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1 Introduction

Starting with the work of [1], it has been appreciated that the technique of localisation

provides a powerful tool for performing exact non-perturbative computations in super-

symmetric field theories defined on curved manifolds. While [1] computed the exact path

integral of four-dimensional N = 2 gauge theories on a round four-sphere, later the atten-

tion shifted to three-dimensional theories. The authors of references [2–4] computed the

partition function of general N = 2 superconformal gauge theories, with Chern-Simons
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terms and matter in arbitrary representations, placed on the round three-sphere. If the

theory has an R-symmetry, then it is possible to define it on more general manifolds, while

preserving supersymmetry, by turning on a background non-dynamical gauge field coupled

to the R-symmetry current [5–9]. The first examples of such backgrounds were considered

in [10, 11], where the exact partition function of supersymmetric gauge theories defined

on different squashed three-spheres was computed. It was later shown in [12] that the

“ellipsoid” partition function of [10] extends to a very general class of supersymmetric

three-dimensional geometries. An asymptotically locally AdS (AlAdS) supergravity solu-

tion dual to the construction of [10] was presented in [13], and various extensions were

obtained in [14–16].

In this paper we will start exploring the gauge/gravity duality for four-dimensional

N = 1 superconformal field theories defined on curved manifolds, with the aim of compar-

ing gravity calculations with exact field theory results. This problem in four (boundary)

dimensions turns out to be more complicated than in one dimension lower for different

reasons. When the new minimal or conformal supergravity formulations of rigid super-

symmetry are used, unbroken supersymmetry in Euclidean signature implies that the field

theory must be defined on a Hermitian manifold [6, 7]. However, exact calculations of the

path integral using localisation in field theories on such manifolds have been less devel-

oped than their three-dimensional analogues so far (but see the recent [17]). Moreover, in

four dimensions the path integral generically has logarithmic divergences, and extracting

physical information from its finite part is more subtle than in three dimensions due to a

number of ambiguities.

These issues are under better control if one considers supersymmetric manifolds with

topology S1 × S3. In these cases the path integral with periodic boundary conditions is

expected to be proportional to a supersymmetric index [18–20], refined with fugacities

related to a choice of complex structure on S1 × S3 [21]. For superconformal theories,

the index may be equivalently defined as the generating function of operators weighted by

their fermion number, so that the contributions from the long multiplets cancel out, and

as shown in [19] this may be obtained by putting the theory on R × S3. In [22, 23] the

superconformal index was successfully compared with the spectrum of Kaluza-Klein modes

dual to the protected operators being counted by the index. However, from the perspective

of the Euclidean path integral, it is more natural to compare the field theory partition

function with the holographically renormalised supergravity on-shell action [24, 25]. In the

large N limit the index scales like O(N0) [20], while the on-shell action scales like O(N2).

Therefore, it would appear that the latter cannot capture new information about the field

theory, apart from the Weyl anomaly [26]. When the field theory is placed on a round (i.e.

conformally flat) S1×S3, the gravity dual is simply global AdS5 with Euclideanized time,

and the renormalised gravity action has been argued to reproduce the Casimir energy of

the field theory1 on S3 [25, 27]. More generally, the on-shell action is expected to capture

the ratio between the path integral and the index, which has been dubbed “index Casimir

1At least when the field theory is N = 4 super Yang-Mills, and the Casimir energy can be computed at

weak coupling.
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energy” in references [28–30]. This quantity is sensitive to the regularisation of the path

integral, and will be discussed in more detail towards the end of the paper.

On the gravity side, constructing five-dimensional supersymmetric AlAdS solutions is

technically more difficult than obtaining analogous solutions in one dimension less. One

reason is that in odd dimensions the asymptotic form of the fields (in a Fefferman-Graham

coordinate system [31]) contains logarithmic terms, suggesting that analytic solutions are

much harder to find. Ref. [32] presented an AlAdS solution that is special in this regard,

as the logarithmic terms do not arise. This solution has a conformal boundary with the

topology of R× S3, however its isometry group is R× SU(2), with the non-compact time

being generated by a null (in the boundary) Killing vector, hence it is not possible to

analytically continue it to Euclidean signature, while keeping a real metric.

Although in order to compare with localisation results we are ultimately interested

in Euclidean conformal boundaries, we will start working with minimal five-dimensional

gauged supergravity in Lorentzian signature. This will allow us to construct a super-

symmetric solution utilising the formalism of [33], thus avoiding complications arising in

Euclidean signature, where we would have to deal with a complex graviphoton field from

the outset.

The solution that we will present is a one-parameter family of supersymmetric defor-

mations of AdS5, whose conformal boundary includes a biaxially squashed three-sphere

with SU(2) × U(1) symmetry, as well as a non-trivial gauge field. It preserves two of the

eight supercharges of minimal gauged supergravity. Globally, the space-time is equivalent

to AdS5, with topology R × R4, where the first factor is a time direction, and the R4

factor arises from the three-sphere of the boundary smoothly shrinking to zero size in the

interior. In particular, the space-time does not have a horizon. The metric, gauge field,

and Killing spinor of the solution restricted to the asymptotic boundary reduce precisely

to a background [34] solving the charged conformal Killing spinor equation [8], as well as

the new minimal version of rigid supersymmetry in curved space [5]. Therefore we in-

terpret our solution as the gravity dual to an N = 1 superconformal gauge theory on a

curved, non conformally-flat, background preserving two supercharges. Another feature

of this background is that the aforementioned logarithmic divergences do not appear in

the partition function [34]. Our five-dimensional solution can be uplifted either to type

IIB or to eleven-dimensional supergravity, with the specific dual field theory depending

on the choice of internal manifold Y . In the uplift to type IIB supergravity [35, 36], Y

can be a Sasaki-Einstein five-manifold, as well as a more general manifold arising from the

classification of [37]. In the uplift to eleven-dimensional supergravity [38], Y can be any of

the manifolds in the classification of [39].

A main feature of the solution is that although it has been constructed using a combi-

nation of perturbative and numerical analysis, all the quantities of physical interest, namely

the on-shell action and the holographic conserved charges, have been obtained analytically

as a function of the boundary squashing parameter. Upon a simple Wick rotation, and

compactification of the Euclidean time, the boundary metric describes a squashed S1×S3,

and the background gauge field becomes complex, consistently with the results of [6, 7].

While the boundary metric remains real, in the bulk both the gauge field and the metric
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become complex. However, the renormalised on-shell action is real and we show that it

reduces to a boundary term. Moreover, it receives a crucial contribution from the Chern-

Simons term, with the result depending on the gauge choice for the graviphoton. We will

explain that demanding the Killing spinors (on the boundary as well as in the bulk) to be

invariant with respect to a specific choice of Killing vector ∂/∂t generating time transla-

tions, fixes the gauge uniquely. This is necessary in order to have well-defined spinors after

performing the Wick rotation, and on the field theory side it is required for defining the

Euclidean path integral with supersymmetric boundary conditions [5].

We will show that the holographic charges obey relations consistent with the rigid

supersymmetry algebras of the field theories defined on the boundary geometry. Moreover,

in the Euclidean setting, we will see that the renormalised on-shell action reproduces a

suitably defined Casimir energy, arising from the supersymmetric path integral, up to

terms that we will propose to be removable by a choice of finite local counterterms. In

particular, the Casimir energy depends linearly on the complex structure modulus β of the

boundary manifold and the a anomaly coefficient, while we will show that there exists a

choice of finite local counterterm, constructed from the supergravity fields and the complex

structure, which cancels the remainder terms.

The rest of the paper is organised as follows. In section 2 we review the derivation of

the relevant ODE stemming from supersymmetry, following [40]. In section 3 we present

our new solution, combining analytical methods and a numerical integration of the ODE.

Section 4 is devoted to holographic renormalisation and the computation of conserved

charges. In section 4.3 we summarize the main features of the solution. In section 5 we

discuss key properties of the dual field theories, and compare these with the gravity results.

Section 6 concludes summarising our findings and outlining directions for future work. Two

appendices contain technical details on the solution and the holographic quantities.

2 Supersymmetry equations

We begin by presenting the supersymmetry equations of minimal five-dimensional gauged

supergravity, adopting the formalism of [33]. In particular, we will be interested in su-

persymmetric solutions of the time-like class, derived from an ansatz possessing (locally)

SU(2) × U(1) × U(1) symmetry. This leads precisely to the same equations obeyed by

the supersymmetric black hole solutions found in [40], and in this section we will follow

closely the derivation therein. In the next section, we will present a new solution to these

equations. The reader familiar with eq. (2.17) below, or not interested in its derivation,

can safely skip to the next section.

In the conventions of [40], the action for the bosonic sector of minimal five-dimensional

gauged supergravity reads

Sbulk =
1

16πG

∫ [
d5x
√
g

(
R− FµνFµν +

12

`2

)
− 8

3
√

3
A ∧ F ∧ F

]
. (2.1)

Here R denotes the Ricci scalar of the five-dimensional metric gµν , and g = |det gµν |.2 The

graviphoton A is an Abelian gauge field with field strength F = dA. Moreover, G is the

2Our Riemann tensor is defined as Rµνκλ = ∂κΓµνλ + ΓµκσΓσνλ − κ ↔ λ, and the Ricci tensor is Rµν =

Rλµλν .
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five-dimensional Newton constant and ` is a parameter with dimensions of length, related

to the cosmological constant. The equations of motion derived from (2.1) read

Rµν + 2FµρF
ρ
ν + gµν

(
4

`2
+

1

3
FρσF

ρσ

)
= 0 , (2.2)

d ∗ F +
2√
3
F ∧ F = 0 . (2.3)

For most of this paper we will work in Lorentzian signature (−,+,+,+,+), although we

will also discuss an analytic continuation later.

A solution is supersymmetric if there is a non-trivial Dirac spinor ε satisfying

the equation [
∇µ +

i

4
√

3

(
γµ

νλ − 4δνµγ
λ
)
Fνλ −

1

2`

(
γµ − 2

√
3 iAµ

)]
ε = 0 , (2.4)

where γµ generate the Clifford algebra Cliff(1, 4), so {γµ, γν} = 2gµν . Any such solution

uplifts (locally) to a supersymmetric solution of type IIB supergravity [35, 36] or of eleven-

dimensional supergravity [38]. Although global aspects of this uplift can be subtle [15], for

the solution that we will discuss the gauge field A will be a globally defined one-form on

the five-dimensional space, and therefore there are no global obstructions to uplifting it to

ten or eleven dimensions.

Reference [33] showed that solutions to (2.4) possess a Killing vector V (constructed as

bilinear in the spinor ε), and fall into two classes, depending on whether this is everywhere

null, or timelike at least in some open set. We will focus on the timelike class, which is

further specified by a Kähler metric ds2
B on the four-dimensional “base” B transverse to

V . Thus, in coordinates such that V = ∂/∂y, the five-dimensional metric takes the form

ds2 = −f2(dy + ω)2 + f−1ds2
B , (2.5)

where f and ω are a positive function and a transverse one-form, respectively. The

base is characterized by a Kähler form X1, inducing a complex structure (X1)a
b, and

a complex two-form Ω, which is (2, 0) with respect to the complex structure and satisfies

dΩ + iP ∧ Ω = 0, where P is the Ricci one-form potential. Namely, given the Ricci cur-

vature two-form Rab = 1
2Rabcd(X

1)cd, where Rabcd is the Riemann tensor of the Kähler

metric, the Ricci potential is defined by R = dP . Equivalently, splitting Ω into its real

and imaginary parts as Ω = X2 + iX3, we have a triplet of real two-forms XI , I = 1, 2, 3.

Choosing volB = −1
2X

1∧X1 as orientation on B, the XI are anti-self-dual: ∗BXI = −XI ,

where ∗B denotes the Hodge star on B.3

The gauge field of a supersymmetric solution in the timelike class is specified by the

geometry and reads

F =

√
3

2
d

[
f(dy + ω) +

`

3
P

]
. (2.6)

3The XI also satisfy the algebraic relations XI
a
cXJ

c
b = −δIJδab + εIJKXK

a
b. Here a, b = 1, . . . , 4

denote tangent space indices on the Kähler base.
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Moreover, denoting by RB the Ricci scalar of ds2
B and introducing G± = f

2 (dω ± ∗B dω),

supersymmetry also implies that

f−1 = − `
2

24
RB , (2.7)

and

G+ = − `
2

(
R− RB

4
X1

)
, (2.8)

while G− may be determined using the Maxwell equation.4 For more details we refer

to [33].

Similarly to [40], we will consider the following SU(2)left ×U(1)right symmetric ansatz

for the metric

ds2
B = dρ2 + a2(ρ)(σ̂2

1 + σ̂2
2) + b2(ρ)σ̂2

3 , (2.9)

where σ̂1, σ̂2, σ̂3 are SU(2) left-invariant one-forms parameterized by coordinates θ, φ, ψ̂,

and ρ is a radial coordinate.5 Specifically, we define

σ̂1 = − sin ψ̂ dθ + cos ψ̂ sin θ dφ ,

σ̂2 = cos ψ̂ dθ + sin ψ̂ sin θ dφ ,

σ̂3 = dψ̂ + cos θ dφ . (2.10)

Note that these satisfy dσ̂1 = σ̂2 ∧ σ̂3 , dσ̂2 = σ̂3 ∧ σ̂1 and dσ̂3 = σ̂1 ∧ σ̂2 . The hat

on ψ̂ (and the consequent one on the left-invariant one-forms) serves to distinguish this

coordinate from a new one, ψ, that will be introduced later. While at this stage ψ̂ should

be regarded just as a local coordinate, ψ will be an actual Euler angle on S3. The main

motivation for working with this ansatz is that the supersymmetry equations reduce to a

system of ODE’s, which ultimately can be expressed as a single sixth-order ODE for one

function [40]. As we are interested in AlAdS solutions, ρ is related (but, as we will see,

not identical) to a Fefferman-Graham coordinate. The boundary geometry will necessarily

have locally SU(2)left × U(1)right × U(1)y isometry, therefore supersymmetry implies that

the asymptotic metric and gauge field (see section 3.1 for their expression) must be that

of the example in section 4 of [34].

