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Abstract11

Bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon,12

nitrogen, and sulfur cycling. They influence the climate, mediate primary production, participate in bio-13

geochemical cycles, and maintain ecological balance. A greater insight on the control of the interactions14

between microalgae and other microorganisms, particularly bacteria, would be helpful in exploring the15

role of bacteria on algal blooms in lakes. The present study is to investigate the effects of bacteria on the16

occurrence of algal blooms in lakes. We propose a nonlinear mathematical model by taking into account17

interactions among nutrients, algae, detritus and bacteria in a lake. We assume that bacteria enhance18

the growth of algal biomass through remineralization only. Equilibria are analyzed for feasibility and19

stability, substantiated via numerical simulations. Increase in uptake rate of nutrients by algae and bac-20

teria death rate generates transcritical bifurcations. We perform a global sensitivity analysis to identify21

the important parameters of the model having a significant impact on the densities of algae and bacteria22

in the lake. Our findings show that massive algal production might occur in the presence of bacteria,23

and microalgae-bacteria interactions can be beneficial to the massive production of microalgae. Further,24

the effect of time delays involved in the bacterial decomposition conversion of detritus into nutrients is25

studied. Chaotic oscillations may arise via equilibrium destabilization on increasing the values of the26

time lag. To support chaos occurrence, the Poincaré map is drawn and the Lyapunov exponents are27

also computed. The findings, critically important for lake restoration, indicate that hypoxia in the lake28

can be prevented if detritus removal is performed on a regular basis, at time intervals smaller than the29

critical threshold in the delay with which detritus is decomposed into nutrients.30

Key words: Mathematical model, Nutrients, Algae-bacteria interactions, Delay, Chaos, Lyapunov31

exponent, Global sensitivity.32

1. Introduction33

In marine and freshwater ecosystems, phytoplankton transform inorganic carbon of water into organic34

matter that enters the food web or sinks to the sediments. Approximately one-half of such matter is35

directly utilized by heterotrophic bacteria, through the water column and at the level of sediments,36

and newly converted into inorganic compounds: CO2 and nutrients (1). Seasonally in sea and lakes,37

phytoplankton increase in number determining the so-called blooms, and their requirement of CO238

and nutrients, such as nitrogen and phosphorous, increases consequently (2). Blooms of algae, that39
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are sometimes a signal of dangerous eutrophication of waters, are even correlated with a subsequent40

increase in activity of heterotrophic bacteria that convert algal organic production into bacterial biomass,41

releasing CO2 and regenerating nutrients associated with algal organic matter (3). With more food42

available as a consequence of algal blooms, bacteria grow and use up the dissolved oxygen in the water43

(3). Thus, the content of dissolved oxygen decreases and create hypoxic areas where aquatic life is not44

longer possible (4). Indeed algal blooms are considered one of the most critical emergence affecting45

water bodies across the world (5; 6; 7; 8; 9; 10). Moreover, under eutrophic conditions harmful species of46

phytoplankton such as toxic cyanobacteria are facilitated and can cause serious adverse effects on animals47

and humans. They have been reported to kill aquatic life, taint drinking water, contaminate fish and48

shellfish, making catch inedible (11; 12; 13; 14). Eutrophication negatively affects local economies and49

ecosystem services such as fishing, tourism, recreation and real estate (15; 16).50

Phytoplankton and bacterioplankton interact continuously: their communities are closely interre-51

lated in terms of abundance and functions (17). Moreover, heterotrophic bacteria satisfy their carbon52

requirement not only by using phytoplankton derived matter but also by degrading all organic com-53

pounds released into the aquatic ecosystems by human activities, and therefore nutrients produced by54

bacteria from sewage are another resource supporting the algal growth (3). Bacteria can also compete55

with planktonic algae for the same inorganic resources, principally at the earliest and terminal stages56

of a bloom when nutrients are become limiting (3). Clearly, phytoplankton blooms create environmen-57

tal conditions favouring the increase in the bacterial growth and production (18). Bacterial and algal58

biomasses are generally correlated at the height of the bloom, while algae prevail during the earliest stage59

when nutrients are scarce. Bacteria remain abundant when blooms decline as they continue to utilize the60

organic substances released by dying and dead algae (19). Two distinct phases can be recognized in the61

release of organic compounds by phytoplankton. In the earliest stages of a bloom, algae release soluble,62

low molecular weight compounds which can act as chemical attractants for bacteria. In the declining63

stage, phytoplankton release higher molecular weight macromolecules such as polysaccharides, proteins64

and lipids, that can be assimilated by bacteria.65

Heterotrophic bacteria assimilate and remineralize the organic matter firstly by converting it to the66

dissolved phase thanks to the action of their extracellular and cell-surface enzymes. Then such dissolved67

molecules are readily transported across the cell wall and transformed into bacterial biomass. In lab68

cultures flavobacteria and roseobacter have been seen to directly attack viable algal cells (20). However,69

their interactions with phytoplankton are essentially mutualistic, as they provide algae with nutrients,70

vitamins and growth promoting factors, such as the auxins. But at the end of a bloom when nutrients71

become limiting, symbiosis can be converted in competition as roseobacteria in particular produce al-72

gicidal compounds favouring the decline of algae community (21). The interactions between these two73

communities are areas of recent studies (22; 23), which shed light on the complex role of heterotrophic74

bacteria in algal growth and survival. They not only decompose organic matter allowing the nutrient75

recycling, but also promote algal growth by complex communication mechanisms and nutrient exchange76

(24). Indeed not only macro-nutrients such as nitrogen, phosphorus and carbon are exchanged between77

them but also micro-nutrients such as vitamins and other growth-promoting molecules (25; 26).78

Several studies have been conducted to explore the role of nutrients on the bloom of algae in79

lakes/ponds (6; 7; 8; 9; 10). Deeper insights into the role of heterotrophic bacteria may have important80

applications in the strategies to control algal blooms in aquatic ecosystems. Moreover, nowadays algae-81

bacteria interactions are considered as promising in biotechnology, as recent studies highlighted the posi-82

tive role of bacteria for massive algal cultivation for biotechnological applications (20; 22; 23; 27; 28; 29).83

However, in (6; 7; 8; 9; 10) models on the recycling of detritus into nutrients do not explicitly account for84

the role of bacteria. It is well documented that bacteria play a potentially important role in structuring85
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algal species (30). Thus, the possible effects of bacteria on the population dynamics of algal species86

must be considered in the modelling process. Therefore, in this paper, our aim is to assess the effect of87

algae-bacteria interactions on the dynamics of algal population.88

In many processes of real phenomena, the present dynamics of the state variables depends not only89

on the present state of the processes but also on their past history (31). These processes are generally90

modeled by time delays which are known to trigger instabilities (32; 33). The potential effects of nutrient91

recycling on the ecosystem has been studied (6; 34; 35), but it is not an instantaneous process. The time92

needed by bacteria to transform the mass of dead algae into nutrients has not been explicitly taken into93

account, in general, but it should, in order to represent a complete nutrient cycle (36). Plankton-nutrient94

interaction models with both instantaneous and delayed nutrient recycling show that the stability of the95

positive equilibrium is lost after the input rate of nutrient crosses a threshold value and oscillations96

emerges through Hopf bifurcation (37). A planktonic resource-consumer model exhibiting a temporal97

delay in the formation of nutrients from the dead plankton is presented in (38), where the nutrient inflows98

at a constant rate. The system may destabilize due to this temporal lag. Other similar investigations99

involve e.g. delays on nutrient cycling in phytoplankton-zooplankton interactions in an estuarine system100

