
Slicing Cell Resources:
The Case of HTC and MTC Coexistence

Vincenzo Mancuso† Paolo Castagno∗ Matteo Sereno∗ Marco Ajmone Marsan‡†

1Università di Torino
Turin, Italy

†Imdea Networks Institute
Madrid, Spain

‡Politecnico di Torino
Turin, Italy

Abstract—In this paper we investigate the allocation of re-
sources to slices on the radio interface of one cell. In particular,
we develop a detailed stochastic model of the behaviour of the
sliced cell radio access, including most features of the standard
access procedures. Our model allows the computation of the
throughput achieved by each slice, as well as the distribution
of delays for each slice. The availability of a model capable of
accurately predicting the performance achieved by services using
different slices as a function of the cell parameters is extremely
important for the automated run time management of the cell
and for the correct setting of its parameters.

Specifically, while our model can cope with a number of
slices, we focus on the case of one cell comprising one slice
for human type communications and one slice for machine type
communications, and we discuss relevant emerging behaviours
in the slices performance, as functions of the cell parameters.

We validate the analytical predictions by comparison against
the estimates of a detailed simulator, proving the accuracy of the
model. Our model turns out to be very effective in providing in-
sight and guidelines for allocation and management of resources
in cells hosting slices carrying traffic derived from services with
different characteristics and performance requirements.

I. INTRODUCTION

Network slicing is a defining feature of the 5G technology.
It allows the presence of several tenants on one infrastructure,
and the effective coexistence of services with quite different
characteristics and requirements in different virtual slices of
the same network. The NGMN (Next Generation Mobile
Network) Alliance [1], formed by mobile network operators
and equipment manufacturers, gives the following definition
of Network Slice Instance [2]: “a set of network functions,
and resources to run these network functions, forming a
complete instantiated logical network to meet certain network
characteristics required by the Service Instance(s).” Network
slicing is thus based on the allocation of a shared or dedicated
portion of the network resources to each slice, to achieve
the best possible Quality of Service (QoS) for each slice,
expressed by means of the relevant key performance indicators
(KPIs) like throughput, latency, service availability, etc.

ETSI Technical Specification 123 501 [3] defines three
classes of slices and service types (SST). The first class refers
to slices “suitable for the handling of 5G enhanced mobile
broadband” (eMBB). The second class refers to slices “suitable
for the handling of ultra-reliable low latency communications”
(URLLC.) The third class refers to slices “suitable for the

handling of massive IoT” (mIoT). Several slices of the same
class can coexist on one infrastructure.

The allocation of resources to the individual slices and their
real-time management can be implemented with the support of
Software Defined Networking (SDN) and Network Function
Virtualization (NFV) approaches, hence with management and
orchestration (MANO) functions, and in particular with a a
resource orchestrator (RO) that is charged with monitoring the
KPIs on the different slices and properly managing resources,
so as to avoid Service Level Agreement (SLA) violations.

While several papers already looked at the issues related
to resource orchestration (as we discuss in the Related Work
Section), in this paper we look at the problem of resource
allocation to slices on the radio interface of one cell, an
issue which, to the best of our knowledge, has not yet been
considered in the technical literature. In particular, we develop
a detailed stochastic model of the behaviour of the sliced
cell radio access, including: i) Access Class Barring (ACB)
techniques, ii) Random Access CHannel (RACH) procedures,
iii) preamble decoding and Random Access Response (RAR),
iv) Radio Resouce Control (RRC) procedures.

The development of a model capable of predicting the QoS
achieved by services using the different slices available in the
cell as a function of the cell parameters is extremely important
for the automated run time management of the cell and for the
correct setting of its parameters, aiming at the simultaneous
fulfillment of SLAs in all slices.

Our model builds on the approach presented in [4] and
extends it to account for the presence of slices. It allows the
computation of the throughput achieved by each slice, as well
as the distribution of delays for each service in each slice.

We focus in particular on the case of eMBB and URLLC
slices. This is because today one of the key questions about 5G
KPIs concerns the possibility of coexistence of eMBB for the
provision of an increasingly rich gamut of services to human
end users (HTC – human-type communications), together with
the URLLC required by the machine-type communications
(MTC) necessary for the implementation of the smart factory
and industry 4.0 concepts, as well as for many emerging
applications requiring strict real-time communications.

Our main contributions in this paper are the following.
• We develop a flexible detailed analytical model for the

performance analysis of one cell hosting several slices.

• We provide expressions for the computation of relevant
KPIs, such as slice throughput and latency distribution.

• We apply the model to the investigation of the perfor-
mance of one cell hosting one slice of eMBB type and
one slice of URLLC type.

• We provide insight and guidelines for the allocation and
management of resources in cells hosting eMBB and
URLLC slices.

The rest of this paper is organized as follows. Section II
positions our work with respect to some relevant previous
works. Section III provides a detailed description of the system
we consider. Section IV presents our analytical model and
derives expressions for the cell KPIs. Section V describes and
comments results for the case of one MTC and one HTC slice,
validates them by comparison against simulation estimates,
and discusses the main insights provided by the model. Finally,
Section VI concludes the paper.

II. RELATED WORK

Three large research projects funded by the European Com-
mission in the framework of the Horizon 2020 5G PP are
today developing concepts and implementations of network
slicing: 5G-CROSSHAUL [5], 5G-TRANSFORMER [6], and
5G-NORMA [7].

An overview of network slicing concepts, architectures and
algorithms was recently provided by two special issues of the
IEEE Communications Magazine [8], [9].

Performance issues of network slicing were first considered
in [10], where a dynamic RAN cell slicing controller was
proposed and evaluated by simulation in a urban setting com-
prising 19 microcells, and showing that the proposed controller
performs better than a distributed static slicing solution and a
centralized load balancing solution.

Several papers looked at the optimization of network slicing
schemes.

