 1 minute after the period considered (e.g.,

data from start time of ‘12:40:00’ to end time of ‘12:45:00’ have a generation

time of ‘12:46:00’).

In table 4.1 we report some examples of historical data dimension.

Table 4.1: Historical traffic data

Station Longitude Latitude Road Name Records

5 7.62745 45.01608 Corso Unione Sovietica 309019
93 7.64825 45.03448 Corso Unione Sovietica 243629
95 7.63681 45.02413 Corso Unione Sovietica 197759
4 7.62801 45.01641 Corso Unione Sovietica 197065

In table 4.2 we report some examples of basic statistics about historical

data, i.e. mean, standard deviation, maximum and minimum values for both

speed and flow.

4.2 Data cleaning

We did some preliminary operations on data: first, we excluded those that

had accuracy equals to 0 and we marked for a more in-depth analysis those

that had accuracy less than 75.

In the second cleaning phase, we took into consideration the numerosity of

records in the period: starting from the 5 minutes aggregation, we expected a

maximum of 105120 records for year, and a maximum of 315360 in the three

years period.

Counting the sum of records per stations we excluded stations which had

substantial gaps on data retrieving, following the policies: we must have a
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4.2. Data cleaning

Table 4.2: Basic statistic of traffic data

Station
Feature Min. Max. Mean Std. dev.

Station 4
Speed (Km/hr) 3 176 53.293 12.808
Flow (Veh/hr) 12 1968 394.527 89.612

Station 20
Speed (Km/hr) 3 176 53.195 12.901
Flow (Veh/hr) 12 1392 274.632 97.669

Station 40
Speed (Km/hr) 3 176 64.546 17.738
Flow (Veh/hr) 12 1380 289.964 98.075

Station 73
Speed (Km/hr) 3 176 75.654 16.204
Flow (Veh/hr) 12 1140 168.993 41.975

Station 90
Speed (Km/hr) 3 176 54.238 11.667
Flow (Veh/hr) 12 2040 356.991 87.134

Station 106
Speed (Km/hr) 3 147 29.428 13.981
Flow (Veh/hr) 12 2136 513.801 120.157

number of records greater than 236520 in the three years period, and a number

of records greater than 78840 in the last year (2017), both corresponding to a

threshold of 75 percent of data expected.

We also took in consideration stations that had a coverage less than 75

percent in the overall period, but considering a focus on more recent data, we

accepted those that had a coverage greater than 90 percent in the last year

(at least 94608 records).

We excluded in this way stations that did not work for long period (e.g.,

for faults or road works), or started working only in 2017, but not those which

had a high percentage of data in the last year considered.

As third cleaning step, we took in consideration the geographical distribu-

tion of the remaining stations: we excluded the stations that are isolated and

selected those that are along main roads.

The remaining data guaranteed us good historical and geographical cov-
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4.2. Data cleaning

erage and we stored their data in a MySQL database; figure 4.1 shows the

scheme adopted.

Figure 4.1: MySQL database scheme for storing data from 5T historical
dataset

Final dataset consisted in about 15 millions of records from 46 stations; ta-

ble 4.3 reports the final station selection and number of records, and figure 4.2

shows the distribution along the city road.
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4.2. Data cleaning

Figure 4.2: Final selected stations geolocation
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4.2. Data cleaning