(39), discrete time delays in the conversion of detritus into nutrients, for which upon crossing a threshold,101

the system may switch finitely many times back and forth from stability to instability, but eventually102

becoming unstable (40). Control measures have therefore been considered in (41): the presence of two103

time delays may produce a stabilizing effect on the system dynamics. In view of these considerations,104

here we study the effects of time delays on the algae-bacteria interactions, due to the time lags needed105

for the bacterial conversion of detritus into nutrients (36; 38; 40; 41). The possibility of Hopf-bifurcation106

is explored by taking the time delay as a bifurcation parameter.107

The rest of the paper is organized as follows: in the next section, we formulate the model. In Section108

3, we study the dynamics of nutrients-algae system only, while in Section 4, we include detritus also,109

then in Section 5, we consider the input rate of nutrients from external sources as zero. In Section 6, we110

analyze the full model, and in Section 7, we show that system’s equilibria are related via transcritical111

bifurcations. In Section 8, we consider the modified model to account for time delays in the decomposition112

and regeneration processes. Hopf-bifurcation at the coexistence equilibrium are studied in Section 9.113

In Section 10, we validate our analytical findings through numerical simulations. A global sensitivity114

analysis is performed to identify the most influential model parameters that have significant impact on115

algae and bacteria. We conclude with a wrap-up discussion.116

2. The mathematical model117

Currently there are more than 500 hypoxic systems covering over 2,40,000 km2 around the globe118

(42). In China, several lakes such as lake Chaohu, Lake Taihu and Dianchi had been examined and119

data showed that they were in eutrophication (43). Algae, heterotrophic bacteria and Archea are the120

primary producers and decomposers, respectively, making them the structural pillars of the ecosystem121

and its foremost functional entities. Pseudomonas diminuta and Pseudomonas vesicularis, two obligate122

aerobes, stimulated the growth of the green microalgae Scenedesmus bicellularis and Chlorellu sp., with-123

out releasing any growth-promoting substance (44). Indeed, under controlled conditions with a limited124

concentration of inorganic carbon, Mouget et al. (44) found that the presence of P. diminuta stimulated125

the photosynthetic activity of S. bicellularis. These authors suggest that aerobic bacteria can enhance126

algal productivity by attenuating the photosynthetic oxygen tension around algal cells. Moreover, bac-127

teria may become an important source of carbon from algal growth, especially under conditions of CO2128

limitation (45). Finally, they can promote algal growth by releasing vitamins and other growth factors129

or by modifying some physico-chemical property of the aquatic environment such as the pH (46). In130
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most cases the association between algae and bacteria leads to mutual interactions (47). Indeed algae131

provide oxygen and organic molecules to support bacteria growth, despite in some phases of algal bloom132

their interaction may include resource (e.g. nutrients) competition. However, most types of interactions133

between algae and bacteria in the planktonic zone are scantily studied. The ones studied often reflect134

the importance of undertaking such studies (3). Here, we consider the growth of algae due to bacteria135

only via nutrient regeneration on decomposition of organic matter, no other mode is considered (3; 44).136

Consider a lake which is being eutrophied due to overgrowth of algae and other biological species137

caused by discharge of nutrients from domestic drainage as well as from water run off, etc., and also from138

nutrients formed from detritus upon bacterial decomposition. We consider four dependent variables in139

the lake, namely; concentration of nutrients (nitrogen, phosphorus, etc.), N (µg/L), density of algal140

populations, A (µg/L), density of detritus (formed due to death of algae), D (µg/L), and density141

of bacteria, B (µg/L), at any time t > 0. Algae in lakes consist of diverse assemblage of all major142

taxonomic groups. Many of these forms have different physiological requirements and differ in their143

response to light, temperature and concentration of nutrients. Here, we do not consider the effects144

of light and temperature on the algal growth and assume that the algal population fully depends on145

the availability of nutrients in the lake. It is assumed that nutrients are continuously discharged into146

the lake from different sources (domestic drainage, water run off from agricultural fields, etc.) at a147

constant rate, being naturally depleted and utilized by algae. The utilization rate of nutrients by algae148

is assumed in the form of a Holling type-II term and the growth rate of algal populations is proportional149

to the same interaction term. Algae are removed by natural death, higher predation and intraspecific150

competition and then are turned into detritus which either naturally depletes or is decomposed by the151

bacterial pool, this being expressed once more via a Holling type-II function. Depletion of detritus152

occurs due to biochemical processes performed by anaerobic and aerobic bacteria that convert it into153

nutrients. Conversion by anaerobic bacteria does not need dissolved oxygen (DO), but the latter is154

required in the aerobic processes for nutrient degradation. This results in the depletion of DO level155

in the water body. However, in this paper the bacteria decomposition process is considered without156

explicitly writing an equation for DO level. After decomposition by bacteria, detritus are recycled157

into nutrients (remineralization) and the bacterial population increases due to this conversion process.158

Further, the density of bacteria increases in the aquatic environment due to other types of detritus,159

different from the algal one. Bacteria natural mortality is taken into account as well as due to other160

causes, such as enzymatic attack, temperature variations, UV radiation, photo-oxidation, etc. (48).161

Algal bloom has pushed the problem of the quality and quantity of water available for consumption162

to alarming levels, so that nowadays the existence of aquatic life is threatened (10; 49; 50). Large163

amounts of decaying biological materials in the water bodies lead to oxygen depletion, and this results164

in fish population collapse, as the oxygen saturation level has an effect on growth and feed conversion165

ratios of fish. Due to low levels of DO, frequently associated with phenomena such as heat waves, cloudy166

weather, organic overload, algae die-offs, or heavy thunderstorms (51), the whole aquatic ecosystem is167

significantly affected and survival of the aquatic species is threatened. Incorporating fish populations168

and DO levels in the model formulation would be more realistic, but would by far increase the complexity169

of the model and therefore is not considered here. Other related studies have in part considered these170

issues, see (52; 53).171

The schematic diagram for the interactions among nutrients, algae, detritus and bacteria is depicted172

in Fig. 1. The resulting system, in which all the parameters are assumed to be positive and constant,173
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Figure 1: Schematic diagram for the interactions among nutrients, algae, detritus and bacteria.

reads:174

dN

dt
= q − α0N − β1NA

β12 + β11N
+

πk1DB

k12 + k11D
,

dA

dt
=

θ1β1NA

β12 + β11N
− α1A− β10A

2,

dD

dt
= π1(α1A+ β10A

2)− α2D − k1DB

k12 + k11D
, (2.1)

dB

dt
= µB − µ0B +

λ1k1DB

k12 + k11D
.

