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1 Introduction and summary

Holographic observables in the AdS/CFT correspondence typically need regularizing. In

particular divergences often arise near the conformal boundary, which are interpreted as

UV divergences in the dual field theory [1, 2]. The method of holographic renormalization,

which removes these infinities in gravitational observables via the addition of local boundary

counterterms, was systematically developed from the very beginnings of the subject. This

mirrors the corresponding procedure in field theory, and forms part of the foundations

of the AdS/CFT correpondence. Early references, incorporating a variety of approaches,

include [1–10]. However, the existence of finite counterterms implies non-uniqueness of

the renormalization scheme, and in such situations it is generally unclear how to match

schemes on the two sides. Given that the classical gravitational description is typically

valid only in a strong coupling limit of the field theory, generically it is difficult to directly

compute observables on both sides, and hence make precise quantitative comparisons.

Precision tests of the AdS/CFT correspondence usually rely on the presence of addi-

tional symmetries, the notable examples being integrability and supersymmetry. In par-

ticular when the field theory is supersymmetric, it is natural to ask whether holographic

renormalization of its dual description is a supersymmetric regularization scheme. Recent

exact results in supersymmetric quantum field theories defined in curved space, relying on

localization techniques [11–13], have brought this question into sharp focus: many BPS

observables may be computed exactly and unambiguously in field theory, and these may

then be compared with holographic dual supergravity computations. Any ambiguities in

defining finite renormalized quantities in gravity are then expected to be resolved in mak-

ing such comparisons. As well as trying to match precise quantities on both sides, there

are more general predictions that may also be compared, such as the dependence of BPS

observables on given sets of boundary data. These latter tests of the correspondence are

inherently more robust than comparing observables in particular theories/backgrounds,

and will hence be a main focus of this paper.

We will concentrate on the correspondence between field theory partition function

and gravity on-shell action. In the appropriate large N field theory limit in which semi-

classical gravity describes the conformal field theory (CFT), the AdS/CFT correspondence

states that

ZCFT[Md] =
∑

e−S[Md+1] . (1.1)

Here ZCFT is the partition function of the CFT defined on a background Md, while S[Md+1]

is the holographically renormalized gravity action, evaluated on an asymptotically locally

Euclidean AdS (AlEAdS) solution Md+1 that has conformal boundary Md, with the bound-

ary conditions for the gravity fields corresponding to the CFT background fields. The sum

is over all AlEAdS gravity solutions with these boundary conditions that can be embedded

into string theory [1, 2]. We will study minimal N = 2 gauged supergravity in four and

five dimensions, whose bosonic sectors are simply Einstein-Maxwell theory with a negative

cosmological constant (and Chern-Simons coupling in dimension five). Solutions to these
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theories uplift either to M-theory or to type II string theory, for which there are large

classes of known field theory duals.

Asymptotically locally AdS (AlAdS) supersymmetric solutions induce a rigid super-

symmetric structure on the conformal boundary, which has been studied in both Lorentzian

and Euclidean signature [14, 15]. The boundaries M3 of AlEAdS supersymmetric solutions

to four-dimensional supergravity have metric of the form

ds2
3 = (dψ + a)2 + 4ewdzdz̄ . (1.2)

Here ∂ψ is a nowhere zero Killing vector on M3, and we have used the freedom to make

conformal transformations to take this to be a unit norm vector. This generates a trans-

versely holomorphic foliation of M3, allowing one to introduce a canonical local transverse

complex coordinate z. The function w = w(z, z̄) is in general a local transverse function,

while a = az(z, z̄)dz+ az(z, z̄)dz̄ is a local one-form. We may also write da = iu ewdz ∧dz̄,

where u = u(z, z̄). In addition to the background metric (1.2) there is also a non-dynamical

Abelian R-symmetry gauge field, which arises as the restriction of the bulk Maxwell field

to the conformal boundary and whose form is specified by supersymmetry.

It is a general result of [16, 17] that the partition function of any N = 2 field theory

in three dimensions, with a choice of Abelian R-symmetry coupling to the background R-

symmetry gauge field, depends on the above background geometry only through the choice

of transversely holomorphic foliation. Concretely, this means that the field theory partition

function is invariant under deformations w → w+ δw, u→ u+ δu, where δw(z, z̄), δu(z, z̄)

are arbitrary smooth global functions on M3, invariant under ∂ψ. This is proven by show-

ing that these deformations of the background geometry lead to Q-exact deformations of

the Lagrangian, where Q is a supercharge, and a standard argument then shows that the

partition function is invariant. This general result has also been borne out by explicit com-

putations of localized partition functions (such as [18], where M3 has the topology of S3).

The field theory results in the previous paragraph then lead to a very concrete pre-

diction: the holographically renormalized on-shell action of a supersymmetric AlEAdS

solution to four-dimensional supergravity, with conformal boundary M3 and metric (1.2),

should be invariant under the arbitrary deformations w → w + δw, u → u + δu defined

above. As we shall review, in four dimensions holographic renormalization leads to a unique

set of standard counterterms for minimal N = 2 gauged supergravity — there are no fi-

nite ambiguities1 — and we prove that the renormalized on-shell action has indeed the

expected invariance properties. Since we do this for an arbitrary solution, and arbitrary

deformation, this constitutes a robust check of the AdS/CFT correspondence, in particular

that holographic renormalization corresponds to the (unique) supersymmetric renormaliza-

tion scheme employed implicitly in the localization computations. We also go further, and

show that the on-shell action itself correctly evaluates to the large N field theory partition

function obtained from localization, in the cases where this is known.

The corresponding situation for five-dimensional supergravity turns out to be more

involved. We will consider Euclidean conformal boundaries M4 given by the direct product

1More precisely there are no finite diffeomorphism-invariant and gauge-invariant local counterterms

constructed using the bosonic supergravity fields.

– 3 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
2

of a circle S1 with M3 equipped with the metric (1.2), although we shall later generalize this

slightly to a simple class of twisted backgrounds in which S1 is fibred over M3; the boundary

value of the Abelian gauge field in the supergravity multiplet is again determined by super-

symmetry. The general dependence of the four-dimensional field theory partition function

on the background is similar to the one in three dimensions: for N = 1 theories with an

R-symmetry (and thus for any N = 1 superconformal field theory), the supersymmetric

partition function is invariant under deformations w → w + δw, u → u + δu [16, 17, 19].

Although contrastingly with the three-dimensional case these “supersymmetric Ward iden-

tities” a priori only hold up to anomalies and local finite counterterms, it was shown in [20]

that the supersymmetric renormalization scheme used in field theory is unique, i.e. free of

ambiguities. Moreover the background M4 we consider is such that there are no Weyl

and R-symmetry anomalies [21]. Therefore the statement on invariance of the partition

function holds exactly in our set-up.

In five-dimensional supergravity, holographic renormalization contains a set of

diffeomorphism-invariant and gauge-invariant local boundary terms corresponding a priori

to the same ambiguities and anomalies as in field theory [1, 3, 4]. One might thus have

expected that there is a unique linear combination of the finite holographic counterterms

that matches the supersymmetric field theory scheme, i.e. such that the renormalized ac-

tion is invariant under deformations w → w+ δw, u→ u+ δu of M4. Surprisingly, we find

that no choice of these counterterms has this property. If the AdS/CFT correspondence is

to hold, we must conclude that holographic renormalization breaks supersymmetry in this

case (or, perhaps more precisely, is not compatible with the four-dimensional supersym-

metry determining the Ward identities above). However, remarkably we are able to write

down a set of non-standard, finite boundary terms that do not correspond to the usual

diffeomorphism and gauge invariant terms and that give the on-shell action the expected

invariance properties.

The approach we follow in our supergravity analysis starts in Lorentzian signature. In

particular we will rely on the existing classification of Lorentzian supersymmetric solutions

to minimal gauged supergravity [22] to construct a very general AlAdS solution in a per-

turbative expansion near the boundary. Then we perform a Wick rotation; this generally

leads to complex bulk solutions, however we focus on a class with real Euclidean conformal

boundary M4
∼= S1 ×M3.

The fact that supersymmetric holographic renormalization is more subtle in five di-

mensions was already anticipated, and in fact the issue can be illustrated by considering the

simple case of AdS5. In global coordinates, and after compactifying the Euclidean time, the

conformal boundary of AdS5 can be taken to be M4
∼= S1×S3, with a round metric on S3.

This space is expected to be dual to the vacuum of a superconformal field theory (SCFT)

on M4. In this background, such theories develop a non-ambiguous non-zero vacuum ex-

pectation value (VEV) for both the energy and the R-charge operators [19, 20]. On the

other hand, standard holographic renormalization unambiguously yields a vanishing elec-

tric charge for AdS5, which leads to an immediate contradiction with the field theory result.

In fact this mismatch holds much more generally than just for AdS5 space. For instance,

in [23] a family of five-dimensional supergravity solutions was constructed, where the con-
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formal boundary comprises a squashed S3, and it was found that no choice of standard

holographic counterterms correctly reproduced the supersymmetric partition function and

the corresponding VEV of the energy (the supersymmetric Casimir energy). Our general

results summarized above explain all these discrepancies, and moreover the new countert-

erms we have introduced solve all of these issues. In fact we go further, and show that for

a general class of solutions satisfying certain topological assumptions (which may be ar-

gued to be required for the solution to correspond to the vacuum state of the dual SCFT),

our holographically renormalized VEVs of conserved charges quantitatively reproduce the

expected field theory results. Part of these results, with an emphasis on the holographic

supersymmetric Casimir energy, were presented in the short communication [24].

The rest of the paper is organized as follows. In section 2 we review the relevant

field theory backgrounds and the properties of supersymmetric partition functions. In

section 3 we present our four-dimensional supergravity analysis, showing in particular that

standard holographic renormalization does satisfy the supersymmetric Ward identities, and

evaluating the on-shell action for a large class of self-dual solutions. In section 4 we turn

to five-dimensional supergravity. We prove that standard holographic renormalization fails

to satisfy the supersymmetric Ward identities and we introduce the new boundary terms

curing this issue. Then under some global assumptions we evaluate the renormalized on-

shell action and compute the conserved charges, showing that they satisfy a BPS condition.

Section 5 discusses a number of examples in five dimensions, illustrating further the role of

our new boundary terms and making contact with the existing literature. We conclude

in section 6. Finally, appendix A contains information on relevant curvature tensors,

appendix B illustrates our construction of the five-dimensional perturbative solution, and

appendix C discusses the Killing spinors at the boundary.

2 Field theory

In this paper we are interested in the holographic duals to both three-dimensional and

four-dimensional supersymmetric field theories, defined on general classes of rigid super-

symmetric backgrounds. More precisely, these are three-dimensional N = 2 theories and

four-dimensional N = 1 theories, in both cases with a choice of Abelian R-symmetry.

For superconformal field theories, relevant for AdS/CFT, this R-symmetry will be the su-

perconformal R-symmetry. Putting such theories on curved backgrounds, in a way that

preserves supersymmetry, requires particular geometric structures. There are two general

approaches: one can either couple the field theory to supergravity, and take a rigid limit

in which the supergravity multiplet becomes a set of non-dynamical background fields; or

take a holographic approach, realizing the background geometry as the conformal bound-

ary of a holographic dual supergravity theory [14, 25–27]. Both lead to the same results,

although the holographic approach will be particularly relevant for this paper.

We will focus on backgrounds admitting two supercharges of opposite R-charge. The

resulting geometric structures in three and four dimensions are very closely related, and

this will allow us to treat some aspects in parallel. In particular certain objects will appear
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in both dimensions, and we will use a common notation — the dimension should always

be clear from the context.

2.1 Three-dimensional backgrounds

The three-dimensional geometries of interest belong to a general class of real supersym-

metric backgrounds, admitting two supercharges related to one another by charge conju-

gation [27]. If ζ denotes the Killing spinor then there is an associated Killing vector

ξ = ζ†σiζ ∂i = ∂ψ . (2.1)

In an orthonormal frame here the Clifford algebra generators σa may be taken to be the

Pauli matrices, where a = 1, 2, 3 is an orthonormal frame index. The Killing vector (2.1)

is nowhere zero, and thus defines a foliation of the three-manifold M3. This foliation is

transversely holomorphic, with transverse local complex coordinate z. In terms of these

coordinates the background metric is

ds2
3 = Ω2

[
(dψ + a)2 + 4ewdzdz̄

]
. (2.2)

Here Ω = Ω(z, z̄) is a conformal factor, which is a global nowhere zero function on M3,

w = w(z, z̄) is in general a local transverse function, while a = az(z, z̄)dz + az(z, z̄)dz̄ is

a local one-form. The metric and Riemannian volume form on the two-dimensional leaf

space are

ds2
2 = 4ewdzdz , vol2 = 2i ewdz ∧ dz . (2.3)

Notice that a is not gauge invariant under local diffeomorphisms of ψ. On the other hand

the one-form

η ≡ dψ + a (2.4)

is a global almost contact form on M3, where the Killing vector ξ = ∂ψ is the associated

Reeb vector field. It will be convenient to write

dη = da = iu ewdz ∧ dz̄ , (2.5)

where u = u(z, z̄) is a global function that parametrizes the gauge-invariant data in a.

Since we are mainly interested in conformal theories with gravity duals, we will (with-

out loss of generality) henceforth set the conformal factor Ω ≡ 1. With this choice, the

non-dynamical R-symmetry gauge field that couples to the R-symmetry current is

A =
u

4
(dψ + a) +

i

4
(∂z̄wdz̄ − ∂zwdz) + γ dψ + dλ . (2.6)

Notice this is determined entirely by the metric data in (2.2), apart from the last two terms

which are locally pure gauge. Here λ = λ(z, z̄), and the constant γ will play a particularly

important role in this paper.2

2Compared to the conventions of [28, 29], we have reversed the overall sign of A. However, as noted

in the first of these references, for real A sending A → −A is a symmetry of the Killing spinor equation,

provided one also charge conjugates the spinor ζ → ζc. This Z2 symmetry also reverses the sign of the

Killing vector (2.1).
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2.2 Four-dimensional backgrounds

There is a related class of rigid four-dimensional supersymmetric backgrounds, first dis-

cussed in [14, 26]. These again have two supercharges of opposite R-charge, with cor-

responding Killing spinors ζ±. We use the spinor conventions of [19, 26], in which the

positive/negative chirality ζ± are two-component spinors with corresponding Clifford alge-

bra generated by (σ±)a = (±~σ,−i12), where a = 1, . . . , 4 is an orthonormal frame index

and ~σ = (σ1, σ2, σ3) are the Pauli matrices. In particular the generators of SU(2)± ⊂
Spin(4) = SU(2)+×SU(2)− are (σ±)ab = 1

4

(
σa±σ

b
∓ − σb±σa∓

)
. As in (2.1) we may define the

vector field

K = ζ+σ
i
+ζ− ∂i . (2.7)

This is a complex Killing vector, satisfying KiKi = 0. Following [19, 30], and to paral-

lel the three-dimensional discussion in section 2.1, we consider a restricted class of these

backgrounds in which the metric on M4 takes the product form

ds2
4 = dτ2 + (dψ + a)2 + 4ewdzdz̄ . (2.8)

Thus M4
∼= S1 ×M3, where τ ∈ [0, β) parametrizes the circle S1 = S1

β . More generally

one can also introduce an overall conformal factor Ω = Ω(z, z̄), as in (2.2), and the τ

direction may be fibred over M3, as we will discuss later in section 4.5. The complex

Killing vector (2.7) takes the form

K =
1

2
(ξ − i∂τ ) , (2.9)

where again ξ = ∂ψ. The induced geometry on M3, on a constant Euclidean time slice τ =

constant, is identical to that for rigid supersymmetry in three dimensions. Moreover, the

non-dynamical R-symmetry gauge field is

A =
u

4
(dψ + a) +

i

4
(∂z̄wdz̄ − ∂zwdz) + γ dψ + dλ+

i

8
u dτ − iγ′dτ . (2.10)

We stress that this is the gauge field of background conformal supergravity, rather than

the gauge field of new minimal supergravity [31] used in [26]. The former arises as the

restriction of the bulk graviphoton to the conformal boundary in the holographic approach

to rigid supersymmetry [14, 15]. Notice that setting τ = constant, (2.10) reduces to the

three-dimensional gauge field (2.6). The last term in (2.10), proportional to the (real)

constant γ′, is again locally pure gauge, although via a complex gauge transformation. In

contrast to three dimensions here A is generically complex, although after a Wick rotation

τ = it to Lorentzian signature it becomes real.

The geometry we have described above is ambi-Hermitian: the two Killing spinors ζ±
equip M4 with two commuting integrable complex structures

(I±)ij = − 2i

|ζ±|2
ζ†±(σ±)ij ζ± . (2.11)

The metric (2.8) is Hermitian with respect to both of these, but where the induced orienta-

tions are opposite. The complex Killing vector (2.7) has Hodge type (0, 1) with respect to

both complex structures. On the other hand, the local one-form dz has Hodge type (1, 0)

with respect to I+, but Hodge type (0, 1) with respect to I−.

– 7 –
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2.3 Examples

In both cases the geometry involves a three-manifold M3, equipped with a transversely

holomorphic foliation generated by the real Killing vector ξ = ∂ψ. Any such three-manifold,

with any compatible metric of the form (2.2), defines a rigid supersymmetric background in

both three and four dimensions. If all its orbits close ξ generates a U(1) isometry, and the

quotient space Σ2 = M3/U(1) is an orbifold Riemann surface, with induced metric (2.3).

Such three-manifolds are classified, and are known as Seifert fibred three-manifolds. If ξ has

a non-closed orbit then M3 admits at least a U(1)2 isometry, meaning that the transverse

metric ds2
2 also admits a Killing vector.

The simplest example has M3
∼= S3, with ξ generating the Hopf fibration of the round

metric on S3.3 In this case Σ2
∼= S2, equipped with its round metric. More generally one

can think of S3 ⊂ C⊕ C, and take

ξ = b1∂ϕ1 + b2∂ϕ2 , (2.12)

where ϕ1, ϕ2 are standard 2π periodic azimuthal angles on each copy of C. For b1 = ±b2
this is again the Hopf action on S3, but for b1/b2 irrational the flow of ξ is irregular, with

generically non-closed orbits. In this case ψ and arg z are not good global coordinates on

the three-sphere. It is straightforward to write down the general form of a compatible

smooth metric in this case, of the form (2.2) — see [19]. From the perspective of complex

geometry, these manifolds with S1×S3 topology (and largely arbitrary Hermitian metric)

are primary Hopf surfaces.

A large and interesting class of examples are given by links of weighted homoge-

neous hypersurface singularities. Here one begins with C3 with a weighted C∗ action

(Z1, Z2, Z3)→ (qw1Z1, q
w2Z2, q

w3Z3), where wi ∈ N are the weights, i = 1, 2, 3, and q ∈ C∗.
The hypersurface is the zero set

X = {f = 0} ⊂ C3 , (2.13)

where f = f(Z1, Z2, Z3) is a polynomial satisfying

f(qw1Z1, q
w2Z2, q

w3Z3) = qdf(Z1, Z2, Z3) , (2.14)

where d ∈ N is the degree. For appropriate choices of f the link

M3 = X ∩ {|Z1|2 + |Z2|2 + |Z3|2 = 1} (2.15)

is a smooth three-manifold. Moreover, the weighted C∗ action induces a U(1) isometry

of the metric (induced from the flat metric on C3), and the associated Killing vector ξ

naturally defines a transversely holomorphic foliation of M3. Here Σ2 = M3/U(1) is the

orbifold Riemann surface given by {f = 0} in the corresponding weighted projective space

WCP2
[w1,w2,w3]. This construction covers all spherical three-manifolds S3/ΓADE , but also

many three-manifolds with infinite fundamental group. One can further generalize this

construction by considering links of complete intersections, i.e. realizing X as the zero set

of m weighted homogeneous polynomials in C2+m.

