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Abstract: We analyse the most general N = 2 supersymmetric solutions of D = 11
supergravity consisting of a warped product of four-dimensional anti-de-Sitter space with
a seven-dimensional Riemannian manifold Y7. We show that the necessary and sufficient
conditions for supersymmetry can be phrased in terms of a local SU (2)-structure on Y7.
Solutions with non-zero M2-brane charge also admit a canonical contact structure, in
terms of which many physical quantities can be expressed, including the free energy and
the scaling dimensions of operators dual to supersymmetric wrapped M5-branes. We
show that a special class of solutions is singled out by imposing an additional symmetry,
for which the problem reduces to solving a second order non-linear ODE. As well
as recovering a known class of solutions, that includes the IR fixed point of a mass
deformation of the ABJM theory, we also find new solutions which are dual to cubic
deformations. In particular, we find a new supersymmetric warped AdS4 × S7 solution
with non-trivial four-form flux.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
2. The Conditions for Supersymmetry . . . . . . . . . . . . . . . . . . . . . 490

2.1 Ansatz and spinor equations . . . . . . . . . . . . . . . . . . . . . . 490
2.2 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2.3 The R-symmetry Killing vector . . . . . . . . . . . . . . . . . . . . . 493
2.4 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
2.5 Introducing a canonical frame . . . . . . . . . . . . . . . . . . . . . 495
2.6 Necessary and sufficient conditions . . . . . . . . . . . . . . . . . . . 496
2.7 M5-brane solutions: m = 0 . . . . . . . . . . . . . . . . . . . . . . . 498
2.8 Reduction of the equations in components . . . . . . . . . . . . . . . 499

3. M2-brane Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
3.1 Contact structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302355428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


488 M. Gabella, D. Martelli, A. Passias, J. Sparks

3.2 Flux quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
3.3 The free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
3.4 Scaling dimensions of BPS wrapped M5-branes . . . . . . . . . . . . 505

4. Special Class of Solutions: ∂τ Killing . . . . . . . . . . . . . . . . . . . . 507
4.1 Further reduction of the equations . . . . . . . . . . . . . . . . . . . 507
4.2 The Corrado–Pilch–Warner solution . . . . . . . . . . . . . . . . . . 509
4.3 Deformations of CY3 × C backgrounds . . . . . . . . . . . . . . . . 510
4.4 The Corrado–Pilch–Warner solution (again) . . . . . . . . . . . . . . 512
4.5 Cubic deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
4.6 Summary and numerics . . . . . . . . . . . . . . . . . . . . . . . . . 517

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
A. Some Useful Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
B. SU (2)- and SU (3)-Structures in Dimension d = 7 . . . . . . . . . . . . . 521

B.1 SU (2)-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
B.2 SU (3)-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

C. The Sasaki–Einstein Case . . . . . . . . . . . . . . . . . . . . . . . . . . 522
D. The Case m = 0, Im [χ̄1χ2] = 0 . . . . . . . . . . . . . . . . . . . . . . . 523
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

1. Introduction

Over the last ten years there has been tremendous progress in our understanding of the
AdS/CFT correspondence [1] in the presence of unbroken supersymmetry. We have
witnessed the discovery of many highly non-trivial supersymmetric solutions of su-
pergravity, together with a rather detailed understanding of their gauge theory duals.
Supersymmetric solutions with an anti-de Sitter (AdS) factor are particularly important,
as they are dual to superconformal field theories, in an suitable limit. Comprehensive
studies of general supersymmetric AdS geometries, in different dimensions, have been
carried out in [2–6]1 and led to a number of interesting developments. These results
have all been obtained using the technique of analysing a canonical G-structure in order
to obtain necessary and sufficient conditions for supersymmetry [8]. In this paper we
will systematically study the most general class of N = 2 AdS4 solutions of D = 11
supergravity. Supersymmetric AdS4 solutions of D = 11 supergravity have been dis-
cussed before in the literature [9,10]. However, these references contain errors, and reach
incorrect conclusions that miss important classes of solutions.

Our main motivation for studying AdS4 solutions of D = 11 supergravity in par-
ticular is that, starting with the seminal work of [11–13], over the past few years there
has been considerable progress in understanding the AdS4/CFT3 correspondence in
M-theory. In particular, with N ≥ 2 supersymmetry there is good control on both sides
of the duality, and this has led to many new examples of AdS4/CFT3 dualities, includ-
ing infinite families, along with precise quantitative checks. On the gravity side, the
simplest setup is that of Freund–Rubin AdS4 × SE7 backgrounds of M-theory, where
SE7 is a Sasaki–Einstein manifold.2 These are conjectured to be dual to the theory on
a large number N of M2-branes placed at a Calabi–Yau four-fold singularity. Rather
generally, these field theories are believed to be strongly coupled Chern–Simons-matter
theories at a conformal fixed point. With N ≥ 2 supersymmetry the partition function

1 The generality of the ansatz used in [4] was proven in [7].
2 Particular cases with N > 2 include three-Sasakian manifolds and orbifolds of the round seven-sphere.
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of such a theory on the three-sphere localizes [14–16], reducing the infinite-dimensional
functional integral exactly to a finite-dimensional matrix integral. This can then often
be computed exactly in the large N limit, where N is typically related to the rank of the
gauge group, and compared to a gravitational dual computation which is purely geo-
metric. Such computations have now been performed in a variety of examples [17–20],
with remarkable agreement on each side.

Thus far, almost all attention has been focused on AdS4 × SE7 solutions. This is
for the simple reason that very few AdS4 solutions outside this class are known. An
exception is the Corrado–Pilch–Warner solution [21], which describes the infrared fixed
point of a massive deformation of the maximally supersymmetric ABJM theory on N
M2-branes in flat spacetime. This solution is topologically AdS4 × S7, but the metric
on S7 is not round, and there is a non-trivial warp factor and internal four-form flux on
the S7. This has more recently been studied in [22–24,19], and in particular in the last
reference the free energy F of the N = 2 superconformal fixed point was shown to match
the free energy computed using the gravity dual solution. The Corrado–Pilch–Warner
solution also has a simple generalization to massive deformations of N M2-branes at a
CY3 × C four-fold singularity, where CY3 denotes an arbitrary Calabi–Yau three-fold
cone singularity.

In this paper we systematically study the most general class of N = 2 AdS4 solutions
of M-theory. These have an eleven-dimensional metric which is a warped product of
AdS4 with a compact Riemannian seven-manifold Y7. In order that the SO(3, 2) isometry
group of AdS4 is a symmetry group of the full solution, the four-form field strength
necessarily has an “electric” component proportional to the volume form of AdS4, and a
“magnetic” component which is a pull-back from Y7. We show, with the exception of the
Sasaki–Einstein case, that the geometry on Y7 admits a canonical local SU (2)-structure,
and determine the necessary and sufficient conditions for a supersymmetric solution
in terms of this structure. In particular, Y7 is equipped with a canonical Killing vector
field ξ , which is the geometric counterpart to the u(1) R-symmetry of the dual N = 2
superconformal field theory.

Purely magnetic solutions correspond physically to wrapped M5-brane solutions,
and we correspondingly recover the supersymmetry equations in [25] from our analy-
sis. There is a single known solution in the literature, where Y7 is an S4 bundle over
a three-manifold �3 equipped with an Einstein metric of negative Ricci curvature. On
the other hand, solutions with non-vanishing electric flux have a non-zero quantized
M2-brane charge N ∈ N, and include the Sasaki–Einstein manifold solutions as a
special case where the magnetic flux vanishes. For the general class of solutions with
non-vanishing M2-brane charge, we show that supersymmetry endows Y7 with a canon-
ical contact structure, for which the R-symmetry vector field ξ is the unique Reeb vector
field. A number of physical quantities can then be expressed purely in terms of contact
volumes, including the gravitational free energy referred to above, and the scaling di-
mension of BPS operators O�5 dual to probe M5-branes wrapped on supersymmetric
five-submanifolds �5 ⊂ Y7. These formulae may be evaluated using topological and
localization methods, allowing one to compute the free energy and scaling dimensions
of certain BPS operators without knowing the detailed form of the supergravity solution.

In our analysis we recover the Corrado–Pilch–Warner solution as a solution to our
system of SU (2)-structure equations. We also show that this solution is in a subclass of
solutions which possess an additional Killing vector field. For this subclass the super-
symmetry conditions are equivalent to specifying a (local) Kähler–Einstein four-metric,
together with a solution to a particular second order non-linear ODE. We show that this
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ODE admits a solution with the correct boundary conditions to give a gravity dual to
the infrared fixed point of cubic deformations of N M2-branes at a CY3 × C four-fold
singularity. In particular, when CY3 = C

3 equipped with its flat metric, this leads to a
new, smooth N = 2 supersymmetric AdS4 × S7 solution of M-theory.

The plan of the rest of this paper is as follows. In Sect. 2 we analyse the general
conditions for N = 2 supersymmetry for a warped AdS4 × Y7 background of eleven-
dimensional supergravity, reducing the equations to a local SU (2)-structure when Y7
is not Sasaki–Einstein. In Sect. 3 we further elaborate on the geometry and physics of
solutions with non-vanishing electric flux, in particular showing that solutions admit a
canonical contact structure, in terms of which various physical quantities such as the free
energy may be expressed. This section is an expansion of material first presented in [26].
Finally, in Sect. 4 we analyse the supersymmetry conditions under the additional geo-
metric assumption that a certain vector bilinear is Killing. In addition to recovering the
Corrado–Pilch–Warner solution, we also numerically find a new class of cubic deforma-
tions of general CY3×C backgrounds. Section 5 briefly concludes. A number of technical
details, as well as the analysis of various special cases, are relegated to four appendices.

Note. Shortly after submitting this paper to the arXiv, the paper [27] appeared, which
contains a supersymmetric solution that appears to coincide with the solution we present
in Sect. 4.

2. The Conditions for Supersymmetry

In this section we analyse the general conditions for N = 2 supersymmetry for a warped
AdS4 × Y7 background of eleven-dimensional supergravity.

2.1. Ansatz and spinor equations. The bosonic fields of eleven-dimensional supergrav-
ity consist of a metric g11 and a three-form potential C with four-form field strength
G = dC . The signature of the metric is (−,+,+, . . . ,+) and the action is

S = 1

(2π)8�9
p

∫
R ∗11 1 − 1

2
G ∧ ∗11G − 1

6
C ∧ G ∧ G, (2.1)

with �p the eleven-dimensional Planck length. The resulting equations of motion are

RM N − 1

12

[
GMPQRG PQR

N − 1

12
(g11)MNG2

]
= 0,

d ∗11 G +
1

2
G ∧ G = 0,

(2.2)

where M, N = 0, . . . , 10 denote spacetime indices.
We consider AdS4 solutions of M-theory of the warped product form

g11 = e2	 (
gAdS4 + g7

)
,

G = mvol4 + F.
(2.3)

Here vol4 denotes the Riemannian volume form on AdS4, and without loss of generality
we take RicAdS4 = −12gAdS4 .3 In order to preserve the SO(3, 2) invariance of AdS4

3 The factor here is chosen to coincide with standard conventions in the case that Y7 is a Sasaki–Einstein
seven-manifold. For example, the AdS4 metric in global coordinates then reads gAdS4 = 1

4 (− cosh2 
 dt2 +

d
2 + sinh2 
 d�2
2), where d�2

2 denotes the unit round metric on S2.
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we take the warp factor 	 to be a function on the compact seven-manifold Y7, and F to
be the pull-back of a four-form on Y7. The Bianchi identity dG = 0 then requires that
m is constant. The case in which m �= 0 will turn out to be quite distinct from that with
m = 0.

In an orthonormal frame, the Clifford algebra Cliff(10, 1) is generated by gamma
matrices �A satisfying {�A, �B} = 2ηAB , where the frame indices A, B = 0, . . . , 10,
and η = diag(−1, 1, . . . , 1), and we choose a representation with �0 · · ·�10 = 1. The
Killing spinor equation is

∇Mε +
1

288

(
�

N P Q R
M − 8δN

M�
P Q R

)
G N P Q R ε = 0, (2.4)

where ε is a Majorana spinor. We may decompose Cliff(10, 1) ∼= Cliff(3, 1)⊗Cliff(7, 0)
via

�α = ρα ⊗ 1, �a+3 = ρ5 ⊗ γa, (2.5)

where α, β = 0, 1, 2, 3 and a, b = 1, . . . , 7 are orthonormal frame indices for AdS4
and Y7 respectively, {ρα, ρβ} = 2ηαβ, {γa, γb} = 2δab, and we have defined ρ5 =
iρ0ρ1ρ2ρ3. Notice that our eleven-dimensional conventions imply that γ1 · · · γ7 = i1.

