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Abstract

Background: Predicting the effect of single point variations on protein stability constitutes a crucial step toward
understanding the relationship between protein structure and function. To this end, several methods have been
developed to predict changes in the Gibbs free energy of unfolding (ΔΔG) between wild type and variant proteins,
using sequence and structure information. Most of the available methods however do not exhibit the anti-symmetric
prediction property, which guarantees that the predicted ΔΔG value for a variation is the exact opposite of that predicted
for the reverse variation, i.e., ΔΔG(A→ B) = −ΔΔG(B→ A), where A and B are amino acids.

Results: Here we introduce simple anti-symmetric features, based on evolutionary information, which are combined to
define an untrained method, DDGun (DDG untrained). DDGun is a simple approach based on evolutionary information
that predicts the ΔΔG for single and multiple variations from sequence and structure information (DDGun3D). Our
method achieves remarkable performance without any training on the experimental datasets, reaching Pearson
correlation coefficients between predicted and measured ΔΔG values of ~ 0.5 and ~ 0.4 for single and multiple site
variations, respectively. Surprisingly, DDGun performances are comparable with those of state of the art methods.
DDGun also naturally predicts multiple site variations, thereby defining a benchmark method for both single site and
multiple site predictors. DDGun is anti-symmetric by construction predicting the value of the ΔΔG of a reciprocal
variation as almost equal (depending on the sequence profile) to -ΔΔG of the direct variation. This is a valuable
property that is missing in the majority of the methods.

Conclusions: Evolutionary information alone combined in an untrained method can achieve remarkably high
performances in the prediction of ΔΔG upon protein mutation. Non-trained approaches like DDGun represent a valid
benchmark both for scoring the predictive power of the individual features and for assessing the learning capability of
supervised methods.
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Background
The unfolding free energy difference between the wild
type and mutant protein, i.e., ΔΔG= ΔGwildtype - ΔGmutant,
is the first experimental measure for studying the effect of
non-synonymous variants on human health and disease,
and may ultimately unravel principles of protein folding.
Several methods have been developed to predict the
impact of single site variants on protein stability [1], either
by classifying the effect (stabilizing/destabilizing or sta-
bilizing/destabilizing/neutral) or by quantifying the ΔΔG
values (in kcal/mol).
Structure-based methods take advantage of the features

representing the structural environment of the substituted
residue. The combination of such features with physical
and statistical potentials, improves the performance of the
predictors [2]. Known structure-based algorithms include
Dmutant [3], FoldX [4], I-Mutant2.0 [5, 6], CUPSAT [7],
Eris [8], AUTO-MUTE [9], I-Mutant3.0 [10], PoPMuSiC
[11], Pro-Maya [12], SDM [13], mCSM [14], NeEMO [15],
MUpro [16] and STRUM [17]. Sequence-based methods,
such as iPTREE-STAB [18], MuStab [19], INPS [20],
EASE-MM [21], the sequence-based versions of I-
Mutant2.0 and I-Mutant3.0 [10, 22] and PON-tstab [23],
have the advantage of being applicable even when the 3D
structure is not available. Although, in general, sequence-
based predictors are less accurate than structure-based
ones, some sequence-based methods, especially those
exploiting evolutionary information, show comparable
performances to structure-based tools [20].
Some structure-based predictors rely on the scores

derived from different force-fields that represent the
energetic contribution to protein stability. These values
can be linearly combined through weights that fit the
experimentally determined ΔΔG (such as in FoldX and
PoPMuSiC). However, most predictors (such as MUpro,
mCSM) use a combination of structural and evolu-
tionary information features to train machine learning
methods on data sets of experimentally determined
ΔΔG. Machine learning approaches are also imple-
mented in sequence-based predictors (such as in INPS).
More recently, ensemble predictors (Duet [24]) and
metapredictors (iStable [25]) have also been developed.
A critical assessment of the performances of all these

methods is a difficult task, because they are trained on
different data sets, and cross-validation procedures are
often not explicitly described. However, when tested on
independent data sets, not including variations used in
the training step, the prediction performances of the
state-of the-art tools reach Pearson correlation co-
efficients ranging from 0.5 to 0.7.
Most of the predictors are trained on subsets of the