Table 4.3: Final stations selection

Station Longitude Latitude Direction Road Name 1 year 3 years

49 7.64748 45.04104 negative Corso Agnelli 100178 301655
68 7.64492 45.03767 negative Corso Agnelli 91604 295523
48 7.64773 45.04129 positive Corso Agnelli 99302 298993
106 7.63528 45.0233 positive Corso Agnelli 83590 275874
84 7.69852 45.09947 negative Corso Giulio Cesare 104078 281166
90 7.70485 45.109 negative Corso Giulio Cesare 98716 275059
2 7.7091 45.11606 positive Corso Giulio Cesare 90290 290352
10 7.70151 45.10447 positive Corso Giulio Cesare 104297 291288
32 7.68658 45.08135 positive Corso Giulio Cesare 96608 277135
79 7.69374 45.09244 positive Corso Giulio Cesare 101263 301265
30 7.69599 45.08495 negative Corso Novara 103444 310128
37 7.69045 45.08801 negative Corso Novara 102589 308946
40 7.69273 45.08685 negative Corso Novara 103986 179822
29 7.69749 45.0831 positive Corso Novara 103605 296030
36 7.68849 45.08869 positive Corso Novara 96581 223228
38 7.69109 45.08765 positive Corso Novara 101773 308759
39 7.69368 45.08621 positive Corso Novara 103168 178642
15 7.66632 45.08252 negative Corso Regina Margherita 103093 300604
26 7.70375 45.07013 negative Corso Regina Margherita 95231 246672
71 7.69882 45.07174 negative Corso Regina Margherita 102511 291134
73 7.66165 45.08406 negative Corso Regina Margherita 95723 293591
14 7.66692 45.0822 positive Corso Regina Margherita 101827 296802
25 7.7046 45.06975 positive Corso Regina Margherita 94280 243534
72 7.65943 45.08468 positive Corso Regina Margherita 101330 297613
89 7.66461 45.08299 positive Corso Regina Margherita 98694 287284
20 7.69161 45.07239 negative Corso San Maurizio 99577 300314
96 7.69397 45.07017 negative Corso San Maurizio 99378 274185
97 7.69814 45.06599 negative Corso San Maurizio 101683 298535
19 7.69154 45.07289 positive Corso San Maurizio 103770 309413
22 7.69858 45.06579 positive Corso San Maurizio 101053 297328
56 7.66548 45.04981 negative Corso Turati 79160 241859
60 7.67117 45.05501 negative Corso Turati 98057 294389
122 7.66893 45.05299 negative Corso Turati 84740 248921
55 7.66592 45.05004 positive Corso Turati 79068 240471
65 7.66814 45.05216 positive Corso Turati 79680 240336
121 7.66941 45.05323 positive Corso Turati 89267 240806
5 7.62745 45.01608 negative Corso Unione Sovietica 102635 309019
93 7.64825 45.03448 negative Corso Unione Sovietica 78905 243629
95 7.63681 45.02413 negative Corso Unione Sovietica 100573 197759
4 7.62801 45.01641 positive Corso Unione Sovietica 101735 197065
94 7.64885 45.03463 positive Corso Unione Sovietica 79374 244452
103 7.63267 45.0203 positive Corso Unione Sovietica 84650 259580
105 7.63569 45.02298 positive Corso Unione Sovietica 102279 303599
119 7.65156 45.03712 positive Corso Unione Sovietica 98529 287489
1 7.66662 45.06766 positive Corso Vinzaglio 99594 295989
54 7.66773 45.06927 positive Corso Vinzaglio 86938 259271
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Chapter 5

Framework

In this chapter we present the realisation of the framework presented in chap-

ter 3, usiing as example data from a specific station, selected as test bed, and,

where it is necessary, we make comparisons with some other stations. The

overall discussion of results for the set of stations is reported in chapter 6.

5.1 First step: clustering for data labelling

As previously presented, our choice for building the training set was to use

the K-Means clustering algorithm for identifying coherent groups of data, by

the two dimensions of speed and flow.

The first operation we did in this step was the choice of the correct number

of cluster to be used.

We analysed individual stations data using the elbow identification method,

i.e. the analysis of the graph of the progress of the SSE Sum of Squared Error-

based on the number of clusters.

The aim of this method is the identification, by visual analysis of the graph,

of the breaking point where the trend smooths. The corresponding number of

clusters can be used as a good candidate.

In figure 5.1 and figure 5.2 we report the graph of SSE vs number of cluster

for two selected stations, and identify the possible elbow with a red arrow.
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5.1. First step: clustering for data labelling

Figure 5.1: SSE vs. number of clusters graph for station 4

Figure 5.2: SSE vs. number of clusters graph for station 105

For both cases, we can identify a good candidate for number of cluster in

5, and this was the best choice for about all the stations selected, despite some

reported problems with the choice, as shown in figure 5.3 for the station with

id 106.

In any case, we selected 5 clusters for all the stations, so that there was

consistency in the labelling system.