• The optimal allocation of resources to slices was ad-
dressed in [11], where a distributed algorithm was pro-
posed and analyzed by simulation, considering a dense
small cell deployment, and showing that substantial ca-
pacity savings can be achieved while providing a given
QoS to end users.

• An optimization problem for radio resource sharing
among slices in a cell is studied in [12], that also proposes
an efficient algorithm for optimization. Simulation results
show good isolation and an increase in the multiplexing
gain by sharing unused resources.

• The joint optimization of admission control, user associ-
ation, baseband and radio resource allocation is proposed
in [13]. Simulation results show that the proposed scheme
achieves better performance than baseline schemes.

A few papers tackled network slicing with game theory
approaches.

• The sharing of resources among slices was investigated
in [14]. Each slice is assigned a fixed portion of the
available resources, which are then equally distributed to

slice users. Newly arriving users are accepted by slices
with autonomous decisions based on a game that is shown
to admit a Nash equilibrium. The effectiveness of the
proposed solution is studied by simulation.

• A study of the dynamic allocation of base station re-
sources to network slices is considered in [15]. The
selected resource sharing model is a Fisher Market in
economics terms. It is shown to provide each slice with
the same or better utility than a static resource allocation
and to admit a Nash equilibrium. The performance of the
proposed approach is again investigated by simulation.

• The analysis of the market composed by one infrastruc-
ture provider and several tenants that rent a network slice
to provide service to their customers was tackled in [16].
A slice admission control algorithm is designed to max-
imize the revenues of the infrastructure provider while
providing the expected performance to the slice users.
The performance of the proposd algorithm is evaluated
by simulation.

The introduction of a limit on the number of resource
blocks allocated to each slice in a base station (BS) to
guarantee resource isolation is proposed in [17]. The authors
show that this approach combined with slight modifications
of the ordinary packet scheduling algorithm can provide the
desired isolation. In some cases an improvement in throughput
with respect to a static bandwidth partitioning is observed in
simulation results.

Our work is different from the previous literature because
we consider for the first time network slicing together with the
details of the algorithms that rule the operations on the radio
interface of a base station. In addition, our analysis is based on
a detailed analytical model of the base station operations, and
simulation just serves the purpose of validating the accuracy
of the analytical model.

III. SLICING RADIO ACCESS RESOURCES

Here we describe the approach we consider for sharing cell
resources among slices. Table I shows the notation we use.

A. Access and Connection Procedures

All devices that need to access a service, of both MTC and
HTC types must execute the random access procedure, that
starts when a RACH (Random Access CHannel) opportunity
(RAO) is offered by the BS. Before accessing the RACH, a
terminal may be delayed by the ACB (Access Class Barring)
procedure, that allows a prioritization in the RACH access.
Barring a service request of a service class happens with a
given probability, that we call pA.

The RACH procedure consists in a packet handshake to
synchronize BS and terminal and to assign a unique identifier
to the terminal request. A request is successful only when re-
sources are actually allocated to the terminal with the signaling
messages that are exchanged after the random access success.
Indeed, the standard 3GPP access procedure includes the
RACH access phase and the RRC (Radio Resource Control)
connect phase, with four messages exchanged in total. In case

TABLE I
NOTATION

Notation Description
A ACB backoff
B RACH backoff
C BS capacity
C(i) Capacity dedicated to slice i
Cs Shared BS capacity
kmax Maximum number of RACH attempts
M max RRC CONNECTED terminals
M(i) RRC CONNECTED terminals guaranteed to slice i
Ms shared RRC CONNECTED places
Np Number of random access preambles
o(i) Power ramping offset for slice i
pA Barring probability
pB Network blocking probability
pC RACH collision probability
pR Probability of RACH failure (beside collisions)
τ RAO interval
Tmin Minimum time needed to get a RACH reply
Tmax RACH timeout
TO Application timeout
Yk time elapsed as the request leaves stage k
Z time spent in a RACH stage waiting for an ACK
ζ Exogenous arrivals
λ RACH request arrivals
Θ RACH limit per RAO
σ Flow of acknowledged RACH requests
φ Flow of decoded RACH requests
ψ RACH throughput
ξ Network throughput

of failure during one of the two stages, the terminal repeats its
attempt after a random backoff delay, possibly with different
transmission power, according to the standard power ramping
mechanism that defines how nodes progressively increase their
transmission power after each failed attempt [18]. Different
backoff values can be defined for failures in different points
of the procedure.

In the RACH access phase, the terminal chooses one out of
Np available preambles, and transmits it at the next available
RAO. If several terminals choose the same preamble, a colli-
sion occurs, and the access request cannot be decoded. If just
one terminal chooses a given preamble, its request is decoded,
provided the terminal transmission power is high enough. If
a collision occurs, or the power is too low, the RACH access
must be repeated.

If a request is decoded, the terminal can receive an acknowl-
edgment from the BS. There is a limit (denoted by Θ) to the
maximum number of ACKs that can be transmitted by the BS
for each RAO, so that a decoded request can receive no ACK,
if the limit is reached. If no ACK is received, the terminal
must repeat the RACH access procedure.

Terminals that complete the access procedure can move to
the RRC CONNECTED state and receive service from the
BS. A limit exists to the maximum number of terminals that
can be in the RRC CONNECTED state (we call it M), so
that there is a possibility that the terminal request is blocked
even after receiving an ACK. In this case, the terminal notifies
the user with an error message equivalent to the busy tone in
the voice phone system.

A maximum number of repetitions for the RACH access

ACB RACH Decoder Limiter Network
z(i)	 l(i)	 y(i)	 f(i)	 s(i)	 x(i)	

Blocking Barring Collision Error Clip

ACB	backoff	

Timeout or
max retry limit reached

Timeout

RACH	backoff	
(at	most	k(i)max-1	5mes)	

Drop	

Fig. 1. System blocks representing sliced network functions for the i-th slice
hosted by a base station.

procedure is defined, called kmax, After kmax attempts, a
request is dropped. A repetition can be due to collision (with
probability pC) and to no ACK received (with probability
pR(k) at the k-th attempt, with the associated power level).