ProTherm database [26], which is a collection of ΔΔG
values and other thermodynamic measures of protein
stability. The vast majority of recorded variations in

most of the currently available data sets are destabil-
izing; for example, in the ProTherm database more
than 75% of the variations are destabilizing. Thus,
predictors that do not consider the data set unbalance
show a prediction bias toward destabilizing variations
and a lack of anti-symmetry in the prediction of direct
and reciprocal variations [27].
The physics of the thermodynamic process of folding/

unfolding imposes that the ΔΔG value of changing resi-
due A to residue B in position p, is the opposite (−ΔΔG)
of the reverse change, i.e., B to A. This defines perfect
anti-symmetry. Two measures are commonly used to
assess the anti-symmetrical property of ΔΔG predictors.
The first measure is the Pearson correlation coefficient
between the direct and the corresponding inverse varia-
tions. Given that we expect reciprocal ΔΔG values for
reciprocal variations, that is ΔΔG(A→ B) = −ΔΔG(B→ A),
a perfectly anti-symmetrical predictor should produce a
correlation between direct and inverse variations equal to
− 1. A second measure to assess anti-symmetry is the
average bias defined in the Methods section. The average
bias estimates the deviation (in kcal/mol) from the perfect
anti-symmetry in a given data set. Two recent papers
compiled two balanced data sets comprising the same
number of direct and reciprocal variations to test the
anti-symmetrical property [28, 29]. The results showed
that 15 tested methods returned biased and poor anti-
symmetrical predictions. Indeed, the correlation co-
efficient between the direct and corresponding reverse
variations ranges roughly from 0 to − 0.75, while the bias
ranges from − 0.32 kcal/mol to − 0.99 kcal/mol.
While there are several predictors of ΔΔG upon single

site variation, to the best of our knowledge, only Maestro
[30] and FoldX [4] allow the predictions of ΔΔG upon
multiple site variants. Maestro is a machine learning
method while FoldX is based on a linear combination of
physical and statistical potentials whose weights were
chosen to fit experimental ΔΔG values. Dealing with mul-
tiple site variations adds another level of complexity
beyond the prediction of the effect of a single variant
on protein stability. The understanding of the complex
interplay between a set of variants requires the learning
of many types of combination effects (compensatory,
additive, following linear or nonlinear combinations,
threshold effects, etc.).
In this paper we introduce DDGun a simple method

based on the combination of anti-symmetric features
for predicting the ΔΔG upon variation. DDGun is an
untrained method that can be seen as a benchmark
for testing new anti-symmetric predictors with more
complex input features. We develop two versions of
the method: DDGun that relies on sequence-based fea-
tures only, and DDGun3D that includes also structure-
based features.
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Results
DDGun is a baseline approach that predicts ΔΔG through
a linear combination of scores derived from sequence and
structural features. The three following scores are based
purely on sequence data:

1. the difference between the wild type and mutant
residue in the Blosum62 substitution matrix (sBl);

2. the difference in the interaction energy (measured
through the Skolnick statistical potential [31])
between the wild-type and substituted residue with
their sequence neighbours within a 2-residue
window (sSk);

3. the difference in the hydrophobicity between
wild type and mutant residues according to the
Kyte-Doolittle scale (sHp).

We also developed, a structure-based version of DDGun
(DDGun3D) adding two structure-based terms in the
input features. The first structural term represents the
difference in the interaction energy (measured through
the Bastolla statistical potential [32]) between the wild-
type and mutant residue with its structural neighbours
(sBV). The second structural term is the relative solvent
accessibility of the residue (ac), computed as the current
accessibility divided by its maximum value. The first four
scores are linearly combined while the latter is used to
modulate the mutation effect with the residue accessi-
bility. This effect is obtained by multiplying the total score
by (1-ac). For a better tuning of the predictions of also
fully accessible residues (ac = 1), the modulation factor
was set to (1- ac + ε), where ε was arbitrarily set to 0.1. As
before, we intentionally did not optimize the parameter ε
to maximize performance, since we aim to develop a
simple untrained baseline tool.
All first four scores described above were weighted

through the profile built on the multiple sequence align-
ment of the protein and its homologues. Instead of
taking the mere differences of the Blosum62/hydropho-
bic/energetic terms between the wild type and the
mutant residues, we sum the differences of these terms
over all possible amino acids, weighted by their frequen-
cies, in the given position in the multiple sequence align-
ment of the query and homologues. Equations 1, 2, and 3
(see Methods) show that, given the same profile, the
scores are anti-symmetrical by construction.
To define the weights of the linear combination of the