The spinor ansatz preserving N = 1 supersymmetry in AdS4 is

ε = ψ+ ⊗ e	/2χ + (ψ+)c ⊗ e	/2χc, (2.6)

where ψ+ is a positive chirality Killing spinor on AdS4, so ρ5ψ
+ = ψ+, satisfying

∇μψ
+ = ρμ(ψ

+)c. (2.7)

The superscript c in (2.6) denotes charge conjugation in the relevant dimension, and the
factor of e	/2 is included for later convenience. Substituting (2.6) into the Killing spinor
equation (2.4) leads to the following algebraic and differential equations for the spinor
field χ on Y7

1

2
γ n∂n	χ − im

6
e−3	χ +

1

288
e−3	Fnpqrγ

npqrχ + χc = 0,

∇mχ +
im

4
e−3	γmχ − 1

24
e−3	Fmpqrγ

pqrχ − γmχ
c = 0.

(2.8)

For a supergravity solution one must also solve the equations of motion (2.2) resulting
from (2.1), as well as the Bianchi identity dG = 0.

Motivated by the discussion in the Introduction, in this paper we will focus on N = 2
supersymmetric AdS4 solutions for which there are two independent solutions χ1, χ2 to
(2.8). The general N = 2 Killing spinor ansatz may be written as

ε =
∑

i=1,2

ψ+
i ⊗ e	/2χi + (ψ+

i )
c ⊗ e	/2χc

i . (2.9)

In general the two Killing spinors ψ+
i on AdS4 satisfy an equation of the form

∇μψ
+
i =

2∑
j=1

Wi jρμ(ψ
+
j )

c. (2.10)
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Multiplying by ψ̄+
k ρ

μ on the left it is not difficult to show that Wi j is necessarily a
constant matrix. Using the integrability conditions of (2.10),

∑
j

Wi j W ∗
jk = δik, (2.11)

one can verify that, without loss of generality, by a change of basis we may take Wi j = δi j
to be the identity matrix. Thus ψ+

1 and ψ+
2 may both be taken to satisfy (2.7).

In this case with N = 2 supersymmetry there is a u(1) R-symmetry which rotates
the spinors as a doublet. It is then convenient to introduce

χ± ≡ 1√
2
(χ1 ± iχ2) , (2.12)

which will turn out to have charges ±2 under the Abelian R-symmetry. In terms of the
new basis (2.12), the spinor equations (2.8) read

1

2
γ n∂n	χ± − im

6
e−3	χ± +

1

288
e−3	Fnpqrγ

npqrχ± + χc∓ = 0,

∇mχ± +
im

4
e−3	γmχ± − 1

24
e−3	Fmpqrγ

pqrχ± − γmχ
c∓ = 0.

(2.13)

2.2. Preliminary analysis. The condition of N = 2 supersymmetry means that the
spinorsχ1, χ2 in (2.9) are linearly independent. Notice that we are free to make GL(2,R)
transformations of the pair (χ1, χ2), since this leaves the spinor equations (2.13) invari-
ant. We shall make use of this freedom below.

The scalar bilinears are χ̄iχ j and χ̄c
i χ j , which may equivalently be rewritten in

the χ± basis (2.12). The differential equation in (2.8) immediately gives ∇(χ̄1χ1) =
∇(χ̄2χ2) = 0, so that using R

∗ ×R
∗ ⊂ GL(2,R) we may without loss of generality set

χ̄1χ1 = χ̄2χ2 = 1. Setting C = 1 in (A.3), the algebraic equation in (2.8) thus leads to

2Im
[
χ̄c

i χ j

]
= −m

3
e−3	χ̄iχ j , (2.14)

where i, j ∈ {1, 2}. We immediately conclude that for m �= 0 we have

Im [χ̄1χ2] = 0. (2.15)

When m = 0 this statement is not necessarily true. The case with m = 0 and Im [χ̄1χ2]
not identically zero is discussed separately in Appendix D, where we show that there
are no regular solutions in this class. We may therefore take (2.15) to hold in all cases.

It is straightforward to analyse the remaining scalar bilinear equations. In particular,
Re [χ̄1χ2] is constant, and using the remaining GL(2,R) freedom one can without loss
of generality set Re [χ̄1χ2] = 0.4 In the χ± basis (2.12) we may then summarize the
results of this analysis as

χ̄+χ+ = 1 = χ̄−χ−, χ̄+χ− = 0,

χ̄c
+χ+ ≡ S = (χ̄c−χ−)∗, χ̄c

+χ− = −iζ.
(2.16)

4 In the special case that Re [χ̄1χ2] = 1 one can show that χ1 = χ2, which in turn leads to only N = 1
supersymmetry.
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Here S is a complex function on Y7, while it is convenient to define ζ to be the real
function

ζ ≡ m

6
e−3	. (2.17)

Notice that in the m = 0 limit we have ζ ≡ 0, while for m �= 0 instead ζ is nowhere
zero. We also define the one-form bilinears

K ≡ iχ̄c
+γ(1)χ−, L ≡ χ̄−γ(1)χ+,

χ̄+γ(1)χ+ ≡ −P = −χ̄−γ(1)χ−.
(2.18)

Here we have denoted γ(n) ≡ 1
n!γm1···mn dym1 ∧ · · · ∧ dymn . A priori notice that K and

L are complex, while P is real.

2.3. The R-symmetry Killing vector. The spinor equations (2.13) imply that

2Im K = dIm [χ̄1χ2] = 0, (2.19)

where we have used (2.15). Thus in fact K is real, and it is then straightforward to show
that K is a Killing one-form for the metric g7 on Y7, and hence that the dual vector field
ξ ≡ g−1

7 (K , · ) is a Killing vector field. More precisely, one computes

∇(m Kn) = −2i Im [χ̄1χ2] g7 mn = 0. (2.20)

Using the Fierz identity (A.6) one computes the square norm

‖ξ‖2 ≡ g7(ξ, ξ) = |S|2 + ζ 2. (2.21)

In particular when m �= 0 we see from (2.17) that ξ is nowhere zero, and thus defines
a one-dimensional foliation of Y7. In the case that m = 0 this latter conclusion is no
longer true in general, as we will show in Sect. 2.7 via a counterexample.

The algebraic equation in (2.13) leads immediately to Lξ	 = 0, and using both
equations in (2.13) one can show that

d(e3	 χ̄c
+γ(2)χ−) = −iξ�F. (2.22)

It follows that

Lξ F = d(ξ�F) + ξ�dF = 0, (2.23)

provided the Bianchi identity dF = 0 holds.5 Thus ξ preserves all of the bosonic fields.
One can also show that

Lξχ± = ±2iχ±, (2.24)

so that χ± have charges ±2 under ξ . Perhaps the easiest way to prove this is to use the
remaining non-trivial scalar bilinear equation

e−3	d(e3	S) = 4L , (2.25)

5 In fact this is implied by supersymmetry when m �= 0, as we will show shortly in Sect. 2.4.
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to show that

Lξ S = 4iS. (2.26)

Since ξ preserves all of the bosonic fields, we may take the Lie derivative of the spinor
equations (2.13) to conclude that Lξχ± satisfy the same equations, and hence Lξχ± are
linear combinations ofχ±. The Lie derivatives of the scalar bilinears, in particular (2.26),
then fix (2.24).6 We thus identify ξ as the canonical vector field dual to the R-symmetry
of the N = 2 SCFT.

2.4. Equations of motion. Given our ansatz, the equation of motion and Bianchi identity
for G reduce to

d
(

e3	 � F
)

= −m F, dF = 0, (2.27)

where � denotes the Hodge star operator on Y7. We begin by showing that supersymmetry
implies the equation of motion, and that for m �= 0 it also implies the Bianchi identity.

The imaginary part of the bilinear equation for the three-form χ̄c
+γ(3)χ− leads imme-

diately to

m F = 6 d
(

e6	Im
[
χ̄c

+γ(3)χ−
])
. (2.28)

Thus for m �= 0 we deduce that F is closed. On the other hand, the bilinear equation for
the two-form χ̄+γ(2)χ+

e3	 � F = d
(

i e6	χ̄+γ(2)χ+

)
− 6e6	Im

[
χ̄c

+γ(3)χ−
]
, (2.29)

gives, via taking the exterior derivative,

d
(

e3	 � F
)

= −6d
(

e6	Im
[
χ̄c

+γ(3)χ−
]) = −m F, (2.30)

where in the second equality we have combined with Eq. (2.28). We thus see that
supersymmetry implies the equation of motion in (2.27).

Finally, using the integrability results of [28] one can now show that the Einstein
equation is automatically implied as an integrability condition for the supersymmetry
conditions, once the G-field equation and Bianchi identity are imposed. In particular,
note that the eleven-dimensional one-form bilinear k ≡ ε̄�(1)ε is dual to a timelike
Killing vector field, as discussed in [26] and later in Sect. 3.4. We thus conclude

For the class of N = 2 supersymmetric AdS4 solutions of the form (2.3), super-
symmetry and the Bianchi identity dF = 0 imply the equations of motion for G
and the Einstein equations. Moreover, when m �= 0 the Bianchi identity dF = 0
is also implied by supersymmetry.

Note that similar results were obtained in both [6] and [3]. In fact we will see in
Sect. 2.7 that the m = 0 supersymmetry conditions also imply the Bianchi identity,
although the arguments we have presented so far do not allow us to conclude this yet.

6 More precisely, this argument is valid provided S is not identically zero. However, when S = 0 we
necessarily reduce to the Sasaki–Einstein case, as shown in Appendix C. In that case (2.24) also holds.
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2.5. Introducing a canonical frame. Provided the three real one-forms K ,Re S∗L ,
Im S∗L defined in (2.18) are linearly independent, we may use them to in turn de-
fine a canonical orthonormal three-frame {E1, E2, E3}.7 More precisely, if these three
one-forms are linearly independent at a point in Y7, the stabilizer group G ⊂ Spin(7) of
the pair of spinors χ± at that point is G ∼= SU (2), giving a natural identification of the
tangent space with C

2 ⊕ RE1 ⊕ RE2 ⊕ RE3. Here the SU (2) structure group acts on
C

2 in the vector representation. If this is true in an open set, it will turn out that we may
go further and also introduce three canonical coordinates associated to the three-frame
{E1, E2, E3}.8

We study the case that K ,Re S∗L , Im S∗L are linearly dependent in Appendix C.
In particular, for m �= 0 we conclude that at least one of S = 0 or ‖ξ‖ = 1 holds at
such a point. If this is the case over the whole of Y7 (or, using analyticity and connect-
edness, if this is the case on any open subset of Y7) then we show that Y7 is necessary
Sasaki–Einstein with F = 0. Of course, in general the three one-forms can become
linearly dependent over certain submanifolds of Y7, and here our orthonormal frame and
coordinates will break down.9 By analogy with the corresponding situation for AdS5
solutions of type IIB string theory studied in [29], one expects this locus to be the same
as the subspace where a pointlike M2-brane is BPS, and thus correspond to the Abelian
moduli space of the dual CFT, although we will not pursue this comment further here.