In addition, a maximum amount of time is defined for the
completion of an access procedure instance. When this time
is reached, a timeout expires, and the instance is dropped.

Once a terminal is in the RRC CONNECTED state, it
receives its share of the BS capacity, in terms of allocated
resource blocks.

This whole procedure is illustrated in Fig. 1, where we see
new service request generation on the left, the ACB subsystem,
followed by the RACH, the Decoder and the Limiter,
all with their backoffs, timeout possibilities and maximum
number of retries. The Network subsystem corresponds to
service by the BS, if no blocking occurs.

In the system, network blocking, timeout and exceeding the
RACH retry limit lead to drop the connection attempt.

B. Sliced System

In case of a sliced system, it is necessary to define an allo-
cation of the BS resources to the different slices. We identify
the slice parameters by means of a superscript denoting the
slice index.

In the spirit of the 3GPP standard, we assume that the
barring probability is a characteristic of a service, but since we
allocate one service to each slice, the barring probability P (i)

A

depends on the slice. The power ramping offset can provide a
significant differentiation among slices, increasing the proba-
bility of decoding for the slices using higher power. For this
reason we will consider different values for different slices.
The subset of RACH preambles that can be used by a slice
significantly impacts the collision probability. We will thus
consider the case of different subsets (possibly with non null
intersection) of preambles for different slices. We will instead
assume that the ACKs provided by the BS to service requests
that succeed on the RACH and at the decoder are equally
available to all slices. Obviously, the maximum number of
terminals in the RRC CONNECTED state is a key aspect for
governing the slice KPIs, and we will thus consider cases
where values are different for different slices. These values
also impact the BS bandwidth share obtained by each terminal,
since we assume that the BS allocates portions of bandwidth
to slices, which are then equally shared by the terminals of

that slice which are in the in the RRC CONNECTED state.
Out of the M available positions, we reserve M (i) for unique
use of slice i, with the sum of the M (i) less or equal to M .
The remaining positions are shared by all slices. The values
of backoff delays and access timeouts must be tailored to the
types of service and the KPI goals of each slice, so that they
must be carefully set by the operator.

IV. ANALYSIS

We model a sliced system that represents the chain that goes
from radio connection to network service within a cell. We let
out of the analysis the connection from the BS to the core of
the network and study in detail BS resource slicing.

A. System flows

The reference system is the one illustrated in Fig. 1, which
includes the network functions described in the previous sec-
tion. As shown in the figure, each block can either promote a
connection request to the next level, until service is completed,
or yield a failure event. The figure only indicates flows and
some configuration parameters for slice i, although we assume
the presence of S slices.
ACB sees a flow ζ(i) as input. Failures on the ACB incur

backoffs A(i) for slice i, with no limits on the number of
back-to-back attempts. We assume that, within a slice, ACB
backoffs are i.i.d. and exponentially distributed.
RACH receives the flow λ(i) from the ACB, which is no

higher than ζ(i) due to the possibility of timeout in ACB.
Failures on a RACH access attempt can be due to collision,
decoding errors or clipping at Limiter. A user cannot
distinguish which type of failure occurred, it simply observes
that the BS does not acknowledge its request in an interval
Tmax and then it schedules a RACH backoff before another
attempt will start. We call stage k the k-th RACH access
attempt. We assume that RACH backoffs B(i) are i.i.d. r.v.’s
with exponential distribution. Each RACH stage k produces a
flow ψ

(i)
k of successes, which feeds Decoder. Of course, the

total flow of successes leaving RACH is ψ(i) =
∑k(i)max

k=1 ψ
(i)
k .

Decoder introduces losses based on a decoding probability
that depends on the RACH stage, because of power ramping
(with offset). The output of Decoder is a flow φ(i) ≤ ψ(i),
which feeds Limiter.
Limiter causes failures due to the cap Θ on the number

of RACH acknowledgments per RAO. This is a hard limit for
the ensemble of slices running on the same BS. The output
of Limiter is a set of flows σ(i), one per slice, such that∑S
i=1 σ

(i) ≤ Θ/τ .
If a connection request eventually reaches Network, it can

still be blocked if the BS network processor has no position left
for that slice (and in the shared pool). Blocking happens with
probability p(i)

B . Conversely, successful requests are served by
the network, with a per-slice throughput denoted by ξ(i) =

(1− p(i)
B σ(i)).

The busy tone can therefore be caused by network blocking
as well as excessive RACH access attempts (after k(i)

max back-
to-back RACH failures) or by specific application timeouts

(the app running on the terminal and trying to send a message
will not wait forever). The busy tone is directly returned to
the user as the connection attempt is dropped.

For the framework described above, we now derive ex-
pressions for the flows (loads and throughputs) and for the
distribution of time spent in the system.

B. Access time

Let us consider a request from slice i that arrives at ACB.
We denote by Y

(i)
k−1 the time spent by that request from its

arrival to ACB to the moment it enters stage k. Y (i)
k−1 consists

of a random number L(i) of barring backoffs, (k − 1) times
the interval Tmax and k − 1 RACH backoffs.

If there is a success at the k − th stage, the time spent by
the request before leaving is Y (i)

k−1 + Z, where the random
interval Z ≤ Tmax is needed to model the delay between
RACH request and network grant and it is independent from
all r.v.’s Y (i)

j , j = 1, 2, . . . , k
(i)
max, i = 1, 2, . . . , S. In this case,

the request is served with probability 1 − p
(i)
B or otherwise

dropped. Therefore the time spent for a network blocking is
same as for a success (because we are not counting the network
service in the access time).