The biological meaning of the parameters involved in the system (2.1) and their values used for175

numerical simulations are given in Table 1. The constant π1 represents the conversion of dead algae into176

detritus due to natural death, higher predation and intraspecies competition (6; 54). For the biological177

soundness (i.e. boundedness of the trajectories) of the model, the bacteria natural death rate is assumed178

to be higher than its growth rate due to detritus types other than algal one, i.e., µ0−µ is positive. Also,179

the following two conditions must hold180

θ1β1 − β11α1 > 0, (2.2)

λ1k1 − k11(µ0 − µ) > 0. (2.3)

Biologically, to satisfy condition (2.2), the total benefit to the algal biomass on consumption of nutrients181

must exceed the natural death rate of algae. If this condition fails, the growth rate of algae becomes182

negative and thus as time increases algae disappear. Similarly, condition (2.3) means that the bacteria183
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population growth caused by detritus decomposition must be greater than the difference between the184

natural death rate of bacteria and the bacterial population growth due to other types of detritus. If the185

condition does not hold, then the bacteria population declines, and eventually vanishes as time increases.186

To have a meaningful model, the algal and bacterial populations must thrive, thus the conditions (2.2)187

and (2.3) must hold.188

Table 1: Parameter values (hypothetical) in the system (2.1)

Names Description Unit Value Reference
q Input rate of nutrients to the lake from domestic µg/L/day 0.05 (8)

drainage and water run off from agricultural fields
α0 Per capita loss rate of nutrient due to sinking 1/day 0.01 (10)

from the epilimnion down to the hypolimnion and thus
making these nutrients unavailable for algae uptake

β1 Maximum uptake rate of nutrients by algae 1/day 0.85
β12 Half saturation constant µg/L/day 1
β11 Proportionality constant — 10
π Remineralization of detritus into nutrients — 0.3
k1 Maximum decomposition rate of detritus by bacteria 1/day 0.5
k12 Half saturation constant µg/L/day 1
k11 Proportionality constant — 0.3
θ1 Algal growth due to nutrients uptake — 5
α1 Natural mortality and higher predation of algae 1/day 1/3
β10 Algal mortality due to intraspecific competition L/µg/day 0.01
π1 Algal conversion into detritus — 0.2
α2 Sinking rate of detritus to the bottom of the lake, 1/day 0.006

being buried into the sediments at the lake bottom
µ Bacterial growth due to other types of detritus 1/day 1.85
µ0 Natural death rate of bacteria 1/day 2
λ1 Bacterial growth due to detritus — 0.5

189

3. Ecosystem with nutrients and algae only190

Considering a special case of system (2.1) where only the dynamics of nutrients and algae is taken191

into account, then we have the following subsystem192

dN

dt
= q − α0N − β1NA

β12 + β11N
,

dA

dt
=

θ1β1NA

β12 + β11N
− α1A− β10A

2. (3.1)

3.1. Boundedness193

The feasible region for system (3.1) is given in the following lemma.194

Lemma 3.1. The region of attraction for all solutions of system (1) initiating in the positive quadrant195

is given by (55):196

Ω1 = {(N,A) ∈ R2
+ : 0 < N + P ≤ q/δm},

where δm = min{α0, α1}. The region Ω1 is closed and bounded in the positive quadrant of the two197

dimensional plane. Consequently, the system (3.1) is dissipative and any solution is defined for t ≥ 0.198
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3.2. Equilibria199

System (3.1) has two feasible equilibria: (i) The algae-free equilibrium E0 = (qα−1
0 , 0), always feasible,200

and (ii) The interior equilibrium E
∗
= (N

∗
, A

∗
), where N

∗
=

β12(α1 + β10A
∗
)

(θ1β1 − β11α1)− β11β10A
∗ and A

∗
is a201

positive root of the following equation:202

f(A) =

[
q − A(α1 + β10A)

θ

]
[(θ1β1 − β11α1)− β11β10A]− β10α0(α1 + β10A). (3.2)

From equation (3.2), we note the following203

1. f(0) = q(θ1β1 − β11α1)− β12α1α0, which is positive provided204

q(θ1β1 − β11α1) > β12α1α0. (3.3)

2. f(A) < 0, where A =
θ1β1 − β11α1

β11β10
.205

3. f ′(A) < 0, ∀ A ∈ (0, A).206

Thus, equation (3.2) has exactly one positive root in the interval (0, A) and the interior equilibrium E
∗

207

is feasible provided condition (3.3) holds.208

3.3. Stability209

3.3.1. Local stability210

The Jacobian of system (3.1) is211

J =

 −
(
α0 +

β1β12A

(β12 + β11N)2

)
− β1N

β12 + β11N
θ1β1β12A

(β12 + β11N)2
θ1β1N

β12 + β11N
− α1 − 2β10A

 .

At equilibrium E0, the eigenvalues are

−α0,
θ1β1q

β12α0 + β11q
− α1.

One eigenvalue is negative while the other is negative if condition (3.3) does not hold. Thus, the212

equilibrium E0 is related via transcritical bifurcation to the equilibrium E
∗
.213

The characteristic equation at the equilibrium E
∗
is214

λ2 + λ

(
α0 + β10A

∗
+

β1β12A
∗

(β12 + β11N
∗
)2

)
+ β10A

∗
(
α0 +

β1β12A
∗

(β12 + β11N
∗
)2

)

+
θ1β1β12A

∗

(β12 + β11N
∗
)2

β1N
∗

β12 + β11N
∗ = 0.

Since the linear and constant terms are positive, in view of Routh-Hurwitz criterion, the roots are either215

negative or have negative real parts. Thus, the equilibrium E
∗
is unconditionally stable.216

The results can be summarized in the following theorem.217

Theorem 3.1. 1. The algae-free equilibrium E0 is related to the interior equilibrium E
∗
via a tran-218

scritical bifurcation.219

2. The interior equilibrium E
∗
, if feasible, is unconditionally locally asymptotically stable.220
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3.3.2. Global stability221

As far as global stability of the equilibrium E
∗
is concerned, we have the following result.222

Theorem 3.2. The coexistence equilibrium E
∗
, if feasible, is globally asymptotically stable inside the223

region of attraction Ω1 provided the following condition holds:224 [
β1β11q

(β12δm + β11q)(β12 + β11N
∗
)

]2
N

∗
<

4β10α0

θ1
. (3.4)

Proof. We consider the following as a Lyapunov function candidate225

U =
1

2
(N −N

∗
)2 +m1

(
A−A

∗ −A
∗
ln

A

A
∗

)
, (3.5)

wherem1 is a positive constant to be determined. The time derivative of U along the solutions trajectory226

of the system (3.1) is227

U̇ = −

[
α0 +

β1β12A

(β12 + β11N)(β12 + β11N
∗
)

]
(N −N

∗
)2 −m1β10(A−A

∗
)2

+

[
m1θ1β1β12

(β12 + β11N)(β12 + β11N
∗
)
− β1N

∗

β12 + β11N
∗

]
(N −N

∗
)(A−A

∗
).