Once selected the best cluster number, we used it as parameter of the

algorithm K-Means method in WEKA, obtaining the WEKA command:

weka.clusterers.SimpleKMeans -init 0 -max-candidates 100

-periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 5

-A "weka.core.EuclideanDistance -R first-last"
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5.1. First step: clustering for data labelling

Figure 5.3: SSE vs. number of clusters graph for station 106

-I 500 -O -num-slots 1 -S 10

In table 5.1 we report result of K-means clustering for the station 4, with

final centroids of cluster attribution. Figure 5.4 shows the instances distribu-

tion by speed and flow, with cluster association by colours.

Table 5.1: Final cluster centroids for station 4

Attribute Speed Flow
Cluster (nr. of instances) Km/hr Veh/hr

Full data (197065) 53.2929 394.5504

0 (12960) 82.2556 82.1648
1 (64871) 51.8505 510.0687
2 (55486) 59.1947 176.6407
3 (27185) 38.0510 167.5926
4 (36563) 47.9622 799.7557

Analysing the centroids value for the clusters generated, we identified 5

possible groups of traffic typologies:

• FAST: this cluster is characterized by very low level of flow and very

high speed, it represents the condition of absence of traffic, with high

speed;

• SLOW: this cluster presents very low level of flow and very low speed,

in this class we can consider the condition of absence of traffic, but with

slow speed, or also the condition of blocked traffic;
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5.1. First step: clustering for data labelling

Figure 5.4: Clusters distribution for station 4

• LOW: this cluster presents a low level of flow and a relative high speed,

we can identify in it a low level of traffic;

• NORMAL: this cluster presents a medium level of flow and a medium

speed, it represents the normal condition of traffic;

• HIGH: this cluster presents the highest level of flow and a relative low

speed, it represents a condition of high level of traffic.

Table 5.2 reports the association of cluster obtained for the station with id

4 with human readable labels that identify traffic typologies, based on speed-

flow values.

The 5 groups of traffic flow we identified are not strictly related to traffic

science. Indeed, the literature of speed-volume relationships in urban road

networks relates to signalization and describes what are the traffic states to

be met in urban networks.

For example, traffic flow conditions referred to unconstrained (free) flow,

to conditions near to capacity, or to congested traffic.(Vlahogianni, 2007; Vla-

hogianni et al., 2008)

The aggregation of data in 5 minutes interval can not permit to compare

our results to that of previous works, in particular for relationships to sig-

nalization, that changes in time along the day, within a range of 30 to 90

seconds.
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5.2. Second step: classification model

Even the peculiarities of the roads presented at the beginning of chapter 3

can not permit to use the classic definitions for traffic flow status, so we

adopted those presented above.

Table 5.2: Cluster labelling for station 4

Cluster Label
(traffic typology)

Cluster 0 FAST
Cluster 1 NORMAL
Cluster 2 LOW
Cluster 3 SLOW
Cluster 4 HIGH

Then, we identified the following possible rules for clusters labeling, and

realized a simple algorithm to assing human readable label to cluster:

1. first af all, identify the two clusters with the lowest level of flow: one

with the higest level of speed and the other with the lowest one;

2. assign the label ”FAST” to the first and ”SLOW” to the second;

3. order the remaing three cluster by crescent flow;

4. verify that previous step orders also by decrescent speed;

5. assign in order the labels ”LOW”, ”NORMAL”, and ”HIGH”.

We used this cluster’s labelling policy for the results obtained by the clus-

tering of all the stations.

5.2 Second step: classification model

We used the labelled training set obtained from previous step to test two

different classification algorithms, in particular we used Decision Tree and

Naive Bayes.

The respective WEKA command used are:

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: Station-4_clustered

Instances: 197065

Attributes: 8

25



5.2. Second step: classification model

Instance_number

idSpeedFlowData

giorno

ora

speed

flow

accuracy

Cluster

Test mode: 10-fold cross-validation

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: Station-4_clustered

Instances: 197065

Attributes: 8

Instance_number

idSpeedFlowData

giorno

ora

speed

flow

accuracy

Cluster

Test mode: 10-fold cross-validation

In table 5.3 we report statistics output from model building for station 4

for both methods used, in table 5.4 and table 5.6 the detailed Accuracy by

Class for J48 method and Naive Bayes respectively, and finally, in table 5.5 and

table 5.7 the confusion matrices for J48 method and Naive Bayes respectively.