Returning to the generic case in which K ,Re S∗L , Im S∗L are linearly independent
in some region, we may begin by introducing a coordinateψ along the orbits of the Reeb
vector field ξ , so that

ξ ≡ 4
∂

∂ψ
. (2.31)

The Eq. (2.26) then implies that we may write

S = e−3	ρ ei(ψ−τ). (2.32)

This defines the real functions ρ and τ , which will serve as two additional coordinates
on Y7. The factor of e−3	 has been included partly for convenience, and partly to agree
with conventions defined in [25] that we will recover from the m = 0 limit in Sect. 2.7.
Using (2.25) together with the Fierz identity (A.6), one can then check that

E1 ≡ 1

‖ξ‖ K = 1

4
‖ξ‖(dψ + A),

E2 ≡ 1

|S|√1 − ‖ξ‖2
Re S∗L = e−3	

4
√

1 − ‖ξ‖2
dρ, (2.33)

E3 ≡ |S|
ζ‖ξ‖√1 − ‖ξ‖2

(
K − ‖ξ‖2

|S|2 Im S∗L

)
= |S|‖ξ‖

4ζ
√

1 − ‖ξ‖2
(dτ + A),

are orthonormal. Here A is a local one-form that is basic for the foliation defined by the
Reeb vector field ξ , i.e. LξA = 0, ξ�A = 0. Note here that

‖ξ‖2 ≡ gY7(ξ, ξ) = ζ 2 + |S|2 = ζ 2 + e−6	ρ2 = e−6	

36
(m2 + 36ρ2), (2.34)

7 We use S∗L here, as opposed to L , since S∗L is invariant under the R-symmetry generated by ξ . In
particular, from the definitions in (2.18), and using (2.24), (2.26), we have that Lξ K = Lξ (S

∗L) = 0.
8 Just from group theory it must be the case that the one-form P in (2.18) is a linear combination of K and

S∗L , and indeed one finds that ζ P = K + Im SL∗.
9 This is sometimes referred to as a dynamical SU (2) structure.
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is the square length of the Reeb vector field. The metric on Y7 may then be written as

g7 = gSU (2) + E2
1 + E2

2 + E2
3 . (2.35)

We may now in turn introduce an orthonormal frame {ea}4
a=1 for gSU (2), and define the

SU (2)-invariant two-forms

J ≡ J3 ≡ e1 ∧ e2 + e3 ∧ e4,

� ≡ J1 + iJ2 ≡ (e1 + ie2) ∧ (e3 + ie4).
(2.36)

Of course, such a choice is not unique – we are free to make SU (2)R rotations, under
which JI , I = 1, 2, 3, transform as a triplet, where the structure group is G ∼= SU (2) =
SU (2)L , and Spin(4) ∼= SU (2)L × SU (2)R is the spin group associated to gSU (2).

2.6. Necessary and sufficient conditions. Any spinor bilinear may be written in terms of
Ei , JI , having chosen a convenient basis10 for the JI . Having solved for the one-forms in
(2.34), the remaining differential conditions arising from k-form bilinears, for all k ≤ 3,
then be shown to reduce (after some lengthy computations) to the following system of
three equations

e−3	d
[
‖ξ‖−1

(
m
6 E1 + e3	|S|√1 − ‖ξ‖2 E3

)]
= 2J3 − 2‖ξ‖E2 ∧ E3,

d(‖ξ‖2e9	 J2 ∧ E2)− e3	|S|d(‖ξ‖e6	|S|−1 J1 ∧ E3) = 0,
d(e6	 J1 ∧ E2) + e3	|S|d(‖ξ‖e3	|S|−1 J2 ∧ E3) = 0,

(2.37)

where in addition the flux is determined by the equation

d(e6	
√

1 − ‖ξ‖2 J2) = −e3	 � F − 6e6	Im
[
χ̄c

+γ(3)χ−
]
. (2.38)

Notice this is the same Eq. (2.29) we already used in proving that the equation of motion
for G follows from supersymmetry. The bilinear on the right-hand side is given in terms
of our frame by

Im
[
χ̄c

+γ(3)χ−
] = 1

ζ
√

1 − ‖ξ‖2
Re

[ (
(ζ 2 − 1)K + ImS∗L + iζReS∗L

)
∧�

]

= |S|J2 ∧ E2 − 1

‖ξ‖ J1 ∧ (ζ
√

1 − ‖ξ‖2 E1 + |S|E3) . (2.39)

One can invert the expression for the flux using these equations to obtain

F = 1

‖ξ‖ E1 ∧ d
(

e3	
√

1 − ‖ξ‖2 J1

)
− m

√
1 − ‖ξ‖2

‖ξ‖ J1 ∧ E2 ∧ E3. (2.40)

Notice that although we have written these equations in terms of the three real functions
|S|, ‖ξ‖ and ζ , in fact they obey (2.34), where ζ is given by (2.17). Regarding ρ as a
coordinate, there is then really only one independent function in these equations, which

10 Notice that using the definition of the two-form bilinears in (B.3), and the fact that Lξ Ei = 0, we see
that also the JI are invariant under ξ , namely Lξ JI = 0.
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may be taken to be the warp factor 	. We also note that the connection one-form A,
defined via the orthonormal frame (2.34), has curvature determined by the first equation
in (2.37), giving

dA = 4me−3	

3‖ξ‖2

[
J3 +

(
3‖ξ‖ − 4

‖ξ‖
)

E2 ∧ E3

]
. (2.41)

Proof of sufficiency. It is important to stress that the set of Eqs. (2.37), where the three-
frame {Ei }3

i=1 is given by (2.34), are both necessary and sufficient for a supersymmetric
solution. In order to see this, we recall that our SU (2) structure can be thought of in terms
of the two SU (3) structures defined by the spinors χ+, χ− (or equivalently χ1, χ2). Each
of these determines a real vector K± ≡ χ̄±γ(1)χ±, real two-form J± ≡ −iχ̄±γ(2)χ±,
and complex three-form �± ≡ χ̄c±γ(3)χ±, where recall that also χ̄+χ+ = χ̄−χ− = 1.
In fact K+ = −K− = −P , so that the vectors determined by each SU (3) structure are
equal and opposite, and (J±,�±) determine two SU (3) structures on the transverse
six-space P⊥.

Let us now turn to the Killing spinor equations in (2.13). We have two copies of
these equations, one for each SU (3) structure determined by the spinors χ±. We shall
refer to the first equation in (2.13) as the algebraic Killing spinor equation (it contains
no derivative acting on the spinor itself). Using this notice that we may eliminate the
χc∓ term in the second equation, in order to get an equation linear in χ±; we shall refer
the resulting equation as the differential Killing spinor equation. For each choice of ±,
the latter may be phrased in terms of a generalized connection ∇(T )

± , where ∇ is the

Levi–Civita connection. The intrinsic torsion is then defined as τ± ≡ ∇(T )
± −∇ for each

SU (3) structure, and may be decomposed into irreducible SU (3)-modules as a section of
�1 ⊗�2. Since �2 ∼= so(7) = su(3)⊕su(3)⊥, the intrinsic torsion may be identified
as a section of �1 ⊗su(3)⊥. It is then a fact that the exterior derivatives of K±,J±,�±
determine completely the intrinsic torsion τ± – the identifications of the irreducible
modules are given explicitly in Sect. 2.3 of [10]. Our Eqs. (2.37) certainly imply the
exterior derivatives of both SU (3) structures, since they imply the exterior derivatives
of all k-form bilinears, for k ≤ 3. It follows that from our supersymmetry equations we
could (in principle) construct both τ±, and hence write down connections ∇(T )

± = ∇ +τ±
which preserve each spinor, so ∇(T )

± χ± = 0. In other words, our conditions then imply
the differential Killing spinor equations for each of the N = 2 supersymmetries.

For the algebraic Killing spinor equation, note first that {χ, γmχ | m = 1, . . . , 7}
forms a basis for the spinor space for each χ = χ±. Thus in order for the algebraic equa-
tion to hold, it is sufficient that the bilinear equations resulting from the contraction of the
algebraic Killing spinor equation with χ̄ and χ̄γm hold, where χ is either of χ±. How-
ever, this is precisely how the identities in Appendix A were derived. We thus find that the
χ+ algebraic Killing spinor equation in (2.13) is implied by the two zero-form equations

−m

3
e−3	 + 2Im χ̄+χ

c− = 0,

d	�K+ +
1

6
e−3	χ̄+γ(4)χ+�F = 0,

(2.42)

and the one-form equations

d	 +
1

6
e−3	J+� � F = 0,

m

3
e−3	P − 2K + J+(d	)− 1

6
e−3	(iχ̄+γ(3)χ+)�F = 0,

(2.43)
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with similar equations for χ−. Notice that the first equation in (2.42) is simply the scalar
bilinear in (2.16) which determines ζ = (m/6)e−3	. The reader can find explicit expres-
sions for the real two-form J+ and three-form iχ̄+γ(3)χ+, in terms of the SU (2)-structure,
in Appendix B. Using these expressions, one can show that (2.37) imply the remaining
scalar equation in (2.42) and both of the equations in (2.43), thus proving that our differen-
tial system (2.37) also implies the algebraic Killing spinor equations. The computation is
somewhat tedious, and is best done by splitting the equations (2.37) into components un-
der the 1+1+1+4 decomposition implied by the three-frame (2.34). This decomposition is
performed explicitly in Sect. 2.8. In the second equation in (2.42) we note that each term
is in fact separately zero. We also note that the first equation in (2.43) may be rewritten as

J+�d(e6	J+) = d
(

e6	(1 − 3
2 |S|2)

)
. (2.44)

The left-hand side is essentially the Lee form associated to the SU (3)-structure defined
by χ+.11

To conclude, we have shown that (2.37) are necessary and sufficient to satisfy the
original Killing spinor equations (2.13).

2.7. M5-brane solutions: m = 0. It is straightforward to take the m = 0 limit of
the frame (2.34), differential conditions (2.37), and flux F given by (2.40). Denoting
ŵ = e	E3, ρ̂ = e	E2, ĴI = e2	 JI and λ = e−2	 we obtain the metric

λ−1g7 = ĝSU (2) + ŵ2 +
1

16
λ2

(
dρ2

1 − λ3ρ2 + ρ2dψ2
)
, (2.45)

with corresponding differential conditions

d
(
λ−1

√
1 − λ3ρ2ŵ

)
= 2λ−1/2 Ĵ3 + 2ρλŵ ∧ ρ̂,

d
(
λ−3/2 Ĵ1 ∧ ŵ − ρ Ĵ2 ∧ ρ̂

)
= 0, (2.46)

d
(

Ĵ2 ∧ ŵ + λ−3/2ρ−1 Ĵ1 ∧ ρ̂
)

= 0.

The flux F in (2.40) then becomes

F = 1

4
dψ ∧ d

(
λ−1/2

√
1 − λ3ρ2 Ĵ1

)
. (2.47)

These expressions precisely coincide with those in Sect. 7.2 of [25]. Of course, this is
an important cross-check of our general formulae.

Notice that the Bianchi identity for F is satisfied automatically from the expression
in (2.47). In fact for the general m = 0 class of geometries the Bianchi identity and
equation of motion for F read

dF = 0, d
(

e3	 � F
)

= 0. (2.48)

Defining the conformally related metric g̃7 = e−6	g7, the equation of motion for F
becomes d �̃F = 0. It follows that F is a harmonic four-form on (Y7, g̃). In particular,

11 Therefore (2.44) has the geometrical interpretation that the transverse six-dimensional space P⊥ is con-
formally balanced.



N = 2 Supersymmetric AdS4 Solutions of M-theory 499

imposing also flux quantization we see that F defines a non-trivial cohomology class in
H4(Y7; Z), which we may associate with the M5-brane charge of the solution.

When m = 0 there is no “electric” component of the four-form flux G, and these
AdS4 backgrounds have the physical interpretation of being created by wrapped M5-
branes. Indeed, as we shall see in Sect. 3, when m �= 0 there is always a non-zero
quantized M2-brane charge N ∈ N, with the supergravity description being valid in a
large N limit. The supergravity free energy then scales universally as N 3/2. One would
expect the free energy of the M5-brane solutions, sourced by the internal “magnetic”
flux F , to scale as N 3, where the cohomology class in H4(Y7; Z) defined by F scales as
N . However, the lack of a contact structure in this case (see below) means that a proof
would look rather different from the analysis in Sect. 3.

In Sect. 9.5 of [25] the authors found a solution within the m = 0 class, solving
the system (2.46), describing the near-horizon limit of M5-branes wrapping a Special
Lagrangian three-cycle �3. In fact this is the eleven-dimensional uplift of a seven-
dimensional solution found originally in reference [30]. The internal seven-manifold Y7
takes the form of an S4 fibration over �3, where the latter is endowed with an Einstein
metric of constant negative curvature. As one sees explicitly from the solution, the R-
symmetry vector field ∂ψ acts on S4 ⊂ R

5 = R
3 ⊕ R

2 by rotating the R
2 factor in the

latter decomposition. In particular, there is a fixed copy of S2, implying that ∂ψ does
not define a one-dimensional foliation in this m = 0 case. Notice this also implies there
cannot be any compatible global contact structure, again in contrast with the m �= 0
geometries. The flux F generates the cohomology group H4(�3 × S4; R) ∼= R.

As far as we are aware, the solution in Sect. 9.5 of [25] is the only known solution
in this class. It would certainly be very interesting to know if there are more AdS4
geometries sourced only by M5-branes.

2.8. Reduction of the equations in components. In this section we further analyse the
system of supersymmetry equations (2.37), extracting information from each component
under the natural 1+1+1+4 decomposition implied by the three-frame (2.34). Since we
have dealt with the m = 0 equations in the previous section, we henceforth take m �= 0
in the remainder of the paper.