3Throughout the paper, the symbol ∼= means “diffeomorphic to”. In general, Md
∼= Sd does not imply

that the metric is the round metric on Sd; we will always specify when this is the case.
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2.4 A global restriction

If we take the product X0 ≡ R>0 ×M3, then we may pair the Reeb vector ξ with a radial

vector r∂r, where r is the standard coordinate on R>0. Notice this is particularly natural

in four dimensions, where we may identify τ = log r, with X0 = R>0×M3 being a covering

space for M4 = S1 ×M3. Then X0 is naturally a complex manifold, with the complex

vector field ξ − ir∂r being of Hodge type (0, 1). In fact X0 may be equipped with either

the I+ or the I− complex structure, with the former more natural in the sense that z is

a local holomorphic coordinate with respect to I+. In the following we hence take the I+

complex structure.

The examples in section 2.3 all share a common feature: in these cases the complex

surface X0 admits a global holomorphic (2, 0)-form. That is, its canonical bundle K is

(holomorphically) trivial. This is obvious for S3, where X0
∼= C2 \ {0}, while for links

of homogeneous hypersurface singularities X we may identify X0 = X \ {o}, where the

isolated singular point o is at the origin {Z1 = Z2 = Z3 = 0} of C3. In this case the

holomorphic (2, 0)-form is Ψ = dZ1 ∧ dZ2/(∂f/∂Z3) in a patch where ∂f/∂Z3 is nowhere

zero. One can easily check that Ψ patches together to give a smooth holomorphic volume

form on X0. Such singularities X are called Gorenstein.

As shown in [30], the one-form A in (2.6) is (in our sign conventions) a connection

on K1/2. It follows that when the canonical bundle of X0 is trivial A may be taken to be

a global one-form (this is true on M3 or on M4
∼= S1 ×M3). This global restriction on

A will play an important role in certain computations later. For example, the computa-

tion of the supersymmetric Casimir energy in [30] requires this additional restriction on

M4
∼= S1 ×M3, and the same condition will also be needed in our evaluations of the renor-

malized gravitational actions in four and five dimensions. That said, other computations

will not require this restriction, and we shall always make clear when we need the global

restriction of this section, and when not.

As explained in [30], when the canonical bundle of X0 is trivial the constant γ in (2.6),

(2.10) may be identified with 1
2 the charge of the holomorphic (2, 0)-form Ψ under the Reeb

vector ξ. Thus for example we have

γ =


1
2(b1 + b2) , S3 with Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2

1
2b(−d+

∑3
i=1wi) , M3 = link of weighted homogeneous

hypersurface singularity, ξ = bχ .

(2.16)

Here in the second example the normalized generator of the U(1) ⊂ C∗ action for the

link has been denoted by χ, and b is an arbitrary scale factor. The local function λ(z, z̄)

in (2.6), (2.10) is chosen so that A is a global one-form on M3. The form of this depends

on the choice of transverse coordinate z, and then λ is fixed uniquely up to a shift by a

global function on M3 that is invariant under ξ: this is just a small gauge transformation

of A. Finally, on M4
∼= S1 ×M3 the constant γ′ introduced in (2.10) is fixed by requiring

the Killing spinors ζ± to be invariant under ∂τ . This is necessary in order that the Killing

spinors survive the compactification of R×M3 to S1×M3. In fact as we show in appendix C

this sets γ′ = 0, but it will be convenient to keep this constant since the more general

background with S1 fibred over M3 we will discuss in section 4.5 will require γ′ 6= 0.
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In order to compute the four- and five-dimensional on-shell supergravity actions later

in the paper, we will also need some further expressions for the constant γ. Since we may

always approximate an irregular Reeb vector field (with generically non-closed orbits) by a

quasi-regular Reeb vector field (where all orbits close), there is no essential loss of generality

in assuming that ξ generates a U(1) isometry of M3. Equivalently, M3 is the total space of

a U(1) principal orbibundle over an orbifold Riemann surface Σ2 with metric (2.3) (which

is smooth where U(1) acts freely on M3). Since the orbits of ξ = ∂ψ close, for a generic

orbit we may write ψ ∼ ψ + 2π/b, with b ∈ R>0 a constant. This allows us to write the

following relation between the almost contact volume and characteristic class

b2

(2π)2

∫
M3

η ∧ dη =

∫
Σ2

c1 (L) , (2.17)

where c1 (L) ∈ H2 (Σ2,Q) is the first Chern class of L, the orbifold line bundle associated

to S1 ↪→M3 → Σ2. If the U(1) action generated by ξ is free, then Σ2 is a smooth Riemann

surface and the right hand side of (2.17) is an integer; more generally it is a rational

number. Analogously, by definition the first Chern class of Σ2 is the first Chern class of its

anti-canonical bundle, which integrates to∫
Σ2

c1(Σ2) ≡
∫

Σ2

c1

(
K−1

Σ2

)
=

1

4π

∫
Σ2

R2d vol2 . (2.18)

Here R2d = −�w is the scalar curvature of the metric (2.3) on Σ2, expressed in terms of

the two-dimensional Laplace operator � ≡ e−w∂2
zz̄ (we are using the notation ∂2

zz ≡ ∂z∂z).
Equivalenty we may write this as an integral over M3:∫

Σ2

c1(Σ2) =
b

8π2

∫
M3

R2d η ∧ vol2 . (2.19)

Given these preliminary formulas, we next claim that the expression (2.6) for A de-

scribes a globally defined one-form on M3 if and only if γ is given by

γ = − b
2

∫
Σ2
c1(Σ2)∫

Σ2
c1 (L)

= −1

4

∫
M3

R2d η ∧ vol2∫
M3

η ∧ dη
. (2.20)

To see this, recall from our discussion above that 2A is a connection on the canonical bundle

K of X0. The latter is (by assumption) holomorphically trivial, with global holomorphic

section a (2, 0)-form Ψ. It follows that 2γ may be identified with the charge of Ψ under the

Reeb vector ξ = ∂ψ [30]. On the other hand, Ψ in turn may be constructed as a section of

the canonical bundle KΣ2 of Σ2, tensored with a section of some power of L∗, say (L∗)p,
where L∗ is the bundle dual to L. The former must be dual line bundles in order that Ψ

is globally defined as a form, meaning that

p c1(L∗) = −c1(KΣ2) = c1(Σ2) . (2.21)

Since exp(b iψ) is a section of L, which has charge b under ξ = ∂ψ, and c1(L∗) = −c1(L),

this means that the charge of Ψ is fixed to be

2γ = b p = −b
∫

Σ2
c1(Σ2)∫

Σ2
c1(L)

. (2.22)
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Rearranging gives (2.20). We stress again that although we have derived (2.20) for quasi-

regular Reeb vector fields, by continuity the expression for γ given by the first equality

holds also in the irregular case.

These Seifert invariants are readily computed for particular examples. For example,

in section 2.3 we considered M3
∼= S3 with Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2 , where ϕ1, ϕ2

are standard 2π periodic coordinates. The foliation is quasi-regular when b1/b2 = p/q ∈ Q
is rational. Taking p, q ∈ N with no common factor, we have Σ2 = S3/U(1)p,q ∼= WCP1

[p,q].

This weighted projective space is topologically a two-sphere, but with orbifold singularities

with cone angles 2π/p and 2π/q at the north and south poles, respectively. Recalling that

L is the line bundle associated to S1 ↪→ S3 → Σ2, it is straightforward to compute that∫
Σ2

c1(L) = − 1

pq
,

∫
Σ2

c1(Σ2) =
p+ q

pq
. (2.23)

Similarly, for M3 a link of a weighted homogeneous hypersurface singularity, described in

section 2.3, one finds∫
Σ2

c1(L) = − d

w1w2w3
,

∫
Σ2

c1(Σ2) =
d(−d+

∑3
i=1wi)

w1w2w3
. (2.24)

These invariants are also often referred to as the virtual degree and virtual Euler character-

istic of the weighted homogeneous hypersurface singularity, respectively. Notice that (2.23)

may be derived from (2.24) as a special case: we may take weights (w1, w2, w3) = (p, q, 1),

together with the polynomial f(Z1, Z2, Z3) = Z3, which has degree d = 1. The zero set of

f is then C2, with coordinates Z1, Z2, with weighted Reeb vector ξ = p∂ϕ1 + q∂ϕ2 .

Finally, it is worth pointing out there are interesting examples that are not covered

by the restriction we make in this section. In particular setting the connection one-form

a = 0 gives a direct product M3
∼= S1 × Σ2, but unless Σ2

∼= T 2 the canonical bundle

of X0 is non-trivial (being the pull back of the canonical bundle of Σ2). This rules out

M3
∼= S1×S2, where the Reeb vector rotates the S1. In this case A is a unit charge Dirac

monopole on S2. Localized gauge theory partition functions on such backgrounds have

been computed in [32–34].

2.5 The partition function and supersymmetric Casimir energy

The general results of [16, 17] imply that the supersymmetric partition function of an

N = 2 theory on M3, or an N = 1 theory on M4
∼= S1 ×M3, depends on the choice of

background only via the transversely holomorphic foliation of M3. Concretely, this means

that the partition function is invariant under deformations w → w + δw, u → u + δu,

where δw(z, z̄), δu(z, z̄) are arbitrary smooth global functions on M3, invariant under

ξ = ∂ψ. Rigid supersymmetric backgrounds M4 with a single supercharge ζ are in general

Hermitian, and more generally the partition function is insensitive to Hermitian metric

deformations and depends on the background only via the complex structure (up to local

counterterms and anomalies) [16]. It is important to note that these statements are valid

when the new minimal formulation of four-dimensional supergravity [31] (or its three-

dimensional analogue) is used to couple the field theory to the curved background. We will

refer to these results as supersymmetric Ward identities.
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The Lagrangians for general vector and chiral multiplets on these backgrounds may

be found in the original references cited above. In [16, 17] the strategy is to show that

deformations of the background geometry that leave the transversely holomorphic foliation

(or more generally in four dimensions the complex structure) fixed are Q-exact. A standard

argument then shows that the partition function is invariant under such deformations (up

to invariance of the measure).

These general statements are supported by explicit computations of localized parti-

tion functions. In three dimensions the simplest case is M3
∼= S3, with general Reeb

vector (2.12). This was studied in [18]. The partition function of a general N = 2 gauge

theory coupled to arbitrary matter localizes to a matrix model for the scalar in the vector

multipet, where this matrix model depends on the background geometry only via b1, b2.

The large N limit was computed for a broad class of Chern-Simons-matter theories in [35]

using saddle point methods. The final result for the free energy F = − logZ in the large

N limit is

F =
(b1 + b2)2

4b1b2
· 4π2

κ2
4

. (2.25)

Here

FS3
round

=
4π2

κ2
4

(2.26)

is the free energy on the round S3, which scales as N3/2 [36], where κ2
4 is the four-

dimensional effective coupling constant of the gravity dual. The partition function has

also been computed on (round) Lens spaces S3/Zp in [37, 38]. Here the partition function

localizes onto flat gauge connections, and thus splits into a sum over topological sectors.

However, in the large N limit of the ABJM theory studied in [38] it was shown that only

certain flat connections contribute, all giving the same contribution as the trivial flat con-

nection. The upshot is that the large N free energy is simply 1
p times the free energy on

S3. As far as the authors are aware, there are no explicit results for the partition func-

tion, or its large N limit, on more general links of homogeneous hypersurface singularities.

However, it is tempting to conjecture that for appropriate classes of theories with large

N gravity duals, the large N free energy may be computed from the sector with trivial

gauge connection. The one-loop determinants here should be relatively straightforward to

compute, in contrast to the full partition function which localizes onto solutions of the

Bogomol’nyi equation, i.e. flat connections (on a closed three-manifold).

The partition function for general N = 1 theories with an R-symmetry, defined on

Hopf surfaces M4
∼= S1 × S3, was computed using localization in [19] (the chiral multiplet

was also studied in [39]). With two supercharges of opposite R-charge one localizes onto

flat gauge connections, which on S1×S3 amount to a constant component of the dynamical

gauge field along S1. The resulting matrix model is similar to that in three dimensions,

albeit with additional modes along S1, and indeed in [19] the results of [18] were used.

Besides checking explicitly that the supersymmetric partition function depends on the

transversely holomorphic foliation defined by the Reeb vector (2.12) on M3
∼= S3 and not
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on the choice of Hermitian metric on the Hopf surface, the main result of [19] was that the

partition function factorizes as

ZS1
β×S3 = e−βEsusy · I , (2.27)

where I is the supersymmetric index originally defined in [40, 41] and

Esusy =
2

27

(b1 + b2)3

b1b2
(3c− 2a) +

2

3
(b1 + b2)(a− c) (2.28)

was dubbed the supersymmetric Casimir energy. Here, a and c are the usual trace anomaly

coefficients for a four-dimensional SCFT; more generally, for a supersymmetric theory with

a choice of R-symmetry one should replace a and c in (2.28) by the corresponding ’t

Hooft anomaly formulae, involving traces over the R-charges of fermions. This result has

been argued to be scheme-independent, provided one uses a supersymmetric regularization

scheme, hence Esusy is an intrinsic observable [20, 42]. One can see that Esusy corresponds

to a Casimir energy by showing that it is the vacuum expectation value of the Hamiltonian

generating translations along the Euclidean time, in the limit β →∞ [20, 43].

For field theories admitting a large N gravity dual in type IIB supergravity, to leading

order in the large N limit one has a = c = π2/κ2
5, where κ2

5 is the five-dimensional

gravitational coupling constant and we have set the AdS radius to 1. Moreover, one can

see that the index I does not contribute at leading order [41]. Then at large N the field

theory partition function reduces to

− 1

β
logZS1

β×S3 = Esusy =
2(b1 + b2)3

27b1b2

π2

κ2
5

. (2.29)

The right hand side is expressed in terms of the five-dimensional gravitational coupling

constant, and one of our aims will be to reproduce this formula from a dual supergravity

computation. For the locally conformally flat S1
β × S3

r3 , where M3
∼= S3

r3 is equipped with

the standard round metric of radius r3, we have b1 = b2 = 1/r3, leading to

− 1

β
logZS1

β×S3
r3

= Esusy, S1
β×S3

r3
=

16

27r3

π2

κ2
5

. (2.30)

Following [20, 43], in [30] the supersymmetric Casimir energy was studied on the more

general class of M4
∼= S1

β ×M3 backgrounds, by reducing to a supersymmetric quantum

mechanics.4 The short multiplets that contribute to Esusy were shown to be in 1-1 corre-

spondence with holomorphic functions on X0
∼= R>0 ×M3, with their contribution being

determined by the charge under the Reeb vector ξ. This makes it manifest that Esusy

depends on the background only via the choice of transversely holomorphic foliation on

M3. From this it follows that Esusy may be computed from an index-character that counts

holomorphic functions on X0 according to their Reeb charge. Again, more precisely this is

4Other methods to extract the supersymmetric Casimir energy on Hopf surfaces use equivariant integra-

tion of anomaly polynomials [44] or exploit properties of the supersymmetric index [45, 46]. See also [47]

for localization on backgrounds with more general topologies.
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true in the sector with trivial flat gauge connection, while more generally one should look

at holomorphic sections of the corresponding flat holomorphic vector bundles. In any case,

in the sector with trivial flat connection on M3 one can use this result to show that for

links of homogeneous hypersurface singularities

Esusy =
2b

27

d c3
1

w1w2w3
(3c− 2a) +

b

3

d c1

w1w2w3
(c2

1 − c2)(a− c) . (2.31)

Here we have defined

c1 = −d+

3∑
i=1

wi , c2 = −d2 +

3∑
i=1

w2
i . (2.32)

In particular, c1 is precisely the charge of the holomorphic (2, 0)-form under the generator

χ of the U(1) action. Equivalently, this is the orbifold first Chern number of the orbifold

anti-canonical bundle of the orbifold Riemann surface Σ2 = M3/U(1), which is an integer

version of the second invariant in (2.24). Again, for theories with a large N gravity dual,

in the large N limit this becomes

Esusy =
2b

27

d c3
1

w1w2w3

π2

κ2
5

. (2.33)

Assuming that the dominant contribution comes from this sector with trivial flat connec-

tion, (2.33) is hence the prediction for the gravity dual.

An aim of this paper will be to reproduce these field theory results holographically

from supergravity.

3 Four-dimensional supergravity

In this section we are interested in the gravity duals to three-dimensional N = 2 field theo-

ries on the backgrounds M3 described in section 2.1. The gravity solutions are constructed

in N = 2 gauged supergravity in four dimensions. The general form of (real) Euclidean

supersymmetric solutions to this theory was studied in [48]. In particular they admit a

Killing vector, which for asymptotically locally Euclidean AdS solutions restricts on the

conformal boundary M3 to the Killing vector ξ defined in (2.1). Indeed, we will see that the

conformal boundary of a general supersymmetric supergravity solution is equipped with

the same geometric structure described in section 2.1. We show that the renormalized on-

shell supergravity action, regularized according to standard holographic renormalization,

depends on the boundary geometric data only via the transversely holomorphic foliation,

thus agreeing with the general field theory result summarized in section 2.5. Moreover,

for self-dual supergravity solutions we show that the holographic free energy correctly re-

produces the large N field theory partition function (in the cases where this is available)

described in section 2.5. We thus find very general agreement between large N localized

field theory calculations, on general supersymmetric backgrounds M3, and dual supergrav-

ity computations.
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3.1 Supersymmetry equations

The Euclidean action for the bosonic sector of four-dimensional N = 2 gauged supergrav-

ity [49] is

Sbulk = − 1

2κ2
4

∫
d4x
√
G (RG + 6−FµνFµν) . (3.1)

Here RG is the Ricci scalar of the four-dimensional metric Gµν , F = dA is the field

strength of the Abelian graviphoton A, and the cosmological constant has been normalized

to Λ = −3.5 The equations of motion are

Rµν + 3Gµν = 2

(
FµρFνρ −

1

4
FρσFρσGµν

)
,

d ∗4 F = 0 . (3.2)

A supergravity solution is supersymmetric if it admits a non-trivial Dirac spinor ε satisfying

the Killing spinor equation(
∇µ +

i

4
FνρΓνρΓµ +

1

2
Γµ + iAµ

)
ε = 0 , (3.3)

where Γµ generate Cliff(4) in an orthonormal frame, so {Γµ,Γν} = 2Gµν . Locally, any such

solution can be uplifted to a supersymmetric solution of eleven-dimensional supergravity in

a number of ways, as explained in [50]. Strictly speaking the latter reference discusses the

Lorentzian signature case, while the corresponding Euclidean signature result was studied

in [29]. We also note that there may be global issues in uplifting some solutions, as discussed

in detail in [51]. However, these considerations will not affect any of the statements and

results in the present paper.