We obtained best results with Decision Tree C4.5, in the J48 implementa-

tion of WEKA.

Indeed, as shown in table 5.3, the Naive Bayes method was faster, but had

errors, both absolute and relative, greater than the Decision Tree method, and

it had also a sparse confusion matrix, as shown in table 5.7.

As for the previous step, we repeated the process for all the 44 stations

in the dataset, and we obtained classification models for every traffic data

collecting point we chose to study.
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5.2. Second step: classification model

Table 5.3: Statistics output for station 4 - J48 and NB methods

Parameter Value (J48) Value (NB)

Time taken to build model 3.4 seconds 0.27 seconds
Total Number of Instances 197065 197065
Correctly Classified Instances 196894 (99.9132%) 190007 (96.4184%)
Incorrectly Classified Instances 171 (0.0868%) 7058 (3.5816%)
Kappa statistics 0.9989 0.9524
Mean absolute error 0.0005 0.0598
Root mean squared error 0.0162 0.0598
Relative absolute error 0.1769% 19.8056%
Root relative squared error 4.1823% 35.9496%

Table 5.4: Detailed Accuracy by Class for station 4 - J48 method

Class FAST MEDIUM NORMAL SLOW HIGH
Parameter

TP Rate 0.999 0.998 1.000 0.999 1.000
FP Rate 0.000 0.000 0.000 0.000 0.001
Precision 1.000 0.999 1.000 0.999 0.997
Recall 0.999 0.998 1.000 0.999 1.000
F-Measure 0.999 0.999 1.000 0.999 0.999
MCC 0.999 0.998 1.000 0.999 0.998
ROC Area 1.000 1.000 1.000 1.000 1.000
PRC Area 1.000 1.000 1.000 1.000 1.000

Table 5.5: Confusion Matrix for station 4 - J48 method

Classified as FAST MEDIUM NORMAL SLOW HIGH
Class

FAST 12947 0 1 0 0
MEDIUM 13 64761 10 27 1
NORMAL 0 0 55475 0 0
SLOW 0 19 0 27151 2
HIGH 0 91 0 7 36560

We then labelled all the 3 years historical data traffic using an appropriate

station model, we stored results in the same database, and at the end of the

process, we had a complete set of traffic classes associated to stations, related

to their date and time.

The framework analyses new upcoming data in real time, assigns the event

to the relative class, and stores it in the database.
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5.3. Third step: forecasting of traffic class

Table 5.6: Detailed Accuracy by Class for station 4 - NB method

Class FAST MEDIUM NORMAL SLOW HIGH
Parameter

TP Rate 0.851 0.980 0.979 0.956 0.959
FP Rate 0.007 0.019 0.021 0.001 0.001
Precision 0.899 0.962 0.949 0.994 0.993
Recall 0.851 0.980 0.979 0.956 0.959
F-Measure 0.874 0.971 0.964 0.974 0.976
MCC 0.866 0.957 0.950 0.971 0.971
ROC Area 0.993 0.997 0.988 0.998 0.998
PRC Area 0.903 0.996 0.984 0.976 0.984

Table 5.7: Confusion Matrix for station 4 - NB method

Classified as FAST MEDIUM NORMAL SLOW HIGH
Class

FAST 11026 30 1904 0 0
MEDIUM 4 63577 1006 66 218
NORMAL 877 258 54343 8 0
SLOW 351 842 0 25979 13
HIGH 11 1378 1 91 35082

5.3 Third step: forecasting of traffic class

Using classification data obtained from the two-steps process above we built

a statistical trend, analysing, for each station, data by weekday and time.

With this operation, we had as an output a table stored in the database that

associates station, weekday, and hour with the statistic distribution of single

traffic class in percentage, e.g.:

4, Monday, 05:25, FAST 0.85, NORMAL 0.00, LOW 0.08, SLOW 0.07, HIGH 0.0

We used this information as first attempt to forecast new traffic flow data

at prefixed time distance, i.e. 15 minutes, 1 hour, and 2 hours.

In figure 5.5 we show the flow used for making forecasts of traffic flow

classes.

We also added a filter to historical data selection: we considered weather

condition as a driver for better forecasting.