We fix the orientation on B defining volB = a2b σ̂1 ∧ σ̂2 ∧ σ̂3 ∧ dρ, while the five-

dimensional orientation is given by vol5 = f−1dy∧volB. The SU(2)left×U(1)right invariant

4Although the procedure of [33] is constructive once a four-dimensional Kähler basis is given, one should

be aware that not all Kähler bases give rise to supersymmetric solutions. This was first noted in an example

in [41]. We can express the constraint to be satisfied by the Kähler geometry in a general form by observing

that equation (3.24) in [33] has to satisfy the integrability condition Ω ∧ (d− iP∧)Θ = 0 , where Θ is also

defined in [33]. In the specific case of interest for us, this is automatically satisfied.
5Although [40] used right-invariant forms, we will also have a different choice of orientation, so that the

final supersymmetry equations will turn out the same.
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ansatz is completed by taking

X1 = −a2(ρ)σ̂1 ∧ σ̂2 + b(ρ)σ̂3 ∧ dρ ,

Ω = a(ρ)(σ̂1 + i σ̂2) ∧ (dρ+ i b(ρ)σ̂3) ,

ω = Ψ(ρ) σ̂3 ,

P = p(ρ) σ̂3 , (2.11)

where the function a(ρ) is chosen positive. The gauge field (2.6) becomes

F =

√
3

2
d

[
fdy +

(
fΨ +

`

3
p

)
σ̂3

]
. (2.12)

The Kähler conditions then imply that b = 2aa′ and p = 4a′2 + 2aa′′ − 1, where a prime

denotes derivative with respect to ρ, while eq. (2.7) yields

f−1 =
`2

12a2a′
[4(a′)3 + 7a a′a′′ − a′ + a2a′′′] . (2.13)

Imposing (2.8) implies that Ψ obeys the differential equation

Ψ′

2aa′
− Ψ

a2
=
`g

2f
, (2.14)

where we defined

g = −a
′′′

a′
− 3

a′′

a
− 1

a2
+ 4

(a′)2

a2
. (2.15)

Finally, combining the supersymmetry condition (2.14) with the Maxwell equation (2.3),

one can solve for Ψ in terms of a,

Ψ = −`a
2

4

(
∇2f−1 + 8`−2f−2 − `2g2

18
+ f−1g

)
, (2.16)

and eventually derive the equation governing a [40]:(
∇2f−1 + 8`−2f−2 − `2g2

18
+ f−1g

)′
+

4a′g

af
= 0 , (2.17)

where ∇2 is the Laplacian on B. After using the expressions for f and g given above, one

obtains a non-linear, sixth-order equation for a(ρ) with no explicit dependence on ρ.

Any solution to eq. (2.17) gives a supersymmetric solution to minimal five-dimensional

gauged supergravity, preserving at least one quarter of the supersymmetry, namely two real

supercharges. In [40], a simple family of solutions was found,

a(ρ) = α` sinh(ρ/`) , (2.18)

where α is a parameter. For α = 1/2 this yields just AdS5 (of radius `) with a vanishing

Maxwell field, while for α > 1/2 one obtains a charged, rotating black hole with a regular

horizon. In order to obtain a geometry with a horizon, the authors of [40] imposed specific
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boundary conditions on the function a(ρ). Here we will impose different conditions, in

particular we will require that in the interior the space closes off smoothly like Rt × R4,

where the first factor is a time coordinate, precisely as in global AdS5. Another key

difference with respect to the solution of [40] is that the latter is asymptotically AdS, with

a conformally flat boundary Rt × S3
round, while our solution will be asymptotically locally

AdS, with a non conformally flat boundary comprising a squashed S3. Correspondingly,

while the gauge field strength in [40] vanishes asymptotically, in our case it will remain

non-trivial at the boundary.

3 The solution

In this section we study solutions to the sixth-order equation (2.17). We start by obtaining

a general asymptotic solution satisfying the AlAdS condition. Then we analyse the equation

at finite ρ and impose that the solution closes off smoothly in the interior. This will give

a new one-parameter family of solutions. We will show that a solution connecting the

asymptotic and the interior regions exists both by presenting a linearised solution around

the AdS5 background and by providing numerical evidence.

We will set ` = 1 for simplicity; factors of ` can easily be restored by dimensional

analysis (in particular by sending ρ→ ρ/`, y → y/` and a→ a/`).

3.1 Solution in the UV

In the following, we study the sixth-order equation (2.17) perturbatively at large positive

ρ (i.e. in the “UV region”). We assume an asymptotic expansion for the unknown function

a of the type

a(ρ) = a0e
ρ
[
1 +

∑
k≥1

∑
0≤n≤k

a2k,n ρ
n
(
a0e

ρ
)−2k

]

= a0e
ρ

[
1 + (a2,0 + a2,1ρ)

e−2ρ

a2
0

+
(
a4,0 + a4,1ρ+ a4,2ρ

2
) e−4ρ

a4
0

+ . . .

]
, (3.1)

with a0 6= 0. Terms weighted by odd negative powers of a0e
ρ could be included in the

square bracket, but would be set to zero by the differential equation. We solved the

latter perturbatively up to order O(e−11ρ) (included), and found that there are five free

coefficients that determine all the others. Renaming them for convenience, these free

coefficients are a0, a2 ≡ a2,0, c ≡ a2,1, a4 ≡ a4,0 and a6 ≡ a6,0. We display the first few

terms of the solution:

a(ρ) = a0e
ρ + (a2 + cρ)

e−ρ

a0
+

(
a4 +

2− 16a2 − 5c

12
cρ− 2

3
c2ρ2

)
e−3ρ

a3
0

+

(
a6 +

12− 282a2 + 1488a2
2 − 1548a4 − 54c+ 537a2c+ 59c2

972
cρ

− 90− 840a2 − 197c

324
c2ρ2 +

70

81
c3ρ3

)
e−5ρ

a5
0

+ O(e−6ρ) . (3.2)
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As discussed in the previous section, this determines completely the large-ρ form of the

five-dimensional metric and the gauge field F . In the following we provide their expression

at leading order. Before presenting this, we introduce new coordinates (t, ψ) that will prove

particularly natural from a boundary perspective. These are given by

ψ̂ = ψ − 2

1− 4c
t , y = t . (3.3)

Then the five-dimensional metric takes the asymptotic form

ds2 = dρ2 + e2ρ ds2
bdry + . . . , (3.4)

with boundary metric

ds2
bdry = (2a0)2

[
− 1

v2
dt2 +

1

4

(
σ 2

1 + σ 2
2 + v2σ 2

3

)]
, (3.5)

while the gauge field reads

A = Abdry + O(e−ρ) , (3.6)

with boundary value

Abdry =
1

2
√

3

[
dt+ (v2 − 1)σ3

]
. (3.7)

Here, we have introduced the parameter

v2 = 1− 4c . (3.8)

The one-forms σ1, σ2, σ3 are defined in the same way as σ̂1, σ̂2, σ̂3 in (2.10), with ψ̂ replaced

by the new coordinate ψ. We take 0 ≤ θ ≤ π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π, so that θ, φ, ψ

are Euler angles on S3. Then from (3.5) we see that the boundary is a direct product

geometry including a squashed S3, with radius 2a0 and squashing parameter v. Namely,

if we regard S3 as a Hopf fibration over S2, we have that the radius of the U(1) fiber

generated by ∂/∂ψ is rescaled with respect to the S2 radius 2a0 by a factor of v. We will

denote this squashed three-sphere by S3
v . So in these coordinates the boundary metric

describes a direct product R × S3
v ; this will allow us to perform a simple Wick-rotation

later on by just analytically continuing t.

Note that we need c < 1/4 in order to have a Riemannian metric on S3 and avoid

closed timelike curves in the boundary. When c = 0, then v2 = 1 and there is no squashing;

namely, ds2
bdry becomes conformally flat and describes an R × S3 boundary with a round

S3 of radius 2a0. Correspondingly, all ρn terms in (3.2) vanish in this case. However, these

terms are crucial for our purposes, as we are interested in non conformally flat boundaries.

The only other free parameter of the UV solution (3.2) appearing in the leading order

expression of the supergravity fields is a0, which controls the overall size of the boundary.

Since equation (2.17) has no explicit dependence on ρ, we could set a0 to any chosen

non-zero value by performing a constant shift of ρ, followed by a redefinition of the other

parameters in (3.2).6 However, we will not fix this shift symmetry here as it will be

convenient to use it in the next section, when we will study the solution in the interior.

6This is a manifestation of the fact that changes of radial coordinate in the bulk induce conformal

transformations on the boundary.
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An important comment about the gauge potential A is in order. This is determined by

supersymmetry only up to a gauge transformation: from eq. (2.4) we see that a gauge

shift A → A + dΛ just transforms the supersymmetry parameter as ε → e−i
√

3Λ/` ε .

In (3.6), (3.7), we chose the gauge by imposing Aρ = 0 and that the SU(2)× U(1)× U(1)

symmetry is respected; then we fixed the residual freedom to shift A by a term propor-

tional to dt by imposing that the spinor ε is independent of the time coordinate t. This last

property will be very important for us in the following.7 It will prove crucial in section 4

when we will evaluate the supergravity action on-shell, as the Chern-Simons term (2.1)

is not invariant under (large) gauge transformations on a space with boundary, hence the

on-shell action changes when different gauge choices are made.

In appendix A we provide more details about the five-dimensional UV solution, in-

cluding the first few sub-leading terms of the metric and the gauge field, in which the

remaining free parameters a2, a4, a6 appear. In the same appendix, we also show that the

five-dimensional spacetime is AlAdS by recasting the five-dimensional fields in Fefferman-

Graham form.

3.2 Solution in the IR

Having determined the asymptotic behavior of the solution at large ρ, we should now study

how this ends in the interior (i.e. the “IR region”). We will require that the spacetime

shrinks smoothly to zero size, with no horizon being formed. By exploiting the freedom

to shift ρ, we can assume with no loss of generality that this happens at ρ → 0. We also

assume that a(ρ) can be expanded in a Taylor series around ρ = 0 as

a(ρ) = aIR
0 + aIR

1 ρ+ aIR
2 ρ2 + aIR

3 ρ3 + . . . . (3.9)

Although more general ansätze may be considered, we will see that (3.9) is enough to

describe a new one-parameter family of regular solutions. Since we need a → 0 as ρ → 0,

we will choose aIR
0 = 0. Then, expanding equation (2.17) at small ρ, we find that this

requires aIR
1 6= 0, aIR

2 = 0 and [
11(aIR

1 )2 − 8
]
aIR

4 = 0 . (3.10)

We will choose aIR
4 = 0.8 At the following order in the ρ expansion we get[

10 aIR
1 aIR

5 − 3(aIR
3 )2

] [
4(aIR

1 )2 − 1
]

= 0 . (3.11)

7One can see that in this gauge a spinor depending just on the radial coordinate ρ solves equation (2.4).

That the boundary spinor is constant with A chosen as in (3.7) follows from the discussion in [34, section 4].

Our gauge choice is different from the one of [40], which is Ay =
√
3

2
f .

8Choosing instead (aIR1 )2 = 8/11 and aIR4 6= 0 leads to an expansion involving both odd and even powers

of ρ. The corresponding first terms in the expansion of the function f read

f(ρ) =
32

7
ρ2 − 1424

√
22

49
aIR3 ρ4 − 176

√
22

3
aIR4 ρ5 +O(ρ6) ,

so f → 0 when ρ → 0. This is compatible with the presence of a horizon, because f is the norm of the

Killing vector V , and this should become null at the horizon. The fact that gθθ = f−1a2 remains finite is

compatible with a horizon of finite size. We will not study this any further in the present paper.
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Vanishing of either the first or the second factor leads to two distinct families of solutions: if

the first factor is zero then by going on in the perturbative expansion we reconstruct (2.18),

namely the solution of [40], while if it is the second factor that vanishes we obtain a new

family of solutions. So in the following we fix aIR
1 = 1/2 and focus on the latter.9 At higher

orders, we find that all even coefficients aIR
2k are zero, while aIR

3 and aIR
5 are free parameters,

and all the successive coefficients are determined (at least up to the order O(ρ25), where

we stopped the analysis). Actually, of the two free parameters aIR
3 and aIR

5 , only one is

physical. To see this, note [40] that under a rescaling of the coordinates ρ = λ−1ρ̃, y = λ2 ỹ ,

a solution a(ρ) is transformed into another solution ã(ρ̃) = λ a(λ−1ρ̃). This also implies

f̃(ρ̃) = λ2 f(λ−1ρ̃). The transformation has the effect of rescaling aIR
3 by λ−2 and aIR

5 by

λ−4. So we could rescale e.g. aIR
3 at will without changing the five-dimensional solution.

However, for the moment we keep aIR
3 arbitrary; later on we will tune it in order to match

the UV solution described in section 3.1, where the freedom to rescale ρ has already been

fixed by assuming that asymptotically the solution goes like eρ rather than eρ/λ (this also

gives f → 1 in the UV). It will be convenient to trade aIR
5 for a new parameter, ξ, invariant

under rescaling of the radial coordinate:

aIR
5 =

3

5
(1 + 3ξ)(aIR

3 )2 , (3.12)

where the numerical factors are chosen for convenience. Thus ξ parameterizes a one-

parameter family of solutions.

We find that the IR solution is a double series in ρ̃ = (
√
aIR

3 ρ) and ξ, of the form:

a(ρ) =
1√
aIR

3

∑
n≥0

∑
0≤k≤[n2 ]

cn,k ξ
k ρ̃ 2n+1 . (3.13)

We display the first few terms:

a(ρ) =
1√
aIR

3

[
1

2
ρ̃+ ρ̃ 3 +

3(1 + 3ξ)

5
ρ̃ 5 +

6(1− 3ξ)

35
ρ̃ 7 +

3 + 54ξ + 119ξ2

315
ρ̃ 9 +O(ρ̃ 10)

]
.

(3.14)

If ξ = 0 (and choosing aIR
3 = 1/12), (3.14) matches the small ρ expansion of the exact

solution yielding AdS5, which is given by (2.18) with α = 1/2. Hence switching ξ on

corresponds to a deformation of AdS5, showing up in a(ρ) at order O(ρ5).

The IR solution for the function f is

f(ρ) =
1

12aIR
3

[
1− 6ξρ̃2 + 12(2ξ + 3ξ2)ρ̃4 − 8

5
(54ξ + 167ξ2 + 135ξ3)ρ̃6 +O(ρ̃7)

]
, (3.15)

and takes the form of an alternate series with even powers only: for ξ > 0, all the ρ̃4n

terms are positive while all the ρ̃4n+2 are negative. While we omit the expression of Ψ, it

9One can see that the solution with aIR1 = −1/2 is straightforwardly related to the one with aIR1 = +1/2

by sending ρ→ −ρ, aIR3 → −aIR3 , aIR5 → −aIR5 .
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is instructive to look at the form of the five-dimensional metric in the IR:

ds2 = 12
(
1 + 6ξ ρ̃2

)
dρ̃2 + 12ρ̃2σ

2
1 + σ2

2 + σ2
3

4
+

(2 + ξ)v2 − 24aIR
3

2aIR
3 v2

ρ̃2dt σ3

−
[

1

144(aIR
3 )2

− 144(aIR
3 )2 + ξv4 − 12(2 + ξ)aIR

3 v2

12(aIR
3 )2v4

ρ̃2

]
dt 2 + . . . . (3.16)

Here, both the UV parameter v and the IR parameter aIR
3 are functions of ξ. The former

appears because we are performing the change of coordinates (3.3) setting the boundary

metric in a direct product form. We know that when ξ = 0, then v = 1 and aIR
3 = 1/12.

In the next section we will determine both v(ξ) and aIR
3 (ξ) at linear order in ξ. We will

see that the relation is such that at first order in ξ the mixed term dt σ3 disappears. We

see that in the limit ρ→ 0, there is a round S3 shrinking to zero, while the gtt component

of the metric remains finite. This implies that in a neighbourhood of ρ = 0 the solution is

non-singular and the topology of the space-time is R1,4 ' Rt × R4. The gauge field is also

smooth as can be seen from its IR expansion

A =

√
3

2

[(
1

12aIR
3

− 2

3v2
+

12aIR
3 − v2

2aIR
3 v2

ξρ̃2

)
dt− 3ξρ̃2σ3 +O(ρ̃3)

]
. (3.17)

In particular, notice that while the At component is finite in the ρ → 0 limit, the Aψ
component vanishes smoothly at the origin of R4.