Following the analysis of [48], real Euclidean supersymmetric solutions to this theory

admit a canonically defined local coordinate system in which the metric takes the form

ds2
4 =

1

y2UV
(dψ + φ)2 +

UV

y2
(dy2 + 4eWdzdz) . (3.4)

Here ξ = ∂ψ is a Killing vector, arising canonically as a bilinear from supersymmetry,

and W = W (y, z, z), U = U(y, z, z), V = V (y, z, z), while φ is a local one-form satisfying

ξ φ = 0 and Lξφ = 0. In addition, the following equations should be imposed:

U = 1− y

4
∂yW +

f

2
, (3.5)

∂2
zzW + eW

[
∂2
yyW +

1

4
(∂yW )2 + 3y−2f2

]
= 0 , (3.6)

∂2
zzf +

eW

y2

[
f
(
f2 + 2

)
− y

(
2∂yf +

3

2
f∂yW

)
+

+ y2

(
∂2
yyf +

3

2
∂yW∂yf +

3

2
f∂2

yyW +
3

4
f(∂yW )2

)]
= 0 ,

(3.7)

dφ = iUV

[
∂z log

V

U
dy ∧ dz − ∂z log

V

U
dy ∧ dz

+ 2 eW
(
∂y log

V

U
+

2

y
(U − V )

)
dz ∧ dz

]
,

(3.8)

5Our curvature conventions are summarized in appendix A.
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where we have introduced f ≡ U−V . The first equation (3.5) defines U in terms of W and

f , and we could therefore use it to substitute in (3.8) and conclude that the entire geometry

is fixed by a choice of W and f (apart from a possible gauge transformation/diffeomorphism

on φ). In deriving this form of the solutions, (3.5), (3.6) and (3.8) follow from imposing

the Killing spinor equation (3.3), while (3.7) is required for the equation of motion for F
(the Maxwell equation) to be satisfied.

The graviphoton is determined by the above geometry, and is given by

A =
1

2y

f

U(U − f)
(dψ + φ) +

i

4
(∂zWdz − ∂zWdz) . (3.9)

In general this expression is only valid locally, and we will see later that we need to perform

a local gauge transformation in order that A is regular.

A rich subclass of solutions are the self-dual solutions, studied in [28, 52]. Here one

imposes F to be anti-self-dual, which together with supersymmetry implies that the metric

has anti-self-dual Weyl tensor [52]. We adopt the same abuse of terminology as [28], and

refer to these as “self-dual” solutions. This amounts to setting

f =
y

2
∂yW (self-dual case). (3.10)

This in turn fixes U ≡ 1, and therefore self-dual solutions to N = 2 gauged supergravity

in four dimensions are completely specified by a single function W = W (y, z, z̄), which

solves (3.6). This turns out to be the SU(∞) Toda equation.6

3.2 Conformal boundary

In order to apply the gauge/gravity correspondence we require the solutions described in the

previous subsection to be AlEAdS (also known as asymptotically locally hyperbolic). This

is naturally imposed, with the coordinate 1/y playing the role of the radial coordinate.

Indeed, there is then a conformal boundary at y = 0, and the metric has the leading

asymptotic form dy2

y2 + 1
y2 ds2

M3
. More precisely, this all follows if we assume that W (y, z, z),

f(y, z, z) are analytic functions in y around y = 0:7

W (y, z, z) = w(0)(z, z) + yw(1)(z, z) +
y2

2
w(2)(z, z) +O(y3) ,

f(y, z, z) = f(0)(z, z) + yf(1)(z, z) +
y2

2
f(2)(z, z) +

y3

6
f(3)(z, z) +O(y4) , (3.11)

and the one-form φ can be expanded as

φ(y, z, z) = a(0)(z, z) + ya(1)(z, z) +
y2

2
a(2)(z, z) +O(y4) . (3.12)

This implies that to leading order

ds2
4 = [1 +O(y)]

dy2

y2
+ y−2

[
(dψ + a(0))

2 + 4ew(0)dzdz +O(y)
]
, (3.13)

6Of course for self-dual solutions the Maxwell equation is automatic, and indeed one can check that,

with (3.10) imposed, equation (3.7) is implied by the other equations.
7Note that this is not true in general. For more details see section 3 of [28].
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confirming that the metric is indeed AlEAdS around the boundary {y = 0}. A natural

choice of metric (rather than conformal class of metrics) on the boundary M3 is therefore

ds2
3 = (dψ + a(0))

2 + 4ew(0)dzdz. (3.14)

The boundary one-form η ≡ dψ + a(0) has exterior derivative

dη = 2i ew(0)f(1) dz ∧ dz, (3.15)

as can be seen by expanding (3.8) to leading order and using f(0) = 0, the latter coming

from the leading order term in (3.6). More specifically, η is a global almost-contact one-form

and ξ is its Reeb vector field, as

ξ η = 1, ξ dη = 0 . (3.16)

On the conformal boundary ξ is nowhere vanishing, which implies that it foliates M3. This

Reeb foliation is transversely holomorphic, with locally defined complex coordinate z. The

leading term of the expansion of the bulk Abelian graviphoton is

A(0) ≡ A |{y=0}=
f(1)

2

(
dψ + a(0)

)
+

i

4

(
∂zw(0)dz − ∂zw(0)dz

)
, (3.17)

where as usual this expression is only valid locally, and we are free to perform (local) gauge

transformations.

Of course, we see immediately that we recover the rigid supersymmetric geometry

of M3 described in section 2.1. More precisely, comparing (3.14) and (2.2) we identify

a(0) = a, w(0) = w, with the choice of conformal factor Ω = 1 so that the Killing vector ξ

has length 1 (as usual in AdS/CFT, the conformal factor Ω on the boundary appears as a

Weyl rescaling of the radial coordinate y → Ω−1y). Moreover, comparing (3.15) and (2.5)

we see that

f(1) =
1

2
u . (3.18)

Finally, the background R-symmetry gauge field arises as the restriction to the conformal

boundary of the bulk Abelian graviphoton, as shown by comparing (3.17) and (2.6). Thus

we identify A(0) = A (up to local gauge transformations).

By expanding (3.6), (3.7) and (3.8) to higher order we obtain the relations

w(2) = −e−w(0)∂2
zzw(0) − 3f2

(1) −
1

4
w2

(1) , (3.19)

f(3) = −3e−w(0)∂2
zzf(1) −

9

4
f(1)

(
w2

(1) + 2w(2)

)
− 3f3

(1) −
9

4
f(2)w(1) , (3.20)

φ(2) = i
(
∂zf(1)dz − ∂zf(1)dz

)
. (3.21)

This (and expansions to higher orders) allows us to see an interesting difference between

the self-dual and non-self-dual case. In general a representative of the boundary conformal

class is fixed by the choice of two basic functions w(0) = w and f(1) = u/2. However, in

the general case there are in addition two free functions in the expansion into the bulk,
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namely w(1) and f(2), that appear in the Taylor expansions of W and f in the inverse radial

coordinate y. In general these functions are not determined by the conformal boundary

data, but only by regularity of the solution in the deep interior of the bulk solution.

However, given w(0), w(1), f(1) and f(2), the series solutions of W and f are then uniquely

fixed by the supersymmetry equations/equations of motion. On the other hand, in the

self-dual case, instead f and W are related by (3.10), so that the coefficients of the power

series expansion f(n) and w(n) are related by

f(n) =
n

2
w(n) (self-dual case) . (3.22)

Thus the gravitational filling of a given conformal boundary has a unique power series

solution with self-dual metric, while there is no such uniqueness in the general case (as one

would expect).

3.3 Holographic renormalization

The Euclidean supergravity action (3.1), with the Gibbons-Hawking-York term added to

obtain the equations of motion (3.2) on a manifold with boundary, diverges for AlEAdS

solutions. However, we can use (the by now standard) holographic renormalization to

remove these divergences.

In order to obtain a finite value for the on-shell action we need to consider a cut-off

space Mε, where the coordinate y > 0 extends to y = ε, and add to the regularized action

the appropriate local counterterms on the hypersurface ∂Mε = {y = ε}. One then sends

ε→ 0. Explicitly, we write the bulk action (3.1) as

Sbulk = Sgrav + Sgauge , (3.23)

where

Sgrav = − 1

2κ2
4

∫
Mε

d4x
√
G (RG + 6) , Sgauge =

1

2κ2
4

∫
Mε

d4x
√
GFµνFµν . (3.24)

As we are considering a manifold with boundary we must add the Gibbons-Hawking-York

term to make the Dirichlet variational problem for the metric well-defined,

SGH = − 1

κ2
4

∫
∂Mε

d3x
√
hK . (3.25)

Here h is the induced metric on ∂Mε, and K is the trace of the second fundamental form

of ∂Mε with the induced metric. Finally, we add the counterterms

Sct =
1

κ2
4

∫
∂Mε

d3x
√
h
(

2 +
1

2
R
)
, (3.26)

where here R is the scalar curvature of h. These counterterms cancel the power-law diver-

gences in the action. Note the absence of logarithmic terms, which are known to be related

to the holographic Weyl anomaly, as the boundary is three-dimensional and therefore there

is no conformal anomaly. The on-shell action is the limit of the sum of the four terms above

S = lim
ε→0

(Sbulk + SGH + Sct) . (3.27)
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The holographic energy-momentum tensor is defined as the quasi-local energy-

momentum tensor of the gravity solution; that is, the variation of the on-shell gravitational

action with respect to the boundary metric gij , i, j = 1, 2, 3, on M3:

Tij = − 2
√
g

δS

δgij
. (3.28)

The holographic energy-momentum tensor can be expressed as a limit of a tensor defined

on any surface of constant y = ε. In our case this is

Tij =
1

κ2
4

lim
ε→0

1

ε

(
Kij −K hij + 2hij −Rij +

1

2
Rhij

)
, (3.29)

where the tensors in the bracket are computed on ∂Mε using hij , the induced metric. One

can define a holographic U(1)R current in a similar way as

ji =
1
√
g

δS

δAi
, (3.30)

where A = A(0) is the boundary R-symmetry gauge field. In three boundary dimensions,

this current can be extracted from the expansion of the bulk Abelian graviphoton as

A = A(0) −
1

2
κ2

4 j y +O
(
y2
)
. (3.31)

The holographic energy-momentum tensor and R-current are identified with the expecta-

tion values of the respective field theory operators in the state dual to the supergravity

solution under study.

From these definitions, a variation of the renormalized on-shell action can be ex-

pressed as

δS =

∫
M3

d3x
√
g

(
−1

2
Tijδg

ij + jiδA(0)i

)
. (3.32)

This formula can be used to check several holographic Ward identities. Invariance of

the action under a boundary gauge transformation gives the conservation equation of the

holographic R-current

∇iji = 0 . (3.33)

Invariance under boundary diffeomorphisms generated by arbitrary vectors on M3 leads to

the conservation equation for the holographic energy-momentum tensor,8

∇iTij = F(0)jij
i , (3.34)

where F(0) = dA(0). Performing a Weyl transformation at the boundary δgij = 2gijδσ,

δA(0) = 0, for infinitesimal parameter function σ, we obtain for the trace of the holographic

energy-momentum tensor,

Ti
i = 0 , (3.35)

consistently with the fact that there is no conformal anomaly in three-dimensional SCFTs.

8This is easily seen by recalling that if vi is the boundary vector generating the diffeomorphism, then

δgij = −2∇(ivj) and δAi = vj∇jAi +∇ivjAj .

– 19 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
2

As reviewed in section 2, the field theory supersymmetric Ward identities of [16, 17]

imply that the supersymmetric partition function of N = 2 theories on M3 depends on

the background only via the transversely holomorphic foliation of M3. AdS/CFT thus

implies that the holographically renormalized on-shell supergravity action evaluated on a

solution with boundary M3 should also depend on the geometric data of M3 only through

its transversely holomorphic foliation. Concretely, this means that the on-shell action

should be invariant under arbitrary deformations w(0) → w(0) + δw(0), a(0) → a(0) + δa(0),

where δw(0)(z, z) is an arbitrary smooth basic global function on M3, and δa(0)(z, z) is an

arbitrary smooth basic global one-form on M3. Recall that the Reeb foliation induces a

basic cohomology on M3: a p-form α on M3 is called basic if ξ α = 0, Lξα = 0, and the

set of basic forms Ω•B together with the exterior derivative dB = d|Ω•B constitute the basic

de Rham complex.

We may now check this directly by evaluating (3.32) for the general class of supersym-

metric solutions described in sections 3.1, 3.2. The holographic R-current is obtained from

the subleading term in the expansion (3.31), and a computation reveals that this is given by

j = − 1

2κ2
4

[(
f(2) + f(1)w(1)

)
η + dcBw(1)

]
. (3.36)

We find that the holographic energy-momentum tensor (3.29) evaluates to

4κ2
4 T =

[
2f(1)

(
f(2) + f(1)w(1)

)
+�w(1)

]
η2

− 2
(
w(1)d

c
Bf(1) + dcBf(2)

)
� η − ∂Bw(0) � ∂Bw(1) − ∂Bw(0) � ∂Bw(1)

− 2ew(0)
[
2f(1)

(
f(2) + f(1)w(1)

)
+�w(1)

]
dzdz , (3.37)

where � denotes the symmetrized tensor product with weight 1/2. In writing these expres-

sions we have used the almost contact form on M3, η, the differential operators of the basic

cohomology, dB = ∂B+∂B, d
c
B = i

(
∂B − ∂B

)
, and the transverse Laplacian � = e−w(0)∂2

zz .

We next plug these expressions for the holographic energy-momentum tensor and R-

current in (3.32). We assume that the boundary M3 is compact, which allows us to use

Stokes’ theorem to simplify expressions. Moreover the resulting integrand can be simplified

by recalling that all functions are basic, as is the deformation δa(0). We find that the general

variation of the on-shell action is

δS =
i

2κ2
4

∫
M3

η ∧ dB

[(
f(2) + w(1)f(1)

)
δa(0) +

1

2
∗2
(
δw(0) dBw(1)

)]
. (3.38)

Notice this a priori depends on the non-boundary functions w(1), f(2), which (with the

exception of self-dual solutions) are not determined by the boundary data, but only via

regularity of the supergravity solution in the deep interior.

However, this expression vanishes because of an analogue of Stokes’ theorem, valid

for almost contact structures (for instance, it can be found as Lemma 9.1 of [53]). Let

X be a (2m + 1)-dimensional manifold with almost contact one-form η: if α is a basic

(2m− 1)-form, then ∫
X
η ∧ dBα = 0 . (3.39)

– 20 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
2

The vanishing of the variation of the action δS = 0 under arbitrary deformations of

the background that leave the transversely holomorphic foliation fixed is a very general

check of the AdS/CFT relation (1.1): it shows that both sides depend on the same data,

which a priori is far from obvious. Anticipating the (contrasting) results in AdS5/CFT4

we shall obtain later in the paper, we might also stress that this means that standard

holographic renormalization agrees with the supersymmetric renormalization scheme used

in the boundary three-dimensional field theory to obtain the results of [16].

In the next section we go further, and show that for a suitable class of solutions the

holographically renormalized action reproduces the known field theory results, the latter

obtained by supersymmetric localization methods.

3.4 Evaluation of the on-shell action

In this section we evaluate the regularized on-shell action (3.27) for a class of self-dual

supersymmetric AlEAdS solutions. The supergravity equations are simpler in the self-

dual case, and moreover the geometry is better understood; there are also more known

examples [28]. However, explicit families of non-self-dual supersymmetric solutions are

known [51], and it would be interesting to generalize the computations in this section to

cover the general case.

As already mentioned the self-dual condition fixes U ≡ 1, so that the metric locally

takes the form

ds2 =
1

y2V
(dψ + φ)2 +

V

y2

(
dy2 + 4eWdzdz

)
. (3.40)

The graviphoton is

A =
1

2y

1− V
V

(dψ + φ) +
i

4
(∂zWdz − ∂zWdz) + γ dψ + dλ , (3.41)

where λ = λ(y, z, z̄) is a local basic function. Moreover, the following equations should be

imposed

V = 1− 1

2
y∂yW ,

dφ = i ∂zV dy ∧ dz − i ∂zV dy ∧ dz + 2i ∂y
(
V eW

)
dz ∧ dz ,

0 = ∂2
zzW + ∂2

yeW . (3.42)

Here the first equation may be used to eliminate V in terms of W = W (y, z, z̄), the second

equation simply fixes dφ, while the final equation is the SU(∞) Toda equation. We begin

by following part of the global analysis in [28] — the latter reference focused on solutions

with U(1)2 isometry and M4 diffeomorphic to a ball, with conformal boundary M3
∼= S3,

but in fact a number of key arguments go through more generally.

First we recall that the coordinate y may be more invariantly defined as

y2 =
2

‖Ξ‖2
, where Ξ ≡ 1

2

(
dξ[ + ∗4dξ[

)
+
. (3.43)
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Here the self-dual two-form Ξ is called a twistor, and is constructed from the Killing one-

form ξ[ = (1/y2V )(dψ + φ) dual to the Killing vector ξ = ∂ψ. The conformal boundary

is at y = 0. Assuming the metric is regular in the interior, the twistor form is then also

regular, and thus y is non-zero in the interior. There can potentially be points at which

‖Ξ‖ = 0, where y then diverges, and indeed there are smooth solutions for which this

happens. However, this can only happen at fixed points of the Killing vector ξ — see the

discussion in section 3.4 of [28]. It follows that y is a globally well-defined non-zero function

on the interior of M4 \ {ξ = 0}. These self-dual solutions are also (locally) conformally

Kähler, with Kähler two-form

ω = −y3Ξ = dy ∧ (dψ + φ) + V eW 2i dz ∧ dz̄ . (3.44)

It follows from the first equality that ω is also well-defined on the interior of M4 \ {ξ = 0}.
Since dy = −ξyω, we see that y is also a Hamiltonian function for ξ, and in particular is a

Morse-Bott function. This implies that y has no critical points on M4 \ {ξ = 0}. We may

hence extend the y coordinate from the conformal boundary y = 0 up to some y = y0 > 0

in the interior, where on the locus y = y0 the Killing vector ξ has a fixed point (this may

include y0 =∞). Moreover, the preimage of (0, y0) in M4 is topologically simply a product,

(0, y0)×M3, where the Killing vector is tangent to M3 and has no fixed points.

With these global properties in hand, we can now proceed to compute the regularized

on-shell action. We deal with each term in turn. Consider first the gravitational part of

the action. Using the equation of motion we may write RG = −12, so that on-shell

Sgrav =
3

κ2
4

∫
Mε

vol4 , (3.45)

where the Riemannian volume form is

vol4 =
1

y4
dy ∧ (dψ + φ) ∧ V eW 2i dz ∧ dz. (3.46)

We can write this as an exact form

−3vol4 = dΥ, (3.47)

with

Υ =
1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ V eW 2i dz ∧ dz . (3.48)

The global arguments above imply that Υ is well-defined everywhere on M4 \ {ξ = 0}:
in the first term y is a global regular function and ξ does not vanish, guaranteeing that

dψ + φ is a global one-form. The second term is simply 1/y3(dψ + φ) ∧ ω, which is also

globally well-defined and regular on M4 \ {ξ = 0}. Having written the volume form as a

globally exact form on M4 \ {ξ = 0}, we can then use Stokes’ theorem to write (3.45) in

terms of integrals over the conformal boundary M3
∼= {y = ε}, and over the boundary T

of a small tubular neighbourhood around the fixed point set of ξ. Using the expansion
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of the Toda equation (3.42) and (3.39) near the conformal boundary, we can simplify the

resulting expression to

Sgrav =
1

κ2
4

1

ε3

∫
M3

η ∧ vol2 +
3

4κ2
4

1

ε2

∫
M3

w(1) η ∧ vol2 −
1

κ2
4

∫
T

Υ . (3.49)

Here vol2 is the two-dimensional volume form (2.3) (with w(0) = w). In general the fixed

point set of ξ may have a number of connected components, consisting either of fixed points

(NUTs) or fixed two-dimensional surfaces (bolts). More precisely the last term in (3.49) is

then a sum over connected components, and the integral should be understood as a limit

limδ→0

∫
Tδ , where Tδ is the boundary of a tubular neighbourhood, of radius δ, around the

fixed point set.