If there is a failure due to the maximum number of RACH
attempts, the time spent is Y (i)

k
(i)
max

and the request is dropped.
In case of timeout, of course, the time spent is the timeout

value selected for slice i, namely T
(i)
O , and the request is

dropped. The distribution of Y (i)
k is

F
Y

(i)
k

(x)=Pr
{
L(i)A(i) + k

(
Tmax +B(i)

)
≤ x

}
, (1)

where L(i) ≥ 0 is the random number of back-to-back
deferrals experienced because of ACB, due to the barring
probability associated to slice i.

Similarly, the distribution of Y (i)
k−1 + Z is

F
Y

(i)
k−1+Z

(x)=Pr
{
L(i)A(i)+(k−1)

(
Tmax+B(i)

)
+Z≤x

}
. (2)

Because of the independence of the random variables used
in the above expressions, denoting by fZ the p.d.f. of Z, the
following useful result holds:

F
Y

(i)
k−1+Z

= F
Y

(i)
k−1

∗fZ . (3)

Moreover, the sum of a fixed numebr of exponential RACH
backoffs is an Erlang r.v., and the sum of a geometrically
distributed number of ACB exponential backoffs with ACB
backoff probabiltity p

(i)
A and average ACB backoff E[A]

exhibits the following cumulative distribution:

Pr
{
L(i)A(i) ≤ x

}
= 1− p(i)

A e
−
(

1−p(i)A

)
x

E[A] , ∀x ≥ 0. (4)

C. RACH stages

A request enters RACH stage 1 if its timeout does not
expire during the ACB backoffs. We denote such probability as
P

(i)
N (1), which is computed through (4) evaluated at x = T

(i)
O .

Subsequently, and while the timeout does not expire, a
request leaves the RACH stage with either a success, or

progress to the next stage upon a collision, or a failure in
Decoder or in Limiter. We indicate the probability to
access stage k as P (i)

N (k), for which we derive the following
recursive expression:

P
(i)
N (k+1)=P

(i)
N (k)

[
1−
(
1−p(i)

C

)(
1−p(i)

R (k)
)]
F
Y

(i)
k

(T
(i)
O). (5)

In the above expression, p(i)
C indicates the collision proba-

bility in RACH, p(i)
R (k) is the probability of failure in either

Decoder or Limiter in stage k, and F
Y

(i)
k

(T
(i)
O) is the

probability that a timeout does not occur before the end of the
backoff of stage k. We will derive such quantities later in this
section. Before that, we need to derive the general expressions
for the probabilities of the following events to occur: excess
RACH retries, success, blocking, and timeout. Those events
fully characterize the success of the access attempt.

D. Event probabilities

RACH retry limit exceeded. The quantity P (i)
N

(
k

(i)
max+1

)
,

formally defined as for other values of k in (5), represents the
fraction of ζ(i) that exceeds the RACH retry limit.

Access attempt success. The fraction of ζ(i) that observes
a success in stage k is derived as the fraction of requests that
enters stage k and experiences no failure:

P
(i)
S (k)=P

(i)
N (k)

(
1−p(i)

C

)(
1−p(i)

R (k)
)(

1−p(i)
B

)
F
Y

(i)
k−1+Z

(T
(i)
O). (6)

The total success probability of slice i, i.e., the fraction of ζ(i)

requests that succeeds, is therefore P (i)
S =

∑k(i)max

k=1 P
(i)
S (k).

Network blocking. This is similar to the case of success in
stage k, but with a network blocking failure:

P
(i)
B (k)=P

(i)
N (k)

(
1−p(i)

C

)(
1−p(i)

R (k)
)
p

(i)
B F

Y
(i)
k−1+Z

(T
(i)
O). (7)

The fraction of access requests ζ(i) that experiences network
blocking is thus P (i)

B =
∑k(i)max

k=1 P
(i)
B (k).

Timeout. A timeout can occur either during ACB backoffs,
with probability P

(i)
TO(0) = 1 − P

(i)
N (1), or during RACH

operations. In the k-th stage, a fraction of requests suffer a
timeout while waiting for the network grant or during the
backoff. Hence, for k ≥ 1:

P
(i)
TO(k)=P

(i)
N (k)

{(
1−p(i)

C

)(
1−p(i)

R (k)
)[

1−F
Y

(i)
k−1+Z

(T
(i)
O)
]

+
[
1−
(

1−p(i)
C

)(
1−p(i)

R (k)
)] [

1−F
Y

(i)
k

(T
(i)
O)
]}
. (8)

The total timeout probability observed by a slice is therefore

P
(i)
TO =

k(i)max∑
k=0

P
(i)
TO(k); (9)

Busy tone. Access requests that exceed the RACH retry
limit, experience a network blocking event or a timeout are
dropped. Therefore, the busy tone is sent with probability 1−
P

(i)
S = P

(i)
N

(
k

(i)
max + 1

)
+ P

(i)
B + P

(i)
TO.

E. Derivation of throughputs and loads with cycles

With the expressions derived so far, we have characterized
the trajectory of the exogenous access requests that feed the
system for slice i, i.e., ζ(i). However, the expressions derived
are functions of three parameters that we need to derive next:
p

(i)
C , p(i)

R (k), and p(i)
B .

RACH collision probability and throughput. The input of
RACH is the flow λ(i) that arrives from ACB. However, RACH
has internal cycles, and λ(i) is just the input to the first stage.
With the definitions of Section IV-C, we have the following
input flows for each successive stage (note that λ(i)

1 =λ(i)):

λ
(i)
k = ζ(i)P

(i)
N (k), k = 1, 2, . . . k(i)

max. (10)

We model RACH as a slotted Aloha system with multiple
channels. The load of the system is the sum of the requests
arriving to the various stages, whereas the number of channels
is the number of preambles assigned by the BS to the slice.