scores, we investigated the correlations between the
scores and the ΔΔG values in different data sets. The
correlation between these scores and the ΔΔG of single
point variations are reported in Table 1.
For the implementation of our methods the weights were

chosen to be proportional to the correlation between each
score and the ΔΔG values in the high quality VariBench

data set [23]. The procedure for the calculation of the
weights is summarized in the Methods section (Eq. 5).
The sequence-based version of DDGun, takes as input

only sBl, sSk and sHp computed from the protein sequence
alone (after normalization, Eq. 6), while DDGun3D uses a
linear combination of all four scores whose weights were
derived as described above (Eq. 7). The ΔΔG prediction
returned by DDGun3D was then obtained by multiplying
the linear combination of the scores by 1.1-ac, where ac is
the relative solvent accessibility of the wild type residue.
This modulation has been introduced to take into consi-
deration that solvent exposed residues tend to have a
lower effect on the ΔΔG [6, 10]. Relative accessibility is
only computed for the structure with the wild type residue
(and no difference in its value between the wild type and
mutated residue is computed). This accessibility is used as
a modulator of the combined score. It scales the com-
bined score in the direction of producing larger scores
(predicting higher ΔΔG values) for variations in amino
acid position with small accessibility, i.e. in buried posi-
tions, while producing lower scores (thus predicting
smaller ΔΔG values) for variants in high solvent accessible
positions. In summary, two structural features, the Bas-
tolla [32] statistical potential and the solvent accessibility,
were introduced in DDGun3D.
The results showed that the correlations of the ΔΔG

with the defined scores depend on the selected data set
(Table 1). Consequently, the selection of different data
sets results in different weights of the scores and perfor-
mances of our methods. To test the robustness of our
approach, we defined three versions of each method in
which the weights were chosen upon the correlations
between the ΔΔG and the scores in the three different
data sets, VariBench, Broom et al. 2017, and S2648.
It is noteworthy that the coefficients were not chosen

to fit the experimental ΔΔG and maximize the perfor-
mance of the method, making DDGun a full-fledged
non-trained algorithm (see Methods for details).

Performance of DDGun on single site variations
We tested the predictive capabilities of DDGun and
DDGun3D on different data sets of single site variations.

Table 1 Pearson correlation between scores and ΔΔG

Data set VariBench
1564
variants

Broom
et al.
605
variants

S2648
2648
variants

P53 42
variants

Myoglobin
134
variants

Score

sBl 0.269 0.354 0.284 0.636 0.148

sSk 0.398 0.423 0.387 0.328 0.454

sHp 0.248 0.263 0.298 0.143 0.500

sBV 0.452 0.581 0.497 0.423 0.548

The Pearson correlation coefficient and the scores were calculated as
described in the Method section. The composition of the data sets is
summarized in the Data sets section
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The first is VariBench [23], a high quality data set, and
the second comprises the 605 variations manually cu-
rated in Broom et al. [33]. The third, S2648, is the lar-
gest and most widely used, allowing comparison with
other methods. Finally, we added two independent data
sets of variations on the P53 [24] and myoglobin [34]
proteins. The 134 variations of the myoglobin protein
are not included in any of the other data sets. Only 5 of
the 44 variants of the P53 data set were already present
in the S2648 (but not in the remaining data sets).
The performances of the DDGun methods on these

data sets are summarized in Table 2. For each method
(DDGun and DDGun3D) three versions are presented
according to the data set upon which the weights are
chosen. The last two lines of Table 2 report the averages
of the Pearson correlation and RMSE of DDGun and
DDGun3D whose weights are selected from the three
different data sets.
When the weights are chosen upon the correlations of

the scores and the ΔΔG on the Broom data set, which
is the smallest data set, the performances of DDGun
tend to be lower. When the weights are chosen on
larger data sets (either VariBench or S2648) perfor-
mances increases both for DDGun and DDGun3D.
Interestingly, the performances are almost identical
whether the weights were chosen on VariBench or on
S2648. This shows that our methods are remarkably
robust as long as the correlations are derived from a
large data set. In summary, Table 2 shows that despite
being non-trained, the two versions of DDGun achieved
remarkable performance on all data sets of single site
variants, reaching Pearson correlation coefficients above
0.45, for all the data sets. As expected, the performance
improves with the introduction of structural features
(DDGun3D).
It is worth noting that the low correlation between the

RMSE and Pearson is due to the data set distribution
which only affects the Pearson correlation coefficient, as
recently shown [35].