The first two divergent terms in (3.49) are cancelled by the Gibbons-Hawking-York

term (3.25) and the local counterterms (3.26), which in a neighbourhood of infinity become

SGH + Sct = − 1

32κ2
4

∫
M3

(
w3

(1) + 4w(1)�w(0)

)
η ∧ vol2 −

1

κ2
4

1

ε3

∫
M3

η ∧ vol2

− 3

4κ2
4

1

ε2

∫
M3

w(1) η ∧ vol2 , (3.50)

where again � = e−w(0)∂2
zz. Overall, the contribution from gravity is hence

Sgrav + SGH + Sct = − 1

32κ2
4

∫
M3

(
w3

(1) + 4w(1)�w(0)

)
η ∧ vol2 −

1

κ2
4

∫
T

Υ . (3.51)

Next we turn to the contribution of the gauge field to the on-shell action. Here for the

first time in this section we impose the additional global assumption in section 2.4: that

is, we take A = A(0) = A |y=0 to be a global one-form on the conformal boundary M3.

Equivalently, M4 |(0,y0)
∼= (0, y0)×M3 is conformally Kähler, and we are imposing that the

associated canonical bundle is trivial. If this is true throughout M4 \{ξ = 0} then F = dA
is globally exact on the latter,9 and we may again use Stokes’ theorem to deduce

Sgauge = − 1

κ2
4

∫
M4

F ∧ F =
1

κ2
4

∫
M3

A(0) ∧ F(0) −
1

κ2
4

∫
T
A ∧ F . (3.52)

In order to further evaluate the first term on the right hand side of (3.52), recall that in

the self-dual case the boundary gauge field is

A(0) =
1

4
w(1)η +

i

4
(∂z̄w(0)dz̄ − ∂zw(0)dz) + γ dψ + dλ . (3.53)

Carefully integrating by parts then leads to

1

κ2
4

∫
M3

A(0) ∧ F(0) = − γ

4κ2
4

∫
M3

R2d η ∧ vol2

+
1

32κ2
4

∫
M3

(
w3

(1) + 4w(1)�w(0)

)
η ∧ vol2 . (3.54)

9If the canonical bundle is non-trivial in the interior of M4 \ {ξ = 0} there would also be contributions

from Dirac strings, but we shall not consider that further here.
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Here the first term arises by noting that R2d = −�w(0) is the scalar curvature for Σ2.

Notice that the second term perfectly cancels the same term in (3.51). In general the total

action, obtained by summing (3.51) and (3.52), is thus

S = − γ

4κ2
4

∫
M3

R2d η ∧ vol2 −
1

κ2
4

∫
T

(Υ +A ∧ F) . (3.55)

This hence splits into a term evaluated at the conformal boundary M3, and an integral

around the fixed points of ξ.

We may next further evaluate the first term on the right hand side of (3.55) using

some of the results of section 2.4. As argued there, since we may approximate an irregular

Reeb vector field by quasi-regular Reeb vectors, there is no essential loss of generality (for

the formulas that follow) in assuming that M3 is quasi-regular. This means that M3 is

the total space of a circle orbibundle over an orbifold Riemann surface Σ2, with associated

line orbibundle L. Combining equations (2.19) and (2.20) then allows us to write the

action (3.55) as

S =
π2

κ2
4

(∫
Σ2
c1(Σ2)

)2∫
Σ2
c1(L)

− 1

κ2
4

∫
T

(Υ +A ∧ F) . (3.56)

The contribution of the conformal boundary is now written purely in terms of topological

invariants of the Seifert fibration structure of M3. We will not attempt to evaluate the

contributions around the fixed points in (3.56) in general — this would take us too far from

our main focus. Instead we will follow the computation in [28], where M4 has the topology

of a ball, with a single fixed point at the origin (a NUT). In this case A is a global one-form

on M4, and correspondingly
∫
T A ∧ F = 0. Similarly, since the Kähler form ω is smooth

near the NUT, one can argue that the second term in Υ in (3.48) does not contribute to

the (limit of the) integral in (3.56). However, the first term in Υ does contribute. Using

Stokes’ theorem we may write this as

− 1

κ2
4

∫
T

Υ = − 1

κ2
4

· 1

2y2
NUT

∫
M3

η ∧ dη , (3.57)

where yNUT is the function y evaluated at the NUT. Since the Reeb vector ξ has norm

‖ξ‖ ∼ r near the NUT, where r denotes geodesic distance from the NUT, one concludes

from the form of the metric (3.40) that V ∼ r−2. Since ξ A is necessarily zero at the NUT

in order that A is smooth there, from (3.41) we hence deduce that

0 = − 1

2yNUT
+ γ , (3.58)

which allows us to relate yNUT to γ.10 Thus we may also express the contribution to the

10The same formula was derived in [28] using a different, much longer, route. In the latter reference it was

concluded that for M3
∼= S3 all cases where b1/b2 > 0, and b1/b2 = −1, are regular. The case b1/b2 = −1

is qualitatively different from the former: the NUT is a point at infinity in the conformal Kähler metric,

and the Kähler metric is asymptotically locally Euclidean. The instanton is regular at the NUT because it

vanishes there, and V ∼ r2, so (3.58) does not hold. Nevertheless, a careful analysis shows that the action

evaluates to (3.60).
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action from the NUT (3.57) purely in terms of topological invariants of M3:

− 1

κ2
4

∫
T

Υ = − 1

κ2
4

· 2γ2 · (2π)2

b2

∫
Σ2

c1(L) = −2π2

κ2
4

(∫
Σ2
c1(Σ2)

)2∫
Σ2
c1(L)

. (3.59)

Thus in this case the total action (3.56) becomes simply

S = −π
2

κ2
4

(∫
Σ2
c1(Σ2)

)2∫
Σ2
c1(L)

. (3.60)

Using (2.23) we reproduce the result of [28], where recall that b1/b2 = p/q. However, we

can now generalize this further: in the above computation all that we needed was the

existence of a supergravity solution with topology X = C(M3), a real cone over M3, where

the tip of the cone is the only fixed point of ξ, hence a NUT. If M3 is not diffeomorphic

to S3 this will not be smooth at the NUT, but we can formally consider such singular

solutions. The assumptions we made about the behaviour of the metric near to this point

are then satisfied if the metric is conical near to the NUT. In this situation all of the above

steps are still valid, and we obtain the same formula (3.60) for the action.

In general ∫
Σ2

c1(Σ2) = 2− 2g − n+

n∑
I=1

1

kI
, (3.61)

where the smooth Riemann surface associated to Σ2 has genus g, and there are n orbifold

points with cone angles 2π/kI , kI ∈ N, I = 1, . . . , n. When the first Chern class above

is positive, Σ2 hence necessarily has genus g = 0 and so is topologically S2. It then

follows that M3
∼= S3/Λ, where Λ is a finite group. This shows that the class of weighted

homogeneous hypersurface singularities with −d +
∑3

i=1wi > 0 have links M3 which are

all quotients of S3 by finite groups. Corresponding supergravity solutions can hence be

constructed very simply as quotients by Λ of smooth solutions M4 with ball topology.

The supergravity action should then be 1/|Λ| times the action for the ball solution. It is

simple to check this is indeed the case from the formula (3.60). For weighted hypersurface

singularities this reads

S =
4π2

κ2
4

d
(
−d+

∑3
i=1wi

)2

4w1w2w3
. (3.62)

As summarized in [30], we may construct supersymmetric quotients M3
∼= S3/Λ where

Λ = ΛADE ⊂ SU(2). These may equivalently be realized as links of ADE hypersurface

singularities, and one can check that indeed

4w1w2w3

d
(
−d+

∑3
i=1wi

)2 = |ΛADE| . (3.63)
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For example, the E8 singularity has weights (w1, w2, w3) = (6, 10, 15) and degree d = 30,

for which the left hand side of (3.63) gives |ΛE8 | = 120, which is the order of the binary

icosahedral group.

Our formula for the action (3.60) reproduces all known large N field theory results,

summarized in section 2.5. In particular, we may realize squashed three-spheres, with ra-

tional Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2 , where b1/b2 = p/q ∈ Q, as links of hypersurface

singularities with weights (w1, w2, w3) = (p, q, 1) and degree d = 1, for which (3.62) re-

produces the field theory result (2.25). Similarly, we may realize Lens spaces L(p, 1) =

S3/Zp = S3/ΛAp−1 as links of Ap−1 singularities, with weights (w1, w2, w3) = (2, p, p) and

degree d = 2p. Here |ΛAp−1 | = p, and we reproduce the field theory result of [38] that

the large N free energy is simply 1
p times the free energy on S3. The formula (3.60) was

derived by assuming supergravity solutions with appropriate general properties exist. For

more general M3, and in particular for M3 with negative c1(Σ2), more work needs to be

done to investigate such solutions. We leave this interesting question for future work.

4 Five-dimensional supergravity

In the remaining part of the paper we turn to five-dimensional supergravity. We start

by constructing a very general AlAdS5 supersymmetric solution of minimal gauged super-

gravity, in a perturbative expansion near the conformal boundary. Then we perform holo-

graphic renormalization, extract the holographic energy-momentum tensor and R-current

and compare with the field theory results reviewed in section 2. We will show that stan-

dard holographic renormalization violates the field theory supersymmetric Ward identities.

However, we will prove that the latter can be restored by introducing new, unconventional

boundary terms. For solutions satisfying suitable global assumptions, we also evaluate the

on-shell action and conserved charges.

4.1 The perturbative solution

Differently from what we did in four-dimensional supergravity, we will initially work in

Lorentzian signature (−,+,+,+,+) and discuss an analytic continuation later. In this way

we take advantage of the known technology for constructing the solution and postpone the

complexification of the supergravity fields.

The bosonic action of minimal gauged supergravity in five dimensions reads [54]11

Sbulk =
1

2κ2
5

∫ [
d5x
√
G (RG −FµνFµν + 12)− 8

3
√

3
A ∧ F ∧ F

]
. (4.1)

Here RG denotes the Ricci scalar of the five-dimensional metric Gµν , G = | detGµν |, A is

the Abelian graviphoton and F = dA. Moreover, κ2
5 is the five-dimensional gravitational

coupling constant, and the cosmological constant has been normalized to Λ = −6. The

11This section is independent of section 3. We will thus adopt the same notation for the five-dimensional

supergravity fields as for the four-dimensional ones with no risk of confusion.
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Einstein and Maxwell equations read

Rµν + 2FµρFρν +Gµν

(
4 +

1

3
FρσFρσ

)
= 0 , (4.2)

d ∗ F +
2√
3
F ∧ F = 0 . (4.3)

All solutions of these equations uplift to solutions of type IIB supergravity [50, 55].12

A bosonic field configuration is supersymmetric if there exists a non-trivial Dirac spinor

ε satisfying the generalized Killing spinor equation[
∇µ +

i

4
√

3

(
Γµ

νλ − 4δνµΓλ
)
Fνλ −

1

2

(
Γµ − 2

√
3 iAµ

)]
ε = 0 , (4.4)

where the Γµ generate Cliff(1, 4), with {Γµ,Γν} = 2Gµν . The conditions for a bosonic

supersymmetric solution were worked out in [22] and discussed further in [56]. The solutions

relevant to us are those in the timelike class of [22] and are largely determined by a certain

four-dimensional Kähler structure. In appendix B we review such conditions and solve them

in a perturbative expansion. A suitable ansatz for the Kähler structure eventually yields a

metric and a gauge field on the conformal boundary of the five-dimensional solution which,

after a Wick rotation, match the field theory Euclidean background fields (2.8), (2.10).

Here we present the final result after having cast it in Fefferman-Graham form, which is

most convenient for extracting the holographic data.

The Fefferman-Graham form of the five-dimensional metric is

ds2
5 =

dρ2

ρ2
+ hij(x, ρ)dxidxj , (4.5)

with the induced metric on the hypersurfaces at constant ρ admitting the expansion

h(x, ρ) =
1

ρ2

[
h(0) + h(2)ρ2 +

(
h(4) + h̃(4) log ρ2

)
ρ4 +O(ρ5)

]
. (4.6)

The gauge field is of the form

A(x, ρ) = A(0) +
(
A(2) + Ã(2) log ρ2

)
ρ2 +O(ρ3) , (4.7)

with Aρ = 0.

The hypersurfaces at constant ρ will be described by coordinates xi = {t, z, z̄, ψ}.
As discussed in detail in appendix B, we find that the solution depends on six arbitrary

functions u(z, z̄), w(z, z̄), k1(z, z̄), k2(z, z̄), k3(z, z̄), k4(z, z̄). The functions u and w control

the boundary geometry and will be referred to as the boundary data; these are the same

functions appearing in the field theory background (2.8), (2.10). The functions k1, k2, k3,

k4 first show up in the h(4) and A(2) subleading terms of the Fefferman-Graham expansion

and will be denoted as the non-boundary data of the solution.

12As for the four-dimensional supergravity solutions discussed in section 3, this statement holds locally,

see e.g. [56] for some global issues.
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The first two terms in the expansion of the induced metric read

h(0) = −dt2 + (dψ + a)2 + 4ewdzdz̄ ,

h(2) =
8�w + u2

96
dt2 − 8�w + 7u2

96
(dψ + a)2 +

16�w + 5u2

24
ewdzdz̄

− 1

4
(∗2du)(dψ + a) , (4.8)

where a satisfies (2.5) as in the field theory background. Moreover, � = e−w∂2
zz̄ is the Lapla-

cian of the two-dimensional part of the boundary metric h(0), which coincides with (2.3),

and we are using the notation

∗2d = i(dz̄ ∂z̄ − dz ∂z) . (4.9)

One can check that h(2) is determined by h(0) according to the general relation [6, 57]

h
(2)
ij =

1

12
(Rhij − 6Rij)

(0) . (4.10)

Here and in the formulae below, a superscript (0) outside the parenthesis means that all

quantities within the parenthesis are computed using the boundary metric h(0) (and, as far

as the formulae below are concerned, the boundary gauge field A(0)).

In order to determine the on-shell action and the holographic charges we will also need

the h̃(4) and h(4) terms in the Fefferman-Graham expansion (4.6). We have verified that

h̃(4) is determined by the boundary data as

h̃
(4)
ij = −1

8

(
Bij + 8FikFj

k − 2hijFklF
kl
)(0)

, (4.11)

where Bij is the Bach tensor, see appendix A for its definition. Recalling that the variation

of the integrated Euler density vanishes identically in four dimensions, we can write

h̃
(4)
ij =

1

16
√
h(0)

δ

δh(0)ij

∫
d4x
√
h(0)

(
−E(0) + C

(0)
klmnC

(0)klmn − 8F
(0)
kl F

(0)kl
)
, (4.12)

where E(0) and C
(0)
ijkl are the Euler scalar and the Weyl tensor of the boundary metric h0

(again see appendix A). This means that h̃
(4)
ij is proportional to the metric variation of

the integrated holographic Weyl anomaly, a fact that for vanishing gauge field was first

observed in [6].

As for h
(4)
ij , this contains the four non-boundary functions k1, k2, k3, k4, as well as the

boundary functions u,w (hit by up to six derivatives); we will not give its explicit expression

here as it is extremely cumbersome and can only be dealt with using a computer algebra

system as Mathematica. As a sample we provide two simple relations between some of the

components:

h
(4)
tt − h

(4)
ψψ = −k3 +

1

6
k2

2 +
1

24
�k2 +

1

24
(2�w + u2)k2 +

17

6144
u4 − 3

256
�u2

+
1

96
e−w∂zu∂z̄u+

1

192

(
u2�w − 5

2
�2w − (�w)2

)
, (4.13)

h
(4)
tt + h

(4)
ψψ − 2h

(4)
tψ = −1

2
uk1 −

1

6
u2k2 +

1

128
u4 +

1

48
u2�w . (4.14)
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We also checked that the trace is determined by boundary data as

h(0) ijh
(4)
ij =

1

48

(
4RijR

ij −R2
)(0)

. (4.15)

As a consequence of supersymmetry, the gauge field is entirely determined by the

metric and does not contain new functions (apart for the gauge choice to be discussed

momentarily). In particular, A(0) and Ã(2) just depend on the boundary metric functions,

while A(2) also depends on k1, k2, k3. The explicit expressions are

A(0) = − 1√
3

[
−1

8
u dt+

1

4
u(dψ + a) +

1

4
∗2dw + dλ+ γ dψ + γ′dt

]
, (4.16)

Ã(2) =
1

32
√

3

[
−�u dt+

(
2�u− u�w − 1

2
u3
)

(dψ + a) + ∗2d
(
2�w + u2

)]
, (4.17)

A(2) =
1

64
√

3

[(
96k1 + 32uk2 − 4u�w − 3

2
u3

)
dt− ∗2d

(
32k2 + u2

)
+

1

u

(
128k3 − 32uk1 −

64

3
k2

2 + 16�k2 −
32

3
k2�w − 16u2k2 + 3�(�w + u2)

− 2(�w)2 − 5

3
u2�w − 3e−w∂zu∂z̄u−

5

12
u4

)
(dt+ dψ + a)

]
. (4.18)

Clearly, upon performing the Wick rotation t = −iτ we can identify h(0) = g,

A(0) = − 1√
3
A, where g and A were given in (2.8), (2.10) and define the four-dimensional

SCFT background. We recall that the last three terms in (4.16) are gauge choices: γ, γ′ are

two constants while λ is a function of z, z̄; these will play an important role in the following.

One can check that

Ã
(2)
i = −1

4
(∇jFji)(0) . (4.19)

In analogy with h̃(4), we see that Ã(2) is obtained by varying the integrated holographic

Weyl anomaly, this time with respect to the boundary gauge field A(0).

Generically, the boundary is not conformally flat and the solution is asymptotically

locally AdS5. In the particular case where the boundary is conformally flat and the bound-

ary gauge field strength vanishes — i.e. when the solution is AAdS rather than AlAdS —

both h̃(4) and Ã(2) vanish. This is in agreement with the general fact that the logarithmic

terms in the Fefferman-Graham expansion vanish for a conformally flat boundary.

The solutions described above preserve at least (and generically no more than) two

real supercharges. We have also verified that the five-dimensional metric and gauge field

discussed above satisfy the Einstein and Maxwell equations at order O(ρ3), which is the

highest we have access to given the order at which we worked out the solution.