Set m1 = N
∗
/θ1, U̇ is negative definite inside Ω1 provided condition (3.4) holds.228

4. Ecosystem behavior in the absence of bacteria229

If we consider the case when no bacteria is present in the aquatic environment, then system (2.1)230

takes the following form231

dN

dt
= q − α0N − β1NA

β12 + β11N
,

dA

dt
=

θ1β1NA

β12 + β11N
− α1A− β10A

2, (4.1)

dD

dt
= π1(α1A+ β10A

2)− α2D.

4.1. Boundedness232

The feasible region for system (4.1) is given in the following lemma.233

Lemma 4.1. The region of attraction for all solutions of system (4.1) initiating in the positive octant234

is given by (55):235

Ω2 = {(N,A,D) ∈ R3
+ : 0 < N + P +D ≤ q/δn},

where δn = min{α0, (1−π)α1, α2}. The region Ω2 is closed and bounded in the positive cone of the three236

dimensional space. Consequently, the system (4.1) is dissipative and any solution is defined for t ≥ 0.237
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4.2. Equilibria238

System (4.1) has two feasible equilibria: (i) The algae-detritus-free equilibrium Ê0 = (qα−1
0 , 0, 0),

always feasible, and (ii) The interior equilibrium Ê∗ = (N̂∗, Â∗, D̂∗), where

N̂∗ =
β12(α1 + β10Â

∗)

(θ1β1 − β11α1)− β11β10Â∗
, D̂∗ =

π1Â
∗(α1 + β10Â

∗)

α2

and Â∗ is a positive root of the following equation:239

g(A) =

[
q − A(α1 + β10A)

θ

]
[(θ1β1 − β11α1)− β11β10A]− β10α0(α1 + β10A). (4.2)

From (3.2), we have240

1. g(0) = q(θ1β1 − β11α1)− β12α1α0, which is positive provided241

q(θ1β1 − β11α1) > β12α1α0. (4.3)

2. g(A) < 0, where A =
θ1β1 − β11α1

β11β10
.242

3. g′(A) < 0, ∀ A ∈ (0, A).243

Thus, the equation (4.2) has exactly one positive root in the interval (0, A). Thus, the interior equilibrium244

Ê∗ is feasible provided condition (4.3) holds.245

4.3. Stability246

4.3.1. Local stability247

The Jacobian of system (4.1) is248

J =


−
(
α0 +

β1β12A

(β12 + β11N)2

)
− β1N

β12 + β11N
0

θ1β1β12A

(β12 + β11N)2
θ1β1N

β12 + β11N
− α1 − 2β10A 0

0 π1(α1 + 2β10A) −α2

 .

At equilibrium Ê0, the eigenvalues are

−α0,
θ1β1q

β12α0 + β11q
− α1, −α2.

Two eigenvalues are negative while the other is negative if condition (4.3) does not hold. Thus, the249

equilibrium Ê0 is related via transcritical bifurcation to the equilibrium Ê∗.250

One eigenvalue at the equilibrium Ê∗ is −α2, while the other two are roots of the quadratic251

λ2 + λ

(
α0 + β10Â

∗ +
β1β12Â

∗

(β12 + β11N̂∗)2

)
+ β10Â

∗

(
α0 +

β1β12Â
∗

(β12 + β11N̂∗)2

)

+
θ1β1β12Â

∗

(β12 + β11N̂∗)2

β1N̂
∗

β12 + β11N̂∗
= 0.

Since the linear and constant terms are positive, in view of Routh-Hurwitz criterion, the roots are either252

negative or have negative real parts. Thus, the equilibrium Ê∗ is always stable.253

Now, we summarize the results in the following theorem.254

Theorem 4.1. 1. The algae-free equilibrium Ê0 is related to the interior equilibrium Ê∗ via a tran-255

scritical bifurcation.256

2. The interior equilibrium Ê∗, if feasible, is always locally asymptotically stable.257
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4.3.2. Global stability258

For global stability of equilibrium Ê∗, we have the following result.259

Theorem 4.2. The interior equilibrium Ê∗, if feasible, is globally asymptotically stable inside the region260

of attraction Ω2 provided the following conditions hold261 [
β1β11q

(β12δn + β11q)(β12 + β11N̂∗)

]2
N̂∗ <

2β10α0

θ1
, (4.4)

π2
1 [α1 + β10(q/δn + Â∗)]2 <

2β10α2N̂
∗

θ1
. (4.5)

Proof. We consider the following as a Lyapunov function candidate262

V =
1

2
(N − N̂∗)2 +m1

(
A− Â∗ − Â∗ ln

A

Â∗

)
+
m2

2
(D − D̂∗)2, (4.6)

where m1 and m2 are positive constants to be determined. The time derivative of V along the solutions263

trajectory of the system (4.1) is264

V̇ = −

[
α0 +

β1β12A

(β12 + β11N)(β12 + β11N̂∗)

]
(N − N̂∗)2 −m1β10(A− Â∗)2 −m2α2(D − D̂∗)2

+

[
m1θ1β1β12

(β12 + β11N)(β12 + β11N̂∗)
− β1N̂

∗

β12 + β11N̂∗

]
(N − N̂∗)(A− Â∗)

+m2π1[α1 + β10(A+ Â∗)](A− Â∗)(D − D̂∗).

Setting m1 = N
∗
/θ1 and m2 = 1, V̇ is negative definite inside Ω2 provided conditions (4.4) and (4.5)265

are satisfied.266

5. No nutrients input from external sources267

In all the previous cases, as well as in the full model to be analyzed in the next section, the equilibria268

always show a nonnegative value for the nutrients. This is evident mathematically and biologically,269

as their continuous input from external sources prevents them to disappear. To better focus on this270

situation, we now examine the case in which this inflow is prevented. It turns out anyway, that no271

nutrient-free equilibrium can be achieved as it will be apparent from the analysis below. The biological272

reason is that nutrients are replenished by the detritus decomposed by bacteria, and only if one of these273

two population vanishes, they are also doomed. But in turn, the disappearance of either detritus or274

bacteria is ultimately related to the total ecosystem collapse or no nutrients production: for no detritus275

to be generated, the algae must vanish; if bacteria are absent, no conversion to nutrients occurs, and276

detritus can only sink to the bottom layers of the lake. Assume therefore that nutrients present in the277

lake are only due to recycling of detritus upon bacterial decomposition. In this particular case, we set278

q = 0, and hence equation (2.1) reduces to279

dN

dt
=

πk1DB

k12 + k11D
− α0N − β1NA

β12 + β11N
,

dA

dt
=

θ1β1NA

β12 + β11N
− α1A− β10A

2,

dD

dt
= π1(α1A+ β10A

2)− α2D − k1DB

k12 + k11D
, (5.1)

dB

dt
= µB − µ0B +

λ1k1DB

k12 + k11D
.
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5.1. Equilibria280

System (5.1) has two feasible equilibria:281

1. The origin Ẽ0 = (0, 0, 0, 0), which is always feasible.282

2. The interior equilibrium Ẽ∗ = (Ñ∗, Ã∗, D̃∗, B̃∗), with283

Ñ∗ =
β12(α1 + β10Ã

∗)

(θ1β1 − β11α1)− β11β10Ã∗
, D̃∗ =

k12(µ0 − µ)

λ1k1 − k11(µ0 − µ)
,

B̃∗ =
1

µ0 − µ

[
π1Ã

∗(α1 + β10Ã
∗)− k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)

]
and Ã∗ is a positive root of the equation284

c3A
3 + c2A

2 + c1A+ c0 = 0, (5.2)

where285

c3 = β2
10β11(1− ππ1θ1){λ1k1 − k11(µ0 − µ)},

c2 = −β10(1− ππ1θ1){λ1k1 − k11(µ0 − µ)}(θ1β1 − 2β11α1),

c1 = −k12α2θ1β11β10 + {λ1k1 − k11(µ0 − µ)}[β12β10θ1α0 + α1(1− ππ1θ1)(θ1β1 − β11α1)],

c0 = −θ1[k12α2(µ0 − µ)(θ1β1 − β11α1) + β12α1α0{λ1k1 − k11(µ0 − µ)}].