Anti-symmetry
Besides assessing the performance of DDGun on the avail-
able data sets, an additional test was carried out to
estimate the anti-symmetric property of our approach. For
an unbiased estimation of the anti-symmetry we used the
Ssym data set proposed in Pucci et al. [28], in which the
proportions of direct and inverse variations are balanced.
The performance of the methods on the prediction of
direct and the corresponding reverse variations are calcu-
lated as well as the correlation between them.
In Table 3 we evaluated the anti-symmetry of DDGun

and DDGGun3D on the Ssym dataset [28], and we
also reported the scores for the best performing methods
for this specific task (PopMusicSym [28] and SDM [13]).
As expected by construction, DDGun and DDGun3D
showed a near-perfect anti-symmetrical property. We
indeed find the same performances on direct and recip-
rocal variations, with − 0.99 correlation between them.
Moreover, the value of the DDGun bias, − 0.01 kcal/mol,
is the lowest among all the tested methods directly
addressing anti-symmetry bias [28, 29].
Although the anti-symmetrical property of DDGun is

obtained by construction (Eqs. 1–3), the small deviations
from perfect anti-symmetry (differences in the root
mean square error, and the correlation and the bias that
are not exactly − 1 and 0 kcal/mol) are due to differences
in the profile of the protein and inverse protein, which
in Ssym are associated with different PDB entries.
DDGun3D predictions also show remarkable anti-

symmetry with an optimal correlation (rdir-inv = − 0.99)
between direct and corresponding reverse variants, while
the bias and Pearson correlation on direct and inverse
variations show small differences (<δ > =-0.02 kcal/mol).
Beside the different profile, in structure-based methods
other anti-symmetries can be introduced by changes in
the structural neighbourhood. Indeed the variation can
introduce structural changes to the wild type structure
that result in a change of the number and type of
residues in the neighbourhood.

Table 2 Performances of the sequence-based and structure-based baseline methods on single site variations data sets

Coefficients
derived from

Method VariBench
1564 variants

Broom et al.
605 variants

S2648 2648
variants

P53 42
variants

Myoglobin
134 variants

VariBench DDGun 0.50, 1.71 0.52, 1.77 0.50, 1.40 0.70, 1.45 0.48, 1.20

DDGun3D 0.54, 1.70 0.62, 1.68 0.57, 1.33 0.67, 1.54 0.57, 1.0

S2648 DDGun 0.50, 1.71 0.52 1.77 0.50 1.38 0.70 1.48 0.48 1.16

DDGun3D 0.54, 1.71 0.62 1.68 0.57 1.33 0.67 1.57 0.58 0.98

Broom et al. DDGun 0.48, 1.73 0.52, 1.78 0.49, 1.42 0.71, 1.41 0.45, 1.29

DDGun3D 0.54, 1.69 0.62, 1.66 0.57, 1.32 0.68, 1.51 0.56, 1.0

Average DDGun 0.49, 1.72 0.52, 1.78 0.50, 1.4 0.7, 1.45 0.47, 1.21

DDGun3D 0.54, 1.70 0.62, 1.67 0.57, 1.33 0.67, 1.55 0.57, 0.99

The Pearson correlation coefficient and the root mean squared error (RMSE) in kcal/mol are defined in section Methods
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It has to be stressed that correlations of Table 3 are
useful to assess anti-symmetry and not as an estimation
of the overall performances of these methods, given that
the Ssym data set has skewed subset of experimental
points that are however perfectly balanced to test anti-
symmetry. In summary, the results reported in Table 3
show little or no-bias and a nearly perfect anti-symmetry
of DDGun and DDGun3D on single site variants.