Specifically, each slice receives a set of N (i) dedicated
preambles. In addition, the BS keeps a pool of Ns shared
preambles that can be accessed by all slices. The total number
of preambles is Np = Ns +

∑S
i=1N

(i).
In each RACH attempt, according to the standard, a terminal

selects a preamble uniformly at random, so that the per-
preamble RACH load generated by slice i is

`(i) =
ζ(i)

N (i) +Ns

k(i)max∑
k=1

P
(i)
N (k). (11)

The collision probability over a single preamble j, from
slotted Aloha results with slots of duration τ , is as follows:

pC,j =

{
1− e−τ`(i) , 1 ≤ i ≤ S, dedicated preamble;

1− e−τ
∑S

i=1 `
(i)

, shared preamble.
(12)

The resulting per-slice RACH collision probability is de-
rived as average of (12) over the preambles used by a slice
and selected uniformly at random at each attempt:

p
(i)
C = 1− N (i)e−τ`

(i)

+Ns e
−τ
∑S

q=1 `
(q)

N (i) +Ns
. (13)

The throughput of RACH (for slice i and stage k) is:

ψ
(i)
k =

(
1− p(i)

C

)
λ

(i)
k , ψ(i) =

k(i)max∑
k=1

ψ
(i)
k . (14)

Throughput of Decoder. At each stage of the RACH,
Decoder has a different failure probability, due to power
ramping in RACH message transmissions [18]. Decoder
failure probability is expressed as e−k−o

(i)

, where k is the
RACH attempt stage and o(i) is the slice offset. Therefore, at
stage k, slice i observes the following Decoder throughput:

φ
(i)
k = ψ

(i)
k

(
1− e−(k+o(i))

)
(15)

which sums up to a flow φ(i) =
∑k(i)max

k=1 φ
(i)
k .

Losses due to Limiter. The BS can only grant Θ requests
per RAO, shared between the slices. Therefore there are losses
when the output of Decoder in a RAO interval is higher than
Θ requests.

With the RACH preamble partition described above, we
can compute the distribution of successes per RAO and hence
compute the average loss due to Limiter.

In a pool of W preambles subject to homogeneous per-
preamble load—e.g., in a pool of shared preambles, or in
a pool of preambles dedicated to a single slice—the prob-
ability ωa to have exactly a decoded messages in a RAO
is approximated with the probability of having a successes
over W i.i.d. Bernoulli experiments (one per RACH preamble,
which can only output no or one decoded request). The success
probability of each Bernoulli experiment is computed from the
aggregate number of messages decoded over those preambles
in an interval τ , as shown next.

For a pool of dedicated preambles N (i), the collision
probability is the same for all preambles and it is given by (12).
For each preamble used, the average output in a RAO, after
the decoding, is therefore

p(i) = τe−τ`
(i)

k(i)max∑
k=1

(
1− e−(k+o(i))

) λ
(i)
k

N (i) +Ns
, (16)

which can be regarded as the Bernoulli success probability of
dedicated preambles. For the shared pool, the result is similar:

ps=τe−τ
∑S

i=1 `
(i)

S∑
i=1

k(i)max∑
k=1

(
1−e−(k+o(i))

) λ
(i)
k

N (i) +Ns
. (17)

For a dedicated pool we have the following distribution:

ω(i)
a =

{(
N(i)

a

) (
p(i)
)a(

1−p(i)
)N(i)−a

, a ∈ {0, .., N (i)};
0, otherwise;

(18)

while for the shared pool of preambles:

ωsa =

{(
Ns

a

)
(ps)

a
(1− ps)Ns−a , a ∈ {0, .., Ns}

0, otherwise.
(19)

Finally, putting together the different pools, the probability
Ωa to have exactly a messages decoded (from any slice) is

Ωa=

Np∑
a1=0

Np∑
a2=0

. . .

Np∑
aS=0

ω(1)
a ω(2)

a . . . ω(S)
a ωs(a−

∑S
r=1 a

(r)). (20)

Overall, the average losses are

E [NL] =

Np∑
a=Θ+1

(a−Θ) Ωa, (21)

and we assume that the losses are spread over the slices
proportionally to their load at Limiter:

E
[
N

(i)
L

]
= E [NL]

φ(i)∑S
q=1 φ

(q)
; (22)

The resulting per-slice Limiter throughput is

σ(i) = φ(i) −
E
[
N

(i)
L

]
τ

= φ(i)

(
1− E [NL]

τ
∑S
q=1 φ

(q)

)
. (23)

Since losses at Limiter do not discriminate between RACH
stages, Limiter throughput per-stage, σ(i)

k , is obtained by
replacing φ(i)

k for φ(i) in (23).
Computation of p(i)

R (k). This quantity is the aggregate loss
rate due to the combined action of Decoder and Limiter
for requests at stage k:

p
(i)
R (k)=1−

σ
(i)
k

ψ
(i)
k

=1−
(
1−e−(k+o(i))

)1−
E
[
N

(i)
L

]
τφ(i)

. (24)

Blocking probability. The BS network processor can serve
at most M users at the same time. Moreover, each slice
disposes of M (i) dedicated places in the BS, and some
additional Ms places can be shared among all slices. Arrival
in excess are dropped, thus originating a network blocking
probability.

The network processor has a total capacity C, out of which
C(i) is reserved for slice i, and Cs is shared among slices. If
there are up to M (i) users for slice i, they equally share C(i).
However, when there are m(i) > M (i) users, M (i) of them get
a service rate C(i)

M(i) and the remaining m(i)−M (i) users access
shared resources without any priority. Hence their service
depends on the total number of users in all the slices, i.e., their
serving rate is Cs/

∑S
i=1 min

(
0,m(i) −M (i)

)
. Moreover, if

a job using dedicated resources leaves the system, then a job
using shared resources is promoted to use dedicated resources.