In view of assumptions (2.2) and (2.3), equation (5.2) has exactly one positive if the following condition286

holds:287

θ1β1 − 2β11α1 > 0. (5.3)

Clearly, D̃∗ is positive in view of assumption (2.3), while Ñ∗ and B̃∗ are positive if respectively the288

following condition hold289

(θ1β1 − β11α1)− β11β10Ã
∗ > 0, π1Ã

∗(α1 + β10Ã
∗)− k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)
> 0. (5.4)

5.2. Local stability of equilibria290

In this section, the local stability analysis of equilibria of the model (5.1) is performed. The Jacobian291

of (5.1) is J̃ = [J̃ij ], i, j = 1, 2, 3, 4, with nonvanishing explicit entries given by292

J̃11 = −
(
α0 +

β1β12A

(β12 + β11N)2

)
, J̃12 = − β1N

β12 + β11N
, J̃13 =

πk1k12B

(k12 + k11D)2
,

J̃14 =
πk1D

k12 + k11D
, J̃21 =

θ1β1β12A

(β12 + β11N)2
, J̃22 =

θ1β1N

β12 + β11N
− α1 − 2β10A,

J̃32 = π1(α1 + 2β10A), J̃33 = −
(
α2 +

k1k12B

(k12 + k11D)2

)
, J̃34 = − k1D

k12 + k11D
,

J̃43 =
λ1k1k12B

(k12 + k11D)2
, J̃44 =

λ1k1D

k12 + k11D
− (µ0 − µ).

1. The Jacobian J̃ evaluated at the equilibrium Ẽ0 leads to the eigenvalues −α0, −α1, −α2 and293

−(µ0 − µ). Since all the eigenvalues are negative, the equilibrium Ẽ0 is stable.294

2. The Jacobian J̃ evaluated at Ẽ∗ leads to the matrix J̃Ẽ∗ = [ãij ], i, j = 1, 2, 3, 4. Some entries of295

matrix J̃Ẽ∗ simplify as follows: (J̃Ẽ∗)22 = ã22 = −β10Ã∗, (J̃Ẽ∗)44 = ã44 = 0.296
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The associated characteristic equation is given by λ4 + Ã1λ
3 + Ã2λ

2 + Ã3λ+ Ã4 = 0, where297

Ã1 = −(ã11 + ã22 + ã33), Ã2 = ã11(ã22 + ã33)− ã22ã33 − ã34ã43 − ã12ã21,

Ã3 = ã11(ã22ã33 + ã34ã43) + ã22ã34ã43 + ã21(ã12ã33 − ã13ã32),

Ã4 = ã21(ã12ã34ã43 − ã14ã34ã43)− ã11ã22ã34ã43.

Clearly, Ã1 is positive. Employing Routh-Hurwitz criterion, we have the following theorem.298

Theorem 5.1. 1. The equilibrium Ẽ0 is always stable.299

2. The equilibrium Ẽ∗, if feasible, is locally asymptotically stable provided the following conditions are300

satisfied:301

Ã4 > 0, Ã1Ã2 − Ã3 > 0, Ã3(Ã1Ã2 − Ã3)− Ã2
1Ã4 > 0. (5.5)

6. Mathematical analysis of full model (2.1)302

6.1. Equilibrium analysis303

System (2.1) has the following three equilibria:304

1. The algae-detritus-bacteria-free (or nutrients-only) equilibrium, E0 = (qα−1
0 , 0, 0, 0), which is305

always feasible.306

2. The bacteria-free equilibrium, E1 = (N1, A1, D1, 0), with

N1 =
β12(α1 + β10A1)

(θ1β1 − β11α1)− β11β10A1
, D1 =

π1(α1A1 + β10A
2
1)

α2

and A1 is positive root of the equation307

F (A) =

[
q − (α1 + β10A)A

θ1

]
[(θ1β1 − β11α1)− β11β10A]− β12α0(α1 + β10A) = 0. (6.1)

Note that in equation (6.1), F (0) > 0 if308

(θ1β1 − β11α1)q − β12α1α0 > 0, (6.2)

while setting

A =
θ1β1 − β11α1

β11β10

we find F (A) < 0 and F ′(A) < 0 for A ∈ (0, A). This implies that there exists a unique positive root309

A = A1 of equation (6.1) in the interval (0, A). Hence feasibility of E1 reduces to asking condition (6.2).310

3. The interior equilibrium, E∗ = (N∗, A∗, D∗, B∗), with311

N∗ =
β12(α1 + β10A

∗)

(θ1β1 − β11α1)− β11β10A∗ , D∗ =
k12(µ0 − µ)

λ1k1 − k11(µ0 − µ)
,

B∗ =
1

µ0 − µ

[
π1(α1A

∗ + β10A
∗2)− k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)

]
and A∗ is positive root of the equation312

G(A) =

[
q1 +

(
ππ1 −

1

θ1

)
α1A+

(
ππ1 −

1

θ1

)
β10A

2

]
[(θ1β1 − β11α1)− β11β10A]

−β12α0(α1 + β10A) = 0, (6.3)
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where q1 = q − k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)
.313

Positivity of N∗ and B∗ imply respectively the feasibility conditions314

(θ1β1 − β11α1)q1 − β12α1α0 > 0, (6.4)

π1(α1A
∗ + β10A

∗2)− k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)
> 0. (6.5)

In addition, requiring315

q[λ1k1 − k11(µ0 − µ)]− k12πα2(µ0 − µ) > 0, (6.6)

ensures that D∗ > 0 and together with (6.4) implies that G(0) > 0. Further, letting

A =
θ1β1 − β11α1

β11β10

we find G(A) < 0 and G′(A) < 0 forA ∈ (0, A).316

Thus there exists a unique positive root A = A∗ of equation (6.3) in the interval (0, A).317

6.2. Local stability of equilibria318

In this section, the local stability analysis of equilibria of the model (2.1) is performed. The Jacobian319

of (2.1) is J = [Jij ], i, j = 1, 2, 3, 4, with nonvanishing explicit entries given by320

J11 = −
(
α0 +

β1β12A

(β12 + β11N)2

)
, J12 = − β1N

β12 + β11N
, J13 =

πk1k12B

(k12 + k11D)2
,

J14 =
πk1D

k12 + k11D
, J21 =

θ1β1β12A

(β12 + β11N)2
, J22 =

θ1β1N

β12 + β11N
− α1 − 2β10A,

J32 = π1(α1 + 2β10A), J33 = −
(
α2 +

k1k12B

(k12 + k11D)2

)
, J34 = − k1D

k12 + k11D
,

J43 =
λ1k1k12B

(k12 + k11D)2
, J44 =

λ1k1D

k12 + k11D
− (µ0 − µ).