We begin by defining the one-form

B ≡ ‖ξ‖2

ζ 2 (dτ + A) , (2.49)

which appears in the frame element E3 in (2.34), so that

E3 = |S|ζ
4‖ξ‖√1 − ‖ξ‖2

B, (2.50)

and further decompose

B ≡ Bτdτ + B̂, (2.51)

where ∂τ�B̂ = 0. Since also E1 and E2 are orthogonal to B, it follows that B̂ is a linear
combination of ea, a = 1, 2, 3, 4, the orthonormal frame for the four-metric gSU (2) in
(2.35). It is also convenient to rescale the latter four-metric, together with its SU (2)
structure, via

ĴI ≡ 4

ζ
JI , I = 1, 2, 3, (2.52)
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so that correspondingly ĝSU (2) = (4/ζ )gSU (2).12 Notice this makes sense only when
m �= 0, so that ζ is nowhere zero.

Given the coordinates (ψ, τ, ρ) defined via (2.34), it is then natural to decompose
the exterior derivative as

d = dψ ∧ ∂

∂ψ
+ dτ ∧ ∂

∂τ
+ dρ ∧ ∂

∂ρ
+ d̂, (2.53)

where from now on hatted expressions will (essentially) denote four-dimensional quan-
tities. We may then decompose the exterior derivatives and forms in the supersymmetry
equations (2.37) under this natural 1 + 1 + 1 + 4 splitting.

Beginning with the first equation in (2.37), the utility of the definition (2.49) is that
this first supersymmetry equation becomes simply

dB = 2 Ĵ3 − 1

2
ρκdρ ∧ B, (2.54)

where to simplify resulting equations it is useful to define the function

κ ≡ e−6	

1 − ‖ξ‖2 . (2.55)

Decomposing as outlined above, this becomes

∂τ B̂ − d̂Bτ = 0,

∂ρB = −1

2
ρκB, (2.56)

d̂B̂ = 2 Ĵ3.

Note here that everything is invariant under ∂ψ . The integrability condition for (2.54)
immediately implies that ∂τ Ĵ3 = 0 = d̂ Ĵ3, while combining the component

d̂ (κBτ )− ∂τ

(
κB̂

)
= 0, (2.57)

with the first and last equation in (2.56) leads to the conclusion

∂τ κ = 0 = d̂κ. (2.58)

Given (2.21), this then implies

∂τ	 = 0 = d̂	, (2.59)

so that the warp factor 	, and the related functions κ, ζ, |S| and ‖ξ‖, all depend only on
the coordinate ρ!

The other two equations in (2.37) may be analyzed similarly. Rather than present
all the details, which are straightforward but rather long, we simply present the final

12 This scaling is different from the scaling used in Sect. 2.7, where m = 0.
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result. Defining �̂ = Ĵ1 + i Ĵ2, the supersymmetry conditions (2.37) are equivalent to
the equations

∂ρB = − 1
2ρκB, [

∂ρ�̂
]

+ = − 1
2ρκ�̂,

d̂B̂ = 2 Ĵ3,
[
∂τ �̂

]
+ = −iu�̂, d̂�̂ = ([

∂τ �̂
]
− − iu�̂

) ∧ B̂
Bτ
,

∂τ B̂ = d̂Bτ ,
[
∂τ �̂

]
− = ζBτ

([
ρ∂ρ Ĵ2

]
− − i

‖ξ‖2

[
ρ∂ρ Ĵ1

]
−
)
.

(2.60)

Here we have defined the function

u ≡ ζBτ

(
1

2
ρ∂ρ log κ − ρ2κ

)
, (2.61)

and the notation
[ · ]± denotes the self-dual and anti-self-dual parts of a two-form along

the four-dimensional SU (2)-structure space. In particular, of course ĴI , I = 1, 2, 3,
form a basis for the self-dual forms. We also note that the integrability condition for the
three equations in the first column of (2.60) gives

∂τ Ĵ3 = 0, ∂ρ Ĵ3 = −1

2
ρκ Ĵ3, d̂ Ĵ3 = 0. (2.62)

As an aside comment, we notice that a subset of the equations in (2.60) may be re-
interpreted as equations for a dynamical contact-hypo structure on a five-dimensional
space [33,34]. Here we decompose the seven-dimensional manifold under a 1 + 1 + 5
split, where the two transverse directions are parametrized by the coordinates ρ and ψ .
The (B, JI ) then define a contact-hypo structure (at fixed ρ) obeying the equations

d̃B = 2 Ĵ3, d̃�̂ = ([
∂τ �̂

]
− − iu�̂

) ∧ B
Bτ

, (2.63)

where d̃ ≡ dτ ∧ ∂
∂τ

+ d̂. Note that when
[
∂τ �̂

]
− = 0 these become the conditions

characterizing a Sasaki–Einstein five-manifold. However, in this paper we will not pursue
further this point of view.

We emphasize again that since 	 is a function only of ρ, this implies that the derived
functions κ, ζ , and ‖ξ‖ also depend only on ρ. We conclude by writing an even more
explicit expression for the flux given in (2.40):

F = 1
‖ξ‖

(
12e6	‖ξ‖2∂ρ	− 6ρ

)
E12 ∧ J1 − 12e6	∂ρ	E13 ∧ J2

− m
√

1−‖ξ‖2

‖ξ‖ E23 ∧ J1 + m
6 e3	(1 − ‖ξ‖2)E13 ∧ [

∂ρ Ĵ2
]
−

+ m
6 e3	 (1−‖ξ‖2)

‖ξ‖ E12 ∧ [
∂ρ Ĵ1

]
−.

(2.64)

This expression is particularly useful for proving sufficiency of the differential system
in Sect. 2.6.
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We shall investigate the general equations (2.60), in a special case, in Sect. 4, reducing
them to a single second order ODE in ρ.

3. M2-brane Solutions

In this section we further elaborate on the geometry and physics of solutions with m �= 0.
In particular we show that all such solutions admit a canonical contact structure, for which
the R-symmetry Killing vector ξ is the Reeb vector field. Many physical properties of the
solutions, such as the free energy and scaling dimensions of BPS wrapped M5-branes,
can be expressed purely in terms of this contact structure. This section is essentially an
expansion of the material in [26], as advertized in that reference.

3.1. Contact structure. When m �= 0 we may define a one-form σ via

P ≡ ζσ, (3.1)

where P is the one-form bilinear defined in the second line in (2.18). In terms of our
frame (2.34), we then have

σ = 1

‖ξ‖ E1 +
|S|√1 − ‖ξ‖2

ζ‖ξ‖ E3,

= 1

4

[
dψ + A +

( 6
m

)2
ρ2(dτ + A)

]
. (3.2)

Up to a factor of m/6, the one-form inside the square bracket on the left-hand side of
the first equation in (2.37) is in fact σ . Thus we read off

dσ = 12

m
e3	 (J3 − ‖ξ‖E2 ∧ E3) , (3.3)

and a simple algebraic computation then leads to

σ ∧ (dσ)3 = 2734

m3 e9	vol7. (3.4)

Here

vol7 ≡ −E1 ∧ E2 ∧ E3 ∧ vol4 = −1

2
E1 ∧ E2 ∧ E3 ∧ J3 ∧ J3, (3.5)

denotes the Riemannian volume form of Y7 (with a convenient choice of orientation). It
follows that when m �= 0, the seven-form σ ∧ (dσ)3 is a nowhere-zero top degree form
on Y7, and thus by definition σ is a contact form on Y7.

Again, straightforward algebraic computations using the Fierz identity in Appendix A
lead to

ξ�σ = 1, ξ�dσ = 0. (3.6)

This implies that the Killing vector field ξ is also the unique Reeb vector field for the
contact structure defined by σ .
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3.2. Flux quantization. When m �= 0, Eq. (2.28) immediately leads to the natural gauge
choice

F = dA, (3.7)

where A is the global three-form

A ≡ 6

m
e6	Im χ̄c

+γ(3)χ−. (3.8)

In terms of our frame, this reads

A = 6

m
e6	

[
|S|J2 ∧ E2 − 1

‖ξ‖ J1 ∧
(
|S|E3 +

m

6
e−3	

√
1 − ‖ξ‖2 E1

) ]
. (3.9)

Notice that, either using the last expression or using (2.24), we find that

Lξ A = 0. (3.10)

Of course, one is free to add to A any closed three-form a, which will result in the same
curvature F ,

A → A +
1

(2π�p)3
a. (3.11)

If a is exact this is a gauge transformation of A and leads to a physically equivalent M-
theory background. In fact more generally if a has integer periods then the transformation
(3.11) is a large gauge transformation of A, again leading to an equivalent solution. It
follows that only the cohomology class of a in the torus H3(Y7; R)/H3(Y7; Z) is a
physically meaningful parameter, and this corresponds to a marginal parameter in the
dual CFT. In fact the free energy will be independent of this choice of a, which is why
we have set a = 0 in (3.8). There is also the possibility of adding discrete torsion to A
when H4

torsion(Y7; Z) is non-trivial, but we will not discuss this here.
The flux quantization condition in eleven dimensions is

N = − 1

(2π�p)6

∫
Y7

∗11G +
1

2
C ∧ G, (3.12)

where N is the total M2-brane charge. Dirac quantization requires that N is an integer.
Substituting our ansatz (2.3) into (3.12) leads to

N = 1

(2π�p)6

∫
Y7

me3	vol7 − 1

2
A ∧ F, (3.13)

where vol7 denotes the Riemannian volume form for Y7. By far the simplest way to
evaluate A ∧ F is to use the identity (A.1) with C = 1. Using (3.8), this immediately
leads to an expression for A ∧ F in terms of vol7, and using (3.4) we obtain

N = 1

(2π�p)6

m2

2532

∫
Y7

σ ∧ (dσ)3. (3.14)

In particular, we see that m �= 0 leads to a non-zero M2-brane charge N .
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3.3. The free energy. The effective four-dimensional Newton constant G4 is computed
by dimensional reduction of eleven-dimensional supergravity on Y7. More precisely, by
definition 1/16πG4 is the coefficient of the four-dimensional Einstein–Hilbert term, in
Einstein frame. A standard computation leads to the formula

1

16πG4
= π

∫
Y7

e9	vol7

2(2π�p)9
. (3.15)

On the other hand, G4 also determines the gravitational free energy FAdS,

FAdS ≡ − log |Z | = π

2G4
. (3.16)

Here the left-hand side of (3.16) is the free energy of the unit radius AdS4 computed
in Euclidean quantum gravity, where Z is the gravitational partition function. Thus in
the supergravity approximation, FAdS is simply the four-dimensional on-shell Einstein–
Hilbert action, which has been regularized to give the finite result on the right hand side
of (3.16) using the boundary counterterm subtraction method of [31]. Via the AdS/CFT
correspondence, FAdS = FCFT ≡ F , where FCFT is the free energy of the dual CFT
on the conformal boundary S3 of AdS4. Combining (3.15) and (3.16) then leads to the
supergravity formula

F = 4π3
∫

Y7
e9	vol7

(2π�p)9
. (3.17)

Combining (3.14), (3.17) and (3.4) leads to our final formula

F = N 3/2

√
32π6

9
∫

Y7
σ ∧ (dσ)3

. (3.18)

We see that the famous N 3/2 scaling behaviour of the free energy of N M2-branes
continues to hold in the most general N = 2 supersymmetric case with flux turned on.
Moreover, the coefficient is expressed purely in terms of the contact volume of Y7. In
the Sasaki–Einstein case this agrees with the Riemannian volume computed using vol7,
but more generally the two volumes are different. The contact volume has the property,
in the sense described precisely in Appendix B of [32], that it depends only on the Reeb
vector field ξ determined by the contact structure. In particular, if we formally consider
varying the contact structure of a given solution, the contact volume is a strictly convex
function of the Reeb vector field ξ . It is of course natural to conjecture that this function
is related as in (3.16) to minus the logarithm of the field theoretic |Z |-function defined in
[15], as a function of a trial R-symmetry in the dual supersymmetric field theory on S3.
This was conjectured in the Sasaki–Einstein case in [17], and has by now been verified
in a large number of examples, including infinite families [20]. The contact volume has
the desirable property that it can be computed using topological and fixed point theorem
methods, so that one can compute the free energy of a solution essentially knowing only
its Reeb vector field. We will illustrate this with the class of solutions in Sect. 4.