Performance of DDGun on multiple site variations
As far as we know, DDGun is the first method that predicts
ΔΔG changes upon multiple sites variations from sequence
with a simple combination procedure considering the score
associated with each substitution (Eq. 8). In Table 4 we re-
port the performances of DDGun on a dataset of multiple
site variations selected from ProTherm [26]. This dataset,
named PTmul, comprises 914 multiple site variations, with
a number of simultaneous variations ranging from 2 to 10.
The Pearson correlation coefficient of DDGun is 0.37 on
the most comprehensive dataset of multiple site variations
that is available to date. The drop of the correlation from
0.50 for single site variations (in VariBench) to 0.37 for
multiple site variations clearly shows that the interplay
between the single variations that compose the multiple
variations is complex and requires a learning process. As
expected, an improvement is found when structural in-
formation is introduced. Indeed DDGun3D achieved a
correlation coefficient between predicted and experimental
ΔΔG of 0.39 on the PTmul data set.

Tests including inverse variations demonstrate that
DDGun returns perfect anti-symmetric predictions,
showing the same performance on direct and inverse
variants and unbiased results. For the sequence-based
method (DDGun) the analysis was straightforward and
confirmed the similarity between performance achieved
on single and multiple site variations data sets.
Conversely, structural modelling is required to test the

degree of preservation of the anti-symmetrical property
for the structure-based method. Indeed, for multiple site
variation we only have the three-dimensional structure of
the wild type protein that makes the prediction possible
only for the direct variants. Thus, to test its performance
on inverse variations, we built models of the mutated
proteins through the Modeller program [36]. Table 4
shows that DDGun3D is perfectly anti-symmetrical, with
a correlation between direct and inverse variations close
to − 1 and a bias near 0 kcal/mol.
Using the models of the protein with multiple site

variations (Additional File 1), built using Modeller, we
can compare our methods to other available tools that
predict the ΔΔG for multiple site variations. To the best
of our knowledge there are only two such methods,
Maestro and FoldX, which are both structure-based.
Both outperform DDGun3D on prediction with direct
variations. However, when tested on reciprocal varia-
tions, the performances of both Maestro and FoldX drop
while those of DDGun3D remain stable. It can be noted
that while Maestro achieves the highest performances

Table 3 Anti-symmetry performances of DDGun on the Ssym data set [28]

Method Performance Anti-symmetry

Direct variants Pearson r, RMSE Inverse variants Pearson r, RMSE rdir-inv <δ > (kcal/mol)

DDGun 0.48, 1.47 0.48, 1.50 -0.99 −0.007

DDGun3D 0.56, 1.42 0.53, 1.46 −0.99 −0.02

PopMusicSyma 0.48, 1.58 0.48, 1.62 −0.77 0.03

SDMa 0.51, 1.74 0.32, 2.28 −0.75 −0.32

Maestroa 0.52, 1.36 0.32, 2.09 −0.34 −0.58

FoldXa 0.63, 1.56 0.39, 2.13 −0.38, −0.47

The Pearson correlation coefficient (r), the root mean square error (RMSE), the correlation coefficient between observed and predicted ΔΔG values (rdir-inv), and
the bias (<δ>) are defined in the Method section. RMSE and < δ > are expressed in kcal/mol. aThese values are taken from Pucci et al. [28] and are the two best
performing methods in terms of anti-symmetry (PopMusicSym and SDM) and the two methods that can also predict multiple variations (Maestro and FoldX)

Table 4 Performances on the 914 multiple site variation from Protherm

Method Performance Anti-symmetry

Direct and Inverse
Pearson r, RMSE

Direct variants
Pearson r, RMSE

Inverse variants
Pearson r, RMSE

rdir-inv <δ > (kcal/mol)

DDGun 0.44, 2.23 0.37, 2.23 0.37, 2.23 −1.00 0.00

DDGun3D 0.45, 2.27 0.39, 2.24 0.38, 2.25 −0.99 −0.007

Maestro 0.30, 2.59 0.55, 1.96 0.08, 3.10 −0.20 −0.92

FoldX 0.44, 3.10 0.41, 2.95 0.33, 3.24 −0.71 −0.21

The Pearson correlation coefficient (r), the root mean square error (RMSE), the correlation coefficient between observed and predicted ΔΔG values (rdir-inv), and
the bias (<δ>) are defined in the Method section (Eqs. 9–12). RMSE and < δ > are expressed in kcal/mol
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on direct variations, its predictive capability on inverse
variations is basically random, with a correlation of 0.08
that is close to 0. Its anti-symmetricity, measured as the
correlation between direct and corresponding inverse
variations, is 0.20, very far from perfect (− 1). In terms of
anti-symmetry, FoldX is more balanced than Maestro,
however its performances on multiple site variations
drop from Pearson coefficient of 0.41 on the direct
variations to 0.33 on the reciprocals. The correlation
between FoldX predictions for direct and inverse varia-
tions is quite high, − 0.71, even if not optimal. On multiple
site variations FoldX showed a high root mean squared
error (RMSE> 3 kcal/mol). Conversely DDGun3D shows
near perfect anti-symmetry, with a − 0.99 Pearson cor-
relation coefficient between direct and inverse variations.
The performances of all the available methods (inclu-