Theorem 6.1. 1. The equilibrium E0 is unstable whenever the equilibrium E1 is feasible.321

2. The equilibrium E1 is unstable whenever the equilibrium E∗ is feasible.322

3. The equilibrium E∗, if feasible, is locally asymptotically stable provided the following conditions are323

satisfied, where the relevant quantities are defined in the proof:324

A4 > 0, A1A2 −A3 > 0, A3(A1A2 −A3)−A2
1A4 > 0. (6.7)

Proof. 1. The Jacobian J evaluated at the equilibrium E0 leads to the following eigenvalues:

−α0,
θ1β1q

β12α0 + β11q
− α1, −α2, −(µ0 − µ).

The second one is negative (or positive) provided condition (6.2) does not hold (or hold). Thus, the325

equilibrium E0 is stable (or unstable) whenever the equilibrium E1 is not feasible (or feasible).326

2. The Jacobian J evaluated at the equilibrium E1 immediately gives two eigenvalues327

−α2,
λ1k1(π1α1A1 + π2β10A

2
1)

k12α2 + k11π1(α1A1 + β10A2
1)

− (µ0 − µ)
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while the remaining two are roots of the following equation with all positive coefficients:328

λ2 +

(
β10A1 + α0 +

β1β12A1

(β12 + β11N1)2

)
λ+ β10A1 +

θ1β1β12A1

(β12 + β11N1)2
β1N1β12 + β11N1 = 0. (6.8)

Clearly, roots of equation (6.8) are either negative or with negative real parts. Thus, the matrix JE1 has329

three eigenvalues which are either negative or with negative real parts and one eigenvalue is negative (or330

positive) provided condition (6.5) is not satisfied (or satisfied). Therefore, the equilibrium E1 is stable331

(or unstable) whenever the equilibrium E∗ is not feasible (or feasible).332

3. The Jacobian J evaluated at E∗ leads to the matrix JE∗ = [aij ], i, j = 1, 2, 3, 4. Some entries of333

matrix JE∗ simplify as follows: (JE∗)22 = a22 = −β10A∗, (JE∗)44 = a44 = 0.334

The associated characteristic equation is given by λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0, where335

A1 = −(a11 + a22 + a33), A2 = a11(a22 + a33)− a22a33 − a34a43 − a12a21,

A3 = a11(a22a33 + a34a43) + a22a34a43 + a21(a12a33 − a13a32),

A4 = a21(a12a34a43 − a14a34a43)− a11a22a34a43.

Clearly, A1 is positive. Using the Routh-Hurwitz criterion, roots of the characteristic equation are either336

negative or have negative real parts iff conditions (6.7) are satisfied.337

7. Transcritical bifurcation338

Considering E0 and E1 taking β1 as a bifurcation parameter, then at β1 = β∗
1 , an exchange of339

feasibility and stability properties between these two equilibria occurs. This is a clear indication of the340

presence of a transcritical bifurcation at the critical threshold β∗
1 . We now rigorously prove that indeed341

this is the case.342

Observe that the eigenvalues of the Jacobian matrix343

J(E0, β
∗
1) =


−α0 − β1q

β12α0 + β11q
0 0

0 0 0 0

0 π1α1 −α2 0

0 0 0 −(µ0 − µ)

 ,

are given by

η1 = −α0, η2 = 0, η3 = −α2 and η4 = −(µ0 − µ).

Thus, η2 = 0 is a simple zero eigenvalue and the other ones are real and negative. Hence, at β1 = β∗
1344

the equilibrium E0 is non-hyperbolic and the assumption (A1) of Theorem 4.1 in (56) is verified.345

Now, denote by w = (w1, w2, w3, w4)
T a right eigenvector associated with the zero eigenvalue η2 = 0,346

explicitly given by347

w1 = − β1q

α0(β12α0 + β11q)
, w2 = 1, w3 =

π1α1

α2
and w4 = 0.

Furthermore, the left eigenvector v = (v1, v2, v3, v4) is v = (0, 1, 0, 0), so that w.v = 1.348

Now, the coefficients a and b defined in Theorem 4.1 of (56)

a =
4∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0, β
∗
1), b =

4∑
k,i=1

vkwi
∂2fk
∂xi∂β1

(E0, β
∗
1),
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may be explicitly computed. Taking into account system (2.1), it follows that349

a =
β12α0α1

θ1q2(β12α0 + β11q)
− 2β10, b =

θ1q

β12α0 + β11q
> 0. (7.1)

Now a > 0 if and only if
β12α0α1

θ1q2(β12α0 + β11q)
> 2β10.

In view of previous considerations, we have the following theorem.350

Theorem 7.1. Consider system (2.1) and let a and b as given by (7.1), where b > 0. The local dynamics351

of system (2.1) around the equilibrium E0 are totally determined by the sign of a.352

(i) If a < 0, when β1 < β∗
1 with β1 ≈ β∗

1 , E0 is locally asymptotically stable, and there exists a negative353

unstable equilibrium E1; when β1 > β∗
1 with β1 ≈ β∗

1 , E0 is unstable, and there exists a positive locally354

asymptotically stable equilibrium E1.355

(ii) If a > 0, when β1 < β∗
1 with β1 ≈ β∗

1 , E0 is locally asymptotically stable, and there exists a positive356

unstable equilibrium E1; when β1 > β∗
1 with β1 ≈ β∗

1 , E0 is unstable, and there exists a negative locally357

asymptotically stable equilibrium E1.358

Proof. It follows from (56) Theorem 4.1 pp. 373, and Remark 1 pp. 375.359

Corollary 7.1. Consider the model (2.1) and let a and b as given by (7.1) where b > 0. At β1 = β∗
1 ,360

the system (2.1) undergoes a transcritical bifurcation. If a < 0 the bifurcation at β1 = β∗
1 is supercritical361

(or forward). On the other hand, if a > 0, the bifurcation at β1 = β∗
1 is subcritical (or backward)362

bifurcation.363

Proof. It is a straightforward application of Theorem 7.1.364

Remark 1. Taking µ0 as a bifurcation parameter, we can prove the existence of a transcritical365

bifurcation between equilibria E1 and E∗ of the system (2.1) using the same approach as above.366

In Table 2, we listed the equilibria of the systems (2.1), (3.1), (4.1) and (5.1), and the conditions for367

their feasibility and stability.368

Table 2: Equilibria and conditions for their feasibility and stability
Models Equilibria Feasibility conditions Conditions for LAS