4.2 Standard holographic renormalization

Following the standard procedure of holographic renormalization,13 a finite on-shell action

S is obtained by considering a regularized five-dimensional space Mε where the radial

13See [8, 57] for the modifications due to the inclusion of a Maxwell field.
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coordinate ρ does not extend until the conformal boundary at ρ = 0 but is cut off at ρ = ε,

so that ∂M = limε→0 ∂Mε. Then one evaluates the limit

S = lim
ε→0

(Sbulk + SGH + Sct + Sct,finite) . (4.20)

Here, Sbulk is the bulk action (4.1), where the integral is carried out over Mε. SGH is the

Gibbons-Hawking-York boundary term,

SGH =
1

κ2
5

∫
∂Mε

d4x
√
hK , (4.21)

where K = hijKij is the trace of the extrinsic curvature Kij = −ρ
2
∂hij
∂ρ of ∂Mε. The

counterterm action Sct is a boundary term cancelling all divergences that appear in Sbulk +

SGH as ε→ 0; it reads

Sct = − 1

κ2
5

∫
∂Mε

d4x
√
h

[
3 +

1

4
R+

1

16

(
E − CijklCijkl + 8FijF ij

)
log ε

]
. (4.22)

The first two terms cancel power-law divergences while the logarithmically divergent term

removes the holographic Weyl anomaly. Here, E is the Euler scalar and Cijkl is the Weyl

tensor of the induced metric hij . Note that since
√
h(E−CijklCijkl+8FijF ij) remains finite

as ε → 0, it can equivalently be computed using the boundary metric h
(0)
ij and boundary

gauge field A
(0)
i .

Finally, Sct,finite comprises local counterterms that remain finite while sending ε → 0.

In general, these may describe ambiguities in the renormalization scheme or be necessary

in order to restore some desired symmetry that is broken by the rest of the action. In our

case, requiring diffeomorphism and gauge invariance the linearly independent such terms

may be parameterized as

Sct,finite =
1

κ2
5

∫
∂Mε

d4x
√
h
(
ς R2 − ς ′FijF ij + ς ′′CijklC

ijkl
)
, (4.23)

where ς, ς ′, ς ′′ are a priori arbitrary numerical constants.14

The holographic energy-momentum tensor is defined as the variation of the on-shell

action with respect to the boundary metric

Tij = − 2
√
g

δS

δgij
, (4.24)

and can be computed by means of the general formula

Tij =
1

κ2
5

lim
ε→0

1

ε2

[
−Kij +Khij − 3hij +

1

2

(
Rij −

1

2
Rhij

)
+

1

4

(
Bij + 8FikFjk − 2hijFklFkl

)
log ε

+
(

2ςHij + 4ς ′′Bij + ς ′
(

4FikFjk − hijFklFkl
))]

, (4.25)

14We could also include in the linear combination the terms
∫

d4x
√
hE,

∫
d4x
√
hP and

∫
d4x
√
hεijklFijFkl,

where P is the Pontryagin density on ∂Mε, however these are topological quantities that have a trivial

variation; moreover, as we will see below they vanish identically in the geometries of interest for this paper.
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where all quantities in the square bracket are evaluated on ∂Mε, and we refer to appendix A

for the definition of the tensor Hij .

The holographic U(1)R current is defined as

ji =
1
√
g

δS

δAi
. (4.26)

Note that we defined the variation in terms of the rescaled boundary gauge field

A = −
√

3A(0). In this way the holographic R-current is normalized in the same way as

the field theory R-current. This yields the expression:

ji = − 2√
3κ2

5

lim
ε→0

1

ε4

{
∗4
[
dxi ∧

(
∗5F +

4

3
√

3
A ∧ F

)]
+∇jF ji log ε+ 2ς ′∇jF ji

}
, (4.27)

where the first term comes from varying the bulk action Sbulk, the second from Sct and the

third from Sct,finite.

Given the definitions (4.24) and (4.26), the variation of the renormalized on-shell action

under a generic deformation of the boundary data can be expressed via the chain rule as

δS =

∫
∂M

d4x
√
g

(
−1

2
Tijδg

ij + jiδAi

)
. (4.28)

Starting from this formula, one can check several Ward identities holding in the holo-

graphic renormalization scheme defined above. Invariance of the action under a boundary

diffeomorphism generated by an arbitrary vector on ∂M yields the expected conservation

equation for the holographic energy-momentum tensor,

∇iTij = Fjij
i −Aj∇iji , (4.29)

where ∇i is the Levi-Civita connection of gij . Studying the variation of the on-shell action

under a boundary Weyl transformation such that δgij = 2gijδσ, δAi = 0, one finds for the

trace of the holographic energy-momentum tensor [3]:

T i
i =

1

16κ2
5

(
−E + CijklC

ijkl − 8

3
FijF

ij

)
− 12ς

κ2
5

∇2R , (4.30)

which reproduces the known expression for the Weyl anomaly of a superconformal field

theory [21, 58], with the standard identifications a = c = π2/κ2
5. The variation under a

gauge transformation at the boundary leads to [1, 21]:

∇iji =
1

27κ2
5

εijklFijFkl , (4.31)

which again is consistent with the chiral anomaly of the superconformal R-symmetry.

4.3 The new boundary terms

We now specialize to the family of asymptotic supersymmetric solutions constructed in

section 4.1 and test whether the supersymmetric Ward identities reviewed in section 2

are satisfied holographically. We will consider variations of the boundary functions that
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preserve the complex structure(s) on M4
∼= ∂M5, and compute the corresponding variation

of the on-shell action via (4.28). As discussed in section 2, the input from field theory is

that this variation should vanish if supersymmetry is preserved. A priori one might expect

that there is at least a choice of the ς-coefficients in the standard finite counterterms (4.23)

such that the supersymmetric Ward identity is satisfied. However, we will show that this

is not the case and that new, non-standard finite counterterms are required.

Before going into this, it will be useful to notice that the boundary metric and gauge

field in (4.8), (4.16) satisfy

E = P = εijklFijFkl = 0 , (4.32)

where P is the Pontryagin density on ∂M . Moreover, supersymmetry implies [21]

CijklC
ijkl − 8

3
FijF

ij = 0 . (4.33)

It follows that (4.29)–(4.31) simplify to

∇iji = 0 , ∇iTij = Fjij
i , T i

i = −12ς

κ2
5

∇2R . (4.34)

Relation (4.33) also implies that by redefining the coefficients ς ′, ς ′′ we can set ς ′′ = 0

in the finite counterterm action (4.23) as well as in all its variations that preserve super-

symmetry at the boundary. Below we will assume this has been done.

As explained in section 2.5, a variation of the boundary data that preserves the complex

structures I± on the boundary corresponds to deformations u→ u+ δu, w → w+ δw such

that δu = δu(z, z̄) and δw = δw(z, z̄) are globally well-defined functions. In the following

we study the consequences of such variations. We will also assume that ∂M is compact

and that the non-boundary functions k1, k2, k3, k4 are globally well-defined functions of

their arguments z, z̄. This will allow us to apply Stokes’ theorem on the boundary and

discard several total derivative terms.

We first vary w keeping the one-form a fixed. From (2.5), we see that this is possible

provided the variation preserves ewu, hence we also need to take δu = −u δw. Plugging

the explicit expression of Tij and ji into (4.28) and dropping several total derivative terms

involving the boundary functions and k2(z, z̄), we find that the variation of the on-shell

action is:

δwS =
1

263κ2
5

∫
∂M

d4x
√
g δw

[ (
−1 + 96ς − 16ς ′

)
u2R2d −

1

2

(
1− 96ς + 28ς ′

)
�u2

+
1

32

(
19− 288ς + 192ς ′

)
u4 − 8

9
(γ + 2γ′)

(
2uR2d + 2�u− u3

)
− 12ς ′u�u+ 8(−24ς + ς ′)(R2

2d + 2�R2d)

]
, (4.35)

where we recall that R2d = −�w is the Ricci scalar of the two-dimensional metric (2.3). If

instead we vary u while keeping w fixed we obtain

δuS =
1

2932κ2
5

∫
∂M

d4x
√
g δu

[
24
(
1− 96ς + 16ς ′

)
uR2d + 288ς ′�u

−
(
19− 288ς + 192ς ′

)
u3 − 32

3
(γ + 2γ′)(3u2 − 4R2d)

]
, (4.36)
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where again we dropped many total derivative terms, some of which containing the non-

boundary data k2, k3. In order to do this, we used that δa is globally defined; this follows

from the assumption that the complex structures are not modified.

Inspection of (4.35), (4.36) shows that there exists no choice of the coefficients ς, ς ′

such that δwS = δuS = 0. Therefore we conclude:

Standard holographic renormalization does not satisfy the field theory supersym-

metric Ward identities.

Remarkably, we find that this can be cured by introducing new finite terms. Both variations

δwS and δuS vanish if we take ς = ς ′ = 0 (that is, if we set Sct,finite = 0) and add to the

on-shell action the new terms

∆Snew =
1

21132κ2
5

∫
∂M

d4x
√
g

[
19u4 − 48u2R2d +

128

3
(2γ′ + γ)(u3 − 4uR2d)

]
. (4.37)

In other words, the new renormalized action

Ssusy = lim
ε→0

(Sbulk + SGH + Sct) + ∆Snew (4.38)

does satisfy the supersymmetric Ward identities. We claim that this is the correct super-

symmetric on-shell action that should be compared with the supersymmetric field theory

partition function.

It should be clear that the terms ∆Snew cannot be written as a local action that is: i)

invariant under four-dimensional diffeomorphisms, ii) invariant under gauge transforma-

tions of A, and iii) constructed using the boundary metric, the boundary gauge field and

their derivatives only. If this was the case, ∆Snew would fall in the family of standard finite

counterterms (4.23), which we have just proven not to be possible. We will comment on

this issue in the conclusions. Here we make a first step towards clarifying it by observing

that the gauge-dependent part of ∆Snew — i.e. the term containing the gauge parameters

γ, γ′ — has to come from a term linear in the boundary gauge potential A = −
√

3A(0). So

we may write

∆Snew =
1

κ2
5

∫
∂M

(A ∧ Φ + Ψ) , (4.39)

where Ψ is gauge-invariant. Matching this with (4.37), we obtain

Φ =
1

2333

(
u3 − 4uR2d

)
i ewdz ∧ dz̄ ∧ (2dψ − dt) ,

Ψ =
1

21132

(
19u4 − 48u2R2d

)
d4x
√
g . (4.40)

Notice that dΦ = 0, so ∆Snew is invariant under small gauge transformations. How-

ever, it depends on the choice of flat connection for A when ∂M has one-cycles. Also

notice that (4.39) implies that ∆Snew yields a new contribution to the holographic R-

current (4.26). Below we will show that this modifies the R-charge precisely as demanded

by the superalgebra.
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4.4 Evaluation of the on-shell action

In this section we evaluate the renormalized supergravity action (4.38) on the class of five-

dimensional solutions constructed above. Since this involves performing a bulk integral, a

priori one would need to know the full solution in the interior, while we just have it in a

perturbative expansion near the boundary. However, we show that under certain global

assumptions the on-shell action reduces to a boundary term that can be evaluated exactly

as a function of boundary data only.

The assumptions consist in requiring that the solution caps off regularly and with no

boundary in the interior, and that the graviphoton A is a global one-form.15 As shown

in [23], this allows to express the bulk action of supersymmetric solutions in the timelike

class as the boundary term

Sbulk =
1

3κ2
5

∫
∂Mε

(dy ∧ P ∧ J − 2A ∧ ∗5F) , (4.41)

where the coordinate y, the Ricci one-form potential P and the Kähler form J are those of

the “canonical structure” dictated by supersymmetry [22] and are defined in appendix B.1.

We remark that while demanding that A is a global one-form we are also taking P as

a global one-form, see eq. (B.6). Notice this implies that the canonical bundle of the 4d

Kähler metric is trivial, cf. an analogous global assumption in section 3. The integral on the

hypersurface ∂Mε at constant ρ can be explicitly evaluated for our solution after passing

to Fefferman-Graham coordinates as discussed in appendix B.2.

Even if the on-shell action has now reduced to a boundary term, generically it still

depends on the arbitrary non-boundary functions appearing in the solution. However,

generalizing an argument given in [23] we can show that the assumption of global regularity

also entails a relation between these non-boundary functions and the boundary ones that

is precisely sufficient for determining the on-shell action.

Let C be a Cauchy surface (namely, a hypersurface at constant t), with boundary

M3 = C ∩ ∂M5, and consider the Page charge

Θ =

∫
M3

(
∗5F +

2√
3
A ∧ F

)
. (4.42)

Since A is globally defined and ∂M5 is by assumption the only boundary of the space, we

can apply Stokes’ theorem and then use the Maxwell equation to infer that Θ must vanish:

Θ =

∫
M3

(
∗5F +

2√
3
A ∧ F

)
=

∫
C

(
d ∗5F +

2√
3
F ∧ F

)
= 0 . (4.43)

We now replace the Fefferman-Graham expansion of the graviphoton field strength

F = dA(0) + ρ2
(
dA(2) + dÃ(2) log ρ2 +O(ρ)

)
+ 2ρdρ ∧

(
A(2) + Ã(2) + Ã(2) log ρ2 +O(ρ)

)
(4.44)

and its Hodge dual restricted to the hypersurfaces at constant ρ,

(∗5F)
∣∣
dρ=0

= 2 ∗(0)
(
A(2) + Ã(2) + Ã(2) log ρ2

)
+O(ρ) , (4.45)

15For example this excludes supersymmetric black hole solutions [59, 60].
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where ∗(0) is the Hodge star of the boundary metric h(0).16 It is easy to see that expres-

sion (4.42) then becomes

Θ =

∫
M3

(
2 vol3

(
A

(2)
t + Ã

(2)
t

)
+

2√
3
A(0) ∧ dA(0)

)
, (4.46)

where we are using the notation vol3 ≡ d3x
√
g3 for the Riemannian volume form on M3.

The condition Θ = 0 is thus equivalent to the statement that the integrated time component

of A(2), which a priori is controlled by non-boundary data and is thus not fixed by the

equations of motion, is actually determined by boundary data. Evaluating this on our

perturbative solution, we find the following integral relation between the non-boundary

functions k1, k2, k3 and the boundary functions u,w:

0 = Θ =
1

96
√

3

∫
M3

vol3

[
1

u

(
384 k3 − 64k2

2 + 48�k2 + 32k2R2d + 9e−w∂zu∂z̄u

− 9�R2d − 6R2
2d

)
+ 48uk2 −

15

4
u3 + 192k1

+ 6 e
1
3
w
[
∇z
(
e−

4
3
w∂z̄u

)
+ c.c

]
+ (13u− 16γ)R2d

]
− 1

6
√

3

∫
M3

dψ ∧ d
[
u(dλ− γ a)

]
. (4.47)

We can now give our result for the renormalized on-shell action. Adding up all con-

tributions to (4.38), including the new counterterms (4.37), and without making further

assumptions, we obtain

Ssusy =

∫
dt

27κ2
5

{∫
M3

vol3

[
(γ′ − γ)γR2d +

9

8
� (4k2 − γu)

]
+

1

64

∫
M3

d
[
dψ ∧

(
96k2 + 12R2d − 3u2 + 16(γ′ − γ)u

)
(4dλ− 4γa+ ∗2dw)

]
+ 6
√

3(γ′ − γ) Θ

}
. (4.48)

The Laplacian term in the first line and the whole integrand in the second line are total

derivatives of globally defined quantities and therefore vanish upon integration. The term

Θ in the third line, given by (4.47), also vanishes as just seen. So we obtain a very simple

expression for the on-shell action, depending on boundary data only:

Ssusy =
(γ′ − γ)γ

27κ2
5

∫
dt

∫
M3

vol3R2d . (4.49)

We next implement the analytic continuation t = −iτ , which renders the boundary metric

Euclidean (while the bulk metric generally is complex), and assume that τ parameterizes

a circle of length β. The expression for the on-shell action thus becomes17

Ssusy =
β(γ − γ′)γ

27κ2
5

∫
M3

vol3R2d . (4.50)

16Note that the logarithmic divergence drops out of the quantities we are interested in. Indeed, from (4.19)

we see that ∗(0)Ã(2) ∝ (d ∗ F )(0) is a total derivative, hence it drops from any boundary integral.
17The overall sign change comes from the identification iSLorentzian, t=−iτ = −SEuclidean.
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It is interesting to note that, as we show in appendix C, the flat connection parameters γ

and γ′ also correspond to the charge of the boundary Killing spinor ζ+ under ∂ψ and i∂τ ,

respectively. Hence γ − γ′ is twice the charge of ζ+ under the complex Killing vector K

introduced in section 2.2.

Recall from section 2.4 that the requirement that the boundary gauge field is globally

defined fixes γ as

γ = −1

4

∫
M3

vol3R2d∫
M3

η ∧ dη
. (4.51)

Recalling (2.4), (2.5), the contact volume of M3 appearing in the denominator can also be

expressed as
∫
M3
η ∧ dη = 1

2

∫
M3

vol3 u.

As far as the bosonic solution is concerned, expression (4.50) makes sense for any value

of γ′. However, for Ssusy to be the on-shell action of a proper supersymmetric solution we

also need to impose that the Killing spinors are independent of τ , so that they remain

globally well-defined when this coordinate is made compact. Since γ′ is the charge of the

Killing spinors under i∂τ , we must take γ′ = 0.

We conclude that for a regular, supersymmetric AlAdS5 solution satisfying the global

assumptions above, and such that the conformal boundary has a direct product form

S1 ×M3, the supersymmetric on-shell action is given by

Ssusy =
βγ2

27κ2
5

∫
M3

vol3R2d , (4.52)

where γ is fixed as in (4.51). Note that because of the dependence on γ2, Ssusy cannot

itself be written as a local term in four dimensions.

In section 5 we will show that this result precisely matches the large N limit of the

SCFT partition function in all known examples (and beyond).

4.5 Twisting the boundary

We can easily discuss a slightly more general class of solutions, having different boundary

geometry. This is obtained by making the local change of coordinates

τ → cosα τ , ψ → ψ + sinα τ , (4.53)

where 0 < α < π/2 is a real parameter.18 Then the old boundary metric and gauge

field (2.8), (2.10) become

ds2
4 = (dτ + sinα (dψ + a))2 + cos2 α (dψ + a)2 + 4ewdzdz̄ , (4.54)

A = (i cosα+ 2 sinα)
u

8
dτ +

u

4
(dψ + a) +

1

4
∗2dw

+ (γ sinα− iγ′ cosα)dτ + γ dψ + dλ . (4.55)

Although this configuration is locally equivalent to the original one, if we take for the new

coordinates the same identifications as for the old ones (in particular τ ∼ τ + β, ψ ∼ ψ

18In Lorentzian signature, the change of coordinates reads t → coshαL t, ψ → ψ + sinhαL t, with αL

constant. This is related to (4.53) by t = −iτ and αL = iα.
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as one goes around the S1 parameterized by τ one full time), then the new boundary

geometry with α 6= 0 is globally distinct from the original one. From (4.54) we see that

the S1 parameterized by τ is fibered over M3, although in a topologically trivial way

since dψ + a is globally defined; moreover, the term (dψ + a)2 in the M3 part of the

metric is rescaled by a factor cos2 α. We will denote as “twisted” the new four-dimensional

background (4.54), (4.55), as well as the corresponding five-dimensional solution obtained

by implementing the transformation (4.53) in the bulk.19 In fact we can show that the

complex structure of the twisted boundary is inequivalent to the complex structure with

α = 0. Recall from section 2.2 that four-dimensional field theory backgrounds with two

supercharges of opposite R-charge admit a globally defined, complex Killing vector K of

Hodge type (0, 1) with respect to two complex structures I±. For our untwisted background,

this was given in (2.9). For the twisted background, and in terms of a coordinate τ̃ = τ/β

with canonical unit periodicity, it reads

K =
1

2β cosα

(
βeiα ∂ψ − i ∂τ̃

)
. (4.56)

We infer that βeiα is a complex structure parameter of the background (while the overall

factor in K does not affect the complex structure). Depending on the specifics of M3, the

background may admit additional complex structure moduli, however the one discussed

here is a universal modulus of manifolds with S1 ×M3 topology and metric (4.54).