The linearised solution to be discussed next will demonstrate that the solution is

smooth for any finite value of ρ, at least when the deformation parameter ξ is small, while

the numerical analysis of section 3.4 will provide evidence that this persists for all the

allowed values of the deformation parameter.

3.3 Linearised solution

In this section, we study the solution analytically at first order in an expansion around

global AdS5. This establishes the existence of a regular solution connecting the UV and

IR asymptotics, at least when this is a small perturbation around AdS5.

For small values of the parameter ξ, our solution is a perturbation of the AdS5 solution

a(ρ) = 1
2 sinh ρ. We can thus linearise the sixth-order equation around this background

and solve for the perturbation. Of the six integration constants that arise, we find that

three are fixed by regularity at ρ = 0 and by the requirement a(0) = 0. A fourth one is

determined by imposing that at large ρ the solution diverges as a ∼ eρ (specifically, this

removes a term going as ρ eρ). So at the linearised level we obtain a two-parameter family

of solutions deforming AdS5. However, the IR analysis in the previous section demonstrates

that this cannot hold at the non-linear level, where only two distinct one-parameter families

of solutions survive, the first being the one of [40], and the other being the new family

parameterized by ξ. In order to determine the latter analytically at the linearised level, we

match the two-parameter linearised solution with the IR solution parameterized by ξ. As

we have imposed that the linearised solution goes like a ∼ eρ at large ρ, the comparison

also fixes the IR parameter aIR
3 (see the discussion in the previous section). We find:

aIR
3 =

1

12
(1− ξ) +O(ξ2) . (3.18)
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In this way, we obtain the solution

a(ρ) =
1

2

(
1 +

ξ

4

)
sinh ρ+

1

2
ξ cosh ρ

[
coth3 ρ log cosh ρ− ρ− 1

sinh(2ρ)

]
+O(ξ2) . (3.19)

It follows a particularly simple expression for f :

f = 1 +
2ξ log cosh ρ

sinh2 ρ
+O(ξ2) , (3.20)

while the one for Ψ is:

Ψ = −1

2

(
1 +

ξ

2

)
sinh2 ρ− ξ

[
1− coth2 ρ

(
2− sinh2 ρ

)
log cosh ρ− 1

2
ρ sinh(2ρ)

]
+O(ξ2).

(3.21)

We also provide the corresponding expression of the five-dimensional supergravity fields.

In the coordinates (t, θ, φ, ψ, ρ) bringing the boundary metric to the direct product form

R× S3
v , the bulk metric is

ds2 =

[
1− 2ξ

log cosh ρ

sinh2 ρ

]
dρ2 − cosh2 ρ [1 + 2ξ (1 + log cosh ρ− ρ tanh ρ)] dt2

+
1

4

[(
1 +

ξ

2

)
sinh2ρ

−ξ
(

1− 2

(
cosh2ρ+

1

sinh2ρ

)
log cosh ρ+ ρ sinh(2ρ)

)](
σ2

1 + σ2
2

)
+

1

4

[
(1− ξ) sinh2 ρ− ξ

(
−2− 2

(
cosh2ρ− 2

sinh2ρ

)
log cosh ρ+ ρ sinh(2ρ)

)]
σ2

3

+O(ξ2) , (3.22)

while the gauge field reads

A =
1

2
√

3
dt−

√
3

4
ξ

[
1− 2 log cosh ρ

sinh2 ρ

]
σ3 + O(ξ2) . (3.23)

These solve the equations of motion (2.2) and (2.3) at order O(ξ). Moreover, one can see

that near ρ→ 0 they reduce to the metric (3.16) and gauge field (3.17), as required.

For ξ = 0, we correctly retrieve the AdS5 metric in global coordinates,

ds2
AdS = dρ2 − cosh2ρ dt2 +

1

4
sinh2ρ

(
σ2

1 + σ2
2 + σ2

3

)
, (3.24)

together with a flat gauge field A = 1
2
√

3
dt.10 Since F = O(ξ), from the Einstein equa-

tion (2.2) we see that the Ricci tensor of the metric (3.22) satisfies Rµν = −4gµν +O(ξ2) ,

so at linear order in ξ this is still an Einstein space, of the same Einstein constant as

AdS5. However, the Riemann tensor is different from the one of AdS5, and matches it only

10Note that it is important to keep track of this gauge field, because it is for this choice of gauge only

that the Killing spinors are independent of t.
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asymptotically, as required for an AlAdS space. We also checked that the five-dimensional

space is not conformally flat, as the Weyl tensor of (3.22) is proportional to ξ.

The boundary metric reads

ds2
bdry = −1

4
[1 + 2ξ(1− log 2)] dt2 +

1

16

[
1 +

ξ

2
(1− 4 log 2)

] (
σ2

1 + σ2
2

)
+

1

16
[1− ξ(1 + 2 log 2)]σ2

3 + O(ξ2) . (3.25)

Finally, expanding (3.19) at large ρ and comparing with the UV perturbative solu-

tion (3.2), we can determine the relation between the UV parameters a0, a2, a4, a6, c and

the IR parameter ξ, at linear order in ξ. We find:

a0 =
1

4
+

ξ

16
(1− 4 log 2) +O(ξ2) , a2 = − 1

16
− 3 ξ

32
(1 + 4 log 2) +O(ξ2) ,

a4 =
3 ξ

32

(
3

16
− log 2

)
+O(ξ2) , a6 =

ξ

512

(
113

48
− 7 log 2

)
+O(ξ2) ,

c =
3

8
ξ +O(ξ2) . (3.26)

It might be possible to solve the sixth-order equation beyond linear order, for example

expressing the higher order terms in the perturbative expansion in a recursive fashion,

similarly to the expansion of the solution of [42] obtained in [43]. In this respect, the

linearised solution of this section is analogous the solution found in [44].

3.4 Numerics

In this section we present a numerical study of the one-parameter family of solutions. Our

primary scope is to show the existence of a regular solution connecting the IR and UV

asymptotics beyond linear level in the deformation. Secondly, we wish to determine how

the IR parameter ξ and the UV parameters a0, a2, a4, a6, v2 = 1− 4c are related beyond

the small ξ approximation leading to (3.26).

Let us briefly describe our procedure. We fix the IR initial conditions around ρ = 0 as

in section 3.2 and integrate the sixth-order equation numerically towards the UV. To do

this, we have to assign a value to the IR parameters ξ and aIR
3 . As discussed in section 3.2,

only ξ is physical, while aIR
3 can be changed by rescaling the radial coordinate, and will

be fixed by requiring that asymptotically the solution goes like a ∼ eρ. At linear order

in ξ this is achieved by imposing (3.18), but beyond that we do not have an analytic

expression and need to resort to numerics. Recalling the discussion in section 3.2, aIR
3 can

be fixed as follows: for any choice of ξ, we integrate a first time choosing the reference

value aIR
3 = 1/12;11 then from the UV behavior of the numerical solution we read off the

rescaling λ to be performed so that a ∼ eρ; this is most easily achieved by evaluating the

function f and finding the rescaling λ2 ensuring that it goes to 1 asymptotically. Then

aIR
3 = 1/(12λ2) will produce the wanted UV behavior; thus we fix this value and repeat

11This is the value appropriate to the AdS solution ξ = 0, yielding a = 1
2

sinh(ρ) and therefore a ∼ eρ

asymptotically.
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Figure 1. The solution a to the sixth-order equation, rescaled by e−ρ. Its square equals gθθ/gρρ .

Asymptotically, it gives the parameter a0, controlling the overall size of the boundary. The different

values of the IR parameter ξ are indicated on the curves.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ρ
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Figure 2. Ratio between the gψψ and gθθ components of the metric. Asymptotically, this gives

the value of the parameter v2, controlling the squashing of the boundary S3.

the numerical integration. The results we will present have this procedure implemented.

Recalling (3.15), the final value of aIR
3 can be read in the plots below from the behavior of

f at ρ = 0.

In figure 1 we display the solution a(ρ) to the sixth-order equation, for different choices

of the IR parameter ξ. Figures 2 and 3 provide further plots representing components of

the metric, written in the form

ds2 = gρρdρ
2 + gθθ

(
σ 2

1 + σ 2
2

)
+ gψψσ

2
3 + gttdt

2 + 2gtψ σ3 dt , (3.27)

and of the gauge field

A = At dt+Aψ σ3 . (3.28)
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(a) The function f . This is equal to g−1
ρρ .
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(b) gtt component, rescaled by e−2ρ.

1 2 3 4
Ρ

-0.2

0.2

0.4

0.6

0.8

AΨ

-1�2

-1�3

0

1

2
4

(c) Aψ component.
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(d) At component.

Figure 3. Other metric components and the gauge field A.
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Figure 4. Relation between the IR parameter ξ and the UV parameter v2 controlling the squashing

of the boundary S3. The squashing ranges between 0 and ∞ for 4.2 & ξ & −0.7. The dots are

effectively calculated values while the blue, continuous line is an interpolation. The red, dashed

line represents the relation (3.26) obtained from the linearised analysis around the AdS solution at

ξ = 0 (which is denoted by the slightly larger, red dot).
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Figure 5. The other UV parameters in terms of the squashing v2.

These are evaluated using (A.7) and (A.10).12 As one can see, the solution appears perfectly

smooth within the numerical approximation.

Given a value of the IR parameter ξ, we then proceed to compute the parameters a0, a2,

a4, a6 and v2 = 1−4c controlling the UV solution. This is done by matching the numerical

solution a obtained integrating from the IR with the UV solution given in (3.2), for some

reasonably large value of the radial coordinate ρ. In practice, we compare the numerical

and the UV solutions at several points in the interval 4 < ρ < 8, and determine the UV

parameters via a best fit. The results are presented in figures 4 and 5, where a comparison

with the expressions (3.26) from the linearised analysis around the AdS solution at ξ = 0 is

also made. Figure 4 displays the relation between the squashing parameter v2 and ξ. One

can see that for ξ running between ξ ∼ 4.2 and ξ ∼ −0.7, the squashing spans all values

between 0 and ∞. From an AdS/CFT perspective, it is actually more natural to regard

the family of solutions as parameterized by the boundary parameter v2 rather than by the

IR parameter ξ. For this reason, figure 5 gives the other UV parameters as functions of

v2. We recall that although here a0 is determined by v2, this is only because for ease of

analysis we imposed that the solution ends at ρ = 0; in fact, a0 can be set to any desired

non-zero value simply by shifting ρ.

12In order to evaluate gtt and At we also need to know the value of the UV parameter v2 as a function

of ξ; this is determined as we will explain.

– 17 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
4

Relevant physical properties of the solution can be inferred from the figures. Figure 2

allows to exclude the existence of closed timelike curves. These appear whenever the gψψ
component of the metric, evaluated from (A.7), becomes negative. However, from figure 2

we see that as long as gψψ is positive asymptotically, it remains positive in the interior as

well.13 Imposing this UV boundary condition is the same as requiring that the boundary

metric has one negative eigenvalue only, and is very natural from an AdS/CFT perspective.

We conclude that within this assumption the solution is free from closed timelike curves.

Moreover, note from figure 3(b) that for sufficiently large ξ there is a region in the

bulk where the vector ∂/∂t, generating time translations with respect to the asymptotic

rest frame, becomes spacelike. Hence for sufficiently large ξ the solution presents an er-

goregion although there is no horizon.14 On the other hand, we should note that the

supersymmetric vector

V =
∂

∂y
=

∂

∂t
+

2

v2

∂

∂ψ
, (3.29)

associated to time translations with respect to a boosted asymptotic frame, is everywhere

timelike in the bulk (this follows from eq. (2.5) and figure 3(a)); so if V generates time

translations then there is no ergoregion. However, V is null with respect to the boundary

metric, so from an AdS/CFT perspective one would rather take ∂/∂t as the generator of

time translations both in the boundary and in the bulk. Similar features appear in the

asymptotically AdS black hole of [40].

3.5 A global constraint

The IR analysis has established a one-parameter family of solutions, labeled by the IR

parameter ξ. The UV parameters controlling the asymptotic behavior of the solution

cannot remain arbitrary, and should be related between them and to ξ. In section 3.3 we

worked out this relation analytically at linear order in ξ, while in section 3.4 we studied it

numerically. In the following, we make analytic progress beyond linear level by showing that

a global property satisfied by our solution allows to determine one of the UV parameters

in terms of the others.

Let us consider the following integral on the three-sphere at infinity, S3
bdry,∫

S3
bdry

(
∗5F +

2√
3
A ∧ F

)
. (3.30)

Note that S3
bdry is the boundary of a Cauchy surface (namely, a hypersurface at constant t)

C ' R4 that closes off smoothly in the interior; using the IR expansions of section 3.2 one

can also check that the integrand goes to zero smoothly on C when ρ → 0. Also recalling

that A is globally defined, we can apply Stokes’ theorem and write∫
S3
bdry

(
∗5F +

2√
3
A ∧ F

)
=

∫
C

d

(
∗5F +

2√
3
A ∧ F

)
= 0 , (3.31)

13The figure actually represents the ratio gψψ/gθθ, but gθθ cannot be negative, see (A.7).
14See e.g. [45, 46] for examples of supersymmetric and non-supersymmetric asymptotically flat geometries

with an ergoregion and no horizon.
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where we used the Maxwell equation (2.3). We conclude that in our solution we have∫
S3
bdry

∗5F = − 2√
3

∫
S3
bdry

A ∧ F = − 128

3
√

3
π2c2 = − 8π2

3
√

3
(1− v2)2 , (3.32)

where in the second equality we used the boundary gauge field given in (3.7), and in the

third just the definition (3.8).15

On the other hand, starting from the UV expansion of ∗5F given in (A.12), we obtain

an expression for
∫
S3
bdry
∗5F that — once compared with (3.32) — allows to solve for the

parameter a4 in terms of a2 and c . We obtain

a4 =
1

384

(
5 + 64a2 − 256a2

2 + 32c− 160a2c− 104c2
)
. (3.33)

Later on we will be able to increase our analytic control on the UV behavior of the solution

by also determining the parameter a6.

We note that the integral (3.30) is a Page charge and therefore should be quantized. It

is thus a natural notion of electric charge to be used when discussing black holes and other

solitonic objects. In the next section we will see that this is different from the notion of

holographic charge obtained from integrating the holographic R-current, cf. (4.24) below.

4 Holographic renormalisation

In this section we perform holographic renormalisation and compute the on-shell action as

well as the holographic charges in terms of the squashing parameter v.