Finally, the scaling symmetry of eleven-dimensional supergravity in which the metric
g11 and four-form G have weights two and three, respectively, leads to a symmetry in
which one shifts 	 → 	 + c and simultaneously scales m → e3cm, F → e3c F , where
c is any real constant. We may then take the metric on Y7 to be of order O(N 0), and
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conclude from the quantization condition (3.12), which has weight 6 on the right hand
side, that e	 = O(N 1/6). It follows that the AdS4 radius, while dependent on Y7, is
RAdS4 = e	 = O(N 1/6), and that the supergravity approximation we have been using
is valid only in the N → ∞ limit.

3.4. Scaling dimensions of BPS wrapped M5-branes. A probe M5-brane whose world-
space is wrapped on a generalized calibrated five-submanifold �5 ⊂ Y7 and which
moves along a geodesic in AdS4 is expected to correspond to a BPS operator O�5 in
the dual three-dimensional SCFT. In particular, when Y7 is a Sasaki–Einstein mani-
fold, the scaling dimension of this operator can be calculated from the volume of the
five-submanifold �5 [35]. In this section we show that a simple generalization of this
correspondence holds for the general N = 2 supersymmetric AdS4 × Y7 solutions
treated in this paper.13

Given a Killing spinor ε of eleven-dimensional supergravity, it is simple to derive the
following BPS bound for the M5-brane [2,38]

ε†ε LDBI vol5 ≥
[

1

2
( j∗k�H) ∧ H + j∗μ ∧ H + j∗ν

]
. (3.19)

Here H is the three-form on the M5-brane, defined by H = h + j∗C , where h is closed
and j∗ denotes the pull-back to the M5-brane world-volume. The one-form k, two-form
μ and five-form ν are defined [28] by the eleven-dimensional bilinears

k ≡ ε̄�(1)ε, μ ≡ ε̄�(2)ε, ν ≡ ε̄�(5)ε, (3.20)

and vol5 is the volume form on the world-space of the M5-brane. We have defined
ε̄ ≡ ε†�0 as usual.

The bound (3.19) follows from the inequality

‖P−ε‖2 = ε†P−ε ≥ 0, (3.21)

where P− ≡ (1 − �̃)/2 is the κ-symmetry projector and �̃ is the traceless Hermitian
product structure

�̃ ≡ 1

LDBI
�0

[
1

4
( j∗�)a(H∗�H)a +

1

2! ( j∗�)a1a2 H∗
a1a2

+
1

5! ( j∗�)a1···a5εa1···a5

]
.

(3.22)

Here a, a1 . . . a5 = 1, . . . , 5, where the two-form H∗ ≡ ∗5 H is the world-space dual of
H . This bound is saturated if and only if P−ε = 0 and corresponds to a probe M5-brane
preserving supersymmetry.

We write the AdS4 metric in global coordinates (cf. footnote 3) and choose the static
gauge embedding {t = σ 0, xm = σm}, where t is global time in AdS4 and xm , with
m = 1, . . . , 5, are coordinates on Y7. The Dirac–Born–Infeld Lagrangian LDBI is then
defined by LDBI = √

det(δ n
m + H∗n

m ). The vector k� dual to the one-form k is a time-like
Killing vector, which using the explicit form of the eleven-dimensional N = 2 Killing
spinor (2.9), and an appropriate choice of AdS4 spinors ψi , reads

k� = ∂t +
1

2
ξ. (3.23)

13 Such supersymmetric M5-branes exist only for certain boundary conditions [36,37], and our discussion
here applies to these cases.
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Accordingly, ε†ε = k0
� = 1

2 e	 cosh 
, and hence the bound (3.19) is saturated when

 = 0 (i.e. the M5-brane is at the centre of AdS4) and

e	

2
LDBI vol5 =

[
1

2
( j∗k�H) ∧ H + j∗μ ∧ H + j∗ν

]
. (3.24)

The energy density of an M5-brane can be computed by solving the Hamiltonian
constraints [2,38]. For the static gauge embedding and 
 = 0 these lead to

E = Pt = TM5

(
e	

2
LDBI + Ct

)
, (3.25)

where TM5 = 2π/(2π�p)
6 is the M5-brane tension and the contribution from the Wess–

Zumino coupling is Ct vol5 = ∂t�C6 − 1
2 (∂t�C) ∧ (C − 2H), with the potential C6

defined through dC6 = ∗11G + 1
2 C ∧ G. However, from the explicit expression of C

one can check that we have Ct = 0. The M5-brane energy is then given by

EM5 = TM5

∫
�5

e	

2
LDBI vol5 = TM5

∫
�5

1

4
(ξ�H) ∧ H + j∗μ ∧ H + j∗ν, (3.26)

where we used (3.23). Let us briefly discuss this expression for the energy. With our
gauge choice (3.8) for the three-form potential, in general we have H = A+h, where h is
a closed three-form. If h is exact and invariant14 under k�, namely h = db with Lk�b = 0,
then one can check that the integral does not depend on h. To see this, one has to recall
that Lk� A = 0, use the results of [28], and apply Stokes’ theorem repeatedly. If h is not
exact, a priori it will contribute to the energy, and hence we expect the dimension of the
dual operator to be affected. We leave an investigation of this interesting possibility for
future work, and henceforth set H = A. In particular, A is expressed as a bilinear of χ±
in (3.8).

Using the explicit form of the eleven-dimensional N = 2 Killing spinor (2.9) and
the static gauge embedding one derives

ι∗k = 1
2 e2	K ,

ι∗μ = 4e3	 {− 1
8 Im [χ̄c

+γ(2)χ−] + Im[ψ̄+
1 (ψ

+
2 )

c]Re [χ̄c
+γ(2)χ−]} , (3.27)

ι∗ν = 4e6	 �
{ 1

8 Re [χ̄c
+γ(2)χ−] + Im[ψ̄+

1 (ψ
+
2 )

c]Im [χ̄c
+γ(2)χ−]} ,

where ι∗ denotes a pull-back to Y7, and where the constant scalar bilinear Re[ψ̄+
1 (ψ

+
2 )

c]
is rescaled for convenience to 1

8 . The χ± bilinears can then be expressed in terms of
Ei and JI . The non-constant scalar Im[ψ̄+

1 (ψ
+
2 )

c] drops out of the calculation and one
arrives at15

1

2
( j∗k�H) ∧ H + j∗μ ∧ H + j∗ν = − m2

2632 σ ∧ (dσ)2. (3.28)

Hence we get the remarkably simple result

EM5 = −TM5
m2

2632

∫
�5

σ ∧ (dσ)2. (3.29)

14 One should obviously require that ∂t and ξ generate symmetries of the M5-brane action.
15 The sign arises from our choice of conventions, cf. [29].
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Combining the latter with (3.14), and identifying	(O�5)with the energy EM5 in global
AdS, leads straightforwardly to the formula

	(O�5) = πN

∣∣∣∣∣
∫
�5
σ ∧ (dσ)2∫

Y7
σ ∧ (dσ)3

∣∣∣∣∣ . (3.30)

The scaling dimensions of operators dual to BPS wrapped M5-branes are thus also
determined purely by the contact structure. As for the contact volume of Y7, the right
hand side of (3.30) can again be computed from a knowledge of �5 and the Reeb vector
field ξ .

4. Special Class of Solutions: ∂τ Killing

Since the general system of supersymmetry equations presented in Sect. 2.8 is rather
complicated, in this section we impose a single simplifying assumption, namely that ∂τ
is a Killing vector field for the metric16 g7. There are two motivations for this. Firstly,
it is clearly a natural geometric condition. Secondly, the only solution in the literature
in the m �= 0 class that is not Sasaki–Einstein is the Corrado–Pilch–Warner solution
[21]. This solution describes the infrared fixed point of a massive deformation of the
maximally supersymmetric AdS4×S7 solution, and has the same topology but with non-
standard metric on S7 and flux. We will first show that the assumption that ∂τ is Killing
immediately leads to the four-metric gSU (2) being conformal to a Kähler–Einstein metric,
and that the supersymmetry conditions then entirely reduce to a single second order non-
linear ODE. The Corrado–Pilch–Warner solution is a particular solution to this ODE,
with gSU (2) being (conformal to) the standard Fubini-Study metric on CP

2. We will
then show numerically that there exists a second solution, dual to the infrared fixed point
of a cubic deformation of N M2-branes at a general CY3 × C singularity, where CY3
denotes any Calabi–Yau three-fold cone. In particular, when CY3 = C

3 endowed with
a flat metric, this leads to a new, smooth N = 2 supersymmetric AdS4 × S7 solution.

4.1. Further reduction of the equations. Let us analyze the conditions (2.60), with the
assumption that ∂τ is Killing. Notice that the latter implies

[
∂τ ĴI

]
± = ∂τ

[
ĴI

]
± =

{
∂τ ĴI

0
. (4.1)

The left-hand side of the last equation in (2.60) is thus identically zero. Taking the real
and imaginary parts of the right hand side then implies that ∂ρ�̂ is self-dual. The plus
subscripts may then be dropped in the second line of (2.60), and we see that

∂ρ ĴI = −1

2
ρκ ĴI , (4.2)

holds for all I = 1, 2, 3. Recalling that κ is always a function only ofρ, we may introduce
the rescaled SU (2) structure

ĴI ≡ f (ρ)JI , I = 1, 2, 3, (4.3)

16 Note that we are not requiring that ∂τ generates a symmetry of the full solution. Indeed we will show that
in general the flux F is not invariant under ∂τ .
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and see that provided f (ρ) satisfies the differential equation

d f

dρ
= −1

2
ρκ f, (4.4)

then the SU (2)-structure two-forms JI are independent of ρ.
Similarly, the Killing condition on ∂τ implies that Bτ and B̂ are independent of τ ,

and the first equation in (2.60) then implies that Bτ = Bτ (ρ) depends only on ρ. We
may then similarly solve the second equation in (2.60) by rescaling

B ≡ f (ρ)B, (4.5)

and deduce that B is independent of both τ and ρ. Similarly writing

B ≡ Bτdτ + B̂, (4.6)

where now Bτ is a constant, the remaining equations in (2.60) are

d̂B̂ = 2J3, d̂(J1 + iJ2) = −i f ζ

(
1

2
ρ∂ρ log κ − ρ2κ

)
(J1 + iJ2) ∧ B̂,

∂τ (J1 + iJ2) = −iu(J1 + iJ2).

(4.7)

Since the blackboard script quantities are independent of ρ, the second equation in (4.7)
implies that

f ζ

(
1

2
ρ∂ρ log κ − ρ2κ

)
= −γ, (4.8)

which is a priori a function of ρ, is in fact a constant. At this point we should recall the
definitions

ζ = m

6
e−3	, κ = e−6	

1 − e−6	
[(m

6

)2 + ρ2
] . (4.9)

In order to remove the explicit factors of m, and write everything in terms of a single
function, it is convenient to rescale

r ≡ 6

m
ρ, α2(r) ≡

(m

6

)2
κ. (4.10)

In terms of these new variables, the differential equations (4.4), (4.8) read

f ′ = − 1
2rα2 f,(

rα′−r2α3
)

f√
1+(1+r2)α2

= −γ, (4.11)

which are a coupled set of first order ODEs for the functions f (r), α(r), and from
henceforth a prime will denote derivative with respect to the coordinate r . The remaining
supersymmetry conditions (4.7) now simplify to

d̂B̂ = 2J3, d̂(J1 + iJ2) = iγ (J1 + iJ2) ∧ B̂,

∂τ (J1 + iJ2) = iγBτ (J1 + iJ2).
(4.12)
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Here both γ and Bτ are constants. The first line says that the four-metric defined by
(J1, J2, J3) is Kähler–Einstein with Ricci tensor satisfying Ric = 2γ gKE. The second
equation is solved simply by multiplying J1 + iJ2 by a phase e−iγBτ , so that everything
is independent of τ .