The results of [16] then imply that the supersymmetric partition function on the

twisted background should be related to the one on the untwisted background by replacing

β → βeiα. It would be interesting to check this expectation by an explicit localization

computation. To date, only partial localization computations have been carried out for

four-dimensional supersymmetric field theories on similarly twisted backgrounds [39].20

We can compare with the on-shell action of the twisted bulk solutions. This is evaluated

in the same way as for α = 0, with just two differences: i) the volume form on M3 is rescaled

by a factor cosα, and ii) the boundary Killing spinors are independent of the new time

coordinate for a different value of γ′: as discussed in appendix C, now we must take

γ′ = −i γ tanα . (4.57)

Starting from (4.50) it is thus easy to see that the net result of the twist by α is to multiply

the on-shell action of the untwisted solution by a phase:

Ssusy, α = eiα Ssusy, α=0 , (4.58)

where Ssusy, α=0 is given by (4.52). Here the imaginary part is a consequence of the choice of

γ′, that is of the way the terms depending on large gauge transformations A→ A+ const dτ

19An equivalent description would be to maintain the metric and gauge field (2.8), (2.10) and modify

the identifications for the periodic coordinates, so that going around the circle parameterized by τ also

advances the coordinate ψ in M3. This is what is commonly known as twisting, see e.g. [16].
20In [19] the two complex structure parameters of primary Hopf surfaces were assumed real, however in

appendix D therein it was discussed how to generalize the background so that these take complex values.

It would be interesting to evaluate the partition function of general supersymmetric gauge theories on such

backgrounds.
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are fixed in the on-shell action. Effectively, the phase eiα can be seen as a complexification

of β. So we find that the twisting has the same consequence for the on-shell action as

expected for the field theory partition function: the parameter β is replaced by βeiα.

Besides being interesting per se, this complexification of the on-shell action will serve

as a tool for computing the charges below.

4.6 Conserved charges

We now compute the holographic conserved charges taking into account the contribution

of the new counterterms ∆Snew and verify that they satisfy the expected BPS condition.

Let us first consider the currents defined by standard holographic renormalization.

Recall from (4.34) that the R-current ji is conserved and thus provides a conserved R-

charge. In addition, given any boundary vector v preserving the boundary fields, i.e. such

that Lvg = LvA = 0, we can introduce the current

Y i = vj(Tj
i +Ajj

i) . (4.59)

Using the modified conservation equation of the energy-momentum tensor in (4.34), it

is easy to see that Y i is conserved and thus defines a good charge for the symmetry

associated with v.

Although we do not know how exactly the new counterterms affect the energy-

momentum tensor (because we do not know the variation of ∆Snew with respect to the

metric), we will show how the relevant charges can be computed anyway by varying the

on-shell action with respect to appropriate parameters. We will just need to assume that

∆Snew can be expressed as a quantity invariant under diffeomorphisms and small gauge

transformations, constructed from the boundary metric and the boundary gauge field (and

necessarily other boundary fields), so that the chain rule (4.28) and the conservation equa-

tions make sense also after S is replaced by Ssusy, and Tij , j
i are replaced by their super-

symmetric counterparts defined by varying Ssusy.

We will discuss the charges for the untwisted background with α = 0, although it

would be straightforward to extend this to general α. The background with α 6= 0 will

however play a role in the computation of the angular momentum.

R-charge. The supersymmetric holographic R-charge is defined as

Qsusy = −
∫
M3

vol3 j
t
susy = −i

∫
M3

vol3 j
τ
susy , (4.60)

where

jisusy = ji + ∆ji (4.61)

is the sum of the current (4.27), evaluated in a minimal holographic renormalization

scheme, and

∆ji =
1
√
g

δ

δAi
∆Snew . (4.62)
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Using (4.27), the former contribution is found to be∫
M3

vol3 j
t =

2√
3κ2

5

Θ +
1

108κ2
5

∫
M3

dψ ∧ d [u(4dλ− 4γa+ ∗2dw)]

+
1

216κ2
5

∫
M3

vol3
(
8γR2d + 4uR2d − u3

)
, (4.63)

where Θ is again given by expression (4.47). Both Θ and the other integral in the first

line vanish due to the global assumptions we made in section 4.4, so the R-charge in a

minimal holographic renormalization scheme is given by the second line only. The shift in

the current due to the new counterterms can be read from (4.39), (4.40) and leads to∫
M3

vol3 ∆jt =
1

216κ2
5

∫
M3

vol3
(
−4uR2d + u3

)
. (4.64)

Adding the two contributions up, the expression for the supersymmetric holographic

R-charge simplifies to

Qsusy = − γ

27κ2
5

∫
M3

vol3R2d = − 1

βγ
Ssusy . (4.65)

We notice that a faster way to arrive at the same result is to take the derivative 1
β

∂
∂γ′ of

the action (4.50). Indeed, a variation of the parameter γ′ amounts to shift by a constant

the time component of the gauge field, which computes the electric charge.

Energy. We define the energy H of the supergravity solution as the charge associated

with the Killing vector ∂t (or ∂τ in Euclidean signature). This is given by

H =

∫
M3

vol3 (Ttt +Atjt) =

∫
M3

vol3 (Tττ +Aτ jτ ) . (4.66)

Since we wish to compute the supersymmetric energy, we need to use the supersymmetric

versions of the energy-momentum tensor and R-current, which receive contributions from

the new boundary terms ∆Snew. Although we do not know the contribution to the holo-

graphic energy-momentum tensor, we notice that the chain rule (4.28) implies that H is

obtained by simply varying the on-shell action with respect to β. This is easily seen by

rescaling τ so that it has fixed unit periodicity while β appears in the expressions for the

metric and gauge field. Hence we obtain

Hsusy =
∂

∂β
Ssusy =

1

β
Ssusy . (4.67)

Angular momentum. We denote as angular momentum the charge associated with

−∂ψ. This is given by

J = −
∫
M3

vol3 (Ttψ +Aψjt) = i

∫
M3

vol3 (Tτψ +Aψjτ ) . (4.68)

Again we can circumvent the problem that we do not know how ∆Snew affects the energy-

momentum tensor by varying the supersymmetric on-shell action with respect to a param-

eter. In this case the relevant parameter is α introduced via the twisting transformation
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of section 4.5. Using the chain rule (4.28) and recalling (4.54), (4.55), we find that the

variation of the on-shell action with respect to α (keeping γ′ fixed) gives:

∂

∂α
Ssusy

∣∣∣∣
α=0

=

∫
d4x
√
g (Tτψ +Aψjτ )α=0 = −iβJsusy , (4.69)

where as indicated all quantities are evaluated at α = 0, namely in the original, untwisted,

background. On the other hand, we can vary the explicit expression for Ssusy. Since γ′ is

kept fixed, we just need to vary the overall factor cosα. This gives ∂
∂αSsusy|α=0 = 0 and

thus we conclude that

Jsusy = 0 , (4.70)

that is all untwisted solutions have vanishing angular momentum.

BPS relation. In summary, we obtained the following expressions for the holographic

charges associated with our supersymmetric, untwisted solutions:

Hsusy = −γ Qsusy =
1

β
Ssusy , Jsusy = 0 . (4.71)

Via the AdS/CFT correspondence, these should be identified with the vacuum expectation

values of the dual SCFT operators. The SCFT superalgebra implies that the latter satisfy

the BPS relation

〈H〉+ 〈J〉+ γ〈Q〉 = 0 , (4.72)

see appendix C for its derivation. Of course, here it is assumed that the vacuum expec-

tation values are computed in a supersymmetric scheme. We see that the holographic

charges (4.71) do indeed satisfy the condition. This can be regarded as a further check

that the proposed boundary terms ∆Snew restore supersymmetry.

5 Examples in five dimensions

We now discuss some examples of increasing complexity. This will offer the opportunity to

illustrate further the role of the new boundary terms and make contact with the existing

literature.

5.1 AdS5

It is instructive to start by discussing the simplest case, that is AdS5 space.

Euclidean AdS5 is just five-dimensional hyperbolic space. In global coordinates, the

unit metric can be written as

ds2
5 =

dρ2

ρ2
+

(
1

ρ
+

ρ

4r2
3

)2

dτ 2 +

(
1

ρ
− ρ

4r2
3

)2

ds2
S3 , (5.1)

where

ds2
S3 =

r2
3

4

[(
dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
(5.2)

is the round metric on a three-sphere of radius r3, with canonical angular coordinates

θ∈ [0, π], ϕ∈ [0, 2π], ψ̃∈ [0, 4π]. Here ρ is a Fefferman-Graham radial coordinate, extending
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from the conformal boundary at ρ = 0 until ρ = 2r3, where the three-sphere shrinks to

zero size. The conformal boundary is R× S3, equipped with the conformally-flat metric

ds2
4 = dτ 2 + ds2

S3 . (5.3)

We compactify the Euclidean time so that τ ∼ τ + β and the boundary becomes S1
β × S3

r3 .

For the relevant Killing spinors to be independent of time, we need to switch on a flat

gauge field on S1,

−
√

3A = A = − i

2r3
dτ . (5.4)

It is natural to assume that AdS5 is dual to the vacuum state of a SCFT living on

the conformal boundary S1
β × S3

r3 .21 In the following we illustrate how the on-shell action

and the holographic charges of AdS5 match the SCFT supersymmetric vacuum expectation

values only after holographic renormalization is supplemented with our new boundary terms.

In the standard scheme of section 4.2, the renormalized on-shell action and holographic

energy are found to be

S = βH =
3(1− 96ς)β

4r3

π2

κ2
5

, (5.5)

while both the angular momentum J and the holographic R-charge Q vanish. Q = 0 follows

from formula (4.27) using F = 0. Thus, by dialing ς the holographic energy H may be set

either to agree with Q = 0, so that the BPS condition stating the proportionality between

energy and charge is satisfied, or with the field theory result in (2.30), but not with both.

Hence even in the simple example of AdS we see that standard holographic renormalization

disagrees with the supersymmetric field theory results.

Let us describe how this discrepancy is solved by the new terms introduced in sec-

tion 4.3. Starting from the general boundary geometry (2.8), (2.10) we take u=const=− 4
r3

,

e
w
2 = r3

2
1

1+|z|2 , and make the change of coordinate z = cot θ2 e−iϕ, ψ = r3
2 ψ̃. Then the two-

dimensional metric, its curvature and the volume form are

ds2
2 =

r2
3

4
(dθ2 + sin2 θdϕ2) , R2d =

8

r2
3

, vol2 =
r2

3

4
sin θ dθ ∧ dϕ , (5.6)

and eq. (2.5) for the connection one-form a is solved by a = r3
2 cos θdϕ. Moreover to recover

the correct gauge field we need to take

γ =
1

r3
, γ′ = 0 , λ = −ϕ

2
, (5.7)

the value of γ being in agreement with (4.51). In this way our general boundary metric

and gauge field reduce to (5.3), (5.4).

The new boundary terms (4.39) then evaluate to (after Wick rotation):

∆Snew = − 17β

108r3

π2

κ2
5

, (5.8)

21The possibility that a different asymptotically AdS supergravity solution may be dual to the SCFT

vacuum on S1
β × S3

r3 was considered in [56]. The analysis of that paper, though not exhaustive, indicates

that this is not the case, and strongly suggests that AdS is the natural candidate.
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so that we obtain for the supersymmetric on-shell action of AdS5:

Ssusy = Sς=0 + ∆Snew =
16β

27r3

π2

κ2
5

. (5.9)

This result also follows directly from (4.52) since AdS5 satisfies all global assumptions that

were made in section 4.4 to derive it.22 Then the energy is just H = 1
βSsusy and the angular

momentum vanishes, J = 0.

Using eq. (4.64), we see that the new terms also shift the value of the holographic

R-charge from zero to

Qsusy = −16

27

π2

κ2
5

. (5.10)

Therefore we have found for the supersymmetric energy, charge and angular

momentum:

Hsusy = − 1

r3
Qsusy =

16

27r3

π2

κ2
5

, Jsusy = 0 . (5.11)

Besides respecting the BPS condition, these values precisely match the supersymmetric

field theory vacuum expectation values of [19, 20], cf. eq. (2.30) for the energy.

It is worth pointing out that the choice (5.4) for the flat gauge field does not affect

the conserved charges of AdS5 computed via standard holographic renormalization, while

it plays a crucial role in our new boundary terms. Indeed in the formulae of section 4.2

the only term potentially affected by a flat gauge connection is the bulk Chern-Simons

term
∫
A ∧ F ∧ F , which however vanishes in AdS5 as F = 0. On the other hand, ∆Snew

in (4.39) depends on a flat connection on S1 since the three-form Φ does not vanish on

the S3 at the boundary of AdS5, and this affects the holographic charges. In particular, it

gives the full answer for the holographic R-charge associated with AdS5.

5.2 Twisted AdS5

We can take advantage of the very explicit example of AdS5 to further illustrate the twisting

of section 4.5.

Starting from the AdS5 metric (5.1), (5.2) we make the change of coordinates

τ → cosα τ , ψ̃ → ψ̃ +
2

r3
sinα τ , (5.12)

22For generic asymptotically AdS solutions, conformal flatness of the boundary metric (2.8) on S1
β ×M3

amounts to u = const and R2d = u2

2
; it also implies dA = 0. Then from (4.51) we find γ = −u

4
.

If the solution satisfies the global assumptions made in section 4.4, our formula (4.52) applies and the

supersymmetric on-shell action reads

Ssusy =
βu4

2533κ2
5

∫
M3

vol3 .

For a round sphere M3
∼= S3

r3 , we set u = − 4
r3

,
∫
S3 vol3 = 2π2r3

3 and the result (5.9) follows.
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with 0 < α < π/2. Then the new bulk metric reads

ds2
5 =

dρ2

ρ2
+

(
1

ρ
+

ρ

4r2
3

)2

cos2 α dτ 2

+

(
1

ρ
− ρ

4r2
3

)2 r2
3

4

[(
dψ̃ +

2

r3
sinα dτ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
. (5.13)

The new boundary metric may be written as

ds2
4 =

[
dτ +

r3

2
sinα

(
dψ̃ + cos θdϕ

)]2
+
r2

3

4

[
cos2 α

(
dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
.

(5.14)

Since we do not transform the range of the coordinates, i.e. we take τ ∈ [0, β], ψ̃ ∈ [0, 4π]

also after the transformation, the new geometry is globally distinct from the original one.

However, both the boundary and the bulk metric remain regular.23 The choice of boundary

gauge field A ensuring that the Killing spinors are independent of the new time coordinate

on S1 was explained in section 4.5, cf. eqs. (4.55), (4.57). For AdS5 this also corresponds

to the bulk gauge field:

−
√

3A = A =
i

2r3
(− cosα+ 2i sinα) dτ . (5.15)

Note that this has both a real and an imaginary part.

The on-shell action in the standard holographic scheme is found to be

S = cosα
3(1− 96ς)β

4r3

π2

κ2
5

, (5.16)

as the only consequence of the twist in the computation is to rescale the volume by cos α.

The new boundary terms (4.39) are evaluated as for untwisted AdS5, except that one must

implement the transformation (5.12) and use the gauge field (5.15). This gives

∆Snew =

(
− 17

108
cosα+

16

27
i sinα

)
β

r3

π2

κ2
5

. (5.17)

Then the supersymmetric on-shell action evaluates to

Ssusy = Sς=0 + ∆Snew =
16β eiα

27r3

π2

κ2
5

. (5.18)

This illustrates in a concrete example the general result of section 4.5 that the on-shell

action in the twisted background is related to the one in the untwisted background by the

replacement β → eiαβ.

23Regularity of the boundary metric follows from the fact that dψ̃+cos θdϕ is globally defined. Regularity

of the bulk metric Gµν as ρ→ 2r3 can be seen by noting that the Gττ component remains finite, that the

components Gρρ, Gθθ, Gϕϕ, Gψ̃ψ̃ and Gψ̃ϕ asymptote to the metric on the cone on a round S3 (i.e. the flat

metric on R4), and finally that the Gτϕ, Gτθ components go to zero. It follows that as ρ → 2r3 the space

looks like S1 × R4.
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5.3 A simple squashing of AdS5

A different one-parameter supersymmetric deformation of AdS5 was presented in [23]. In

this solution, the boundary geometry is non conformally flat as S3 ⊂ ∂AdS5 is squashed.

The squashing is such that the Hopf fibre of S1 ↪→ S3 → S2 is rescaled with respect to the

S2 base by a parameter v, which defines a Berger sphere S3
v with SU(2)-invariant metric.

The boundary metric then reads

ds2
4 = dτ2 +

r2
3

4

[
v2
(
dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
, (5.19)

which for v = 1 reduces to (5.2), (5.3). The boundary geometry is controlled by the three

parameters β, r3, v, however the complex structure on the boundary is determined just by

the ratio β
vr3

specifying the relative size of S1
β to the Hopf fibre, hence the supersymmetric

field theory partition function depends on β, r3, v only through this combination [16, 19].

Similarly to the solutions in section 4.1, the supergravity solution of [23] was con-

structed in Lorentzian signature and then analytically continued so that the boundary is

Riemannian, while the bulk metric becomes complex. It is known analytically at first order

in the squashing and numerically for finite v. While we refer to [23] for more details, here

it will be sufficient to mention that the solution is regular and such that the global assump-

tions made in section 4.4 to derive the on-shell action formula (4.52) are satisfied. In fact,

as already mentioned, the strategy followed in section 4.4 is a generalization of the one

in [23]. Since its near-boundary behaviour falls in the larger family of perturbative solu-

tions constructed in the present paper, the solution of [23] also provides a concrete example

that the latter can admit a smooth completion in the interior also when the boundary is

not conformally flat.

While the field theory results predict that the on-shell action only depends on the ratio
β
vr3

, it was found in [23] that after performing standard holographic renormalization this de-

pends both on β
vr3

and v. Indeed, in a minimal scheme where the finite counterterms (4.23)

are set to zero one obtains24

Smin =
8vβ

r3

(
2

27v2
+

2

27
− 13

108
v2 +

19

288
v4

)
π2

κ2
5

, (5.20)

so only the first term in parenthesis yields the correct dependence on β
vr3

. In addition,

it was shown in [23, section 5.3] that there is no combination of the ordinary finite coun-

terterms (4.23) that cancels all but the first term in (5.20). It was then proposed that

a new counterterm should be added, and it was found that a certain term involving the

Ricci form, combined with the standard finite counterterms, does the job (cf. eq. (5.51)

therein). However, in the light of our more general analysis that specific prescription turns

out incorrect, as the proposed term does not evaluate to ∆Snew in (4.37) for the more

general boundary metric and gauge field considered in the present paper. This also follows

from the fact that the term proposed in [23] is gauge invariant, while in order to adjust

the holographic R-charge so that the BPS condition is satisfied a dependence on large

24Cf. eq. (4.15) of [23]. The present variables are obtained setting ∆there
t = v

r3
β and 8πG

`2
= κ2

5.
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gauge transformations is needed. Therefore while the idea of correcting the holographic

renormalization scheme by new boundary terms survives and is much strengthened by the

general analysis performed in the present paper, a covariant form for these terms remains

to be found.