4.1 The on-shell action

The on-shell supergravity action is divergent due both to the infinite volume of the space-

time and to terms going to infinity while approaching the boundary. The divergences can

be removed implementing holographic renormalisation [25–27, 47] (see [48–50] for the in-

clusion of a Maxwell field). Our AlAdS spacetime M can be seen as a foliation of timelike

hypersurfaces homeomorphic to the boundary ∂M , labeled by the radial coordinate ρ. We

denote by ∂Mρ the hypersurface at fixed ρ and by Mρ its interior region. If we write the

five-dimensional metric as

ds2 = f−1(ρ)dρ2 + hij(ρ, x)dxidxj , (4.1)

with i, j = 0, . . . 3, then hij(x, ρ), is the induced metric on ∂Mρ.
16 Holographic renormali-

sation regulates the action by evaluating it on Mρ, and prescribes the addition of suitable

counterterms which cancel the divergences arising when ∂Mρ is sent to the conformal

15In our conventions, the positive orientation on S3 is specified by taking the volume form of the unit,

round three-sphere to be vol(S3
round) = 1

8
σ1 ∧ σ2 ∧ σ3 = − 1

8
sin θdθ ∧ dφ ∧ dψ. Although this is a slightly

unusual orientation, of course we have
∫
S3vol(S3

round) = +2π2.
16The positive orientation on ∂Mρ is obtained by contracting the bulk volume form with the unit, outward

pointing vector f1/2∂/∂ρ , which yields vol4 ≡
√
h d4x = −

√
h dt ∧ dθ ∧ dφ ∧ dψ , with h = | dethij |.
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boundary ∂M , so that the action remains finite in the limit. The renormalised on-shell

action is given by

Sren = lim
ρ→∞

(Sbulk + SGH + Sct) , (4.2)

where Sbulk is the bulk supergravity action (2.1) evaluated on-shell on Mρ. SGH is the

Gibbons-Hawking boundary term, needed to make the variational problem with Dirichlet

boundary conditions well-definite; it reads

SGH =
1

8πG

∫
∂Mρ

d4x
√
hK , (4.3)

where h = |dethij | and K is the trace of the extrinsic curvature Kij = 1
2f

1/2 ∂hij
∂ρ of the

hypersurface ∂Mρ. Finally, the counterterm action Sct is given by

Sct = − 1

8πG

∫
∂Mρ

d4x
√
h

[
3

`
+
`

4
R+

ρ

`

`3

8

(
RijR

ij − 1

3
R2 − 4

`2
FijF

ij

)]
, (4.4)

where in this formula the Ricci tensor Rij and the Ricci scalar R are those of hij , and

the indices are raised with hij . Note that in this section we are reinstating the AdS

radius `. The first two terms [27] are local covariant expressions on ∂Mρ, designed to

cancel terms that diverge with a power-law (when the solution is written in Fefferman-

Graham coordinates). The term quadratic in the curvatures [26, 48] only depends on

the metric and gauge field at the conformal boundary and cancels possible “logarithmic”

divergences,17 which are proportional to the Weyl anomaly of the dual conformal field

theory [26]. However, the results of [34] imply that this anomaly — and correspondingly the

logarithmic divergence in the on-shell supergravity action — vanishes in the case of interest

for us (see section 4 therein). This can also be checked directly: from the expressions (3.4)–

(3.7) we find that asymptotically18

√
h

(
RijR

ij − 1

3
R2

)
=

4

`2

√
hFijF

ij =
4

3`
(1− v2)2 sin θ , (4.5)

hence the gravitational and the gauge field contributions to the logarithmic term, though

non-vanishing, cancel against each other in (4.4). The full expression (4.4) is nevertheless

needed in order to derive the counterterms renormalising the energy-momentum tensor

and the R-current to be introduced below. The counterterms (4.4) provide a “minimal

subtraction” scheme ensuring that all divergences are cancelled. However, one could include

additional finite counterterms in Sct, and these would affect the result for the on-shell

action. We postpone a discussion of these extra counterterms and the ensuing ambiguities

to section 5, when we will compare our gravity results with the field theory side.

Let us now manipulate the five-dimensional integral computing the bulk action. Al-

though we do not have full analytic control on the solution, we will be able to evaluate Sbulk

exactly, by showing that it reduces to a boundary term. Using the Maxwell equation (2.3)

17The logarithm appears when the cutoff is written as ρ/` ∼ log r+ sub-leading terms.
18Note that the gauge field used here is related to the one in [8, 34] as Ahere = − √̀

3
Athere, which accounts

for the different numerical factor in the equation below with respect to e.g. equation (1.4) in [34].
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to eliminate the Chern-Simons term and then the trace of the Einstein equation (2.2), the

bulk action (2.1) can be written as

Sbulk = − 1

2πG`2

∫
Mρ

d5x
√
g − 1

12πG

∫
Mρ

d(A ∧ ∗5F ) . (4.6)

Therefore, when the solution is non-singular and A ∧ ∗5F goes to zero sufficiently fast

in the IR, the last term reduces to an integral on the boundary ∂Mρ. Remarkably, we

find that this is true for the first integral as well. To see this, we need to recall some

notions introduced in section 2 and exploit the following chain of equalities showing that

the five-dimensional volume form is exact:

d5x
√
g =

`2

48
RB dt ∧X1 ∧X1 =

`2

12
dt ∧R ∧X1 = − `

2

12
d(dt ∧ P ∧X1) . (4.7)

In the first equality we used the general form of the five-dimensional metric (2.5) together

with (2.7) and the fact that the volume form of the four-dimensional Kähler metric is

related to the Kähler form X1 by volB = −1
2X

1 ∧ X1. The second equality is obtained

noting that 1
4RBX

1 is the primitive part of the Ricci form R, namely the piece of R that

has non-zero wedging with X1. The last expression follows from R = dP and dX1 = 0. If

the solution is regular and P ∧X1 goes to zero in the IR then we can apply Stokes’ theorem

and write the bulk on-shell action as

Sbulk =
1

24πG

∫
∂Mρ

(
dy ∧ P ∧X1 − 2A ∧ ∗5F

)
. (4.8)

This formula holds for any regular supersymmetric solution to minimal five-dimensional

gauged supergravity of the time-like class satisfying the conditions to apply Stokes’ theo-

rem. This is the case for our solution, hence we can pass to evaluate Sbulk explicitly. The

intermediate steps of the computation are more readable when presented in the Fefferman-

Graham radial coordinate r introduced in appendix A. We will also implement the change

of coordinates (3.3). Plugging the expansions in, we find for the contribution from the

five-dimensional volume (up to terms vanishing in the limit ∂Mρ → ∂M):

1

24πG

∫
∂Mρ

dt ∧ P ∧X1

= − 2π

3G
a2(ρ)

[
4a′2(ρ) + 2a(ρ)a′′(ρ)− 1

] ∫
dt

= −π`
2

G

[
4a4

0r
4 −

(
1 +

4

3
c

)
a2

0r
2 − 32

9
c2 log r − 32

9
a2c+

3

32
+

c

36
+

19

18
c2

] ∫
dt,

(4.9)

where in the first equality we used the expressions of the Ricci potential P and Kähler

form X1 given in section 2, while in the second equality we plugged the UV solution (3.2)

in and passed to the Fefferman-Graham coordinate r using (A.17). Since time translations

are a symmetry of our solution, integration over time just gives an overall factor. Using
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the expansions (A.9)–(A.12), the gauge field contribution yields

− 1

12πG

∫
∂Mρ

A ∧ ∗5F = −π`
2

G

[
32

9
c2 log r +

32

9
a2c+

8c

27(1− 4c)
− 2

27
c− 8

3
c2

] ∫
dt .

(4.10)

In both equations (4.9) and (4.10) we invoked the global constraint discussed in section 3.5

and used (3.33) to eliminate a4. Note that both the logarithmic divergences and the terms

proportional to a2 cancel out when the two contributions to Sbulk are added up, leaving

just power-law divergences and finite terms depending on the boundary parameter c.

The evaluation of the remaining contributions to the on-shell action just involves the

UV solution and is thus straightforward. The Gibbons-Hawking term is found to contain

only divergences,

SGH = −π`
2

G

[(
1 +

4

3
c

)
a2

0 r
2 − 16 a4

0 r
4

] ∫
dt, (4.11)

while the counterterms (4.4) contain both a divergence and a finite piece,

Sct = −π`
2

G

(
8

3
c2 + 12a4

0r
4

)∫
dt . (4.12)

Adding up the contributions (4.9)–(4.12), and writing the result in terms of the squashing

parameter v2 = 1− 4c, we obtain for the renormalised on-shell action

Sren = −π`
2

G

[
2

27v2
+

2

27
− 13

108
v2 +

19

288
v4

] ∫
dt . (4.13)

It is crucial to stress that the action is gauge-dependent, so this result is sensitive to the

gauge chosen. From (4.8) and (3.32) we see that under a gauge transformation δA = δAt dt,

where δAt is a constant (possibly depending on v), the on-shell action changes by

δSren = − δAt
12πG

∫
dt

∫
S3
bdry

∗5F =
2π`2

9
√

3G
δAt (v2 − 1)2

∫
dt . (4.14)

Our motivation for fixing the gauge as in (3.7) is that with this choice the supersymmetry

parameter does not depend on the time coordinate t (neither on the boundary, nor in the

bulk) when the obvious left-invariant frame following from (3.5) is used. In particular, note

that the term in 1/v2 in (4.13), which will play an important role in section 5, directly

comes from the gauge field contribution (4.10).

Of course, the Lorentzian time should be non-compact and therefore
∫

dt in the for-

mulae above is just a formal writing. However after performing an analytic continuation

t → i t we can compactify the time coordinate. Then the boundary topology becomes

S1×S3, the boundary metric (3.5) becomes Euclidean and the boundary gauge field (3.7)

acquires an imaginary, flat component. We remark that both the bulk metric and the bulk

gauge field become complex, however this does not affect the on-shell action, which remains

real. Denoting by I the analytically continued on-shell action, and by ∆t the finite period
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of t, we obtain19

I =
π`2∆t

G

[
2

27v2
+

2

27
− 13

108
v2 +

19

288
v4

]
. (4.15)

This exact expression for the renormalised on-shell action in terms of the squashing of the

boundary S3
v is a main result of this paper.

4.2 Holographic charges

The regularised action Sreg = Sbulk + SGH + Sct gives rise to the quasi-local energy-

momentum tensor

Tij = − 2√
h

δSreg

δhij
. (4.16)

In order to obtain the dual field theory energy-momentum tensor 〈Tij〉, one needs to rescale

this before taking the limit ρ→∞, because in AlAdS space the metric of the background

on which the field theory lives is multiplied by the divergent conformal factor e2ρ/`. This

gives the formula

〈Tij〉 = − 1

8πG
lim
ρ→∞

e2ρ/`

[
Kij −Khij +

3

`
hij −

`

2

(
Rij −

1

2
Rhij

)
− ρ
`

`3

2

(
−1

2
Bij −

4

`2
FikFj

k +
1

`2
hijFklF

kl

)]
, (4.17)

where the curvatures are computed and the indices are raised with the induced metric hij ,

and Bij denotes the Bach tensor (see eq. (B.10)).20 The first line yields a finite contribution,

while the second line just cancels “logarithmic” divergences, here going as ρ/`.

In addition to the energy-momentum tensor, we can also introduce a current by varying

the regularised action with respect to the gauge field Ai at the boundary ∂Mρ:

ji =
1√
h

δSreg

δAi
. (4.18)

The possible contributions arise from the bulk action (2.1) and from the counterterm ac-

tion (4.4). Varying the bulk action with respect to A and using the Maxwell equation (2.3)

to eliminate the bulk integral we are left with the boundary integral

δSbulk = − 1

4πG

∫
∂Mρ

δA ∧
(
∗5F +

4

3
√

3
A ∧ F

)
. (4.19)

Note that here we are assuming that the spacetime is smooth and that ∂Mρ is the

only boundary. The counterterm contribution cancels a “logarithmic” divergence arising

19We define I by requiring that this is related to the analytic continuation of the Lorentzian action

as exp(−I) = exp(iSLorentz, t→it). Note that we regard the Lorentzian time as x0 and the analytically

continued time as x4, so the Lorentzian volume form on ∂Mρ is related to the analytically continued one

as
√
h dx0123 = −i

√
h dx1234.

20The Bach tensor arises from the variation of the square of the Weyl tensor Cijkl with respect to the

metric. This appears noting that in (4.4) RklR
kl− 1

3
R2 = 1

2

(
CijklC

ijkl − E
)
, and recalling that the variation

of the Euler density E with respect to the metric vanishes. One may expect the term RikR
k
j to appear

from the variation of RklR
kl; this indeed shows up by using the identity RikjlR

kl = RikR
k
j −∇k∇(iR

k
j) +

1
2
∇i∇jR.
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from ∗5F . Since the graviphoton A couples to the dual field theory R-symmetry current,

sending ρ → ∞ after appropriate rescaling yields a finite expectation value 〈ji〉 for the

latter. Thus we arrive at the expression

〈ji〉 = lim
ρ→∞

e4ρ/`

√
h

δSreg

δAi
=

1

4πG
lim
ρ→∞

e4ρ/`

{
∗4
[
dxi ∧

(
∗5F +

4

3
√

3
A ∧ F

)]
− ρ∇jF ji

}
,

(4.20)

where ∗4 is computed using the induced metric hij and it is understood that ∗5F+ 4
3
√

3
A∧F

is restricted to the boundary ∂Mρ . The last term comes from the variation of Sct in (4.4).

From the holographic energy-momentum tensor and R-current one can construct a set

of conserved charges. In order to do so, one chooses a spacelike, compact hypersurface Σ

in the boundary ∂M , with metric γαβ, α, β = 1, 2, 3, and writes the boundary metric in

ADM form:

ds2
bdry = −N2dt2 + γαβ(dxα +Nαdt)(dxβ +Nβdt) . (4.21)

Let u be the unit, timelike vector orthogonal to Σ. As a one-form, it reads u = −Ndt.

Then from any Killing vector Z of the boundary metric one can construct a conserved

charge as

QZ =

∫
Σ

d3x
√
γ ui 〈Tij〉Zj . (4.22)

Moreover, from the current 〈j〉 one obtains an electric charge Q, corresponding to the vev

of the dual field theory R-charge operator, by evaluating the integral

Q =

∫
Σ

d3x
√
γ ui〈ji〉 . (4.23)

Assuming that ∇jF jiui = 0 on ∂Mρ, so that the divergent pieces drop from (4.20) (this is

satisfied in the case of interest for us), it is straightforward to see that21

Q =

∫
Σ

d3x
√
γ ui〈ji〉 =

1

4πG

∫
Σ

(
∗5F +

4

3
√

3
A ∧ F

)
. (4.24)

The charge Q is invariant under small gauge transformations of A, and it is conserved

provided the R-current is non-anomalous, which is true in the case we are studying here.22

However, we remark that this is different from the quantized Page charge (3.30), as we

already remarked in section 3.5. The two definitions coincide only when the Chern-Simons

contribution
∫

ΣA ∧ F vanishes.

We now compute the conserved charges for our solution. The spacelike boundary

hypersurface Σ is the squashed three-sphere S3
bdry, and from the boundary metric (3.5)

we see that u = v
2a0

∂
∂t . To compute the holographic R-charge we can take advantage of

formula (3.32); then (4.24) gives

Q = − 1

4πG

2

3
√

3

∫
S3
bdry

A ∧ F = − 2π`2

9
√

3G

(
v2 − 1

)2
. (4.25)

21In the absence of a Chern-Simons term, this was shown in [50].
22In Lorentzian signature, or in Euclidean signature when two supercharges of opposite R-charge are

preserved, the chiral anomaly of the R-current vanishes whenever the background is supersymmetric and

F ∧ F = 0 on the boundary [34].
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The other relevant charges are the total energy E, associated with the generator of

time translations ∂/∂t,

E =

∫
S3
bdry

ui〈Tit〉 vol(S3
bdry) , (4.26)

and the angular momentum J for the U(1) right-isometry generated by ∂/∂ψ,

J =

∫
S3
bdry

ui〈Tiψ〉 vol(S3
bdry) , (4.27)

while one can check that the charges associated with the SU(2) left-isometries vanish.