ding DDGun and DDGun3D) on the multiple site vari-
ation data set, are lower than those obtained for single
point mutations. This may be partially due to the fact that
the method error sums, generating larger noise for
multiple predictions. These results confirm that untrained
DDGun and DDGun3D can be considered as baseline
methods for benchmarking more complex tools. None-
theless, at the current stage, DDGun compares well
with the other available methods maintaining at the
same time an optimal anti-symmetry. We expect that
DDGun and DDGun3D performances can be further
improved through learning procedures.
Figure 1 shows the predictions of direct (x axis) and cor-

responding inverse (y axis) ΔΔG predictions for the mul-
tiple site variations of PTmul. A perfectly anti-symmetric
method would predict opposite ΔΔG values for reverse

variants (ΔΔG(A→ B) = −ΔΔG(B→A)), hence, when
plotting its direct versus its reverse predictions, the points
would reside exactly on the y = −x line. Deviations from
that line are indicative of anti-symmetry.
The optimal anti-symmetry of DDGun3D (red) is

clearly visible as its points reside very close, nearly along,
the y = −x line, which indicates the ideal relationship of
a perfectly anti-symmetrical predictor. In DDGun3D
deviations from the line are very small, indicating high
correlation and small bias. Conversely, predictions of
Maestro (yellow) form a sparse cloud, indicating poor
correlation, and its regression line is shifted by roughly
1 kcal/mol, indicating a systematic bias toward negative
predictions. FoldX predictions (green) form a cloud,
indicating a low anti-symmetry in terms of the cor-
relation between direct and corresponding inverse varia-
tions. The cloud is however more evenly distributed
below and above the y = −x axis compared to Maestro,
indicating a smaller bias toward negative predictions.
Indeed FoldX bias is of − 0.21 kcal/mol.

Conclusions
The most desirable feature of a predictor is to be accu-
rate and reliable. However, it is also very important that
a predictor is compliant with the physical laws it has to
simulate. In this respect, it is important for a ΔΔG pre-
dictor to be anti-symmetric with respect to the protein
variations. We need predictors that can be as good as
predicting protein stability changes upon variations and
at the same time obtaining opposite values for the re-
ciprocal sequence changes that bring the mutated proteins
back to their respective wild types. Here we introduce
simple features, based on sequence and structure infor-
mation, which are anti-symmetric by construction. We
show that the selected features correlate with the ex-
perimental ΔΔG measures, and also with their reverse
variations -ΔΔG. We thereby combined them, defining a
non-trained baseline method, which achieved remarkably
high performances in the prediction of ΔΔG upon single
site and multiple site variations. The results show that the
evolutionary information contained in the profiles, and
statistical potentials alone have high predictive power
even without any training. We also provide the first
method to predict ΔΔG changes upon multiple site
variations from sequence information only. This will
help in generalizing protein stability predictions from
sequence up to genotype scale.
The high performance achieved on the single variation

data set is particularly impressive in view of the recent
theoretical upper bound of the prediction quality [35].
This is because even when carried out under similar
pH and temperature, different measurements may
sometime yield very different ΔΔG values, for example,
due to changes in other experimental conditions.

Fig. 1 Scatter plot of the predictions of Maestro, FoldX, and DDGun3D
on the PTmul data set. The x-axis shows the prediction of direct
variation, and the y-axis shows the prediction for the corresponding
reciprocal variation. The predictions from Maestro, FoldX and
DDGun3D are plotted in yellow, green and red respectively
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Machine learning approaches should suffice to improve
the Pearson correlation from the ~ 0.5 value reported here
without training towards the theoretical upper bound of
0.7–0.8 [35].
Finally, non-trained methods like DDGun and DDGun3D

constitute a necessary benchmark to quantify the
predictive capability of individual features and new
prediction methods.