Let us show how ∆Snew removes the terms in (5.20) not depending solely on β
vr3

. The

metric (5.19) on S1×S3
v is obtained from our general boundary metric (2.8) by modifying

slightly the transformations made for the example of AdS5. Again we take e
w
2 = r3

2
1

1+|z|2

and z = cot θ2 e−iϕ, so that the two-dimensional formulae (5.6) hold the same. Choosing

u = −4v
r3

, the connection one-form a can be taken a = vr3
2 cos θdϕ, while the coordinate on

the Hopf fibre with canonical period 4π is ψ̃ = 2
vr3
ψ. In this way (2.8) reduces to (5.19).

Also choosing

γ =
1

vr3
, γ′ = 0 , λ = −ϕ

2
, (5.21)

where again the value of γ is in agreement with (4.51), the boundary gauge field (2.10)

reduces to the SU(2)-invariant expression25

−
√

3A(0) = A = − i v

2r3
dτ +

1

2
(1− v2)(dψ̃ + cos θdϕ) . (5.22)

Then our formula (4.52) for the supersymmetric on-shell action evaluates to

Ssusy =
16β

27vr3

π2

κ2
5

, (5.23)

that only depends on β
vr3

as predicted by the field theory arguments. In fact our new

counterterms evaluate to

∆Snew = −8vβ

r3

(
2

27
− 13

108
v2 +

19

288
v4

)
π2

κ2
5

, (5.24)

which precisely accounts for the difference between (5.20) and (5.23). One could also con-

sider twisting this five-dimensional solution by the parameter α as discussed in section 4.5

and further illustrated in the example of AdS5, thus introducing an overall phase eiα in the

on-shell action.

Eq. (4.71) gives for the holographic charges:

Hsusy = − 1

vr3
Qsusy =

16

27vr3

π2

κ2
5

, Jsusy = 0 . (5.25)

The electric charge given in [23, section 4] reads in the present normalization

Qthere = −16π2

27κ2
5

(v2 − 1)2 , (5.26)

while the shift (4.64) due to our new boundary terms evaluates to

∆Q = −
∫

vol3 ∆jt =
16π2

27κ2
5

(v4 − 2v2) , (5.27)

25These boundary fields agree with those of [23] upon identifying ψthere = ψ̃, tthere = iv
r3
τ and athere

0 = r3
2

.
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thereforeQthere+∆Qmatches the supersymmetric charge in (5.25). When comparing (5.25)

with the energy and angular momentum computed in [23] one needs to take into account

both the contribution of the new boundary terms and the fact that in [23] these quantities

were defined in terms of the energy-momentum tensor alone (which for the present solu-

tion still yields conserved quantities), while here we presented the charges (4.66), (4.68)

computed from the current (4.59) that is always conserved in the presence of a general

background gauge field.

5.4 Hopf surfaces at the boundary

We can also evaluate our on-shell action formula (4.52) for the more general boundary

geometry with S1×S3 topology considered in [19]. Contrarily to the previous examples in

this section, in this case we do not have a general proof of existence of regular bulk fillings

satisfying all the global properties we required in section 4.4 to evaluate the on-shell action.

However, we are going to show that if we assume that such supergravity solutions exist,

then eq. (4.52) gives the correct holographic dual of the supersymmetric Casimir energy

of [19, 20].

In [19] the three-sphere is described as a torus foliation: the torus coordinates are

ϕ1 ∈ [0, 2π], ϕ2 ∈ [0, 2π], while the remaining coordinate is ρ̂ ∈ [0, 1].26 The four-

dimensional complex manifolds with topology S1 × S3 are Hopf surfaces, and in [19] the

complex structure moduli are two real, positive parameters βb1, βb2 (as above, β denotes

the circumpherence of the S1 parameterized by τ). These characterize the choice of complex

Killing vector (2.7) as

K =
1

2
(∂ψ − i ∂τ ) =

1

2
(b1∂ϕ1 + b2∂ϕ2 − i ∂τ ) . (5.28)

The four-dimensional metric is taken as

ds2
4 = Ω2

[
dτ2 + (dψ + aχdχ)2 + Ω−2f2dρ̂2 + c2dχ2

]
= Ω2dτ2 + f2dρ̂2 +mIJdϕIdϕJ , (5.29)

where I, J = 1, 2. The first line is the canonical form dictated by supersymmetry (with

ds2
2 = Ω−2f2dρ̂2+c2dχ2), while the expression in the second line is convenient for discussing

global properties, since it uses periodic coordinates. When passing from the first to the

second expressions one identifies the coordinates as

ψ =
1

2

(
ϕ1

b1
+
ϕ2

b2

)
, χ =

1

2

(
ϕ1

b1
− ϕ2

b2

)
(5.30)

and the functions as

aχ =
1

Ω2

(
b21m11 − b22m22

)
, c =

2b1b2
Ω2

√
detmIJ . (5.31)

Moreover supersymmetry imposes the relation

Ω2 = bImIJb
J , (5.32)

26The coordinate ρ̂ is defined on the four-dimensional boundary and should not be confused with the

radial coordinate ρ used elsewhere in this paper.
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which ensures Hermiticity of the metric. Here, f and mIJ are functions of ρ̂ satisfying

suitable boundary conditions at ρ̂ = 0 and ρ̂ = 1 so that the metric is regular and describes

a smooth S3 topology. As ρ̂→ 0, one requires that

f → f2 , m11 → m11(0) , m22 = (f2ρ̂)2 +O(ρ̂3) , m12 = O(ρ̂2) , (5.33)

where f2 > 0 and m11(0) > 0 are constants, and similarly for ρ̂→ 1 (see [19]).

In principle our on-shell action formula (4.52) is derived for a boundary metric of the

type (2.8), thus with trivial conformal factor Ω = 1, however we now show that the same

formula gives the correct result even for general Ω if it is evaluated using the metric in the

square bracket of (5.29).27

Using the expressions above, we can compute∫
M3

vol3R2d = −
∫
∂ρ̂

(
cΩ

f
∂ρ̂ log c2

)
dρ̂ ∧ dχ ∧ dψ = − 4π2

b1b2

[
Ω

f
∂ρ̂c

]ρ̂=1

ρ̂=0

= 8π2 b1 + b2
b1b2

, (5.34)

where in the last equality we used the behaviour of the functions at the extrema of the ρ̂

interval. Similarly,∫
M3

η ∧ dη =

∫
∂ρ̂aχ dρ̂ ∧ dχ ∧ dψ =

2π2

b1b2
aχ
∣∣ρ̂=1

ρ̂=0
= − 4π2

b1b2
. (5.35)

Then formula (4.51) for γ gives

γ =
1

2
(b1 + b2) (5.36)

and the on-shell action (4.52) evaluates to

Ssusy =
2β

27

(b1 + b2)3

b1b2

π2

κ2
5

, (5.37)

which perfectly matches the field theory prediction (2.29).28 This result was the main point

emphasized in our short communication [24].

5.5 General M3

In section 4.4 we derived the general formula (4.52) for the supersymmetric on-shell ac-

tion (evaluated with our new counterterms). Here the conformal boundary has topology

S1 ×M3, and the derivation of the formula requires certain global assumptions about the

topology of the five-dimensional bulk supergravity solution that fills this boundary. In

particular, we required the graviphoton field A to be a global one-form. Particular ex-

plicit examples have been studied in the subsections above. In this subsection we present

27Otherwise one can choose mIJ so that (5.32) is satisfied with Ω = 1, which is not a serious loss of

generality since it still allows for general b1, b2.
28This agrees with eq. (5.18) of [19], upon identifying |bI |there = β

2π
bhere
I and 8πGthere = κ2

5.
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a more general but abstract analysis, and show that our supergravity result (4.52) always

reproduces the supersymmetric Casimir energy, as computed in field theory in [30].29

We begin by rewriting the supersymmetric on-shell supergravity action (4.52) in terms

of Seifert invariants of M3. In particular, using equations (2.19) and (2.20) we may write

Ssusy =
2π2bβ

27κ2
5

(∫
Σ2
c1(Σ2)

)3

(∫
Σ2
c1(L)

)2 . (5.38)

Recall here that ψ has period 2π/b, so that the Reeb vector ξ = ∂ψ = bχ, where χ is the

normalized vector field which exponentiates to the corresponding U(1) action on M3.

Under the same global assumptions on M4
∼= S1

β ×M3, the supersymmetric Casimir

energy Esusy was computed in field theory in [30]. More precisely, in the path inte-

gral sector with trivial flat gauge connection on M3, Esusy may be computed from an

index-character that counts holomorphic functions on X0
∼= R>0 ×M3. The formula for

weighted homogeneous hypersurface singularities was given in equation (2.31), with large

N limit (2.33). Substituting for
∫

Σ2
c1(Σ2) and

∫
Σ2
c1(L) for hypersurface singularities us-

ing formulas (2.24), the supergravity result (5.38) precisely agrees with the large N field

theory computation of βEsusy, with Esusy given by (2.33)!

This agreement between exact field theory and supergravity calculations is already

remarkable. However, we can go further and present a very general derivation of this

agreement, based on a formula for the index-character appearing in [61]. Recall first that

the U(1) Seifert action on M3 extends to a holomorphic C∗ action on X0 = R>0 ×M3,

and hence on X = C(M3). Following [30, 61], we denote the index-character that counts

holomorphic functions on X (or equivalently X0) according to their weights under q ∈ C∗

by C(∂̄, q,X). If the U(1) ⊂ C∗ action is free, meaning that Σ2 = M3/U(1) is a smooth

Riemann surface, then we may write

C(∂̄, q,X) =
∑
k≥0

qk
∫

Σ2

e−kc1(L) · Todd(Σ2) (5.39)

=
∑
k≥0

qk
∫

Σ2

[
−k c1(L) +

1

2
c1(Σ2)

]
. (5.40)

The first equality is the Riemann-Roch theorem, and the second equality uses Todd =

1 + 1
2c1 + · · · , where the higher order terms do not contribute in this dimension. We may

then sum the series for |q| < 1 to obtain the formula

C(∂̄, q,X) =

∫
Σ2
c1(Σ2)− q

(∫
Σ2

2c1(L) + c1(Σ2)
)

2(1− q)2
. (5.41)

We emphasize that this formula is valid for regular Reeb vector fields, so that Σ2 is a smooth

Riemann surface, and is not valid in the quasi-regular case, where Σ2 has orbifold singu-

larities. However, as we shall explain below, one may effectively still use this formula to

compute the large N supersymmetric Casimir energy even in the general quasi-regular case.

29There are caveats to this statement, that we will clarify below.
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The full character that computes the supersymmetric Casimir energy is given by [30]

C(q, µ,X) = q
−

∫
Σ2

c1(Σ2)/2
∫
Σ2

c1(L) · µ · C(∂̄, q,X) . (5.42)

Here the power of q in the first factor is precisely γ/b, which arises as 1
2 the charge of the

holomorphic (2, 0)-form under the canonically normalized vector field χ. The supersym-

metric Casimir energy is then obtained by setting q = etb, µ = e−tu, where u = (r−1)γ for

a matter multiplet of R-charge r, and extracting the coefficient of −t in a Laurent series

about t = 0. For field theories with a large N gravity dual in type IIB supergravity one has

a = c = π2/κ2
5, where the trace anomaly coefficients may in turn be expressed in terms of

certain cubic functions of the R-charges (r−1) of fermions. Using this prescription applied

to (5.42), (5.41), we find that the large N field theory result gives

Esusy =
2π2b

27κ2
5

(∫
Σ2
c1(Σ2)

)3

(∫
Σ2
c1(L)

)2 , (5.43)

so that the supergravity action Ssusy in (5.38) agrees with βEsusy computed in field theory.

Although (5.41) only holds in the regular case, in fact this formula is sufficient to

compute the correct large N supersymmetric Casimir energy in (5.43) in the general quasi-

regular case. The point is that when Σ2 has orbifold singularities there are additional

contributions to Riemann-Roch formula (5.41). However, also as in [61], the general form of

these contributions is such that they do not contribute to the relevant limit that gives (5.43).

Thus the latter formula holds in general (we have already shown independently that it holds

for homogeneous hypersurface singularities, which are generically not regular).

Finally, although the agreement of the two computations is remarkable, without more

work it is also somewhat formal. In particular, in the field theory computation we have

assumed that the sector with trivial flat gauge connection dominates at large N , while the

general supergravity computation assumes the existence of an appropriate solution with

the required global properties. Known examples suggest that these are not unreasonable

assumptions, but there is clearly a need for further work to clarify how general a result

this is. We leave these interesting questions for future work.

6 Outlook

Since the early days of the AdS/CFT correspondence, it has been clear that in order to

define observables holographically, infinities have to be subtracted [1, 3, 4]. These initial

findings developed into the systematic framework of holographic renormalization, which

has taken various incarnations [5–10, 62, 63]. Despite the fact that this has proved to

be very robust as a method for subtracting infinities in the context of AlAdS solutions,

the problem of matching finite boundary terms in holographic computations to choices of

renormalization schemes in quantum field theory has remained a subtle question requiring

further study. Recent exact results in supersymmetric quantum field theories, in part

obtained through the technique of localization, have sharpened this question within a
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large class of holographic constructions. In this paper, we have presented a systematic

study of the interplay of holographic renormalization and supersymmetry, in the context

of minimal N = 2 gauged supergravity theories in four and five dimensions. These theories

are consistent truncations of eleven-dimensional and type IIB supergravity on very general

classes of internal manifolds with known field theory duals. They thus give access to a

vast set of examples of supersymmetric gauge/gravity dual pairs, where both sides are well

understood [23, 24, 28, 35, 51, 56, 64–67].

In this paper we have made certain simplifying assumptions; in particular our studies

apply to AlAdS solutions of the given supergravities, where the boundary geometry admits

at least a pair of Killing spinors. Under these assumptions, our main results may be

summarized as follows. In four-dimensional minimal N = 2 gauged supergravity, the on-

shell action, renormalized using standard counterterms, is supersymmetric. In particular,

as expected, we did not find any ambiguities related to finite counterterms.30 In five-

dimensional minimal gauged supergravity, we showed that there is no choice of standard

finite counterterms (i.e. four-dimensional diffeomorphism and gauge invariants constructed

with the boundary metric and graviphoton) that renders the holographically renormalized

on-shell action supersymmetric. Thus, surprisingly, standard holographic renormalization

breaks supersymmetry in five dimensions. We then found a specific set of new boundary

terms that restores supersymmetry of the on-shell action, as well as the validity of certain

supersymmetric Ward identities inferred from field theory [16, 17]. We provided some

independent tests of these new terms, illustrating their application in smooth AlAdS5

solutions with topology R× R4.

Although our analysis provides a very strong evidence that in order to formulate holo-

graphic renormalization in a supersymmetric fashion a new set of boundary terms is needed,

a more fundamental understanding of the origin of these terms is clearly desirable. We em-

phasize that in the present work we assumed the validity of the gauge/gravity duality, and

used this to obtain constraints on the gravity side from exact results originally derived on

the field theory side. It will be very interesting to perform a first principles analysis of su-

persymmetry of supergravities in asymptotically locally AdS space-times. Let us mention

some possible avenues that could be pursued to achieve this goal. A direct approach to re-

trieve the correct boundary terms is to work on a space with a boundary at a finite distance

and to impose that the combination of bulk plus boundary supergravity action is invariant

under supersymmetry (of course the bulk action is invariant under supersymmetry up to

boundary terms). Notice that, in different situations, this approach has been recently ad-

vocated in [71, 73]. One could also attempt to derive the boundary terms by enforcing the

holographic Ward identities stemming from supersymmetry, using the Hamilton-Jacobi

approach [9, 74]. It may also be fruitful to extend to higher dimensions the approach

of [75, 76], where the standard holographic counterterms in three-dimensional31 N = 1 su-

30This situation is radically different in supergravity models coupled to matter. The interplay of holo-

graphic renormalization and supersymmetry in the presence of scalar fields has been discussed for confor-

mally flat boundaries in [7, 68–72].
31An off-shell formulation of four dimensional supergravity in the presence of a boundary has been

considered in [77], however as far as we are aware the application to the study of holographic renormalization

is lacking in the literature.
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pergravity were argued to preserve supersymmetry, by working in an off-shell formulation.

It will be very interesting to see whether any of these methods, or possibly others, may be

used to shed light on the origin of the boundary terms proposed in the present work.

We conclude by alluding to a few possible generalizations of our results. Perhaps the

most straightforward extension will be to lift the simplifying assumption that the metric

on the four-dimensional conformal boundary is locally of a direct product type S1 ×M3.

We expect that the new boundary terms arising from this analysis will be more general

than those found presently, and this could help achieving a better understanding of them.

One could also study the consequences on such terms following from a Weyl transforma-

tion of the boundary metric. In minimal gauged supergravity, to complete the program we

initiated it will be necessary to address the supersymmetric solutions in the null class [22],

which are known to comprise AlAdS5 solutions. Another obvious generalization would

be to investigate similar gauged supergravities in three, six, and seven space-time dimen-

sions. In particular, it is expected that defining two- and six-dimensional SCFTs in curved

backgrounds leads to suitable versions of the supersymmetric Casimir energy [44], and re-

producing these in dual holographic computations remains an open problem. The fact that

in odd bulk dimension one has anomalies and ambiguities in holographic renormalization

suggests that at least in these dimensions a supersymmetric formulation of holographic

renormalization will lead to a set of new boundary terms, analogous to those we uncovered

in five-dimensional supergravity.

Finally, we emphasize that in the derivation of the boundary terms, we made no

assumptions on the properties of the supersymmetric solutions in the bulk. In particular,

our boundary terms should be included in holographic studies of supersymmetric solutions

with topologies different from R× R4. For example, it will be nice to investigate how the

analysis of the properties of supersymmetric AlAdS5 black holes [59, 60] (or topological

solitons [56, 78]) will be affected by our findings.
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A Curvature tensors

Our sign convention on the Riemann tensor is fixed by

Rijkl = ∂kΓ
i
jl − ∂lΓijk + ΓikmΓmjl − ΓilmΓmjk , (A.1)

and the Ricci tensor is Rij = Rkikj . Hence a round sphere has positive scalar curvature.
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We next give some formulae by specializing to four dimensions; these are used in

section 4. The Weyl tensor of a metric gij is given by

Cijkl = Rijkl − gi[kRl]j + gj[kRl]i +
1

3
Rgi[kgl]j . (A.2)

Its square can be expressed as

CijklC
ijkl = RijklR

ijkl − 2RijR
ij +

1

3
R2 . (A.3)

The Euler scalar can be written as

E = RijklR
ijkl − 4RijR

ij +R2 , (A.4)

while the Pontryagin scalar is given by

P =
1

2
εijklRijmnRkl

mn . (A.5)

From the metric and the Levi-Civita symbol we can construct four linearly indepen-

dent functionals:
∫

d4x
√
g E (proportional to the Euler characteristic),

∫
d4x
√
gP (pro-

portional to the signature invariant),
∫

d4x
√
g CijklC

ijkl (the conformal gravity action) and∫
d4x
√
g R2 (which is neither topological nor conformal). While the metric variation of the

first and the second vanishes identically in four dimensions, varying the third defines the

Bach tensor

Bij = − 1

2
√
g

δ

δgij

∫
d4x
√
g CklmnC

klmn

=
1

3
∇i∇jR−∇2Rij+

1

6
gij ∇2R−2RikjlR

kl+
2

3
RRij+

1

2
gij

(
RklR

kl− 1

3
R2

)
. (A.6)

This is covariantly conserved and traceless. Varying the fourth functional yields the tensor

Hij = − 1
√
g

δ

δgij

∫
d4x
√
g R2 = 2∇i∇jR− 2gij∇2R+

1

2
gijR

2 − 2RRij . (A.7)

which is covariantly conserved and satisfies Hi
i = −6∇2R.