Note that E and J are defined also on non conformally flat boundaries, differently from

the Ashtekar-Das conserved quantities [51]. E and J can be evaluated by inserting the UV

solution in eq. (4.17) for 〈Tij〉, and performing the integrals above. This yields expressions

depending on the UV parameters on a2, a6 and v2 (recall that a4 was determined in (3.33)

as a consequence of the smoothness of the solution). Ultimately all charges have to be

functions of a single independent parameter of the solution, that we identify with the

squashing v. Although we do not have full analytical control on the relations between

these UV parameters, in a moment we will introduce an extra information allowing to

deduce the exact expressions of the charges in terms of v. Already at this stage, by using

the values of the on-shell action in (4.15), the charge Q in (4.25), and the energy-momentum

tensor obtained from (4.17), one can check that the following relation is satisfied:23

E +
2

`v2
J +

3v2 − 2

2
√

3v2
Q =

I

∆t
. (4.28)

We note that the combination E + 2
`v2
J is the holographic charge QV associated with the

supersymmetric Killing vector V given in (3.29), and that the coefficient in front of Q is

the boundary value of V µAµ. So (4.28) can be written as

QV + (V µAbdry
µ )Q =

I

∆t
. (4.29)

Recalling (4.14) and (4.25), we observe that under a gauge transformation the on-shell

action (that we can define formally in any gauge, provided we do not compactify the time

direction) shifts by a term proportional to the electric charge: δI/∆t = δAtQ . This

implies that the relation above remains valid independently of the gauge chosen. Note that

in the gauge V µAµ =
√

3
2 f , the relation (4.29) is satisfied by the black hole of [40], with

M = E − I/∆t identified with the Ashtekar-Das mass [51].

In order to obtain E and J as functions of v we will exploit the fact that for any

continuous parameter µ of the boundary geometry,24 one can derive a corresponding “Ward

identity” by simply applying the chain rule [15]

d

dµ
Sren =

∫
∂M

d4x
√
ĥ

(
−1

2
〈Tij〉

dĥij

dµ
+ 〈ji〉dAi

dµ

)
, (4.30)

23From (4.17) one obtains 〈Tij〉 as a function of v, a2, a4, a6 (and a0) that we have not presented. The

point is that after using (3.33) the dependence on a0, a2, a4, a6 drops out of the combination E + 2
`v2

J . In

Lorentzian signature ∆t denotes simply a time interval.
24For example, the horizon radius of the supersymmetric black hole of [40] does not yield such a relation.
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where ĥij is the finite metric on the conformal boundary: ĥij = limρ→∞ e
−2ρ/`hij . The

parameter we will to consider is the one that can be introduced in the boundary metric (3.5)

and gauge field (3.7) by rescaling the coordinate t as t = b t′. Varying with respect to b

we get

〈Tij〉
dĥij

db
=

v

a0b
ui〈Tit〉 , ji

dAi
db

= − v

2a0b
uij

iAt . (4.31)

So (4.30) gives

d

db
Sren =

∫
dt′
∫
S3
bdry

vol(S3
bdry)

(
−ui〈Tit〉 − uijiAt

)
= − (E +AtQ)

∫
dt′ . (4.32)

Recalling that At = 1
2
√

3
, and turning to the analytically continued on-shell action (so that

d
dbSren becomes − I

∆t

∫
dt′), we arrive at the relation

E +
1

2
√

3
Q =

I

∆t
. (4.33)

Denoting U = ∂/∂t, this can be re-written in the covariant form

QU + (UµAbdry
µ )Q =

I

∆t
, (4.34)

which is manifestly gauge-invariant. One can also consider a variation of the on-shell action

with respect to the parameter that can be introduced in the background fields by rescaling

the original time coordinate y. This yields precisely the relation (4.28), thus providing a

general way to derive it. In section 5.1 we will discuss the field theory interpretation of the

conserved charges and of this relation. Finally, one can check that varying with respect to

the squashing v2 does not yield new information.

Inserting the expressions (4.25) for Q and (4.13) for the action in (4.33), we obtain the

total energy as a function of the squashing parameter only:

E =

(
2

27v2
+

1

9
− 7

36
v2 +

89

864
v4

)
π`2

G
. (4.35)

We can compare this expression with the one obtained from the definition (4.26) using the

holographic energy-momentum tensor (4.17), which depends on the UV parameters a2, a6

and v2. In this way, we obtain an equation that determines a6, see eq. (B.1) in the appendix

for the explicit expression. The angular momentum can now be deduced from (4.28), which

yields the following simple expression:

J =
(
v2 − 1

)3 π`3

27G
. (4.36)

We have thus obtained all relevant charges as exact expressions of the squashing

parameter v.

A check of our results so far is provided by the limit v → 1, in which the boundary

three-sphere S3
v becomes round, and the bulk solution is just AdS5. In this case, Q and J

vanish, while E and I remain finite and reproduce the known expressions for pure AdS5,

namely E = 3π`2

32G and I = E∆t [27]. For completeness, in appendix B.1 we give the explicit

expressions for the energy-momentum tensor and for the R-symmetry current.
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4.3 Summary of the solution

Before moving on to discussing the dual field theories, it may be useful to provide a sum-

mary of the one-parameter family of solutions that we constructed.

In section 3.1 (see also appendix A), we determined the general asymptotic expansion

of an AlAdS solution to the ODE (2.17) governing SU(2) × U(1) × U(1) invariant super-

symmetric solutions to minimal five-dimensional gauged supergravity. This expansion is

characterized by five parameters a0, a2, a4, a6 and v. Two of them, a0 and v, appear explic-

itly in the boundary metric (3.5); this describes the direct product Rt×S3
v with overall size

proportional to a0, where S3
v is a three-sphere with SU(2)× U(1) isometry and squashing

parameter v. For v 6= 1 this is a non conformally flat boundary and, correspondingly, the

boundary gauge field (3.7) is non-trivial. The three remaining UV parameters a2, a4, a6

appear in sub-leading components of the metric and of the gauge field.

The IR analysis of section 3.2 established the existence of a one-parameter family of

solutions closing off smoothly in the interior. By means of a linearised and a numerical

analysis (sections 3.3 and 3.4 respectively) we showed that this parameter can be directly

related to the squashing v at the boundary (see figure 4), and that for any value of v2 > 0

the solution is everywhere regular and free from closed time-like curves (figures 1–3). In

addition, we determined the relations between the different UV parameters corresponding

to our one-parameter family (figure 5). For two of the UV parameters, namely a4 and

a6, we obtained an analytic expression in terms of v and a2.25 Recalling that a0 can be

chosen freely by shifting the radial coordinate, the only UV parameter that we could not

determine analytically as a function of v2 is a2; however, this drops out of the on-shell

action as well as of all the holographic charges.

Despite the lack of full analytic control on the solution, in the present section we

evaluated the on-shell action as well as the holographic conserved charges exactly, in terms

of v. The on-shell action could be evaluated by showing that it reduces to a boundary

integral, and is given in eq. (4.13). We remarked that this is a gauge-dependent result,

and gave it in a gauge such that the supersymmetry parameter is independent of the

time coordinate t. On the other hand, the holographic charges are gauge-independent,

and the relevant ones are the energy E, the angular momentum J and the electric charge

Q. Their evaluation involved a Ward identity (following simply from applying the chain

rule to the variation of the renormalised on-shell action), and their expressions are given

in (4.25), (4.35) and (4.36).

5 Field theory duals

In this section we discuss the field theory duals to our supergravity solution. We first

recall some aspects of rigid superymmetry at the conformal boundary and its relation with

supersymmetry in the bulk, and then discuss the relation of the localised partition function

computed in our background with the supersymmetric index and the Casimir energy. We

will end comparing the latter with the holographically renormalised on-shell gravity action.

25We also compared the analytic expressions for a4(v2, a2) and a6(v2, a2), given in (B.1), with the nu-

merical results, finding perfect agreement.
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Here we will assume that the five-dimensional solution is uplifted [35] to a ten-

dimensional solution M5×Y5 of type IIB supergravity, where Y5 is a Sasaki-Einstein man-

ifold. In this case, when the squashing parameter is trivial so that M5 = AdS5 (in global

coordinates), the field theory dual is generically an N = 1 superconformal quiver gauge

theory, with matter in bi-fundamental or adjoint representations of the gauge group. For

example, one can consider N = 4 super Yang-Mills [52], the Klebanov-Witten quiver gauge

theory [53], or the Y p,q family of quivers [54]. Our solution should then correspond to a rel-

evant deformation of the flat-space Lagrangian of the given field theory, obtained through

couplings to a non-trivial background metric and a gauge field sourcing the R-symmetry

current [5].

5.1 Rigid supersymmetry at the boundary

In the following we discuss some general properties of the superconformal field theories

living at the non conformally flat boundary of our solution. We already mentioned that

the Weyl invariance and R-symmetry are preserved also at the quantum level, since the

associated anomalies vanish on our background [34]. Here we focus on the algebra asso-

ciated with the supersymmetry being preserved. For definiteness we work in Lorentzian

signature, however most of what we will discuss can be repeated in Euclidean signature.

A superconformal field theory can be coupled to curved space by considering conformal

supergravity and freezing the background.26 Though this is a general procedure, here we

are interested in the N = 1 case with a minimal set of background fields.27 The field

theory energy-momentum tensor couples to the background metric while the U(1) R-current

couples to the gauge field sitting in the gravity multiplet of conformal supergravity, that we

will denote by Acs. For the background to be bosonic the gravitino must be set to zero, and

imposing that its supersymmetry variation be zero too yields the differential equation [56,

eq. (16.10)]

∇Ai ζ+ − γi η− = 0 , (5.1)

where ∇Ai ζ+ = (∇i − iAcs
i ) ζ+, and ∇i is the Levi-Civita connection constructed with the

background metric. Here, ζ+ is the positive-chirality part of the Majorana spinor parameter

associated with the Q-supersymmetry transformations of conformal supergravity, while η−
is the negative-chirality part of the parameter of special S-transformations. These can be

disentangled by taking the gamma-trace of the equation above:

∇Ai ζ+ =
1

4
γiγ

j∇Aj ζ+ , η− =
1

4
γi∇Ai ζ+ . (5.2)

Therefore we see that the supersymmetry preserved on a bosonic background of conformal

supergravity generically is a combination of a Q- and an S-transformation. The first

equation in (5.2) is a charged version of the conformal Killing spinor (CKS) equation. In

Lorentzian signature, it admits a solution with no zeros if and only if the four-dimensional

background has a null conformal Killing vector z [8]. This can be written as a spinor

26For an introduction to conformal supergravity we refer to e.g. [55, 56].
27See [57] for the N = 2 case.
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bilinear as

zi =
1

4
ζ+γ

iζ+ . (5.3)

In Euclidean signature, the charged CKS equation has been studied in [6] and leads to the

requirement that the manifold be Hermitian.

Precisely the same conditions are retrieved in a holographic setup [6, 8]. In fact, one

can show that on AlAdS spaces the supersymmetry transformations of five-dimensional

minimal gauged supergravity reduce at the boundary to the transformations of conformal

supergravity [58]. So the fields and supersymmetry parameter of any supersymmetric

AlAdS solution satisfy (5.2) asymptotically, with ζ and η corresponding to the leading and

first sub-leading components of the asymptotic five-dimensional supersymmetry parameter.

The conformal supergravity gauge field Acs is identified with the boundary value of the

bulk gauge field A appearing in the previous sections; in our normalizations, we have Acs =

−
√

3
` A

bdry. The bulk supersymmetry time-like Killing vector V introduced in section 2

reduces to the null (conformal) Killing vector z on the boundary; see [8] for more details

on the dictionary between bulk and boundary quantities.

Given a solution ζ+ to the CKS equation and its charge conjugate ζ− = (ζ+)c, the asso-

ciated superalgebra can be obtained from the conformal supergravity algebra, which gives28

[δζ+ , δζ− ]Φ = 2i
[
Lz − i rzi

(
Acs
i +

3

2
ReVi

)]
Φ + · · · , (5.4)

where Φ is a generic field in the theory, r is its R-charge, Lz is the Lie derivative along

z and the ellipsis denotes a scale transformation and a special conformal transformation

proportional to the imaginary part of the complex one-form V. The latter is defined through

γi∇Ai ζ+ = 2iViγiζ+ , (5.5)

where we are assuming that the spinor has no zeros so that the definition holds everywhere.

In fact, the imaginary part of V is related to the failure of the conformal Killing vector

z to be Killing [8]. So when z satisfies the Killing condition ∇(izj) = 0, V is real and

the terms in the ellipsis in (5.4) vanish. Locally, a conformal Killing vector can always be

made Killing by a conformal transformation of the metric (which in a holographic setup is

implemented by a change of radial coordinate).

When z is a Killing vector, one obtains the same algebra by coupling the field theory

to the new minimal formulation of off-shell supergravity. Indeed, modulo the conformal

transformation just discussed, the CKS equation in (5.2) is equivalent to the supersym-

metry condition that is obtained from the rigid limit [5] of new minimal supergravity [59].

This reads (
∇i − iAnm

i + iV nm
i +

i

2
V nm
j γj i

)
ζ+ = 0 , (5.6)

28This can be seen from the transformations given e.g. in [56] taking into account that the supersymmetry

being preserved by a charged conformal Killing spinor is a combination of an ordinary supersymmetry Q

and a special supersymmetry S. Our conformal supergravity gauge field is related to the one of [56] as

Acs = 3
2
Athere.
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where the gauge field Anm
i and the global one-form V nm

i , satisfying d ∗V nm = 0, constitute

the new minimal set of auxiliary fields. The equivalence is easily seen by identifying

V = V nm , Acs = Anm − 3

2
V nm , (5.7)

see [6–8] for more details. The definition (5.5) leaves the component of V along z undeter-

mined, and this can be used to arrange for d∗V nm = 0. In the new minimal variables, (5.4)

reads simply

[δζ+ , δζ− ]Φ = 2i
(
Lz − i rziAnm

i

)
Φ , (5.8)

in agreement with [8]. This equivalence with new minimal supergravity may be useful for

concrete field theory computations in AdS/CFT context, as typically the superconformal

field theories dual to gravity solutions are defined as the strongly coupled IR fixed point

of a Lagrangian theory in the UV, which is non-conformal. Therefore, as long as one is

interested in supersymmetric quantities that are independent of the coupling, one may take

advantage of the new minimal formulation of rigid supersymmetry in order to couple the

UV Lagrangian to the background of interest.