Methods
Data sets
For single point variations, the following data sets were
considered: the most commonly used S2648 [11]; the high
quality VariBench [23] which was integrated with the 605
manually curated variations selected in Broom et al. [33]
for a total of 1900 high quality variations; a data set of
variations on the P53 protein [14] and myoglobin data sets
[34]. The dataset for multiple site variations was derived
from ProTherm [26]. A total of 914 protein multiple site
variations, with a number of simultaneous variants
ranging from 2 to 10, were derived. We called this set of
multiple site variations PTmul. A detailed description of
the data set used in this work is reported in Table 5.
In Fig. 2 we reported the overlap between the data

bases considered in this work.

Multiple sequence alignments
For each protein, identified through its PDB ID, for
which we had variation data, we derived the sequence
from the ATOM field of the PDB coordinate file. We
built the multiple sequence alignments against the Uni-
prot database, release 2016 through the hhblits program
[37] with default parameters.

Computation of the evolutionary scores for single site
variations
For each single site variation the following sequence-
based scores were computed. The first score is the Blo-
sum evolutionary score (sBl) which uses the Blosum62
[38] substitution matrix to compute the difference in the
substitution scores between the wild type and mutated
residues. This difference is weighted through the profile,

built from the multiple sequence alignments according
to the following equation:

sBl ¼
X20
i¼1

prof aið Þ B ai;mð Þ−B ai;wð Þð Þ ð1Þ

where w is the wild-type residue, m is the variant, and
ai runs over the 20 standard amino acids; B (ai,aj) is the
substitution score given by the Blosum62 matrix be-
tween the i-th and j-th amino acid; prof (ai) is the occur-
rence of amino acid ai in the multiple sequence
alignment in the considered position.
The second sequence-based score (sSk) is a statistical

potential developed by Skolnick et al. [31]. This score is
given by the difference of the pairwise statistical potential
computed between the wild type and mutated residues
and their nearest neighbours in the sequence (within a
two-residue window on each side). As before, instead of
taking the mere difference, this score is weighted over the
sequence profile as follows:

sSk ¼
Xj¼2

j¼−2; j≠0

X20
i¼1

prof aij
� �

PSk w; aið Þ−PSk m; aið Þð Þ ð2Þ

where prof(aij) is the profile of amino acid ai in position
j and PSk(ai,aj) is the Skolnick potential between residues
i and j.
The third hydrophobicity score (sHp) measures the

difference in hydrophobicity between the wild-type and
mutated residues as measured by the Kyte-Doolittle
hydrophobicity scale [39]. The score is weighted through
the profile as follows:

sHp ¼ prof mð ÞK mð Þ−prof wð ÞK wð Þ ð3Þ
where K(a) is the hydrophobicity of amino acid a as

measured by the Kyte-Doolittle scale.
The fourth structure-based score (sSt) accounts for the

structural environment of the variation, as captured by
the pairwise statistical potential by Bastolla-Vendruscolo
[32]. This score computes the difference in this pairwise
statistical potential between the wild-type amino acid
and its structural neighbours, defined within a sphere of

Table 5 Composition data sets used in this study

Data Set Reference Total variants Number of proteins Stabilizing (ΔΔG ≥ 0) Destabilizing (ΔΔG < 0)

VariBench Yang et al. [23] 1564 99 436 1128

Broom Broom et al. [33] 605 58 147 458

S2648 Dehouck et al. [11] 2648 132 602 2046

P53 Pires et al. [14] 42 1 11 31

Myoglobin Kepp et al. [34] 134 1 38 96

Ssym Pucci et al. [28] 684 15 wild-type 342 342

PTmul From ProTherm 914 90 310 604
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radius 5 Å centred in the mutated site, vs. that of the
variant. The profile is used to weight the contributions.

sBV ¼
X
j∈l

X20
i¼1

prof aij
� �

PBV w; aið Þ−PBV m; aið Þð Þ ð4Þ

where I is the set of amino acid residues in the structural
neighbourhood of the substituted position; prof(aij) is the
profile of amino acid ai in position j. PBV(ai,aj) is the Bas-
tolla-Vendruscolo pairwise potential between residue ai
and aj.
For each mutated site, residue accessibility was computed

by the DSSP program [40, 41].