(3.1) E0 = (qα−1
0 , 0) Always feasible q(θ1β1 − β11α1) − β12α1α0 < 0

E
∗
= (N

∗
, A

∗
) q(θ1β1 − β11α1) − β12α1α0 > 0 Always stable

(4.1) Ê0 = (qα−1
0 , 0, 0) Always feasible q(θ1β1 − β11α1) − β12α1α0 < 0

Ê∗ = (N̂∗, Â∗, D̂∗) q(θ1β1 − β11α1) − β12α1α0 > 0 Always stable

(5.1) Ẽ0 = (0, 0, 0, 0) Always feasible Always stable

Ẽ∗ = (Ñ∗, Ã∗, D̃∗, B̃∗) π1Ã
∗
(α1 + β10Ã

∗
) −

k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)
> 0 Ã4 > 0, Ã1Ã2 − Ã3 > 0

(θ1β1 − β11α1) − β11β10Ã
∗ > 0 Ã3(Ã1Ã2 − Ã3) − Ã2

1Ã4 > 0
θ1β1 − 2β11α1 > 0

(2.1) E0 = (qα−1, 0, 0, 0) Always feasible q(θ1β1 − β11α1) − β12α1α0 < 0

E1 = (N1, A1, D1, 0) q(θ1β1 − β11α1) − β12α1α0 > 0 π1(α1A1 + β10A1
2
) <

k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)

E∗ = (N∗, A∗, D∗, B∗) π1(α1A
∗
+ β10A

∗2
) −

k12α2(µ0 − µ)

λ1k1 − k11(µ0 − µ)
> 0 A4 > 0, A1A2 − A3 > 0,

(θ1β1 − β11α1)q1 − β12α1α0 > 0 A3(A1A2 − A3) − A2
1A4 > 0

q[λ1k1 − k11(µ0 − µ)] − k12πα2(µ0 − µ) > 0

369
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Remark 2. Since the inflow rate of nutrients in the aquatic system plays an important role in370

determining the dynamics of the system, Table 2 allows to assess how system dynamics is affected by371

changes in the input rate of nutrients. Note that the equilibrium Ẽ0 is always feasible and stable while372

the equilibrium Ẽ∗ is feasible if conditions (5.3) and (5.4) are satisfied, and is stable provided conditions373

in (5.5) hold. That is, if conditions (5.3), (5.4) and (5.5) are satisfied, the equilibria Ẽ0 and Ẽ∗ are374

feasible and stable simultaneously. This ensures bistability. The bistability behavior of system (5.1) is375

shown in Fig. 2. Thus, by completely stopping the input rate of nutrients in the lake, we may achieve376

the algae-free system or algae-persistent system depending on the current value of the algal density.377

Recall that when q ̸= 0, the algae-free equilibrium is stable only when the algae-persistent equilibrium is378

not feasible. Overall, in order to preserve the aquatic system, the inflow rate of the nutrients coming379

from various sources must be controlled. Moreover, for the systems without bacteria, (i.e. systems (3.1)380

and (4.1)), the coexistence equilibrium is always locally asymptotically stable and globally asymptotically381

stable under certain conditions.382

8. Effect of time delay383

In this section, we modify our model (2.1) by incorporating a discrete time delay which represents384

the time lag involved in the conversion of detritus into nutrients due to bacterial decomposition and the385

corresponding growth in the bacterial population. For instance, we consider the same lag (τ) in these386

two processes. With this modification, we have the following system of delay differential equations:387

dN(t)

dt
= q − α0N(t)− β1N(t)A(t)

β12 + β11N(t)
+

πk1D(t− τ)B(t)

k12 + k11D(t− τ)
,

dA(t)

dt
=

θ1β1N(t)A(t)

β12 + β11N(t)
− α1A(t)− β10A

2(t),

dD(t)

dt
= π1(α1A(t) + β10A

2(t))− α2D(t)− k1D(t)B(t)

k12 + k11D(t)
, (8.1)

dB(t)

dt
= µB(t)− µ0B(t) +

λ1k1D(t− τ)B(t)

k12 + k11D(t− τ)
.

The initial conditions for the system (8.1) take the form388

N(ϕ) = ψ1(ϕ), P (ϕ) = ψ2(ϕ), A(ϕ) = ψ3(ϕ), D(ϕ) = ψ4(ϕ), −τ ≤ ϕ ≤ 0,

where ψ = (ψ1, ψ2, ψ3, ψ4)
T ∈ C+ such that ψi(ϕ) ≥ 0, i = 1, 2, 3, 4 ∀ ϕ ∈ [−τ, 0] and C+ denotes the389

Banach space C+([−τ, 0],R4
+0) of continuous functions mapping the interval [−τ, 0] into R4

+0. The norm390

of an element ψ in C+ is denoted by ∥ψ∥ = sup
−τ≤ϕ≤0

{| ψ1(ϕ) |, | ψ2(ϕ) |, | ψ3(ϕ) |, | ψ4(ϕ) |}. For biological391

feasibility, we further assume that ψi(0) ≥ 0 for i = 1, 2, 3, 4.392

In the following, we carry out the local stability analysis for the interior equilibrium E∗ and show393

that the system (8.1) undergoes a Hopf-bifurcation around this equilibrium.394

9. Hopf-bifurcation analysis395

To study the stability behavior of the equilibrium E∗ in the presence of time delay, we linearize the396

system (8.1) about the equilibrium E∗ and get397

dY

dt
= LY (t) +MY (t− τ), (9.1)
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where398

L =


V11 V12 0 V14
V21 V22 0 0

0 V32 V33 V34
0 0 0 0

 , M =


0 0 M13 0

0 0 0 0

0 0 0 0

0 0 M43 0

 and Y (·) =


n(·)
a(·)
d(·)
b(·)

 ,

with399

V11 = −
(
α0 +

β1β12A
∗

(β12 + β11N∗)2

)
, V12 = − β1N

∗

β12 + β11N∗ , V14 =
πk1D

∗

k12 + k11D∗ ,

V21 =
θ1β1β12A

∗

(β12 + β11N∗)2
, V22 = −β10A∗, V32 = π1(α1 + 2β10A

∗),

V33 = −
(
α2 +

k1k12B
∗

(k12 + k11D∗)2

)
, V34 = − k1D

∗

k12 + k11D∗ , M13 =
πk1k12B

∗

(k12 + k11D∗)2
, M43 =

λ1k1k12B
∗

(k12 + k11D∗)2
.

Here, n, a, d and b are small perturbations around the equilibrium E∗. The characteristic equation for400

the linearized system (9.1) is given by401

λ4 +A3λ
3 +A2λ

2 +A1λ+ (B2λ
2 +B1λ+B0)e

−λτ = 0, (9.2)

where402

A3 = −(V11 + V22 + V33), A2 = V11V22 + V22V33 + V11V33 − V12V21,

A1 = V12V21V33 − V11V22V33, B2 = −V34M43,

B1 = V22V34M43 + V11V34M43 − V21V33M13, B0 = V12V21V34M43 + V14V21V32M43 − V11V22V34M43.