Let us now focus on the R × S3
v background defined at the boundary of our bulk

supergravity solution. Working in the frame

e0 =
2a0

v
dt , e1 = a0` σ1 , e2 = a0` σ2 , e3 = a0` v σ3 , (5.9)

for the boundary metric (3.5), one can see that the CKS equation is solved by a constant

spinor ζ+ satisfying the projection γ12ζ+ = i ζ+ , with (recall (3.7))

Acs = −
√

3

`
Abdry = − 1

2`
dt− 1

2
(v2 − 1)σ3 . (5.10)

The new minimal equation is solved by the same ζ+, fixing the background fields as

V nm =
v2

2
σ3 + κ z,

Anm = Acs +
3

2
V nm = − 1

2`
dt+

1

4

(
2 + v2

)
σ3 +

3

2
κ z , (5.11)

where κ parameterizes the part of V nm and Anm left undetermined by the equation, and

can be any function consistent with d ∗ V nm = 0. From (5.3) it follows that the vector z is

Killing and can be written as

z =
∂

∂t
+

2

`v2

∂

∂ψ
, (5.12)

where we have conveniently fixed the complex constant parameterizing ζ+. As a one-form,

z reads

z = (2a0)2

(
− 1

v2
dt+

`

2
σ3

)
. (5.13)

Noting that z ·V nm = 1/`, we see that the supersymmetry algebra depends manifestly

on the gauge choice of Acs (but does not depend on κ), through the term r(z · Acs). We

now illustrate some distinguished choices of gauge. The following parallels a discussion
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in [5], extending it from the round case to our S1× S3
v geometry. We start from the gauge

adopted so far, in which Acs is given by (5.10). Denoting by Q+, Q− the supercharges

associated with ζ+, ζ−, and by H, J and R the abstract operators associated to L ∂
∂t

, L ∂
∂ψ

and R-symmetry transformations, respectively, in this case the algebra takes the form

{Q+,Q−} = H +
2

`v2
J − 1

`v2
R . (5.14)

The commutators of Q± with H, J and R can be inferred from the fact that the conformal

Killing spinor ζ+ has R-charge +1 and satisfies29

L ∂
∂t
ζ+ = 0 , L ∂

∂ψ
ζ+ =

i

2
ζ+ . (5.15)

Therefore we have [R,Q±] = ±Q± , [J,Q±] = ∓1
2Q± and [H,Q±] = 0 . These clearly

identify J as the generator of right U(1) angular momentum, and R as the generator of

U(1)R . The fact that H commutes with the supercharges identifies this uniquely as the

operator relevant for the Euclidean path integral. In the round limit v = 1, this is a two

supercharges sub-algebra of the one given in eq. (5.9) of [5].

A second special gauge is z · Acs = 0, which can be reached by implementing the

gauge transformation Acs → Acs + 3v2−2
2`v2

dt. The conformal Killing spinor acquires a phase

ζ+ → eit 3v
2−2

2`v2 ζ+, inducing the same dependence of the supercharges on t. This modifies

the commutator with the generator of time translations and changes the factor in front of

R in (5.14). Namely, denoting now by ∆ the operator associated with L ∂
∂t

, the algebra

becomes [∆,Q±] = ∓3v2−2
2v2
Q± and

{Q+,Q−} = ∆ +
2

`v2
J − 3

2`
R , (5.16)

with the other commutation relations unchanged. For v = 1, this reduces to a sub-algebra

of the one in eq. (6.11) of [5], and can be embedded in the superconformal algebra on

R × S3
round given e.g. in [19, 20], where ∆ is identified with the conformal Hamiltonian

generating dilatations.

A third special gauge choice is z · Anm = 0 (that is z · Acs = −3
2z · V

nm), which can

be reached by making the gauge transformation Acs → Acs − 1
`v2

dt, starting from (5.10).

Then the spinor acquires a phase ζ+ → e−
it
`v2 ζ+; denoting by P0 the generator associated

with L ∂
∂t

, the modified commutation relations are [P0,Q±] = ± 1
v2
Q± and

{Q+,Q−} = P0 +
2

`v2
J , (5.17)

which for v = 1 reduces to a sub-algebra of the one in eq. (5.6) of [5].

As all the anticommutators in (5.14), (5.16), (5.17) vanish on a supersymmetric state,

each of them yields a BPS relation. However, noting that the algebras can be mapped into

each other by identifying

H − 1

`v2
R = P0 = ∆− 3

2`
R , (5.18)

29The Lie derivative of a spinor field ζ along a vector X is defined by LXζ = Xi∇iζ − 1
4
∇iXjγijζ .
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we see that these are all equivalent, for example to

H +
2

`v2
J − 1

`v2
R = 0 . (5.19)

When v = 1, this is precisely the shortening condition obeyed by the multiplets contributing

to the supersymmetric index [19, 20, 22]. Inserting either of the anticommutators in the

path integral one notices that (at least formally), the BPS condition (5.19) is obeyed by

the vacuum expectation values of the operators, i.e. 〈H〉 + 2
`v2
〈J〉 − 1

`v2
〈R〉 = 0, etcetera.

We can therefore attempt to compare this relation with the relation among the holographic

charges that we derived in section 4.2.

Since here we are interpreting the holographic charges as expectation values of opera-

tors in the field theory, we will denote them as

〈J〉 =
π`3

27G

(
v2 − 1

)3
, 〈R〉 = − `√

3
Q =

2π`3

27G

(
v2 − 1

)2
. (5.20)

The interpretation of the holographic total energy E is somewhat more subtle, as this

contains the expectation value of a Hamiltonian operator plus a contribution from the

vacuum energy. As noted around equation (4.29), this is most familiar in the context of

asymptotically AdS black holes [40], where the non-vacuum energy can be interpreted as

the Ashtekar-Das mass. Although for general AlAdS solutions with non conformally flat

boundary we do not have such a definition of mass, we will use the black hole example as

a guide for interpreting the total energy E in our case.

We begin writing the relation (4.28) in the form

E +
2

v2`
〈J〉 =

I

∆t
− (z ·Acs)〈R〉 , (5.21)

where the left hand side is manifestly gauge-invariant, and so is the right hand side (albeit

less explicitly). Since E− I
∆t

+(z ·Acs)〈R〉 is a gauge-invariant energy, and does not contain

the contribution of the on-shell action (which will be discussed in the next subsection),

it is natural to identify it with the vacuum expectation value of a Hamiltonian operator.

Comparing (5.21) with the field theory BPS relation, we see that the natural identification is

〈P0〉 = E − I

∆t
+ (z ·Acs) 〈R〉 , (5.22)

or equivalently

〈∆〉 = E − I

∆t
+ (z ·Anm) 〈R〉 . (5.23)

With this identification the field theory BPS relation and relation (4.28) match. The reason

why we have not referred to as “BPS relation” the latter is that we have not derived it from

the supersymmetry algebra of gauged supergravity. The black hole solution [40] obeys the

BPS relation

MAD +
2

`
〈J〉 − 3

2`
〈R〉 = 0 , (5.24)
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extracted from the ordinary AdS5 superconformal algebra, which is presumably valid for

any asymptotically AdS solution. Therefore the Ashtekar-Das mass MAD may be identified

as the vev of the conformal Hamiltonian 〈∆〉. Although we noted that relation (4.28)

reduces to this in the limit v = 1 and in the gauge z · Anm = 0, this is only formal, as

in the case v = 1 our solution reduces to pure AdS5, so that 〈∆〉 = 〈J〉 = 〈R〉 = 0.

Nevertheless, we expect that the generalized (i.e. v-deformed) BPS relation (5.19) can be

derived from the supersymmetry algebra of five-dimensional gauged supergravity, analysed

in the context of AlAdS solutions.

The explicit expression of 〈∆〉 in terms of v reads

〈∆〉 =
π`2

27Gv2
(v2 − 1)2(2 + v2) , (5.25)

with the expressions for 〈H〉 and 〈P0〉 following from (5.18). These, however, are predictions

for (universal) one-point functions in strongly coupled superconformal field theories at large

N , which are not easily computable. In the next section we will turn our attention to the

on-shell action in the specific gauge leading to the algebra (5.14); we will interpret it as a

Casimir energy, and then compare it with a corresponding quantity on the field theory side.

5.2 Supersymmetric index and Casimir energy

In this section we wish to discuss the field theories from the point of view of the path

integral, therefore we will concentrate on the Euclidean signature version of the background,

with periodically identified time. In order to have well-defined Killing spinors (at the

boundary as well as in the bulk) we must fix the gauge in which these are time-independent,

namely Acs is the one in (5.10), thus justifying a posteriori the choice of gauge for the

graviphoton field Aµ made in section 3.1. In this case the generator of time translations in

the field theory H commutes with the supercharges, [H,Q±] = 0 .

The AdS/CFT master equation [24, 25] relates the holographically renormalised super-

gravity action evaluated on a classical five-dimensional geometry M5 to the Euclidean path

integral in the field theory defined on the four-dimensional boundary M4 = ∂M5, namely

e−Sgravity[M5] = ZQFT[M4] for N →∞ . (5.26)

In particular, when M5 ' S1 × R4 (topologically) the path integral on M4 ' S1 × S3 is

performed with periodic boundary conditions for the fermions on S1, and therefore it is

related to the trace over all the states of the field theory [25] as

ZQFT[M4] ' Tr[(−1)F e−βH ] ≡ I(β) , (5.27)

where F is the fermion number, β is the circumference of S1, and H is in general an

operator commuting with the supercharges preserved by the background.

Let us first consider the case M4 = S1
β×S3

round. Then H is the Hamiltonian commuting

with the supercharges defined on S1 × S3
round, and the trace is the supersymmetric index,

which may also be defined in radial quantisation [19, 20]. The Casimir energy of a quan-

tum field theory on S3 may be defined from the limit of large S1
β radius of the partition

– 33 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
4

function as

ECasimir ≡ − lim
β→∞

d

dβ
logZQFT[S1

β × S3
round] . (5.28)

In the semiclassical gravity approximation, when we can use (5.26), the relation

Sgravity[M5] = βECasimir is valid for any β; when one introduces additional background

fields, as long as translation invariance along the S1 is preserved, the renormalised on-

shell action is guaranteed to remain linear in β [25]. However, while in the large N limit

Sgravity = O(N2), the supersymmetric index I(β) is of order O(N0) [20], which appears to

contradict the relation (5.26) together with (5.27). The caveat is that the precise version

of (5.27) includes a factor F , often omitted in the literature

ZQFT[S1
β × S3

round] = e−F · I(β) . (5.29)

This implies that, at least for field theories with a Freund-Rubin gravity dual in type IIB

supergravity with N units of five-form flux, we must have F = O(N2), and using (5.26)

we see that30

F = Sgravity = βECasimir for N →∞ . (5.30)

In a related context, in a calculation of the partition function of a weakly coupled gauge

theory on S1
β×S3

roundwith anti-periodic boundary conditions on S1, in [18] it was shown that

F is the usual Casimir energy of the field theory on S3. We shall return to the interpretation

of F for the path integral with supersymmetric boundary conditions momentarily.

More generally, one can introduce a refined supersymmetric index with fugacities

turned on [19–23], which takes the form

I(p, q) = Tr[(−1)F pJ+J ′−R
2 qJ−J

′−R
2 ] , (5.31)

where p, q are complex parameters and J, J ′ denote the Cartan generators of SU(2) and

SU(2)′, respectively, and R is the R-charge. This receives contributions only from states

obeying the relation H = 2J − R, and hence it reduces to the unrefined index I(β) upon

setting p = q = e−β. In [21] it has been argued that this index is computed by the

path integral on a compact Hermitian manifold Hp,q homeomorphic to S1 × S3, namely a

(primary) Hopf surface [61]. Thus

ZQFT[Hp,q] = e−F · I(p, q) , (5.32)

where F may depend on the complex structure of the manifold, as well as on counterterms

local in the background fields.

Let us briefly recall the definition of a Hopf surface Hp,q and make contact with our

boundary four-dimensional geometry. A complex manifold homeomorphic to S1 × S3 is

necessarily a primary Hopf surface [61], namely a quotient of C2 − (0, 0) by an infinite

30When a gravity dual exists, the Casimir energy (on the round S3) has been argued in [60] to be

proportional to the anomaly coefficient a = c = O(N2).
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cyclic group. In particular, denoting as (z1, z2) the complex coordinates on C2− (0, 0), the

quotient acts as

(z1, z2) ∼ (pz1, qz2) , (5.33)

where (p, q) are complex numbers with 0 < |p| ≤ |q| < 1. The complex structure of the

resulting manifold Hp,q depends on the two parameters (p, q). For more details we refer

to [21] and references therein. It is straightforward to determine the complex structure (p, q)

compatible with a general metric on S1 × S3 with SU(2)×U(1)×U(1) isometry, namely

ds2 = r2
[

1
4(σ2

1 + σ2
2 + v2σ2

3) + (bdt+ k
2 σ3)2

]
, (5.34)

where we have included a mixed term in the S1 fibration over S3, parameterised by the

constant k. We will then set k = 0 to make contact with our solution. We introduce

complex coordinates

z1 = e
v+ik

v2+k2
b t

cos
θ

2
e

i
2

(ψ+φ) , z2 = e
v+ik

v2+k2
b t

sin
θ

2
e

i
2

(ψ−φ) , (5.35)

with respect to the complex structure J ij = hikJkj associated to the fundamental two-form

J =
r2

2

(
b v dt ∧ σ3 +

1

2
σ1 ∧ σ2

)
. (5.36)

Assuming the identification t ∼ t+ ∆t, from (5.35) we read off

p = q = e
v+ik

v2+k2
b∆t . (5.37)

In particular, taking k = 0 and b = − 1
v` as in our solution, we have that p = q = e−

∆t
`v2 ≡

e−β. This is precisely the standard complex structure of the round S1
β × S3

round, with

ratio of radii given by β = ∆t
`v2

, albeit the metric is not the round one. In the complex

coordinates (5.35), the metric (5.34) reads31

ds2 = r2

[
(v2 + k2)

dz1dz1 + dz2dz2

|z1|2 + |z2|2
+ (1− v2 − k2)

(z1dz2 − z2dz1)(z1dz2 − z2dz1)

(|z1|2 + |z2|2)2

]
,

(5.38)

with our metric corresponding to k = 0, b = − 1
v` and r = 2a0`. According to [21], the

localised partition function of a supersymmetric gauge theory on our background must be

proportional to the unrefined index, depending on the parameter β = ∆t
`v2

.

Let us now return to the interpretation of F in this case.32 The authors of [29] have

conjectured33 that

ZQFT[S1
β × S3

round] = xε0 · I(β) (5.39)

31We observe that the second term vanishes if and only if the metric is conformally flat and thus locally

related by a coordinate transformation to the metric on the round S1 × S3. Note also that this metric is

different from the metric (4.7) in [21] and coincides with it only in the conformally flat limit.
32As discussed above, we expect that in general F should contain information on a supersymmetric

Casimir energy of the theory placed on an arbitrary Hopf surface Hp,q. This point will be addressed

elsewhere [62].
33In three dimensions, a detailed derivation of the analogous quantity from the path integral on S1 × S2

was presented in [28]. We thank S. Kim for clarifying comments.
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where x = e−
2
3β and

ε0 = tr[(−1)FH] = trbosons[H]− trfermions[H] . (5.40)

When a free field theory limit exists this is just the sum of zero-point “energies”, namely

eigenvalues of H, weighted by a sign, and it was therefore referred as to index Casimir

energy in [28, 29]. This expression is divergent and must be regulated, with the result

depending on the choice of regularisation. As H commutes with the supercharge(s), a

natural regularisation [29] is to weight the terms in the infinite sum with a factor of xH ,

sending x→ 1− at the end. One obtains

ε0 = lim
x→1−

tr[(−1)FHxH ] =
1

2
lim
x→1−

x
d

dx

∑
all fields

(fchiral(x) + fvector(x)) , (5.41)

where the letter indices for a chiral multiplet with R-charge r and a vector multiplet are

given by

fchiral(x) =
x3r/2 − x3(2−r)/2

(1− x3/2)2
, fvector(x) =

2x3 − 2x3/2

(1− x3/2)2
, (5.42)

respectively [19, 22]. In the case of interest to us the symmetry of the theory is broken to

SU(2)×U(1)×U(1)R explicitly by the squashing, therefore there is no compelling reason

for using a regulator that would preserve SO(4) rotation symmetry. See [30] for a related

discussion in five dimensions.