Linear combination of the scores towards ΔΔG prediction
The sequence and structure-based methods implement a
linear combination of different features weighted accor-
ding to their predictive power. The weights of the linear
combination are proportional to the correlation between
each score and the ΔΔG values from the VariBench data
set [23]. More formally, the weight ws for the score s, is
assigned as:

ws ¼ r s;ΔΔGeð ÞX
i

r si;ΔΔGeð Þ ð5Þ

where r is the Pearson correlation coefficient defined in
Eq. 9, the sum of si at the denominator runs over all the
scores to be linearly combined in an overall final score.

We did not tune the parameters, nor did we change the
weights for the different datasets.

Sequence-based: DDGun
In order to combine the scores for each single site
substitution, we chose a linear combination whose weights
were chosen on the basis of the level of correlation of each
score with the known ΔΔG for single site variations in the
high-quality data set by Yang and colleagues [23].

sseq ¼ 0:30 � sBl þ 0:43 � sSk þ 0:27 � sHp ð6Þ
Structure-based: DDGun3D.
In baseline DDGun3d the final score is given by:

s3DA ¼ 0:20 � sBl þ 0:29 � sSk þ 0:18 � sHp þ 0:33 � sBV
� �

1þ ε−acð Þ
ð7Þ

with ε = 0.1.

ΔΔG prediction for multiple site variations
The above baseline method is easily adaptable to multiple
site variations: indeed for each multiple-site variation we
compute the score for each single site variation com-
prising it. Given a multiple site variation with multiplicity
M (that is composed of M single site variations), let us
name ss the vector of M single site scores; ss = (s1, s2,…sM).
We compute the score for a multiple site variants as:

smult ¼ max ssð Þ þ min ssð Þ−mean ssð Þ ð8Þ
The rationale behind this simple choice is the following.

In case of more than two mutations, the most relevant

Fig. 2 Analysis of the overlap between the single-site variant data sets. Each cell reports the percentage of the common mutations between the
two corresponding data sets
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points that may affect the total ΔΔG are the minimum
and the maximum values, so that we decided to take their
sum and centre them in the mean (by subtracting the
average of the ΔΔG prediction). In case of two mutations,
this reduces to the average of the two values.

Measures of the performance
To measure the quality of the prediction, we compared
the experimental (e) and the predicted (p) ΔΔG values
calculating the Pearson correlation coefficient (r).

r x; yð Þ ¼

XN
i¼1

x−xð Þ y−yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

x−xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

y−yð Þ2
s ð9Þ

where x and y are the predicted and experimental ΔΔGs
respectively (x; y are their average values), and the Root
Mean Square Error (RMSE).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ΔΔGe−ΔΔGp
� �2

N

vuuuut ð10Þ

To measure the anti-symmetric property of the methods
we calculated the Pearson correlation coefficient between
the predicted ΔΔG of the direct (dir) and inverse (inv)
variations (rdir-inv).

rdir−inv ¼

XN
i¼1

ΔΔGinv
p −ΔΔGinv

p

� �
ΔΔGdir

p −ΔΔGdir
p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ΔΔGdir
p −ΔΔGdir

p

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ΔΔGinv
p −ΔΔGinv

p

� �2
s

ð11Þ
and the bias (<δ>).

δh i ¼

XN
i¼1

ΔΔGdir
p −ΔΔGinv

p

� �
2N

ð12Þ

According to Eqs. 11 and 12, a perfect anti-symmetric
method would yield rdir-inv value of − 1 and < δ > of 0
kcal/mol. All the predictions of DDGun and DDGun3D
are reported in Additional file 2.

Additional file

Additional file 1: Protein structure models used for the predictions of
ΔΔG. http://folding.biofold.org/ddgun/models.tar.gz. (ZIP 1490 kb)

Additional file 2: Predictions of the unfolding ΔΔG through DDGun and
DDGun3D methods. http://folding.biofold.org/ddgun/predictions.tar.gz.
(ZIP 379 kb)
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ΔΔG: Change in the Gibbs free energy of unfolding; DDGun: Untrained
sequence-based method for predicting the ΔΔG; DDGun3D: Untrained
sequence and structure-based method for predicting the ΔΔG; PTmul: Data
set of multiple site variations from Protherm; r: Pearson correlation
coefficient; RMSE: Root Mean Square Error; S2648: Data set of 2648 single site
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