To conclude, given any Kähler–Einstein four-metric gKE with Ricci curvature Ric =
2γ gKE, a solution to the ODE system (4.11) leads to a (local) supersymmetric AdS4
solution with internal seven-metric being

g7 = f α

4
√

1 + (1 + r2)α2
gKE +

α2

16

[
dr2 +

r2 f 2

1 + r2 (dτ + AKE)
2

+
1 + r2

1 + (1 + r2)α2

(
dψ +

f

1 + r2 (dτ + AKE)

)2 ]
, (4.13)

and flux

F = m2e−3	α

33 · 27

(
γme−3	α(1 + r2)− 9r2 f

)
(dψ − dτ) ∧ dr

r
∧ J1

+
γm3e−6	α2 f

33 · 27 (dτ + AKE) ∧
(dr

r
∧ J1 + (dψ − dτ) ∧ J2

)
, (4.14)

where we have written the latter in terms of three functions f, α, e	 in order to simplify
the expression slightly. However, recall that the warp factor is related to α via

e6	 =
(m

6

)2 (
1 + r2 + α−2

)
. (4.15)

Here we have denoted AKE ≡ B̂, and without loss of generality we have set Bτ = 1
by rescaling the τ coordinate. From (4.14) we see explicitly that L∂τ F �= 0, since the
holomorphic two-form on the Kähler–Einstein base satisfies L∂τ (J1+iJ2) = iγ (J1+iJ2).
Therefore, as anticipated at the beginning of this section, ∂τ does not generate a symmetry
of the full solution. If γ > 0 then by rescaling f we may also without loss of generality
set γ = 3. The local one-form γ AKE is globally a connection on the anti-canonical
bundle of the Kähler–Einstein four-space. Notice that we may algebraically eliminate
α(r) from the first equation in (4.11) to obtain the single second order ODE for f (r),

3r f ′2 + f (r f ′′ − f ′) = γ

√
−2 f ′ [r f − 2(1 + r2) f ′]. (4.16)

4.2. The Corrado–Pilch–Warner solution. We begin by noting that the following is an
explicit solution to the ODE system (4.11)

f (r) = γ

(
2 − r√

2

)
, α(r) =

√
2

r(2
√

2 − r)
. (4.17)

Taking the Kähler–Einstein metric to be simply the standard Fubini-Study metric on
CP

2, and with r ∈ [0, 2
√

2], we claim this is precisely the AdS4 × S7 solution described
in [21]. In fact the authors of [21] conjectured that one should be able to replace CP

2

by any other Kähler–Einstein metric (with positive Ricci curvature) to obtain another
supergravity solution. This was shown in [24] for the special case in which one uses the
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Kähler–Einstein metrics associated to the Labc Sasaki–Einstein manifolds [39,40]. We
can immediately read off the warp factor

m

6
e−3	 = ζ = α√

1 + (1 + r2)α2
= 1

1 + r√
2

. (4.18)

Comparing our dr2 component of the metric (4.13) to the dμ2 component of the metric
in [24], we are led to the identification

r = 2
√

2 sin2 μ. (4.19)

It is then straightforward to see that our metric (4.13) coincides with the metric in [24],
and using (4.14) also that the fluxes agree.

4.3. Deformations of CY3 × C backgrounds. The Corrado–Pilch–Warner solution fits
into a more general class of solutions obtained by deforming the theory on N M2-branes
at the conical singularity of the Calabi–Yau four-fold CY3 × C. In this section we give
a unified treatment, in particular recovering the field theory result in [19] for the free
energy of such theories using our contact volume formula (3.18).

We begin by taking gKE to be the (local) Kähler–Einstein metric associated to a
Sasaki–Einstein five-manifold. The corresponding Sasaki–Einstein five-metric is

gSE5 = (dϕ + AKE)
2 + gKE, (4.20)

which leads to a Calabi–Yau four-fold product metric on CY3 × C given by

gCY4 = dρ2
1 + ρ2

1

[
(dϕ + AKE)

2 + gKE

]
+ dρ2

0 + ρ2
0 dϕ2

0 . (4.21)

Here ρ0, ρ1 ∈ [0,∞) are radial variables, and ϕ0 has period 2π . The corresponding
Sasaki–Einstein seven-metric at unit distance from the conical singularity at {ρ0 =
ρ1 = 0} is

gSE7 = 1

1 − r2 dr2 + r2
[
(dϕ + AKE)

2 + gKE

]
+ (1 − r2)dϕ2

0 , (4.22)

where 0 ≤ r ≤ 1. Note that the Killing vector fields ∂ϕ and ∂ϕ0 vanish at r = 0 and
r = 1, respectively, and that the Reeb vector field is the sum ξ = ∂ϕ + ∂ϕ0 . The metric
(4.22) is singular at r = 0 (which is an S1 locus parametrized by ϕ0) unless the original
Sasaki–Einstein five-manifold is S5 equipped with its standard round metric. This is
simply because the Calabi–Yau four-fold is also singular along r = 0, which is the
conical singularity of CY3.

It is no coincidence that the Sasaki–Einstein metric (4.22) resembles our general
metric (4.13). The AdS4 × SE7 background is the infrared limit of N M2-branes at the
conical singularity {ρ0 = ρ1 = 0} of CY3 × C. The holomorphic function z0 = ρ0eiϕ0

leads to a scalar Kaluza–Klein mode on the Sasaki–Einstein seven-space, which in turn is
dual to a gauge-invariant scalar chiral primary operator O in the dual three-dimensional
SCFT. We may then consider deforming the SCFT by adding the operator λO p. In
three dimensions, this is a relevant deformation for p = 2 and p = 3, as discussed
in [19]. Moreover, such a term can appear in the superpotential of a putative infrared
fixed point also only if p = 2, p = 3, since otherwise one violates the unitarity bound



N = 2 Supersymmetric AdS4 Solutions of M-theory 511

– the R-charge/scaling dimension of O would be	(O) = 2/p, and necessarily we have
	(O) ≥ 1

2 for a unitary CFT in three dimensions, with equality only for a free field.
The gravity dual to the infrared fixed point of the massive p = 2 deformation is the
Corrado–Pilch–Warner solution of the previous section, while we will find the p = 3
solution as a numerical solution to the ODEs (4.11) in the next section.

In [19] the authors studied d = 3,N = 2 supersymmetric field theories for N
M2-branes on CY3 × C backgrounds, in particular computing the free energy using
localization and matrix model techniques. This allows one to compute the ratio of UV
and IR free energies, where the UV theory is dual to the AdS4 × SE7 background, while
the IR theory is the fixed point of the renormalization group flow induced by the λO p

deformation. They found the universal formula, independent of the choice of CY3,

FIR

FUV
= 16(p − 1)3/2

3
√

3p2
. (4.23)

We now show that this field theory result is easily obtained using our contact volume
formula (3.18), thus acting as a check of the AdS/CFT duality for this class of theories.
The CY3 × C Calabi–Yau four-fold has at least a C

∗ × C
∗ symmetry, in which the first

C
∗ acts on the CY3, and under which the CY3 Killing spinors have charge 1

2 , and the
second C

∗ acts in the obvious way on the copy of C with coordinate z0. Let us denote
the components of the Reeb vector field in this basis as (ξ1, ξ0). In terms of the explicit
coordinates introduced above, this gives the Reeb vector field as

ξ = 1

3
ξ1∂ϕ + ξ0∂ϕ0 . (4.24)

For the Calabi–Yau four-fold metric, we have already noted that ξ1 = 3 and ξ0 = 1. In
general, the Killing spinors have charge 2, as in Eq. (2.24), precisely when

ξ1 + ξ0 = 4, (4.25)

which is also equivalent to the holomorphic (4, 0)-form �(4,0) = �(3,0) ∧ dz0 having
charge 4. As shown in Appendix B of [32], in general the contact volume is a function
of the Reeb vector field. In our case the contact volume of Y7 is given by the general
formula

Vol(Y7)[ξ1, ξ0] = 1

ξ0
Vol(Y5)[ξ1], (4.26)

where Y5 denotes the five-manifold link of CY3. Using ξ1 = 3 for a Sasaki–Einstein
metric, (4.26) implies the relation Vol(SE7) = Vol(SE5) between Sasaki–Einstein vol-
umes. Notice that ξ0 = 1 gives the expected scaling dimension 	(O) = 1

2 of a free
chiral field.17

Let us now consider the IR solution corresponding to the deformation by λO p. The
scaling dimension of O necessarily changes from 	(O) = 1

2 to 	(O) = 2/p. Since
the coordinate z0 gives rise to the Kaluza–Klein mode leading to this BPS operator,
this means the charge of z0 under the Reeb vector field at the IR fixed point should be

17 There is a factor of 1
2 in going from the geometric scaling dimension under the Euler vector to the scaling

dimension 	 in field theory, cf. Eq. (2.31) of [41].
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ξ0 = 4/p. From (4.25) we thus have ξ1 = 4(p − 1)/p. We then compute the contact
volumes

Vol(Y (p)
7 ) = 1

ξ0
Vol(Y5)[ξ1] = 1

ξ0

(
ξ1

3

)−3

Vol(Y5)[3]

= 27p4

256(p − 1)3
Vol(SE7). (4.27)

Here we have used that the volume of a contact five-manifold is homogeneous degree
−3 in the Reeb vector field [32,42]. Taking the square root and using our free energy
formula (3.18), we precisely reproduce the field theory result (4.23)!18

We conclude by recording that the Reeb vector field (4.24) at the IR fixed point is

ξ = 4(p − 1)

3p
∂ϕ +

4

p
∂ϕ0 . (4.28)

This will be crucial in the following sections when we consider the appropriate boundary
conditions for the ODEs (4.11).

4.4. The Corrado–Pilch–Warner solution (again). Before moving on to the gravity dual
of the cubic p = 3 deformation, let us consider again the explicit p = 2 Corrado–Pilch–
Warner solution. The analysis in the previous section implies that the Reeb vector field
should be

ξ = 4∂ψ = 2

3
∂ϕ + 2∂ϕ0 , (4.29)

where ψ is the coordinate in (4.13). This fact is very closely related to the appropriate
boundary conditions one needs to impose on the ODEs (4.11) in order to obtain a good
supergravity solution. For the explicit solution in Sect. 4.2, the coordinate r ∈ [0, 2

√
2],

and by definition ∂ϕ0 is the Killing vector field that vanishes at r = 0, while ∂ϕ vanishes at
r = 2

√
2. Let us see how this works precisely. Without loss of generality we henceforth

set

γ = 3. (4.30)

Near to r = 0, we may use f (0) = 2γ, α(r) = 2−1/4r−1/2 + O(r1/2) to compute

‖A∂ψ + B∂τ‖2 |r=0 = 1

16
(A + 2γ B)2 . (4.31)

This vanishes only if A = −2γ B, so that the vanishing vector field at r = 0 is

∂ϕ0 ∝ −2γ ∂ψ + ∂τ . (4.32)

To determine the proportionality constant we need to examine the rate of collapse.
Introducing r = 4

√
2R2, we have near to r = 0 that α2

16 dr2 = dR2[1 + O(R2)]. Thus

18 Notice for p ≥ 4 this is a somewhat formal agreement, since the IR fixed point is not expected to exist
due to the unitarity bound, as explained above.
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R measures geodesic distance from R = 0, to leading order, and if ∂ϕ0 is such that ϕ0
has period 2π and ∂ϕ0 vanishes at R = 0, then the metric will be smooth here only if
‖∂ϕ0‖ = R. Said another way, to leading order near to R = 0 the metric must be the
standard metric dR2 + R2dϕ2

0 on R
2 in polar coordinates (R, ϕ0). We then compute

‖ − 2γ ∂ψ + ∂τ‖2 = γ 2 R2 + O(R4). (4.33)

This fixes

∂ϕ0 = 2∂ψ − 1

γ
∂τ . (4.34)

We may perform a similar analysis near to r = 2
√

2. Introducing 2
√

2−r ≡ 4
√

2Z2,
we have f = 4γ Z2, while near to Z = 0 we have α = 2−3/2 Z−1 + O(Z). Now

‖A∂ψ + B∂τ‖2 = 1

16 · 9

[
9A2 + O(Z2)

]
, (4.35)

so this vector field vanishes at r = 2
√

2 only if A = 0, leading to

∂ϕ ∝ ∂τ . (4.36)

In particular, the coefficient may be computed from α2

16 dr2 = dZ2[1 + O(Z2)] and

‖∂τ‖2 = γ 2

9
Z2 = Z2, (4.37)

where we have used γ = 3 in the last step. This is indeed the expected result, since for
the canonical scaling of γ = 3 the connection term dτ + AKE in the metric (4.13) must
be the contact one-form dϕ + AKE for the original Sasaki–Einstein five-manifold (4.20),
implying that indeed ∂τ = ∂ϕ . The collapsing part of the metric near to r = 2

√
2 is then

dZ2 + Z2((dτ + AKE)
2 + gKE). This locally is precisely the CY3 conical metric, giving

a smooth collapse at Z = 0 if and only if the Kähler–Einstein metric is the standard
metric on CP

2. More generally, r = 2
√

2 is an S1 locus of CY3 cone singularities.
To summarize, putting (4.34) together with ∂τ = ∂ϕ we have shown

2∂ψ = ∂ϕ0 +
1

3
∂ϕ. (4.38)

Recalling that the Reeb vector field is ξ = 4∂ψ , we have thus shown

ξ = 4∂ψ = 2

3
∂ϕ + 2∂ϕ0 . (4.39)

This precisely coincides with (4.29), which was derived in the previous section based
only on topological and scaling arguments.
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4.5. Cubic deformations. We may now use precisely the same arguments as the previous
section to deduce the appropriate boundary conditions for the ODEs (4.11) in the case
of cubic p = 3 deformations. The Reeb vector field is now

ξ = 4∂ψ = 8

9
∂ϕ +

4

3
∂φ0 , (4.40)

where by definition again ∂φ0 and ∂ϕ are the vanishing vector fields, while ψ is the
coordinate in our metric (4.13).