Using (5.41) and recalling that for a superconformal field theory the trace anomaly

coefficients are

a =
3

32

(
3 tr R3 − tr R

)
, c =

1

32

(
9 tr R3 − 5 tr R

)
, (5.43)

where tr Rα denotes the sum over the (R-charge)α of all fermionic fields, for a quiver gauge

theory one obtains [29]

x

2

df(x)

dx
= −24

β2
(a− c) +

2

9
(a + 3 c) +O(β) . (5.44)

After subtracting the first term, which is divergent in the β → 0 limit (in any case for

superconformal quivers this term vanishes [63]), one obtains

F =
2

3
βε0 =

4

27
β (a + 3 c) . (5.45)

Note that although we have taken the limit β → 0 in (5.41) to derive ε0, there is no

contradiction with the definition of the Casimir energy given in (5.28), and we see that

from the latter we have ECasimir = 2ε0
3 − limβ→∞

1
β log I(β) = 2ε0

3 + O(1), in the limit

N →∞. For a superconformal quiver we can therefore compare ECasimir with the gravity

side writing

ECasimir =
16

27
a =

2

27

π`3

G
, (5.46)

where we used the holographic relation a = π`3

8G .
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5.3 Comparison with the on-shell action

In section 4 we computed the on-shell gravity action with supersymmetric S1×S3
v boundary

conditions. After removing all divergences using the holographic counterterms, this reads

I =
∆t

`v2

π`3

G

[
2

27
+

2

27
v2 − 13

108
v4 +

19

288
v6

]
. (5.47)

Notice that the first term in the square bracket depends linearly on the complex structure

parameter β = ∆t
`v2

, while the remainder is a polynomial in the squashing parameter v2.

The former agrees precisely with the field theory expectation (5.46) and we would like to

interpret this as the (index) Casimir energy, while the remainder polynomial in v2 should

be identified with a local counterterm.

In the limit v2 = 1 the solution becomes AdS5 and (5.47) reduces to I
∆t

= E = 3
32
π`2

G ,

which in [27] was interpreted as the Casimir energy on S3. On the other hand, the v2 =

1 limit of our proposal for the Casimir energy is 2
27
π`2

G . The ratio between the former

and the latter is 27
32

3
2 , in agreement34 with [29]. In that reference it was argued that the

difference with respect to the usual Casimir energy arises from the use of a regularisation

not respecting the full symmetry of S1 × S3.

Let us now discuss the polynomial in v2 in (5.47). In five dimensions, holographic

renormalisation suffers from ambiguities associated to local, scale invariant counterterms

that remain finite when the UV cut-off is sent to infinity. This means that after having

removed all the divergences, one may still add these finite terms to the action, with arbitrary

coefficients. Although it is believed that different choices of counterterms should correspond

to different choices of renormalisation scheme in the dual field theory [64], a complete

understanding of the details is currently lacking. For a bulk action comprising only the

Einstein-Hilbert term and the cosmological constant, generically one can construct three

inequivalent finite counterterms using the metric and covariant derivatives [27]. These

are given by integrals of R2, RijR
ij and RijklR

ijkl, where R, Rij and Rijkl, are the Ricci

scalar, Ricci tensor and Riemann tensor of the boundary metric, respectively. In the

presence of a gauge field, a fourth finite local invariant is FijF
ij . Equivalently, these may

be parametrized by a basis given by E , CijklC
ijkl, R2 and FijF

ij , where E is the Euler

density E = RijklR
ijkl − 4RijR

ij + R2, and CijklC
ijkl is the square of the Weyl tensor,

CijklC
ijkl = RijklR

ijkl − 2RijR
ij + 1

3R
2. In particular, we have the following standard

finite counterterm for the on-shell action:

∆S =
`3

8πG

∫
∂M

d4x
√
h

(
α E + β CijklC

ijkl + γ R2 − δ

`2
FijF

ij

)
, (5.48)

where α, β, γ, δ are arbitrary numerical constants. For our background, E = 0 and (5.48)

gives a quadratic polynomial in v2:

∆S ∝ γ

4

(
4− v2

)2
+

1

6
(8β − δ)

(
1− v2

)2
. (5.49)

34Noticing the β in [29] and our β differ by a factor of 3/2.
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Tuning the coefficients β, γ, δ we can cancel some of the polynomial terms in (5.47), sug-

gesting that indeed these are ambiguous, but there is no choice cancelling all terms simulta-

neously. The main issue here is whether there exist new types of counterterms that may be

used to modify the on-shell action (5.47). Below we will discuss how new counterterms may

emerge naturally taking into account the additional structure arising from supersymmetry.

The terms in (5.48) are, apart forR2, those appearing in the bosonic action of conformal

supergravity. Therefore the only combination that is supersymmetric, with respect to rigid

supersymmetry, is that with γ = 0 and δ = 8β, which vanishes [34]. However, the correct

notion of supersymmetry in the context of holography is that of the bulk, and should

involve also the divergent counterterms; taking this into account it should be possible to

formulate a supersymmetric version of holographic renormalisation. From this point of

view, it is very natural to expect that the supersymmetric counterterms should be derived

by expanding asymptotically the G-structure encoding the bulk supersymmetry. This was

done at leading order in ref. [8], where the R2-structure on the Lorentzian boundary was

obtained from the SU(2)-structure in the bulk. In Euclidean signature,35 the relevant G-

structure is a metric-compatible complex structure Jij . Since on our background E = 0 and

CijklC
ijkl ∝ FijF

ij , the ambiguity so far may be parameterized by R2 and FijF
ij . Using

the boundary complex structure tensor Jij one can construct additional scale-invariant

counterterms. Here we will not attempt to classify systematically all these terms and to

study how supersymmetry constrains them. We simply notice that using the complex

structure we can introduce the Ricci form of the boundary geometry, Rij = 1
2RijklJ

kl,

which is invariant under global rescaling of the metric. Then a new finite counterterm is

given by ∫
d4x
√
hRijRij = 4π2

(
4− 3v2

)2 ∆t

`
. (5.50)

This polynomial in v2 is independent of those obtained by evaluating the R2 and FijF
ij

terms. Other obvious terms such as (RijJ ij)2 and RijF ij are not independent, hence we

do not need to consider them. Combining these three counterterms with suitably chosen

coefficients, we can remove the remainder polynomial in v2 in (5.47). Namely, we find that

I − 1

108

`3

8πG

∫
∂M

d4x
√
h

(
7

24
R2 +

17

`2
FijF

ij −RijRij
)

=
2

27

∆t

`v2

π`3

G
. (5.51)

In appendix B.2 we discuss how the addition of these counterterms affects the holographic

energy-momentum tensor and the R-symmetry current. One can see that the value of the

R-charge Q and the angular momentum J are not modified, while the total energy E is

shifted by the same amount that changes the on-shell action. Therefore, the relation (4.29)

remains valid as well as (4.33), and the vevs of the gauge-invariant hamiltonians introduced

in section 5.1 are not affected.

In conclusion, we have shown that the supergravity on-shell action contains a term

with the correct linear dependence on the complex structure modulus β, that reproduces

the (index) Casimir energy expected from a supersymmetric field theory on our S1 × S3
v

35In the following we consider the Euclidean version of our background, but similar considerations can

be done in Lorentzian signature.
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background. However, it also contains other terms that we suggested to be removable by

a choice of local counterterms constructed with the background metric, the background

gauge field and the complex structure.

From the point of view of the boundary field theory, in addition to the counterterms

constructed with the metric and the conformal supergravity gauge field Acs = Anm− 3
2V

nm,

it is natural to also include counterterms obtained from other combinations of the new

minimal auxiliary fields Anm and V nm.36 It would be interesting to study how these can

arise from supersymmetry in the bulk and thus be employed in holographic renormalization.

Recently the authors of [68] constructed a five-dimensional supersymmetric solution

and presented evidence that this should be dual to a massive deformation of N = 2 super

Yang-Mills theory on S4. In particular, they showed that the renormalised on-shell action

agrees with the logarithm of the localised partition function on S4 [1], but only up to terms

argued to be ambiguous. In this respect, our construction is somewhat analogous to theirs.

6 Conclusions

In this paper we have constructed a new supersymmetric AlAdS one-parameter family of

solutions to minimal five-dimensional gauged supergravity. This can be uplifted to type IIB

or to eleven-dimensional supergravity by using the consistent truncations of [35, 36, 38].

The parameter v2 deforming AdS5 into our solution may be thought of as a squashing of the

boundary metric, together with the addition of a non-trivial graviphoton field, therefore it

corresponds to a relevant deformation of the Lagrangian in the dual superconformal field

theory. The solution is smooth and has the topology of global AdS5, namely Rt × R4;

for generic values of the parameter it preserves an SU(2) × U(1) × U(1) subgroup of the

isometry group SO(2, 4) of AdS5. Despite we constructed the solution using a combination

of perturbative expansions and numerical integration of the relevant ODE, many quantities

of physical interest were computed analytically as a function of the parameter v2. These

include the on-shell action, the total energy, the angular momentum and the electric charge.

We also provided numerical evidence that the solution is free from closed timelike curves.

After a Wick rotation of the time coordinate, at the boundary the metric remains real

while the background gauge field becomes complex. In the bulk both the gauge field and

the metric become complex, but the appearance of complex metrics in quantum gravity

should not be surprising (see e.g. [69, 70]).

Our main motivation for studying this supergravity solution is that via the

gauge/gravity correspondence it provides the dual to a class of superconformal field the-

ories defined on a four-dimensional curved manifold with certain background fields. In

particular, after the analytic continuation, the Riemannian manifold is homeomorphic to

S1 × S3, equipped with a non conformally flat Hermitian metric, namely it is a particu-

lar Hopf surface [61]. It has been argued in [21] that the localised partition function of

supersymmetric field theories on a Hopf surface with complex structure specified by two

parameters (p, q) is proportional to the refined supersymmetric index with (p, q) fugacities.

36We thank Z. Komargodski for emphasizing this to us. See [65, 66] for a detailed discussion of countert-

erms in three dimensions, and [67] for four-dimensional counterterms from new minimal supergravity.
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The proportionality factor is expected to capture a supersymmetric Casimir energy of the

field theory, which may be expressed as a linear combination of the a and c anomaly coeffi-

cients [29]. Since our background has complex structure p = q ∈ R, we have compared the

renormalised on-shell supergravity action37 to the partition function associated with the

unrefined index, obtaining agreement with the field theory expectation, up to terms that

may be removed by a finite local counterterm. We plan to come back to a more systematic

analysis of the allowed supersymmetric counterterms in the future.

In [20] it was noticed that the large N behavior of the index could not be matched with

the entropy of the supersymmetric black hole of [40], which must scale like SBH ∼ O(N2).

It may be possible to revisit this puzzling feature in the light of the discussion in the

present paper.

There are a number of possible extensions of this work that it is natural to study. For

simplicity, in this paper we have restricted our attention to a four-dimensional boundary

with direct product metric, while as discussed in [34] by a simple change of local coordinates

it is straightforward to include a mixed term (a non-zero parameter k in the metric (5.34)).

As seen in section 5.2 this deformation corresponds to complexifying the complex structure

parameter p = q of the Hopf surface. It would be nice to study this modification of our

solution in more detail (notice that this applies also to the unsquashed case v = 1). A more

complicated generalisation consists in reducing the symmetry of the ansatz, for example

down to a U(1)3 sub-group. In this case the supersymmetry conditions will lead to partial

differential equations, making the problem of finding solutions much more difficult.

A further interesting direction is that of constructing gravity solutions dual to super-

symmetric field theories on four-dimensional Hermitian manifolds with topology different

from S1×S3, preserving generically only one supercharge. This is a very hard problem for

a number of reasons. Firstly, while in the presence of two supercharges with opposite R-

charges (that we considered presently) there exist al least two commuting Killing vectors,

a generic Hermitian background is not guaranteed to possess any isometry. We expect that

in order to construct solutions with only one supercharge it will be necessary to start from

Euclidean supergravity with general complex gauge field, and possibly complex metric.

Moreover, there exist topological obstructions for constructing smooth five-dimensional

manifolds filling a four-dimensional boundary; for example, it is not possible to construct

a smooth five-dimensional solution whose boundary is (topologically) CP 2, while the first

del Pezzo surface dP1 is not obstructed [34].
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A Details on the asymptotic solution

In this appendix we provide more details on the UV solution. We set ` = 1.

A.1 More terms in the UV expansion

Here we give some more details about the solution at large ρ. From the discussion in

section 2, the five-dimensional metric has the form

ds2 = −f2(dy + Ψσ̂3)2 + f−1
[
dρ2 + a2(σ̂2

1 + σ̂2
2) + (2aa′)2σ̂2

3

]
, (A.1)

while the gauge field is given by

F =

√
3

2
d

[
fdy +

(
fΨ +

4a′2 + 2aa′′ − 1

3

)
σ̂3

]
. (A.2)

The UV expansion of the functions f and Ψ is obtained by plugging the UV solu-

tion (3.2) for a into (2.13) and (2.16). We obtain

f = 1 +

[
1 + 16a2 + 4c

12
+

4c

3
ρ

]
e−2ρ

a2
0

+

[
1 + 8(a2 + 3c)− 16(8a2

2 − 6a2c+ 5c2)

144

+
1− 32a2 + 12c

18
c ρ− 8c2

9
ρ2

]
e−4ρ

a4
0

+ O(e−5ρ) (A.3)

and

Ψ = −2a2
0e

2ρ +
1

2
+ 4a2 − 2c+ 4cρ+

[
−1 + 192a4 + 16(c− 2a2)− 8(44a2

2 − 20a2c+ 3c2)

48

+
5

3
c(c− 12a2)ρ− 10c2ρ2

]
e−2ρ

a2
0

+ O(e−3ρ) . (A.4)

Passing from the coordinates y, ψ̂ to the coordinates t, ψ introduced in (3.3), namely

ψ̂ = ψ + χ t , y = t , with χ = − 2

1− 4c
, (A.5)

the five-dimensional metric can be expressed as

ds2 = gρρdρ
2 + gθθ

(
σ 2

1 + σ 2
2

)
+ gψψσ

2
3 + gttdt

2 + 2gtψ σ3 dt , (A.6)

with

gρρ = f−1 , gθθ = f−1a2 , gψψ = −f2Ψ2 + f−1(2aa′)2 ,

gtt = −f2(1 + χΨ)2 + χ2f−1(2aa′)2 , gtψ = −f2(1 + χΨ)Ψ + χf−1(2aa′)2 . (A.7)

– 41 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
4

By substituting the UV solution for a, f , Ψ, these metric components read:

gρρ = 1−
[

1 + 16a2 + 4c

12
− 4c

3
ρ

]
e−2ρ

a2
0

+ O(e−3ρ) ,

gθθ = a2
0 e

2ρ +
−1 + 8a2 − 4c

12
+

2c

3
ρ + O(e−ρ) ,

gψψ = (1− 4c)

[
a2

0 e
2ρ +

−1 + 8a2 + 20c

12
+

2c

3
ρ

]
+ O(e−ρ) ,

gtt = − 4a2
0

1− 4c
e2ρ +

2 + 8a2 + 8c(1 + ρ)

12c− 3
+ O(e−ρ) ,

gtψ = O(e−2ρ) . (A.8)

In order to see the parameters a4, a6 appear in the metric one needs to go one order further.