The above description reminds of the operation of a multi-
class processor sharing (PS) queue in which one class receives
part of what cannot be accommodated in the other classes, and
jobs can be shuffled and promoted.

Thus, we model the network processor with a PS with S
classes and hard limits on the number of customers in service
given by M (i) + Ms for each class, with a global limit at
M . The capacities of such classes are their dedicated capacity
C(i) plus a portion of the shared capacity Cs. The intensities of
the arrival rates are the values of the σ(i), but shared resources
receive the overflow of each class arrivals, when all dedicated
resources are busy.

We study the operation of the described PS queue by
means a continuous-time Markov chain with S-dimensional
state space (one dimension per class, to count the number of
jobs) whose transitions are depicted in Fig. 2 for the case of
two slices (S = 2). In the figure, each state of the chain
reports the number of jobs m(1) ≤ M − M (2) in slice 1
and m(2) ≤ M −M (1) in slice 2, subject to the constraints
that m(1) + m(2) ≤ M . The chain has a precise symmetry
and a trapezoidal shape, which is due to the above mentioned
constraints.

If we denote by (a, b) the state of the chain, where a is the
number of users in slice 1 and b is the number in slice 2, the
transition rates for Fig. 2 from state (a, b) to other states are

å	

0, 0 0, 1 0, M(2) 0, M-M(1)

1, 0 1, 1 1, M(2) 1, M-M(1)

M(1), 0 M(1), 1 M(1), M(2)

M-M(2), 0

… …

…

…

… … …

…

… …

M-M(2), 1 M-M(2),
M(2)

M(1),
M-M(1)

M-M(2)-k,
M(2)+k

…

…

…

…

Fig. 2. CTMC describing the Network processor operation for S = 2. Top-
to-bottom transitions have rate σ(1), while left-to-right transitions have rate
σ(2). Bottom-to-top transitions have rate C(1) in the first M(1) rows and
C(1) + Q(1)(a, b) in the remaining rows. Right-to-left transitions have rate
C(2) in the first M(2) columns and C(2) +Q(2)(a, b) otherwise.

as follows:
(a+1, b) : σ(1) ∀a ≤M (1)−1, b ≤M (2)and ∀a ≤M−M (2)−b−1
(a, b+1) : σ(2) ∀b ≤M (2)−1, a ≤M (1)and ∀b ≤M−M (1)−a−1
(a− 1, b) : C(1) ∀a ≤M (1)

(a− 1, b) : C(1) +Q(1)(a, b) ∀M (1)< a ≤M−M (2)

(a, b− 1) : C(2) ∀b ≤M (2)

(a, b− 1) : C(2) +Q(2)(a, b) ∀M (2)< b ≤M−M (1)

For simplicity of notation, we used the following quantities:

Q(1)(a, b) =

{
a−M(1)

a−M(1)+max(0,b−M(2))
if a > M (1);

0 otherwise;
(25)

Q(2)(a, b) =

{
b−M(2)

b−M(2)+max(0,a−M(1))
if b > M (2);

0 otherwise.
(26)

The solution of the Markov chain can be obtained numeri-
cally with specialized tools like SMART [19], which can solve
chains with tens of thousands of states in a few seconds using
normal desktop computers.

We therefore solve the Markov chain numerically to com-
pute p

(i)
B as the sum of the relevant state probabilities. I.e.,

for slice 1 we sum over states that lay on the bottom edge of
Fig. 2, whereas for slice 2 on the edge on the right. Note that
the diagonal edge in the triangular-shaped part at the right-
bottom part of the chain in Fig. 2 contains states in which
both slices suffer blocking.

F. Access time distributions

The cumulative distribution of the time T (i) spent in one
access attempt in slice i is the one resulting from the following
events that partition the space of probabilities: timeout, success
or network blocking in stage k, and excess RACH retries. In
case of timeout, the time spent is T (i)

O . In case of success
or network blocking in stage k, the time spent in the access
attempt is the r.v. Y (i)

k−1 + Z, conditional to the event that the
timeout does not expire. In case of excess RACH retries, the

time is Tmax (for the last retry with no BS answer) plus the
r.v. Y (i)

kmax−1 (which accounts for previous retries), conditional
to the event that the time at the end of the last but one attempt
allows for an extra Tmax in the last attempt. The result is as
follows:

FT (i)(x)=P
(i)
TO U

(
x−T (i)

O

)
+

k(i)max∑
k=1

F
Y

(i)
k−1+Z

(x)

F
Y

(i)
k−1+Z

(
T

(i)
O

)(P (i)
S (k)

+ P
(i)
B (k)

)
+P

(i)
N

(
k(i)

max + 1
) F

Y
(i)

k
(i)
max−1

(x−Tmax)

F
Y

(i)

k
(i)
max−1

(
T

(i)
O −Tmax

) , (27)

where U
(
x−T (i)

O

)
is a unit step at time T (i)

O .
As a corollary of (27), note that the CDF of the time spent

in one attempt in case of success is

FT (i)(x|Success)=
1

P
(i)
S

k(i)max∑
k=1

F
Y

(i)
k−1+Z

(x)

F
Y

(i)
k−1+Z

(
T

(i)
O

)P (i)
S (k). (28)

V. NUMERICAL RESULTS

In this section we study a few cases of sliced BS resources,
which correspond to realistic application scenarios. In all cases
we consider a BS with user plane capacity equal to 100 Mb/s
that must transmit packets of HTC type with average length
1.2 Mb, and with average length 8 kb in case of MTC. In all
cases the number of RACH preambles is equal to 54, and the
number of positions in the RRC CONNECT state is 200.

In Table II we provide for the considered scenarios the
traffic shares of the MTC and HTC slices, the shares of the BS
capacity dedicated to the two slices, the numbers of dedicated
RACH preambles and positions in the RRC CONNECTED
state, and the timeout values in seconds. The resources which
are not dedicated to slices can be evenly shared.