We gathered historical weather data from Open Weather Map History Bulk

download (https://openweathermap.org/) and we added that information

to instances stored in the database.

28

https://openweathermap.org/


5.4. Fourth step: information visualization

Figure 5.5: Flow for classes forecasting

We used the same Web Service, which publishes weather forecast in open

data format (XML standard) accessible by API, to retrieve data for cur-

rent and future weather simultaneously with the traffic data, and we filtered

data selection from historical database for counting frequencies of traffic flow

classes.

5.4 Fourth step: information visualization

Final step of the implementation of the system was the realization of the

web-based visualization system for the traffic management officers of the city.

We utilized the MapSplit software for the extraction of tiles from Open-

StreetMap data file including City of Turin at zoom level from 12 to 18.

We then used the OSM2World software to transform 2D tile images in 3D

images.

The web-based service presents, using OpenLayers library, a map in 3D

of Turin with stations location where sensors collect traffic data, circle tags

with colours representing real-time status of traffic (by class), and a 3 column

coloured histogram representing forecast at short, medium and long period.

A table summarizes the same information in human readable format.

Below the table, a chart can be seen with historic series for both model

expected and real data classification, in a selectable range from 1 hour to 6
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5.4. Fourth step: information visualization

hours in the past.

In figure 5.6 we show an example of the output visualization.

Figure 5.6: Example of system output visualization
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Chapter 6

Results

In this chapter, we expose the results obtained from the application of the

framework described in pervious chapter 5.

6.1 Results from clustering step

As presented in section 5.1 for the test bed of station 4, we applied the clus-

tering method of K-means at the whole set of stations.

The elbow identification method return as good candidate for number of

cluster the value of ‘5’ for almost all stations, with only 3 cases where the

identification wasn’t clear and easy.

In any case, we operated the choice to adopt this numerosity of cluster

for all the station, included the worst ones, to maintain coherence in the

framework.

We report in table 6.1 the values of final centroids for a significant set of

stations, the same used in section 4.1 for basic statistics, after the labelling of

cluster based on the policies exposed in section 5.1:

• FAST: very low level of flow and very high speed - absence of traffic,

with high speed;
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6.2. Results from classification step

• SLOW: very low level of flow and very low speed - absence of traffic,

with slow speed, or blocked traffic;

• LOW: low level of flow and relative high speed - low level of traffic;

• NORMAL: medium level of flow and medium speed - normal level of

traffic;

• HIGH: highest level of flow and relative low speed - high level of traffic.

Table 6.1: Final cluster centroids with label

Station FAST NORMAL LOW SLOW HIGH
Speed (Km/hr)
Flow (Veh/hr)

4 82.2556 51.8505 59.1947 38.051 47.9622
82.1648 510.0687 176.6407 167.5296 799.7557

20 82.2006 53.9076 58.2147 37.1051 45.2265
72.8438 410.7657 156.3136 121.3266 722.8157

40 85.1909 57.8845 62.3274 41.5109 49.3695
62.3341 516.6587 186.7820 147.9845 923.3314

73 89.9556 61.9505 69.9427 47.2061 57.9263
42.1748 340.6037 122.4037 97.2356 579.7659

90 81.6796 52.8566 57.3347 39.1259 47.6531
75.9438 459.3375 155.2236 141.6346 792.8547

106 72.2357 44.0515 47.7149 27.9061 37.2692
102.6148 710.0687 496.9367 367.3286 1299.9327

6.2 Results from classification step

The aim of this step was to obtain the models of classification for every sta-

tions, and, as for the test bed of station 4 in the section 5.2, best results were

achieved using Decision Tree method.

We report in table 6.2 the values of Weighted Average Precision, Correctly

Classified Instances (in percentage), and Incorrectly Classified Instances, for

the selected subset of stations.