We will not present this here, as the expressions become cumbersome, but will do it in the

next subsection when we will turn to Fefferman-Graham coordinates.

In a gauge ensuring that the five-dimensional supersymmetry parameter ε does not

depend on t, the gauge potential can be written as

A = At dt+Aψ σ3 , (A.9)

with

At =

√
3

2

(
f + χfΨ + χ

4a′2 + 2aa′′

3

)
,

Aψ =

√
3

2

(
fΨ +

4a′2 + 2aa′′ − 1

3

)
. (A.10)

By plugging the UV expansion in, these read

At =
1

2
√

3
+

5− 256a2
2 − 384a4 + 32c− 232c2 + 32a2(2− 5c)

48
√

3(1− 4c)

e−2ρ

a2
0

+O(e−3ρ) ,

Aψ = − 2√
3
c+

[
1 + 256a2

2 + 384a4 − 32c+ 136c2 + 32a2(1− 7c)

96
√

3
+
c(1− 4c)√

3
ρ

]
e−2ρ

a2
0

+O(e−3ρ) . (A.11)

The leading order behavior of the metric and of the gauge field determines the background

fields for the dual field theory living on the boundary, as displayed in eqs. (3.5) and (3.7).

In the main text, we will also need the leading order expression of ∗5F . Starting

from (A.2), this is found to be

∗5F = − 4c√
3

dρ ∧ dt ∧ σ3

+

[
4c√

3
ρ+

1 + 32a2 + 256a2
2 + 384a4 − 80c− 224a2c+ 328c2

24
√

3(1− 4c)

]
dt ∧ σ1 ∧ σ2

+
5 + 64a2 − 256a2

2 − 384a4 + 32c− 160a2c− 232c2

48
√

3
σ1 ∧ σ2 ∧ σ3 . (A.12)
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A.2 Fefferman-Graham coordinates

In the following, we show that the five-dimensional metric and gauge field can be expressed

in a Fefferman-Graham asymptotic expansion, which implies that the UV solution deter-

mined above is AlAdS. The general Fefferman-Graham form of the metric is

ds2 =
dr2

r2
+ gij(x, r)dx

idxj , (A.13)

where

g(x, r) = r2

[
g(0) +

g(2)

r2
+
g(4) + g̃(4) log r2

r4
+ . . .

]
, (A.14)

while in the gauge Ar = 0 the Maxwell field has the form

A(x, r) = A(0) +
A(2) + Ã(2) log r2

r2
+ . . . . (A.15)

Since at leading order in ρ→∞ the UV solution presented above in this appendix satisfies

gρρ → 1, gij = O(e2ρ) and A = O(1), it is immediately compatible with the Fefferman-

Graham form upon setting ρ = log r. However, this is not as obvious at subleading orders,

as gρρ = f−1 is a non-trivial function of ρ, and the gij components of the metric naively

seem to have “logarithmic” (when ρ = log r) terms too early in the expansion. In order to

show that the solution can be put in Fefferman-Graham form, we need perform a change

of radial coordinate, so that

f−1/2dρ =
dr

r
. (A.16)

By solving this equation perturbatively at large ρ, we find

a2
0 r

2 = a2
0 e

2ρ +
1 + 16a2 + 12c

24
+

2c

3
ρ+

[
3 + 104c− 16(48a2

2 − 8a2c+ 15c2)

2304

+
c(c− 12a2)

18
ρ− c2

3
ρ2

]
e−2ρ

a2
0

+ O(e−3ρ) . (A.17)

One can now check that the five-dimensional metric is consistent with the Fefferman-

Graham expansion. Using the coordinates (t, θ, φ, ψ, r), we obtain

ds2 =
dr2

r2
+ gθθ

(
σ 2

1 + σ 2
2

)
+ gψψσ

2
3 + gttdt

2 + 2gtψ dt σ3 , (A.18)
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where gθθ, gψψ, gtt and gtψ depend only on r and have an expansion of the form (A.14).

Specifically, we find:

g
(0)
θθ = a2

0 , g
(2)
θθ = −3 + 20c

24
, g̃

(4)
θθ =

c(1− 4c)

6a2
0

,

g
(4)
θθ =

−1 + 1536a4 − 120c+ 16(64a2
2 − 24a2c+ 37c2)

768a2
0

,

g
(0)
ψψ = a2

0(1− 4c) , g
(2)
ψψ =

(1− 4c)(28c− 3)

24
, g̃

(4)
ψψ = −c(1− 4c)2

3a2
0

,

g
(4)
ψψ= − 1

62208a2
0

[
225 + 2985984a6 + 12(576a2 − 2401c) + 18432a4(258a2 − 7c)

+48(576a2
2 − 3128a2c+ 3471c2)

+64(9216a3
2 − 216a4 + 1248a2

2c+ 6696a2c
2 − 3355c3)

]
,

g
(0)
tψ = g

(2)
tψ = g̃

(4)
tψ = 0 , g

(4)
tψ = −2g

(4)
θθ − 2

g
(0)
θθ

g
(0)
ψψ

g
(4)
ψψ

+
8(c− 16a2 + 64a2c+ 38c2)− 5

192a2
0

.

g
(0)
tt = − 4a2

0

1− 4c
, g

(2)
tt = − 4c+ 3

6(1− 4c)
, g̃

(4)
tt = 0 , (A.19)

g
(4)
tt = 8

g
(0)
θθ

g
(0)
ψψ

g
(4)
θθ + 4

g(0)
θθ

g
(0)
ψψ

2

g
(4)
ψψ −

1

48 g
(0)
ψψ

3 + 2

1−
g

(0)
ψψ

g
(0)
θθ

+ 11

1−
g

(0)
ψψ

g
(0)
θθ

2 .
According to the standard AdS/CFT rules, the g(0) coefficients are to be interpreted as

source background fields for the dual field theory, while the g(4) are related to the expecta-

tion value of the dual energy-momentum tensor. Let us count how many free parameters

we have at this stage. We already discussed that the boundary metric has two independent

parameters (plus the trivial one obtained by rescaling t). Indeed, g
(0)
tψ can always be set

to zero by a change of local coordinates, as done here, and g
(0)
tt can be set to any value by

rescaling t. We can thus identify the free parameters with g
(0)
θθ and g

(0)
ψψ, which are arbitrary

because a0 and c are. As expected from general considerations about solutions on AlAdS

backgrounds, we see that the sources fix g
(2)
ij and g̃

(4)
ij . Regarding the parameters related to

vacuum expectation values, we find that three of them are arbitrary. Indeed, g
(4)
θθ , g

(4)
ψψ and

g
(4)
tψ are arbitrary because they are independent functions of the free parameters a2, a4, a6,

while g
(4)
tt is fixed in terms of the other expectations values and the sources as in (A.19).

The regularity condition imposed in the IR will constrain these vevs so that no freedom is

left once the sources are fixed.

The gauge field in the new radial variable r is

A =

[
A

(0)
t +

A
(2)
t + Ã

(2)
t log r2

r2

]
dt+

[
A

(0)
ψ +

A
(2)
ψ + Ã

(2)
ψ log r2

r2

]
σ3 +O(r−3) , (A.20)
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with

A
(0)
t =

1

2
√

3
, Ã

(2)
t = 0 ,

A
(2)
t =

5− 256a2
2 − 384a4 + 32c− 232c2 + 32a2(2− 5c)

48
√

3 a2
0(1− 4c)

,

A
(0)
ψ = − 2√

3
c , Ã

(2)
ψ =

c(1− 4c)

2
√

3 a2
0

,

A
(2)
ψ =

1 + 256a2
2 + 384a4 − 32c+ 136c2 − 32a2(7c− 1)

96
√

3 a2
0

. (A.21)

Because of supersymmetry, the solution for the gauge field does not contain any additional

free parameter with respect to the metric.

We have thus proved that the UV solution can be put in Fefferman-Graham form. We

can also check that our findings agree with general results on AlAdS backgrounds. For

instance, an asymptotic analysis of the five-dimensional Einstein equations in the presence

of a cosmological constant [47] and a Maxwell field [48] shows that the first subleading

component of the metric is determined as

g
(2)
ij = − 1

4

(
Rij −

1

6
Rg

(0)
ij

)
, (A.22)

while the trace of g(4) is fixed by

Tr g(4) =
1

4
Tr g2

(2) +
1

12
F 2

(0) . (A.23)

Here, Rij is the Ricci tensor of g
(0)
ij , R its curvature and the indices are raised using g(0).38

The traceless part of g(4) is instead not constrained by the Einstein equation. We checked

that these conditions are indeed satisfied by our solution.

B More on renormalisation

B.1 Energy-momentum tensor and R-current

In the following we give the explicit expressions for the holographically renormalised energy-

momentum tensor and R-current of our family of solutions. These are computed us-

ing (4.17) and (4.20), and turn out to depend on the UV parameters a0, a2, a4, a6 and

v2 = 1− 4c. However, we know that the full solution only has one independent parameter.

In the main text we showed how one can eliminate two of them: a4 is determined by the

global smoothness of the solution as discussed in section 3.5, while a6 is fixed by a Ward

identity as explained in section 4.2. We find that their explicit expressions are

a4 =
1

384

(
5 + 64a2 − 256a2

2 + 32c− 160a2c− 104c2
)
,

a6 =
1

93312

[
72 + 675c− 6000c2 + 8840c3 + 3a2(−261− 5856c+ 15304c2)

+ 288a2
2(−90 + 197c) + 80640a3

2

]
. (B.1)

38In writing eqs. (A.22), (A.23) we took into account two differences between the conventions adopted

here and those of [48]: Rthere
µνηλ = −Rhere

µνηλ and F there = 2F here.
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The relation between the remaining parameters has been determined numerically, see fig-

ure 5. For the energy-momentum tensor we find

〈Tij〉dxidxj = 〈Tθθ〉(σ 2
1 + σ 2

2 ) + 〈Tψψ〉σ 2
3 + 2〈Ttψ〉dt σ3 + 〈Ttt〉dt2 , (B.2)

with, using (B.1),

〈Tθθ〉 =
`

8πGa2
0

32 + 16(16a2 − 5)v2 + 67v4

384
,

〈Tψψ〉 =
`

8πGa2
0

−64 + 480v2 + 24(192a2 − 53)v4 + 1117v6

3456
,

〈Ttψ〉 =
1

8πGa2
0

(v2 − 1)3

27v2
,

〈Ttt〉 =
1

8πGa2
0`

(
2

27v4
+

1

9v2
− 7

36
+

89

864
v2

)
. (B.3)

It is easy to check that 〈Tij〉 is covariantly conserved and traceless with respect to the

boundary metric (3.5). The renormalised electric current, corresponding to the dual field

theory R-current, reads

〈j〉 =
1

144
√

3πG`2a4
0

[
`(v2 − 1)2 ∂

∂t
+

(
72a2 − 14 +

6

v2
+

25v2

2

)
∂

∂ψ

]
(B.4)

and is covariantly conserved with respect to the boundary metric.

We can verify that evaluating the associated charges via the definitions in section 4.2

gives the results presented in the main text. Recall that u = v
2a0

∂
∂t , and that the volume

form on the three-sphere at the boundary is

vol(S3
bdry) = `3a3

0 v σ1 ∧ σ2 ∧ σ3 = −`3a3
0 v sin θ dθ ∧ dφ ∧ dψ . (B.5)

With our choice of orientation, d3x = −dθ∧dφ∧dψ. So integrating we have
∫

vol(S3
bdry) =

2π2v(2`a0)3, which when v = 1 is the volume of a round 3-sphere of radius 2`a0.

Then for the energy and the angular momentum we find

E =

∫
S3
bdry

ui〈Tit〉 vol(S3
bdry) =

π`2

G

(
2

27v2
+

1

9
− 7

36
v2 +

89

864
v4

)
,

J =

∫
S3
bdry

ui〈Tiψ〉 vol(S3
bdry) =

π`3

27G
(v2 − 1)3 , (B.6)

while the electric charge is

Q =

∫
S3
bdry

ui〈ji〉 vol(S3
bdry) = − 2π`2

9
√

3G
(v2 − 1)2 . (B.7)

These are indeed the expressions appearing in the main text.
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B.2 Ambiguities in the energy-momentum tensor and R-current

Consider the standard finite counterterms (5.48) for the on-shell action. These lead to the

following ambiguity in the holographic energy-momentum tensor

∆Tij = − 2√
h

δ∆S

δhij
=

`3

4πG

[
2β Bij + γ Hij +

δ

`2

(
2FikFj

k − 1

2
hijFklF

kl

)]
, (B.8)

where we used the fact that the metric variation of the Euler density vanishes identically

in four dimensions. The tensor Hij is given by

Hij = − 1√
h

δ

δhij

∫
d4x
√
hR2 = 2∇i∇jR− 2hij �R+

1

2
hijR

2 − 2RRij , (B.9)

while Bij is the Bach tensor following from the variation of the Weyl square term:

Bij = − 1

2
√
h

δ

δhij

∫
d4x
√
hCijklC

ijkl (B.10)

=
1

3
∇i∇jR−�Rij +

1

6
hij �R− 2RikjlR

kl +
2

3
RRij +

1

2
hij

(
RklR

kl − 1

3
R2

)
.

These can also be deduced from the expressions given in [64], after adapting them to

(−,+,+,+) signature and to the curvature tensor conventions in our footnote 2. Both Hij

and Bij are covariantly conserved, and Bi
i = 0 .

Including the new counterterm (5.50) also affects the energy-momentum tensor, as

1√
h

δ

δhij

∫
d4x
√
hRklRkl = 2RikRjk −

1

2
hijRklRkl + 2∇l∇k

(
RikJj l

)
, (B.11)

where the variation is done at fixed Jij . Specializing these formulae to our background,

one can check that the ambiguities in the energy-momentum tensor affect the energy E

but not the angular momentum J . Specifically, E is shifted by the same amount as the

on-shell action I/∆t, in such a way that both relations (4.28) and (4.33) continue to hold.

Finally, we note that there is also an ambiguity in the R-current: the variation of

the counterterms (5.48) with respect to the boundary gauge field Ai yields ∆ji ∼ ∇jF ji.
However, this does not modify the temporal component of the current and therefore does

not affect the charge Q defined in (4.24).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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