Let us begin by considering the behaviour near to r = 0. Suppose that α(r) =
wrν + o(rν), with w a non-zero constant. Then the first ODE in (4.11) implies

(log f )′ ∼ −w2

2
r1+2ν, (4.41)

which leads to the leading order solution

f (r) ∼ A0 exp

[
−w2r2(1+ν))

4(1 + ν)

]
, (4.42)

where A0 is a constant. The second ODE in (4.11) is then to leading order

γ ∼
A0wrν(−ν + w2r2(1+ν)) exp

[
−w2r2(1+ν))

4(1+ν)

]
√

1 + w2r2ν(1 + r2)
. (4.43)

For ν > 0 the right hand side tends to zero as r → 0, which is a contradiction. This is
also the case for ν = 0. On the other hand, f (r) blows up exponentially at r = 0 unless
ν > −1. Since we do not want the size of the Kähler–Einstein metric to blow up on Y7,
a regular solution must hence have −1 < ν < 0. Given this, to leading order the last
equation becomes

γ ∼ −A0νw
(

r−2ν + w2
)−1/2 r→0−→ −A0ν. (4.44)

Thus we conclude that 3 = γ = −A0ν. Note that A0 > 0, and that the metric (4.13) is
then positive definite only if w > 0.

As in the previous section, introducing r =
(

4(1+ν)
w

)1/(1+ν)
R1/(1+ν) we compute

α2

16
dr2 ∼ w2r2νdr2

16
= dR2, (4.45)

We now determine the vanishing vector field at r = 0, computing

‖A∂ψ + B∂τ‖2 |R=0 = 1

16

(
A − Bγ

ν

)2

, (4.46)

where we have eliminated A0 = −γ /ν. Thus the vector field − 1
ν
∂ψ − 1

γ
∂τ vanishes at

r = 0. To fix the normalization we need the rate of collapse:
∥∥∥∥−1

ν
∂ψ − 1

γ
∂τ

∥∥∥∥
2

= (1 + ν)2

ν2 R2 + o(R2), (4.47)
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near to R = 0. This fixes

∂ϕ0 = 1

1 + ν
∂ψ +

ν

γ (1 + ν)
∂τ . (4.48)

In fact this is already enough to determine ν. Recall that ξ = 4∂ψ is the Reeb vector
field, so we can also write

∂ϕ0 = 1

4(1 + ν)
ξ +

ν

γ (1 + ν)
∂τ . (4.49)

Since the coordinate z0 on C has charge 2/p under ξ , we thus conclude that in general

1 = 1

4(1 + ν)
· 4

p
, (4.50)

so that

ν = −1 +
1

p
. (4.51)

In particular, the Corrado–Pilch–Warner solution has ν = − 1
2 , while for the cubic

deformation we should set ν = − 2
3 . The boundary condition for α(r) near to r = 0 is

in general α(r) ∼ wr−1+1/p. It is important to note that, with this boundary condition
on α(r), the metric is completely smooth near to r = 0. Although α(r) is blowing up,
the function α f/

√
1 + α2(1 + r2) ∼ f (0) = −γ /ν, so that the Kähler–Einstein factor

in (4.13) has finite non-zero size. The remaining Killing vector that is not zero also has
finite length at r = 0, as one sees from (4.46).

We can now similarly analyse the other collapse. This is necessarily at a zero of f (r).
To see this, note that the Kähler–Einstein part of the metric (4.13) collapses at either a
zero of α, or a zero of f (potentially both). Suppose this is at r = r0. If α ∼ υ(r0 − r)η

to leading order, with η > 0, then solving the ODE for f leads to the leading order result

f (r) ∼ A1 exp

[
υ2r0(r0 − r)1+2η

2(1 + 2η)

]
. (4.52)

Thus f (r0) = A1 is in fact non-zero. The second ODE in (4.11) is then consistent near
to r = r0 only if the exponent η = 1, which means that α(r) ∼ υ(r0 − r) is a simple
zero. However, from the metric (4.13) we see that in fact then the entire metric collapses
at r = r0, which does not give the correct topology. So we can rule out α(r) having a
zero at r = r0.

Thus f (r0) = 0. Let us suppose that to leading order

f (r) ∼ q(r0 − r)λ, (4.53)

with λ > 0. Then from the first ODE in (4.11) we obtain

α(r) ∼
√

2λ

r0(r0 − r)
. (4.54)
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Notice that for the Corrado–Pilch–Warner solution we have λCPW = 1, and this leading
order solution for α(r) near to r = r0 is in fact the exact solution. For our cubic p = 3
solution α(r) must instead interpolate between r−2/3 behaviour near to r = 0 and
(r0 − r)−1/2 behaviour near to r = r0. The second ODE again fixes the exponent λ = 1
for consistency near to r = r0, and we conclude that

f (r) ∼ q(r0 − r), (4.55)

α(r) ∼
√

2

r0(r0 − r)
, (4.56)

near to r = r0. Moreover, the second ODE then fixes

γ = 3qr0

2
√

1 + r2
0

. (4.57)

Finally, we turn to looking at the vanishing vector field. Writing r0 − r ≡ 2r0W 2,
we find that α2dr2

16 ∼ dW 2. Then

‖A∂ψ + B∂τ‖2 = 1

16
A2 + O(W 2), (4.58)

so that the vanishing vector field at the root r = r0 is again proportional to ∂τ . We find
more precisely that, quite remarkably,

‖∂τ‖2 =
(γ

3

)2
W 2 + o(W 2), (4.59)

where we have substituted for q using (4.57). This is exactly the same behaviour as for
the Corrado–Pilch–Warner solution near to this root. Since this collapsing vector field
is by definition ∂ϕ , we again conclude that

∂τ = ∂ϕ. (4.60)

Again, this had to be the case for global reasons associated to the form of the connection
one-form appearing in the metric. Again one finds that r = r0 is an S1 family of CY3
cone singularities, with the analysis being identical to that for the Corrado–Pilch–Warner
solution in the previous section.

This completes our analysis of the regularity conditions. Setting γ = 3, we have
shown that the Reeb vector field is

ξ = −4ν

3
∂ϕ + 4(1 + ν)∂φ0 . (4.61)

Using the fact that ν = −1 + 1
p , this precisely agrees with our topological analysis in

Sect. 4.3, and in particular the formula (4.28).
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4.6. Summary and numerics. We may summarize the results of the previous sections as
follows:

The gravity dual to the infrared fixed point of a deformation of a CY3 × C back-
ground by the operator λO p may be obtained by solving the coupled set of ODEs
for α(r), f (r):

f ′ = −rα2

2
f,

(rα′ − r2α3) f√
1 + (1 + r2)α2

= −3.
(4.62)

The boundary conditions are that near to r = 0 we have α(r) ∼ wr−1+1/p, with
w > 0 a constant. Using the second ODE above this implies that f (0) = 3p/(p−
1). Then near to r = r0, for some r0 > 0, we must impose that f (r) ∼ q(r0 − r),

where the ODEs imply that α(r) ∼ √
2/r0(r0 − r) and q = 2

√
1 + r2

0/r0. With
these boundary conditions we obtain a smooth supergravity solution, up to the
expected S1 locus of CY3 singularities along r = r0. When the CY3 is simply
flat C

3, in particular we obtain a completely smooth N = 2 supergravity solution
with the topology AdS4 × S7.

The Corrado–Pilch–Warner solution precisely solves this problem for p = 2, and
physical arguments imply there should also be a solution for p = 3. We have not
been able to find this solution analytically, but it is straightforward to solve the ODEs
numerically with the above boundary conditions.

We first change the variable to r = R3, and then solve the second order ODE (4.16)
in a Taylor expansion in R, around R = 0, up to some large order. Using the constraint
that f (0) = 3p/(p − 1) = 9/2 we find

f (R) = 9

2
− cR2 − c2

9
R4 +

2187 − 128c3

3888
R6 +

19683c + 1264c3

104976
R8 + O(R10),

(4.63)

where c is an arbitrary integration constant. This then implies

α(R) = 2

3

√
2

3
c1/2 R−2 +

4

27

√
2

3
c3/2 − (2187 − 224c3)

1944
√

6
c−1/2 R2 + O(R4).

(4.64)

Thus α(r) has the correct behaviour α(r) ∼ wr−2/3, where we identify the constant
w = √

8c/27.
We then have a numerical shooting problem: for each choice of integration constant

c, we solve the second order ODE (4.16) (or equivalently the coupled first order system),
with initial Taylor expansion (4.63). We simply require that f (r0) = 0 for some r0 > 0.
From the analysis in the previous section, the ODEs themselves imply that a zero of
f (r) is automatically a simple zero.

We find that there exists a point r0 > 0 with f (r0) = 0 for the choice

c � 2.4998. (4.65)
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Fig. 1. Numerical plot of the function f (R) with integration constant c � 2.4998. Note that f (0) = 9/2 and
f (R) decreases monotonically to zero at R = R0, where R0 � 1.16

The resulting plot of the function f (R), with R = r3, is shown in Fig. 1. Smaller
values of c lead to f (R) remaining positive, while for c > 2.4998 we find the numerics
becomes highly unstable. Indeed, the numerics is slightly unstable near the zero of f
for c = 2.4998. As a cross check that we really do have a zero, we note that at a zero of
f (R) we necessarily have

f ′(R0) = −
6
√

1 + R6
0

R0
. (4.66)

In Fig. 2 we numerically plot the function f ′(R) + 6
√

1+R6

R , which should tend to zero
at R = R0.

Of course, it is quite tantalizing that the numerical value of c is so close to 5/2, perhaps
suggesting the possibility of an analytic solution, or at least an analytic explanation of
c = 5/2. We leave this question open.

5. Conclusions

The main result of this paper is the determination of the necessary and sufficient con-
ditions on supersymmetric solutions of D = 11 supergravity that are dual to N = 2
three-dimensional superconformal field theories. The eleven-dimensional metric is taken
to be a warped product of AdS4 with a seven-dimensional Riemannian metric, and we
have allowed for the most general four-form G consistent with SO(3, 2) symmetry.
We showed that generically the supersymmetry conditions may be formulated in terms
of a canonical local SU (2)-structure on the seven-dimensional manifold Y7. The well-
known Freund–Rubin AdS4 × Y7 solutions where Y7 is Sasaki–Einstein arise as a spe-
cial case, characterized by an SU (3)-structure. For solutions with non-zero M2-brane
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Fig. 2. Numerical plot (with integration constant c � 2.4998) of the function f ′(R)+ 6
√

1+R6
R , which should

tend to zero at R = R0 � 1.16

charge, we showed that many geometrical and physical properties of Y7 are captured
by a contact structure, elaborating on the results presented in [26]. We also recovered
the class of general solutions with vanishing M2-brane charge, previously discussed
in [25].

By imposing a single additional requirement, that a certain vector bilinear is a
Killing vector, we reduced the conditions to solving a second order non-linear ODE.
The seven-dimensional metric on Y7 is then fully specified by the choice of a (local)
four-dimensional Kähler–Einstein metric, and any solution to this ODE. We managed
to find an analytic solution of the ODE, and showed that this reproduces a class of
solutions found originally in [21]. In addition, using a combination of analytic and nu-
merical methods, we have discovered a further solution to our ODE, yielding a class of
new supersymmetric AdS4 solutions with non-trivial four-form flux. These can be inter-
preted as holographically dual to certain cubic superpotential deformations of N = 2
Chern–Simons gauge theories. When the Kähler–Einstein metric is chosen to be that
on CP

2, the seven-dimensional metric is a smooth (non-Einstein) metric on S7, dif-
ferent from that of [21]. We suspect that there are no further regular solutions in this
class.