B Construction of the five-dimensional solution

In this appendix we provide details on how our five-dimensional supersymmetric solution

is constructed.

B.1 The general equations

We start by summarizing the conditions for bosonic solutions of minimal gauged supergrav-

ity in five dimensions to be supersymmetric, first obtained in [22] and recently revisited

in [56]. The analysis of [22] shows that the supersymmetry equation (4.4) implies the

existence of a Killing vector field V that is either timelike or null. In this paper we just
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consider the timelike case. Choosing coordinates such that V = ∂/∂y, the five-dimensional

metric takes the form

ds2
5 = −f2 (dy + ω)2 + f−1 ds2

B , (B.1)

where ds2
B is a Kähler metric on a four-dimensional base B transverse to V , while f and ω

are a positive function and a one-form on B, respectively. We will work with a Kähler form

J that is anti-self-dual on B, namely, ∗BJ = −J , so that the orientation on B is fixed as

volB = −1
2J∧J . We will also need the Ricci form R and its potential P , satisfying R = dP .

The Ricci form is defined as Rmn = 1
2RmnpqJ

pq, where Rmnpq is the Riemann tensor of

the Kähler metric and m,n = 1, . . . , 4 are curved indices on B. The Ricci potential also

appears in the relation ∇mΩnp + iPmΩnp = 0, where ∇m is the Levi-Civita connection of

the Kähler metric and Ω is a complex (2, 0)-form normalized as Ω ∧ Ω = 2J ∧ J .

The geometry of the Kähler base determines the whole solution. The function f

in (B.1) is given by

f = −24

R
, (B.2)

where R is the Ricci scalar of the Kähler metric, and is required to be non-zero everywhere.

The equations for the one-form ω are

dω + ∗Bdω =
R

24

(
R− 1

4
RJ
)
, (B.3)

and

(dω)mnJ
mn = − 1

12

(
1

2
∇2R+

2

3
RmnR

mn − 1

3
R2

)
. (B.4)

It was shown in [56] that for these conditions to admit a solution the Kähler metric on B

must necessarily satisfy the highly non-trivial sixth-order equation32

∇2

(
1

2
∇2R+

2

3
RmnR

mn − 1

3
R2

)
+∇m(Rmn∂

nR) = 0 . (B.5)

Finally, the expression for the Maxwell field strength is

F = −
√

3 d
[
f(dy + ω) +

1

3
P
]
. (B.6)

The solutions obtained from (B.1)–(B.6) preserve at least (and generically no more

than) two real supercharges.

B.2 The perturbative solution

We will make the assumption that the four-dimensional base B admits an isometry. This is

motivated by the fact that (after Wick rotation) we want the boundary metric to reproduce

the field theory background metric (2.8), and has the obvious advantage of simplifying the

supersymmetry equations. With no further loss of generality, for the metric on B we

can choose

ds2
B = U(r, z, z̄)2

[
dr2

r2
+ 4r2W (r, z, z̄)2dzdz̄

]
+

r4

U(r, z, z̄)2
(dψ̂ + φ)2 , (B.7)

32The specialization of this equation for a particular Kähler metric appeared earlier in [79].
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where z is a complex coordinate, ψ̂ is the Killing coordinate (to be redefined later) and

r will play the role of the radial coordinate. Moreover, U(r, z, z̄), W (r, z, z̄) are functions

while φ is a ψ̂-independent one-form transverse to ∂/∂ψ̂. This type of metric ansatz has

been studied by [80, 81] where it is shown to be the generic form satisfying our assumptions.

The explicit powers of r in (B.7) have been introduced for convenience: they are chosen so

that the asymptotic expansions of U and W start at order one — see below. We fix the

orientation choosing the volume form on B as

volB = 2ir3U2W 2dz ∧ dz̄ ∧ dψ̂ ∧ dr . (B.8)

The ansatz for the Kähler form is

J = 2ir2U2W 2 dz ∧ dz̄ + r dr ∧ (dψ̂ + φ) , (B.9)

which defines an almost complex structure, i.e. Jm
pJp

n = −δmn. The metric is Kähler if

dJ = 0 and the almost complex structure Jm
n is integrable. Together, these two conditions

are equivalent to imposing

dφ =
1

r
∂r
(
r2U2W 2

)
2i dz ∧ dz̄ + i(dz̄ ∂z̄ − dz ∂z)U

2 ∧ dr

r3
, (B.10)

which determines the connection one-form φ in terms of other metric data. Acting on this

equation with the exterior derivative, we find the integrability condition

∂z∂z̄U
2 + r3∂r

[
r−1∂r(r

2U2W 2)
]

= 0 , (B.11)

which constrains the functions U,W . Using (B.10), the Ricci scalar of the Kähler metric

can be written as

R = − 2

r2U2W 2

[
∂z∂z̄ logW + ∂r

(
rW∂r(r

3W )
)

+W∂r(r
3W )

]
, (B.12)

and the Ricci connection as

P = − 1

U2W
∂r(r

3W )(dψ̂ + φ)− i(dz̄ ∂z̄ − dz ∂z) logW , (B.13)

with the Ricci form following from R = dP .

We will solve the supersymmetry equations in an asymptotic expansion around r =∞.

To do so, we express all functions entering in the ansatz in a suitable expansion involving

powers of 1/r and log r. The requirement that the solution be AlAdS5 fixes the leading

order terms in the expansions, as explained in detail in [15].

For the function U(r, z, z̄) we take:

U =
∑
m≥0

∑
0≤n≤m

U2m,n
(log r)n

r2m

= U0,0 +
1

r2
(U2,0 + U2,1 log r) +

1

r4
(U4,0 + U4,1 log r + U4,2(log r)2) + . . . , (B.14)
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with U2m,n = U2m,n(z, z̄). Similarly, for W we take

W = W0,0 +
1

r2
(W2,0 +W2,1 log r) +

1

r4
(W4,0 +W4,1 log r +W4,2(log r)2) + . . . , (B.15)

with all coefficients also being functions of z, z̄. As for the one-form φ, note that by

redefining the coordinate ψ̂ in (B.7) we can always take the radial component φr = 0,

namely we can take φ = φz(r, z, z̄)dz + φz(r, z, z̄)dz̄. The expansion of φz is analogous to

those of U and W (albeit with complex coefficients), in particular it starts at order O(1).

We also need to expand the one-form ω appearing in the five-dimensional metric (B.1).

By a redefinition of the coordinate y we can always choose ωr = 0. Then ω can be

parameterized as

ω = c(r, z, z̄)(dψ̂ + φ) + Cz(r, z, z̄)dz + Cz(r, z, z̄)dz̄ . (B.16)

The expansion of the real function c starts at order O(r2),

c = c−2,0 r
2 + (c0,0 + c0,1 log r) +

1

r2

(
c2,0 + c2,1 log r + c2,2(log r)2

)
+ . . . , (B.17)

and a similar expansion is taken for Cz.

We next solve order by order the conditions on the four-dimensional metric on B.

The explicit expressions are too cumbersome to be presented here and can only be dealt

with using a computer algebra system like Mathematica; we will nevertheless describe in

detail the procedure we followed. The constraints on the four-dimensional base metric

amount to the equation (B.10) for φ, its integrability condition (B.11), and the sixth-order

equation (B.5). We start from (B.11), that we solve for U2,1, U4,0, U4,1, U4,2, U6,0, U6,1,

U6,2, U6,3 in terms of U0,0, U2,0 and the coefficients of W . Then we solve the sixth-order

equation (B.5) at the first two non-trivial orders, which are O(1/r) and O(1/r3) (together

with the associated logarithmic terms). This fixes W4,2, W6,1, W6,2, W6,3 in terms of U0,0,

U2,0, W0,0, W2,0, W2,1, W4,0, W4,1, W6,0, which thus remain undetermined at this stage.

Finally we solve (B.10) for φ; the latter is explicitly determined, up to the leading O(1)

term φ0,0, which has to obey the equation

dφ0,0 = 4i (U0,0W0,0)2dz ∧ dz̄ . (B.18)

Having fulfilled the constraints on the four-dimensional base B with metric (B.7), we

can solve the equations (B.3), (B.4) for the connection ω. Using the ansatz (B.16), these

become equations for c and Cz, that again we can solve order by order. We find that both

c and Cz are fully determined (in particular, the divergent O(r2) term in the expansion of

Czdz + Czdz̄ vanishes), except for the O(1) term C0,0 in the expansion of Czdz + Czdz̄,

which is left free. In addition, from the O(log r/r2) term in the expansion of (B.3) we

obtain a differential equation involving U0,0,W0,0,W2,0,W2,1,W4,1 and C0,0, that can most

easily be solved for W4,1 as the latter appears linearly and with no derivatives.33

33This is a new constraint on the Kähler base metric, that may be unexpected since we have already

solved all the conditions reviewed above for obtaining a supersymmetric solution from such metric. There

is no contradiction here: a priori we could avoid to further constrain the Kähler metric by interpreting the

equation under examination as a differential equation for the boundary function C0,0. However, shortly we

will impose a boundary condition setting C0,0 = 0; consistency with the present equation then fixes W4,1.

– 55 –



J
H
E
P
0
2
(
2
0
1
7
)
1
3
2

We can next obtain the function f from (B.2). This concludes the construction of the

metric (B.1) and the gauge field (B.6) near to r → ∞. At leading order, we find that the

five-dimensional metric is

ds2
5 =

dr2

r2
+ r2ds2

4 , (B.19)

where the metric ds2
4 on the conformal boundary is

ds2
4 =

1

4U4
0,0W

2
0,0

[
2W0,0W2,1 − 2iU2

0,0(dC0,0)zz̄ − ∂z∂z̄ logW0,0

] (
dψ̂ + φ0,0

)2
− 2 (dy + C0,0)

(
dψ̂ + φ0,0

)
+ 4W 2

0,0dzdz̄ . (B.20)

This is in agreement with the general form of a supersymmetric Lorentzian boundary

metric, as can be seen by comparison with [15, eq. (4.12)]. In fact, it is even too general

for our purposes, as it does not admit a simple Wick rotation to Euclidean signature. In

order to be able to perform a simple Wick rotation and match (2.8), we will fix part of the

free functions in (B.20) as

C0,0 = 0 , W2,1 = 2U4
0,0W0,0 +

1

2W0,0
∂z∂z̄ logW0,0 . (B.21)

In this way, the perturbative solution takes a simpler form, and only depends on the free

functions U0,0, U2,0, W0,0, W2,0, W4,0, W6,0, where U0,0 and W0,0 are boundary data,

while the remaining four functions only appear at subleading order in the five-dimensional

metric. For convenience we will rename the boundary data as

U0,0 =
1

2
u1/2 , W0,0 = ew/2 , φ0,0 = a = azdz + azdz̄ , (B.22)

and the subleading functions as

U2,0 = ew/2k1 , W2,0 = ew/2k2 , W4,0 = ew/2k3 , W6,0 = ew/2k4 , (B.23)

where we recall that all functions depend on z, z̄. Also redefining the Killing coordinates

{y, ψ̂} into new coordinates {t, ψ} as

y = t , ψ̂ = ψ + t , (B.24)

the boundary metric becomes

ds2
4 = −dt2 + (dψ + a)2 + 4ewdzdz̄ , (B.25)

with eq. (B.18) now being

da = iu ewdz ∧ dz̄ . (B.26)

At leading order, the gauge field strength reads

dA(0) = − 1√
3

d

[
−u

8
dt+

u

4
(dψ + a) +

1

4
∗2dw

]
, (B.27)
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where we denote ∗2d = i(dz̄ ∂z̄ − dz ∂z). The corresponding gauge potential is determined

up to a gauge choice that will play an important role. We see that after taking t = −iτ ,

these agree with the field theory background fields (2.8), (2.10).

At subleading order the canonical form (B.1) of our five-dimensional metric is not

of the Fefferman-Graham type (4.5), (4.6). Besides being more standard, the latter is

desirable as it makes it simpler to extract the holographic data from the solution. We find

that Fefferman-Graham coordinates are reached after implementing a suitable asymptotic

transformation, sending {t, zold, ψold, r} into {t, znew, ψnew, ρ} and having the form:

r =
1

ρ

[
1 + ρ2(mr,2,0 +mr,2,1 log ρ) + ρ4(mr,4,0 +mr,4,1 log ρ+mr,4,2(log ρ)2) +O(ρ5)

]
,

zold = znew + ρ4 (mz,4,0 +mz,4,1 log ρ) +O(ρ5) ,

ψold = ψnew + ρ4 (mψ,4,0 +mψ,4,1 log ρ) +O(ρ5) , (B.28)

where all the m coefficients are specific functions of z, z̄. It should be noted that the

conformal boundary, originally located at r = ∞, is now found at ρ = 0. In section 4.1

we give further details on the subleading terms in the metric and in the gauge field in

Fefferman-Graham coordinates. There we drop the label “new”, being understood that we

always work in the new, Fefferman-Graham coordinates. Notice that since the metric can

be cast in Fefferman-Graham form it is AlAdS.

C Supersymmetry at the boundary

C.1 Killing spinors

At the boundary of an AlAdS5 solution, the supersymmetry condition (4.4) gives rise to

the charged conformal Killing spinor equation

∇Ai ζ± = −1

4
σ± iσ

j
∓∇Aj ζ± , (C.1)

where we are using the two-component spinor notation introduced in section 2.2 and

∇Ai ζ± = (∇i ∓ iAi) ζ± is the spinor covariant derivative, with ∇i the Levi-Civita con-

nection constructed with the boundary vierbein and A = −
√

3A(0) the canonically normal-

ized gauge connection. This holds both in Euclidean and Lorentzian signature, for details

see [14] and [15], respectively. Here we are identifying the Γ1,Γ2,Γ3,Γ4 matrices of Cliff(5)

with those of Cliff(4), and the Γ5 of Cliff(5) with the chirality matrix of Cliff(4); then we

pass to two-component notation. The same equation ensures that some supersymmetry is

preserved when a four-dimensional SCFT is coupled to background conformal supergravity,

and (for spinors with no zeros) can be mapped into the equation arising when one couples

the theory to new minimal supergravity [14, 15, 26].

One can see that the four-dimensional metric (2.8) and gauge field (2.10) allow for

solutions to (C.1) and thus define a supersymmetric field theory background as well as

supersymmetric boundary conditions for the bulk supergravity fields. Our scope here is to

illustrate the gauge choice that makes the spinors independent of the coordinate τ , so that

they are globally well-defined when this is made compact.
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We choose the vierbein

e1 + i e2 = 2 e
w
2 dz , e3 = dψ + a , e4 = dτ . (C.2)

By studying (C.1) we find that in the generic case where u is non-constant, the solution

reads

ζ+ =
1√
2

eγ
′τ+iγψ+iλ

(
0

1

)
, ζ− =

1√
2

e−γ
′τ−iγψ−iλ

(
1

0

)
, (C.3)

where we have fixed an arbitrary overall constant. In the special case u = const there exist

additional solutions, however this enhancement of supersymmetry is not relevant for the

present paper and we will not discuss it further.

Kosmann’s spinorial Lie derivative along a vector v is defined as

Lvζ± = vi∇iζ± +
1

2
∇ivjσij±ζ± . (C.4)

For the Killing vectors in our background, we find:

L∂ψζ± = ∂ψζ± = ±iγ ζ± ,

L∂τ ζ± = ∂τζ± = ±γ′ ζ± , (C.5)

hence ±γ and ±γ′ are the charge of the spinors ζ± under ∂ψ and i∂τ , respectively. It follows

that the condition for ζ± to be independent of τ is

γ′ = 0 . (C.6)

C.2 Superalgebra

The algebra of field theory supersymmetry transformations generated by a pair of spinors

ζ+, ζ− solving (C.1) reads [14, 15, 26] (see also [23, section 5.1] for some more details):

[δζ+ , δζ− ]Φ = 2i (LK − i q KyAnm) Φ , δ2
ζ± = 0 , (C.7)

where LK denotes the Lie derivative along the complex Killing vector K defined in (2.7)

and q is the R-charge of a generic field Φ in the field theory. The gauge field Anm is defined

as Anm = A+ 3
2V

nm, where V nm is a well-defined one-form satisfying

∇iV nm
i = 0 , 2iσi∓V

nm
i ζ± = ±σi∓∇Ai ζ± . (C.8)

This actually only fixes KiV nm
i . In this way, Anm and V nm can be interpreted as the

auxiliary fields of background new minimal supergravity (hence the label “nm”).

Let us now evaluate these quantities in our background (2.8), (2.10). With the

choice (C.3), the vector K takes precisely the form (2.9), K = 1
2(∂ψ − i∂τ ), while its

dual one-form is

K[ =
1

2
(dψ + a− i dτ) . (C.9)

As long as u 6= 0 this has non-vanishing twist,

K[ ∧ dK[ =
i

4
u ew (dψ − i dτ) ∧ dz ∧ dz̄ . (C.10)

As discussed in [15], after Wick rotating to Lorentzian signature by τ = it this implies that

the five-dimensional bulk solution falls in the timelike class of [22].
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Eqs. (C.8) for V nm are solved by

V nm = −u
4

(dψ + a) + κK[ , (C.11)

where κ is an undetermined complex function satisfying Ki∂iκ = 0. Then Anm reads:

Anm = A+
3

2
V nm =

1

2
(3κ− u)K[ +

i

4
(dz̄ ∂z̄w − dz ∂zw)− iγ′dτ + γ dψ + dλ . (C.12)

Contracting with K gives

K Anm =
1

2

(
γ − γ′

)
. (C.13)

Note from (C.5) that this is also the charge of the Killing spinor under K, LKζ+ =
i
2(γ − γ′)ζ+.

We conclude that in the background of interest, and with the choice (C.6), the super-

algebra reads

[δζ+ , δζ− ]Φ = i
(
− iL∂τ + L∂ψ − iγ q

)
Φ . (C.14)

Passing to the corresponding generators gives

{Q+,Q−} = H + J + γ Q , (C.15)

where H and J are the charges associated with ∂τ and −∂ψ, respectively, while Q is the

R-charge. Taking the expectation value in a supersymmetric vacuum leads to the BPS

condition

〈H〉+ 〈J〉+ γ〈Q〉 = 0 . (C.16)

C.3 Twisted background

For the twisted background (4.54), (4.55), requiring that the Killing spinors ζ± are indepen-

dent of the new time coordinate and recalling relations (C.5), valid in the old coordinates,

immediately leads to

γ′ = −i γ tanα . (C.17)

It is also straightforward to implement the change of coordinates and obtain the new K

(given in (4.56)) and the new form of the superalgebra.
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