The four scenarios that we consider are the following.
• Sparse IoT – A BS serving a urban cell with mostly

HTC traffic, and a small slice for IoT (MTC) traffic.
• Dense IoT – A BS serving a cell with mostly MTC

connections with low traffic, although a large part of the
capacity is used by a few HTC devices.

• Small Factory – A BS serving an urban area with
mostly HTC traffic, but devoting a slice to serve a urban
industrial settlement, with MTC traffic.

• Big Factory – A BS serving a private area (such as a
smart factory) with mostly MTC traffic, and a slice to
handle HTC traffic.

A. Validation

In order to validate the analytical model, we used an ad hoc
simulator written in C++. This is an event based simulator
that represents with high accuracy the standard operations
necessary to register the terminal at the BS, and to access
and use the BS resources. The fact that the simulator closely
follows the standard 3GPP procedures allows us to validate the

TABLE II
SLICE PARAMETERS FOR THE CONSIDERED APPLICATION SCENARIOS

SCENARIO TRAFFIC SHARE CAPACITY SHARE DEDICATED PREAMBLES DEDICATED POSITIONS TIMEOUT [s]
HTC MTC HTC MTC HTC MTC HTC MTC HTC MTC

SPARSE IOT 0.95 0.05 0.8 0.02 40 5 100 10 5 5
DENSE IOT 0.05 0.95 0.75 0.05 10 40 40 100 3 1

SMALL FACTORY 0.75 0.25 0.5 0.2 30 10 50 50 5 0.1
BIG FACTORY 0.3 0.7 0.1 0.5 10 30 20 150 5 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

[a
rr

/m
s
]

Total offered load ζ1 + ζ2 [arr/s]

ξ1
ψ1
φ1
ξ2
ψ2
φ2

Fig. 3. Small Factory throughput with compar-
ison with simulator

 1

 10

 100

 1000

 10000

 10 100 1000 10000

[a
rr

/m
s
]

Total offered load ζ1 + ζ2 [arr/s]

ξ1
ψ1
φ1
ξ2
ψ2
φ2

Fig. 4. Sparse IoT throughput

 1

 10

 100

 1000

 10000

 10 100 1000 10000

[a
rr

/m
s
]

Total offered load ζ1 + ζ2 [arr/s]

ξ1
ψ1
φ1
ξ2
ψ2
φ2

Fig. 5. Dense IoT throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2000 4000 6000 8000 10000

[a
rr

/m
s
]

Total offered load ζ1 + ζ2 [arr/s]

ξ1
ψ1
φ1
ξ2
ψ2
φ2

Fig. 6. Big factory Throughput

0.01

0.1

1

10

 2000 4000 6000 8000 10000

A
v
 a

c
c
e
s
s
 d

e
la

y
 [
s
]
(f

o
r

M
T

C
)

Total offered load ζ1 + ζ2 [arr/s]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 7. Average access delays for slice 1 (MTC)
for the four different scenarios

0.1

1

10

 2000 4000 6000 8000 10000

A
v
 a

c
c
e
s
s
 d

e
la

y
 [
s
]
(f

o
r

H
T

C
)

Total offered load ζ1 + ζ2 [arr/s]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 8. Average access delays for slice 2 (HTC)
for the four different scenarios

simplifying assumptions introduced in the analytical model for
the sake of tractability.

Fig. 3 shows the excellent match between simulation and
analytical results in the case of the Small Factory scenario.
Simulation results are presented together with their 95%
confidence intervals.

B. Throughput

Figs. 3 to 6 illustrate the behavior of the system throughput
(at RACH, Decoder and Network) for the four considered
scenarios. In the Sparse IoT case, HTC saturates first, and
the HTC load on the RACH has only a minor impact on
the traffic of MTC. This indicates that light MTC traffic with
non-stringent delay requirements is not hard to accommodate.
The Dense IoT case is more interesting. It shows that MTC
and HTC saturation regions superpose. Here, the activity
of MTC on the RACH heavily affects HTC performance.
Therefore, supporting the coexistence of HTC and MTC slices
in such scenarios is challenging. If we go back to the Small
Factory case used above for validation, we notice only minor
differences with the Sparse IoT case, although here the limited
resources allocated to HTC make is easier to avoid HTC
interfere and impair MTC KPIs.

More critical is the Big Factory case, in which the MTC
traffic is predominant and yet a small amount of HTC con-
nections can seriously hinder MTC performance at relatively
low aggregate traffic rates, while under heavy traffic the impact
of HTC on the throughput of MTC is less relevant.

The figures also show that the loss due to Decoder are
negligible for MTC, while they have to be taken into account
for HTC. This is due to the fact that we have set a power
ramping offset for MTC (o(1) = 2) while the HTC does not use
any offset. This tells of the importance of the power ramping
offset in the slice configuration.

C. Access Delay
The numerical results of access delay for MTC and HTC

traffic are shown in Figs. 7 and 8, respectively. In the case
of MTC the two curves for Small Factory and Big Factory
saturate at 100 ms, which is the timeout for those cases. The
other two cases remain well below their timeout values which
are much less stringent. In the case of HTC, we see that all
curves saturate at the same value, which is close to 2.25 s,
due to the maximum permitted number of retries, and the
average backoff delay equal to 0.25 s. To this we must add
10Tmax, which is however just about 0.13 s. The Small Factory
scenario saturates first because a large fraction of the BS traffic

is associated with only a small portion of dedicated resources.
The Dense IoT scenario yields the lowest delays because its
traffic share is very low, and the reserved resources prove to
be sufficient to achieve low delay.