As we can see, the Decision Tree method performed better than Naive

Bayes, so the final decision we took was to adopt this classification model for

all the stations selected.
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6.2. Results from classification step

Table 6.2: Classification statistics output - J48 and NB methods

Station
Parameter Value (J48) Value (NB)

4
Precision 0.999 0.964
Correctly Classified Instances 99.9132% 96.4184%
Incorrectly Classified Instances 0.0868% 3.5816%
20
Precision 1.000 0.961
Correctly Classified Instances 99.9957% 95.9905%
Incorrectly Classified Instances 0.0043% 4.0095%
40
Precision 1.000 0.952
Correctly Classified Instances 99.9977% 95.5237%
Incorrectly Classified Instances 0.0023% 4.4763%
73
Precision 1.000 0.933
Correctly Classified Instances 99.9958% 93.2741%
Incorrectly Classified Instances 0.0042% 6.7259%
90
Precision 1.000 0,972
Correctly Classified Instances 99.9947% 97.113%
Incorrectly Classified Instances 0.0053% 2.887%
106
Precision 1.000 0,953
Correctly Classified Instances 99.9986% 95.2395%
Incorrectly Classified Instances 0.0014% 4.7605%

We also tested the robustness of the framework making some cross-classification:

we tried to classify data from a station with models of another station.

In particular, we chose three stations: 4, 20 and 106. The first and the

second had similar basic statistic, while the third is quite different (cfr. ta-

ble 4.2).

Therefore, we selected a sample of 10000 records from those stations and

we classified them with models of other stations. In table 6.3 we report the

results in terms of Precision.

As we can see, considering a baseline of 0.20, we obtained good results for

cross-classification from similar stations, and acceptable, even if not so good,

from the different ones.

33



6.3. Results from forecasting step

Table 6.3: Cross-Classification for station 4, 20, and 106

Station Model Precision

4 20 0.8953
106 0.6918

20 4 0.8619
106 0.6940

106 4 0.6842
20 0.5685

6.3 Results from forecasting step

The next step of the framework was the forecasting of level of traffic starting

from both historical and real-time data.

As described in section 5.3, we used a statistical approach to determine the

most probable class at the same time of real-time data, and a three different

range of time delay (15, 60, and 120 minutes).

We obtained good level of accuracy in our forecasts, in particular we report

in table 6.4 the Precision of the forecasts for the subset of stations, for all the

four time intervals, with the filter of weather condition applied to selection of

historical data.

Table 6.4: Precision of forecasts

Station Current time 15 minutes 60 minutes 120 minutes

4 0.669 0.662 0.659 0.648
20 0.637 0.632 0.627 0.622
40 0.659 0.652 0.649 0.638
73 0.648 0.651 0.648 0.641
90 0.663 0.661 0.649 0.641
106 0.654 0.649 0.642 0.638

After seeing the good but not optimal results of forecasting procedure, we

tried to eliminate the filter of weather status when selecting data for statistical

count of frequencies.

In table 6.5 we report the accuracy of forecasting aggregating the intervals,

i.e. what was the precision of the correctness of the forecasts at the first two

intervals (current time and 15 minutes), at three intervals, and at all four

intervals.
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6.3. Results from forecasting step

Table 6.5: Precision of forecasts aggregate by intervals number

Station 2 intervals 3 intervals 4 intervals

4 0.572 0.563 0.527
20 0.537 0.532 0.527
40 0.557 0.556 0.546
73 0.548 0.543 0.539
90 0.563 0.561 0.549
106 0.564 0.548 0.542

In table 6.6 and in table 6.7 we report the same measures without the filter

of weather status and forecast.

As we can see, the results had an improvement, reaching very good level

in term of precision of forecasts. Even the aggregation of the intervals of

forecasts gain in precision, and in stability of the prevision.

Table 6.6: Precision of forecasts without weather filter

Station Current time 15 minutes 60 minutes 120 minutes

4 0.751 0.752 0.751 0.749
20 0.748 0.748 0.747 0.745
40 0.750 0.749 0.745 0.743
73 0.747 0.745 0.743 0.740
90 0.733 0.730 0.728 0.720
106 0.748 0.745 0.745 0.741

Table 6.7: Precision of forecasts aggregate by intervals number without
weather filter

Station 2 intervals 3 intervals 4 intervals

4 0.750 0.749 0.745
20 0.747 0.746 0.744
40 0.749 0.745 0.741
73 0.745 0.741 0.738
90 0.732 0.726 0.719
106 0.745 0.743 0.739
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Chapter 7

Conclusions and future works

Smart City is a paradigm rapidly evolving and ICT has to support it, not

only by infrastructure and end-user service, but also with services addressed

to city managers.