Our work may be regarded as providing the foundation for studying more general
aspects of N = 2 three-dimensional superconformal field theories with M-theory duals.
For example, we expect that the geometric characterization of solutions we presented
may be used to attack general problems, such as the gravity dual of F-maximization,
similarly to the developments in [29,32]. It is also clear that using our results it will be
possible to construct a consistent Kaluza–Klein truncation to four dimensions, extending
that in [44]. The AdS4 solutions dual to beta-deformations [45,46] of N = 2 field
theories must solve the equations that we presented, and it would interesting to verify
this explicitly. Of course, it would also be very interesting to use our general equations
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as a method for finding new solutions (perhaps numerically), outside the classes that
have been discovered so far.19 These are all exciting directions for future work.
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A. Some Useful Identities

In this appendix we collect a number of useful identities that have been used repeatedly
to derive the results presented in the main text.

From the algebraic equation in (2.8) one can derive the following useful identities:

(
χ̄c

i Cχc
j + χ̄iCχ j

)
− im

3
e−3	χ̄c

i Cχ j +
1

2
∂m	χ̄

c
i [C, γm]−χ j

+
1

288
Fmnpqe−3	χ̄c

i [C, γmnpq ]+χ j = 0, (A.1)

(
χ̄c

i Cχc
j − χ̄iCχ j

)
+

1

2
∂m	χ̄

c
i [C, γm]+χ j +

1

288
Fmnpqe−3	χ̄c

i [C, γmnpq ]−χ j = 0,

(A.2)

where C ∈ Cliff(7) is an arbitrary element of the Clifford algebra and [, ]± denotes the
(anti)-commutator. Similarly we note

(
χ̄c

i Cχ j − χ̄iCχc
j

)
+

im

3
e−3	χ̄iCχ j − 1

2
∂m	χ̄i [C, γm]−χ j

− 1

288
Fmnpqe−3	χ̄i [C, γmnpq ]−χ j = 0, (A.3)

(
χ̄c

i Cχ j + χ̄iCχc
j

)
+

1

2
∂m	χ̄i [C, γm]+χ j +

1

288
Fmnpqe−3	χ̄i [C, γmnpq ]+χ j = 0.

(A.4)

Similar identities exist in the alternative basis (2.12).
From the Fierz identity for the Cliff(7) algebra,

ξ̄1ξ2 ξ̄3ξ4 = 1

8

[
ξ̄1ξ4 ξ̄3ξ2 + ξ̄1γmξ4 ξ̄3γ

mξ2 − 1

2! ξ̄1γmnξ4 ξ̄3γ
mnξ2

− 1

3! ξ̄1γmnpξ4 ξ̄3γ
mnpξ2

]
, (A.5)

where ξa, a = 1, 2, 3, 4, are arbitrary Spin(7) spinors, we derive the useful identity

ξ̄ c
1γ

mξ2 ξ̄
c
2γmξ4 = ξ̄ c

1 ξ4 ξ̄
c
2 ξ2 − ξ̄ c

1 ξ2 ξ̄
c
2 ξ4. (A.6)

19 These include, for example, the gravity duals of general N = 2 marginal deformations [47].
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B. SU(2)- and SU(3)-Structures in Dimension d = 7

In the main text we have presented our results, summarized in the equations in Sect. 2.6,
in terms of an SU (2)-structure. This is defined by the three one-forms E1, E2, E3, and
three SU (2)-invariant two-forms J1, J2, J3. In arguing that the conditions we write are
sufficient, it is also convenient to think of this in terms two SU (3)-structures, defined
by the Killing spinors χ±. In this appendix we present explicit formulas for the spinor
bilinears in terms of both SU (2)- and SU (3)-structures.

B.1. SU (2)-structure. Recall that the SU (2)-structure is specified by two spinorsχ1, χ2,
or equivalently the linear combinations χ± ≡ 1√

2
(χ1 ± iχ2) defined in (2.12). Here we

choose to use χ± as our basis.
We then have the following zero-form bilinears:

χ̄+χ+ = χ̄−χ− = 1,

χ̄+χ− = 0,

S ≡ χ̄c
+χ+ = (χ̄c−χ−)∗,

ζ ≡ iχ̄c
+χ− = m

6
e−3	,

(B.1)

one-form bilinears:

K ≡ iχ̄c
+γ(1)χ− = ‖ξ‖E1,

L ≡ χ̄−γ(1)χ+ = S

|S|

(
i
|S|
‖ξ‖ E1 +

√
1 − ‖ξ‖2 E2 − i

ζ
√

1 − ‖ξ‖2

‖ξ‖ E3

)
, (B.2)

P ≡ −χ̄+γ(1)χ+ = χ̄−γ(1)χ− = ζ

‖ξ‖ E1 +
|S|√1 − ‖ξ‖2

‖ξ‖ E3,

two-form bilinears:

V± ≡ 1

2i

[
χ̄+γ(2)χ+ ± χ̄−γ(2)χ−

]
,

V+ =
√

1 − ‖ξ‖2 J2,

V− = ζ J3 +
1

‖ξ‖ E2 ∧
(
|S|

√
1 − ‖ξ‖2 E1 − ζ E3

)
,

χ̄c
+γ(2)χ− = −J3 + ‖ξ‖E2 ∧ E3 − i

√
1 − ‖ξ‖2 J1,

(B.3)

and three-form bilinears:

W± ≡ 1

2

[
χ̄c

+γ(3)χ+ ± (
χ̄c−γ(3)χ−

)∗]
,

Re

[ |S|
S

W−
]

= −
√

1 − ‖ξ‖2 J3 ∧ E2,

Im

[ |S|
S

W−
]

= −J3 ∧
(

|S|
‖ξ‖ E1 − ζ

√
1 − ‖ξ‖2

‖ξ‖ E3

)
+ |S|E123,
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Re

[ |S|
S

W+

]
= 1

‖ξ‖ J1 ∧
(
|S|

√
1 − ‖ξ‖2 E1 − ζ E3

)
+ ζ J2 ∧ E2,

Im

[ |S|
S

W+

]
= −J1 ∧ E2 − ‖ξ‖J2 ∧ E3,

Im
[
χ̄c

+γ(3)χ−
] = |S|J2 ∧ E2 − 1

‖ξ‖ J1 ∧ (ζ
√

1 − ‖ξ‖2 E1 + |S|E3),

iχ̄+γ(3)χ+ = ‖ξ‖J3 ∧ E1 − E123 + |S|J1 ∧ E2

+
1

‖ξ‖ J2 ∧
(
ζ
√

1 − ‖ξ‖2 E1 + |S|E3

)
. (B.4)

Notice that the two-forms and three-forms above are an incomplete list – we have in-
cluded only those bilinears that are referred to explicitly in the text.

B.2. SU (3)-structures. Recall that we defined the two non-canonical SU (3)-structures
as real vectors K± ≡ χ̄±γ(1)χ±, real two-forms J± ≡ −iχ̄±γ(2)χ±, and complex
three-forms �± ≡ χ̄c±γ(3)χ±. Then we have the one-form bilinears

K+ = −K− = −P, (B.5)

two-form bilinears:

J± = V+ ± V−, (B.6)

and three-form bilinears:

�+ = W+ + W−, �− = (W+ − W−)∗. (B.7)

C. The Sasaki–Einstein Case

In this appendix we study the case in which the three one-forms K ,Re S∗L , Im S∗L are
linearly dependent. When they are linearly independent we have an SU (2) structure,
and in an open set we can then introduce corresponding coordinates, as described in
Sect. 2.5. Since these one-forms are derived from spinor bilinears, linear dependence
implies we have an SU (3) structure. Focusing on the m �= 0 case for clarity, we will prove
that the only solutions for which we have a global SU (3) structure are Sasaki–Einstein.

In order to proceed, we impose the linear relation

aK + b Re S∗L + c Im S∗L = 0, (C.1)

with a, b, c not all zero. Making use of the Fierz identity in (A.6) it is straightforward to
compute the dot products of each of K ,Re S∗L , Im S∗L into this equation. An analysis
of the resulting three equations then implies that at least one of |S| = 0 or ‖ξ‖ = 1
must hold. In particular, if |S| = 0 then necessarily a = 0, while if ‖ξ‖ = 1 then
a = c(ζ 2 − 1). The following analysis then treats these cases in turn.

If |S| = 0 then of course also S = 0. The bilinear equation (2.25) then implies
that L = 0 and hence in particular that the one-form χ̄1γ(1)χ1 = 0. This says that χ1
defines a G2 structure, rather than an SU (3) structure, and hence that χ1 satisfies a
reality (Majorana) condition χ1 = μχc

1 . The scalar bilinears determine that μ = −i/ζ ,



N = 2 Supersymmetric AdS4 Solutions of M-theory 523

and since |μ|2 = 1 we conclude that ζ = 1 and the warp factor is constant e3	 = m/6.
Finally, the bilinear equation (2.29) and its χ− analogue imply

e3	 � F = d
(

i e6	χ̄1γ(2)χ1

)
− 6e6	Im

[
χ̄c

1γ(3)χ1
]
, (C.2)

which in turn immediately implies that F = 0. This is because the Majorana condition
χ1 = −iχc

1 implies that the two-form bilinear χ̄1γ(2)χ1 = 0 (there are no G2-invariant
two-forms), while the three-form bilinear χ̄c

1γ(3)χ1 is real (corresponding to the unique
G2-invariant three-form). We conclude that the warp factor is constant and F = 0, so
that the Killing spinor equation for χ1 (2.8) leads to weak G2 holonomy and hence an
Einstein metric. The second Killing spinor χ2 (for which the analysis is essentially the
same) then of course leads to a Sasaki–Einstein manifold.

Alternatively, if ‖ξ‖ = 1 then we immediately have Re S∗L = 0 by computing the
square length of the latter using (A.6). But since also a = −c|S|2 follows from linear
dependence, we also have the additional relation Im S∗L = |S|2 K from (C.1). There is
thus only one linearly independent vector, as one expects since we must have an SU (3)
structure. Using the exterior derivatives of the one-form bilinears one can then show
that where S is non-zero we have that K is closed, dK = 0 (recall that K is Killing in
any case, so this implies that K is parallel). By contracting K into the bilinear equation
for dK and making use of a Fierz identity one then proves that d	 = 0. Given that
‖ξ‖2 = |S|2 + ζ 2 = 1 by assumption, this immediately implies that S is constant, and
hence that L = 0. But then all vectors are identically zero, and we have a contradiction.
Thus it must be that S = 0, and we hence reduce to the previous case, which implies
that Y7 is Sasaki–Einstein with F = 0 and 	 constant.

D. The Case m = 0, Im
[
χ̄1χ2

] = 0

In Sect. 2.2 we noted that when m = 0 we can no longer conclude that Eq. (2.15) holds.
In this appendix we study the case m = 0 but Im [χ̄1χ2] not being identically zero, in
particular showing that there are no regular solutions in this class. Note this is different
from the class of m = 0 geometries discussed in Sect. 2.7, and cannot be obtained by
taking the m → 0 limit of the general m �= 0 equations in the main text.

We begin by defining

h ≡ Im [χ̄1χ2] , (D.1)

which is a function on Y7. Equation (2.19) now becomes

Im K = 1

2
dh, (D.2)

while the imaginary part of Eq. (2.20) reads

∇(m(Im K )n) = −2hg7 mn . (D.3)

Combining the last two equations gives

∇m∇nh = −t2hg7 mn, (D.4)

where t = 2. Notice that Im K is a particular type of gradient conformal Killing vector.
Equation (D.4) was studied by Obata in [43]. In particular, he proved that if a complete
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Riemannian manifold of dimension d ≥ 2 admits a non-constant function h satisfying
(D.4), where t is (without loss of generality) a positive constant, then it is necessarily
isometric to a round sphere of radius 1/t . Thus we immediately conclude that if h is not
identically zero, Y7 is isometric to the round S7 with radius 1/2.

Now as in Sect. 2.7, the Bianchi identity and equation of motion for F imply that F
is harmonic on the conformally rescaled manifold (Y7, g̃7), where g̃7 = e−6	g7. But
in the case at hand, Y7 = S7 and the Hodge theorem implies there are no harmonic
four-forms since H4(S7; R) = 0. Thus for a non-singular solution in fact F = 0, and
hence the M-theory four-form G = 0. The equation of motion (2.2) then implies that
the eleven-dimensional spacetime must be Ricci-flat, but this is a contradiction.
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