D. Success probability

Success probabilities for the 4 considered scenarios are
presented in Figs. 9 and 10 for MTC and HTC traffic,
respectively. In the MTC case, Small Factory and Big Factory
suffer from the very low timeout values, but achieve good
success probabilities up to about 1000 requests/s. Beyond this
value, the RACH approaches saturation, and retrials make
timeouts more likely. In the case of HTC, we see very high
success rates in th case of the Dense IoT scenario, which are
due to the fact that the HTC traffic share in this case is very
low, and resources reserved to HTC are largely sufficient.

E. Lesson Learnt

One of our key observations is that the saturation of the
RACH is a critical issue, and unexpected behaviors are ob-
served for the traffic loads that bring the RACH to saturation.
In Fig. 11 we plot the probability of reaching the timeout for
MTC traffic versus the HTC traffic load in the Big Factory
scenario, assuming that the MTC traffic is fixed at 1000
arrivals/s, and that the number of preambles reserved for MTC
is varied between 20 and 40. We clearly see a bump in the
timeout probability that corresponds HTC traffic values that
lead to RACH saturation. After this point the HTC Traffic
consumes little network processor resources, but saturates the
RACH, so that it is necessary to protect the MTC traffic
by allocating a large number of dedicated preambles. If the
number of dedicated preambles is too small, the timeout
probability settles at unacceptable values.

VI. CONCLUSIONS

In this paper we have described a detailed stochastic model
of the behavior of radio access in a sliced cell, including most
features of the standard access procedures. Our model allows
the investigation of the effect of the allocation of resources
to slices on the radio interface of one cell, hence the correct
setting of the slice parameters.

Looking at the case of one cell comprising one HTC and one
MTC slice, we observed the mutual effects of slice traffic in-
creases on performance, exposing unexpected behaviors close
to the traffic values where the RACH is close to saturation.

REFERENCES

[1] “The NGMN alliance - at a Glance,” http://www.ngmn.org, 2011.
[2] The NGMN Alliance. (2016, Jan.) Description of Network Slicing

Concept. [Online]. Available: https://www.ngmn.org/uploads/media/
160113 Network Slicing v1 0.pdf

[3] “System Architecture for the 5G System,” 3GPP TS
23.501 Version 15.2.0 - Release 15, 2018. [Online].
Available: https://www.etsi.org/deliver/etsi ts/123500 123599/123501/
15.02.00 60/ts 123501v150200p.pdf

[4] Reference blinded for double-blind submission.
[5] X. Li et al., “5G-Crosshaul Network Slicing: Enabling Multi-Tenancy in

Mobile Transport Networks,” IEEE Communications Magazine, vol. 55,
no. 8, pp. 128–137, 2017.

[6] C. Casetti et al., “Network slices for vertical industries,” in Proc. of
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), 2018, pp. 254–259.

[7] F. Z. Yousaf et al., “Network slicing with flexible mobility and QoS/QoE
support for 5G Networks,” in Proc. of IEEE International Conference
on Communications Workshops (ICC Workshops), 2017, pp. 1195–1201.

[8] K. Samdanis et al., “5G Network Slicing - Part 1: Concepts, Principles,
and Architectures,” IEEE Communications Magazine, vol. 55, no. 5, pp.
70–71, 2017.

[9] ——, “5G Network Slicing - Part 2: Algorithms and Practice,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 110–111, 2017.

[10] P. C. Garces et al., “RMSC: A Cell Slicing Controller for Virtualized
Multi-Tenant Mobile Networks,” in Proc. of IEEE 81st Vehicular Tech-
nology Conference (VTC Spring), 2015, pp. 1–6.

[11] P. Caballero et al., “Multi-Tenant Radio Access Network Slicing:
Statistical Multiplexing of Spatial Loads,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 3044–3058, 2017.

[12] C. Y. Chang, N. Nikaein, and T. Spyropoulos, “Radio access network
resource slicing for flexible service execution,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2018, pp. 668–673.

[13] Y. L. Lee et al., “Dynamic Network Slicing for Multitenant Heteroge-
neous Cloud Radio Access Networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 4, pp. 2146–2161, 2018.

[14] J. Zheng et al., “Statistical multiplexing and traffic shaping games for
network slicing,” in 15th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2017,
pp. 1–8.

[15] P. Caballero et al., “Network slicing games: Enabling customization in
multi-tenant networks,” in in Proc. of IEEE INFOCOM, 2017.

[16] D. Bega et al., “Optimising 5G infrastructure markets: The business of
network slicing,” in in Proc. of IEEE INFOCOM, 2017.

[17] D. Nojima et al., “Resource Isolation in RAN Part While Utilizing
Ordinary Scheduling Algorithm for Network Slicing,” in Proc. of IEEE
87st Vehicular Technology Conference (VTC Spring), 2018, pp. 1–6.

[18] “Technical Specification Group Radio Access Network; Study on RAN
Improvements for Machine-type Communications,” 3GPP, TR 37.868
Release 11, 2011.

[19] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu, “Logical and
stochastic modeling with smart,” in Computer Performance Evaluation.
Modelling Techniques and Tools, P. Kemper and W. H. Sanders, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 78–97.

0

0.2

0.4

0.6

0.8

1

 100 1000

P
S

(1
) (

fo
r

M
T

C
)

Total offered load ζ1 + ζ2 [arr/s]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 9. Success probability for MTC

0

0.2

0.4

0.6

0.8

1

 100 1000

P
S

(2
) (

fo
r

H
T

C
)

Total offered load ζ1 + ζ2 [arr/s]

Sparse IoT
Dense IoT

Small Factory
Big Factory

Fig. 10. Success probability for HTC

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 0 500 1000 1500 2000

N
(1)

=20

N
(1)

=25

N
(1)

=30

N
(1)

=35

N
(1)

=40
P

T
O

(1
) (

M
T

C
)

HTC arrivals ζ
(2)

 [arr/s]

Fig. 11. Timeout probability for MTC at fixed
MTC arrival rate ζ(1) =1000 arr/s.