Inside the project ‘Torino As a Platform’ we studied a system to classify

vehicular traffic flow within the boundaries of the city of Turin, and make

predictions about its status in short, medium and long time, with the aim to

support the City governance to implement correct actions to address traffic

issues.

The system proposed is a three-level framework: the first level consists in

a two-step algorithm, one for labelling a training set using K-means clustering

method, and one for building a decision tree model for the traffic data clas-

sification; the second level makes forecasts for classes of traffic flow, starting

from previous classification models; the third presents results from both the

previous level in a simple way.

We applied this framework to a set of 46 stations of traffic flow detection,

starting from historical data from year 2015 to 2017 to build models, and

using real-time open data web service for current data.

We used those models to made forecasts at short, medium and long period

(from 15 minutes to 2 hours).

An Information Visualisation web-based service shows real-time and fore-

36



7.1. Discussion of results

cast data to city management.

In the following section we discuss the results in relation to the research

questions presented in chapter 3:

1. How implement a classification framework that uses historical data of

vehicular traffic flow;

2. Use of results of classification process for the prediction of future status

of traffic flow;

3. Focus on the pratical case of a large city and on support to its manage-

ment;

7.1 Discussion of results

Results exposed in chapter 6, and in particular mode those of section 6.3, need

some analyses and discussion.

The clustering step returned very good results, with clusters well-defined

that easily permitted the labelling in human readable format.

The clusters identified by this step of the framework can be transformed

in the final classes by the simple algorithm proposed:

1. identify the two clusters with the lowest level of flow: one with the higest

level of speed and the other with the lowest one;

2. assign the label ”FAST” to the first and ”SLOW” to the second;

3. order the remaing three cluster by crescent flow;

4. verify that previous step orders also by decrescent speed;

5. assign in order the labels ”LOW”, ”NORMAL”, and ”HIGH”.

In addition, the classifying step returned very good results, with a clear

identification of method to be used in the Decision Tree, and models built

that had very good performance in term of precision.

The models of classification returned good results also in application of a

cross model classification, in particular mode when stations presented similar

basic statistics (speed and flow minimum, maximum, and mean).
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Those results provide a good answer to the first research question: we

built the first level of framework for automatic labelling of an historcal data

set and for classifying new data gathered from open data service in real-time.

Results obtained from the forecasting level, at first, were not so good, with

precision that varied around the value of 0.65 for all four interval where we

calculated the prevision.

In addition, the aggregation of intervals did not return good results, with

values around 0.55.

Therefore, we decided to simplify the model of forecasting: in fact, we

eliminated the filter on weather status and prevision.

This action led to a great improvement in all four intervals, and also in

the aggregation check, with values that reached a precision of 0.75, stable and

without great variance.

The same stability was reached also in the aggregation check: in fact, the

model predicted at the same precision the level of traffic at every intervals.

We can find the reason of this improvement in the fact that the Web Service

from where we retrieve the data (Open Weather Map) is not originated in Italy,

and has forecast organized in blocks of 2 - 3 hours.

This type of data, probably, introduced a bias error in the frequencies

calculation and reduced in this way the accuracy of the forecasts.

Results obtained from the forecasting level of the framework results in a

positive answer to the second research question: this system based on the

labelling and classification process determine a good way to make prediction

on future status of traffic flow.

For the third research question we proposed the last level of the framework:

the info-vis system.

Even if in a embrional status, it can help city managment officiers to check

the status level of the traffic flow and give a visual information for the expected

one in three different range of time. This can be helpful for the identification

of traffic issues related to mid range time period and for analysing historycal

trends.

7.2 Future works

Future work and further improvement will be the integration of the system

with a database of actions taken in traffic issues treatment, with analysis of
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impact in terms of troubleshooting in their specific application.

We will propose an evaluation of results of action by studying the deviation

of real flow from the predicted one.

The aim of this integration is to build a knowledge base of possible actions

that can be taken in traffic issues with a grade of awaited result based upon

previous contexts and applications.

Another line of research could be the integration with a more accurate

system of weather forecast, specialized in local (Piedmont, or better, Turin

Area) weather monitoring.

At the end, we can suggest the application of the framework to different

systems of traffic flow data retrieving system, like traffic cameras, or access

gates.
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