Equation (9.2) is transcendental in λ, so that it has infinitely many complex roots. To understand the403

local stability behavior of the equilibrium E∗, we need to assess the signs of real parts of the roots of404

equation (9.2). This is a complicated task in the presence of the time delay. Therefore, equation (9.2)405

is first analyzed in the absence of time delay and then conditions for local asymptotic stability behavior406

of the equilibrium E∗ are deduced when time delay is present.407

For τ = 0, Theorem 6.1 provides the conditions under which all the roots of equation (9.2) are either408

negative or with negative real parts. For τ > 0 by Rouche’s Theorem and continuity in τ , the sign of409

roots of equation (9.2) will change across the imaginary axis, i.e., if equation (9.2) has purely imaginary410

roots. Hence, putting λ = iω (ω > 0) in equation (9.2) and separating real and imaginary parts, we get411

w4 −A2ω
2 = −(B0 −B2ω

2) cos(ωτ)−B1ω sin(ωτ), (9.3)

A3ω
3 −A1ω = −(B0 −B2ω

2) sin(ωτ) +B1ω cos(ωτ). (9.4)

Squaring and adding equations (9.3) and (9.4), we obtain412

(w4 −A2ω
2)2 + (A3ω

3 −A1ω)
2 = (B0 −B2ω

2)2 +B2
1ω

2. (9.5)

Simplifying equation (9.5) and substituting ω2 = ψ, we get the following equation in ψ:413

Ψ(ψ) = ψ4 + C3ψ
3 + C2ψ

2 + C1ψ + C0 = 0, (9.6)

where414

C3 = −2A2 +A2
3, C2 = A2

2 − 2A1A3 −B2
2 , C1 = A2

1 + 2B2B0 −B2
1 , C0 = −B2

0 .
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The existence of positive roots of equation (9.6) is addressed in the following lemma, whose proof follows415

by Descartes’ rule, (57).416

Lemma 2. The polynomial equation (9.6) has417

(1) at least one positive root if418

(a) C3 > 0, C2 < 0, C1 > 0, C0 < 0.

(b) C3 < 0, C2 < 0, C1 > 0, C0 < 0.

(c) C3 < 0, C2 > 0, C1 > 0, C0 < 0.

(d) C3 < 0, C2 > 0, C1 < 0, C0 < 0.

(2) exactly one positive root if419

(a) C3 < 0, C2 < 0, C1 < 0, C0 < 0.

(b) C3 > 0, C2 < 0, C1 < 0, C0 < 0.

(c) C3 > 0, C2 > 0, C1 < 0, C0 < 0.

(d) C3 > 0, C2 > 0, C1 > 0, C0 < 0.

For other choices of the coefficients of equation (9.6), the positive root cannot be guaranteed.420

Now, we can characterize the system behavior:421

Theorem 9.1. Assume that the equilibrium E∗ is locally asymptotically stable for τ = 0 and that one
of the conditions (1) or (2) given in Lemma 2 holds. Let ψ0 = ω2

0 be a positive root of (9.6). Then,
there exists τ = τ0 such that the equilibrium E∗ is asymptotically stable when 0 ≤ τ < τ0 and unstable
for τ > τ0, where

τk =
1

ω0
tan−1

[
B1ω0(ω

4
0 −A2ω

2
0) + (B0 −B2ω

2
0)(A3ω

3
0 −A1ω0)

(B0 −B2ω2
0)(ω

4
0 −A2ω2

0)−B1ω0(A3ω3
0 −A1ω0)

]
+
kπ

ω0
,

for k = 0, 1, 2, 3 · · · . Furthermore, the system will undergo a Hopf-bifurcation at E∗ when τ = τ0 provided422

Ψ′(ω2
0) > 0.423

Proof. Since ψ = ω2
0 is a solution of the equation (9.6), the characteristic equation (9.2) has pair of424

purely imaginary roots ±iω2
0 . It follows from equations (9.3) and (9.4) that τk is a function of ω2

0 for425

k = 0, 1, 2, 3 · · · . Therefore, the system will be locally asymptotically stable at E∗ for τ = 0, if the426

conditions (6.7) hold. In that case by Butler’s lemma, the equilibrium E∗ will remain stable for τ < τ0,427

such that τ0 = min
k≥0

τk and unstable for τ ≥ τ0, provided that the transversality condition holds. The428

transversality condition is given as429

sgn

[
d(Re(λ))

dτ

]−1

τ=τ0

=

[
Ψ′(ω2

0)

B2
1ω

2
0 + (B0 −B2ω2

0)
2

]
. (9.7)

Note that Ψ′(ω2
0) ̸= 0 if Lemma 2 holds. Hence, the transversality condition is satisfied and a Hopf430

bifurcation occurs at τ = τ0 i.e., a family of periodic solutions emanate from the equilibrium E∗ as the431

delay parameter, τ , passes through its critical value, τ0, (31).432

433

10. Numerical simulations434

Here, we report the simulations performed to investigate the system behavior using the Matlab435

variable step Runge-Kutta solver ode45. In spite of importance of clean water on the Earth, quantitative436
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data on water pollution are scanty and, therefore, we are unable to check the validity of the model and437

its outcome with the field data. However, to visualize different analytical results and to have some438

insights from it, we have numerically simulated the system (2.1). The (hypothetical) parameter values439

are chosen within ranges defined in the existing literature (6; 9; 40).440

First of all, we choose some important parameters of the model (2.1) and see their effects on the441

equilibrium values of nutrients, algae, detritus and bacteria in the lake. For our purpose, we select q, β1,442

β10, k1, µ and µ0 and analyze the behavior of model’s variables by varying two parameters at a time viz.443

(q, k1), (µ0, β10) and (µ, β1) integrating up to time t = 100 days, when the system is stabilized. In each444

figure, the surface represents the value of the population at a (dynamic) equilibrium, i.e. steady state or445

persistent oscillation. When two surfaces are shown, they indicate the maximum and minimum values446

that these variables attain in the limit cycle. When they collide, it means that a stable equilibrium is447

attained, while when they differ, the solution oscillates.448

Fig. 3 shows the system behavior as functions of q and k1. On increasing the input rate of nutrients449

in the lake, the equilibrium values of all the populations increase. In this case, sustained oscillations in450

time are found (34; 58). For low values of k1, the bacteria vanish but this population increases with an451

increase in k1. On the other hand, the detritus is high for low values of k1, but as k1 increases, bacteria452

decompose it at a high rate leading to a detritus-free environment.453

In Fig. 4, we vary µ0 and β10. For low values of the bacteria mortality rate µ0, the bacterial454

population is at high level but disappears on increasing the values of µ0. Consequently the density of455

detritus increases at a high rate. On increasing the algae intraspecific competition rate β10, the algal456

population decreases to a very low level while the nutrients increase as there are less algae that utilize457

them. Here too persistent oscillations are observed in all the panels.458

Fig. 5 considers the parameters µ and β1. Increase in β1 causes a significant decrease in the459

concentration of nutrients but an opposite behavior for algae and detritus. For low values of β1, these460

populations vanish altogether. Bacteria thrive only for larger values of µ and increase more with an461

increase in β1. Again, we can observe persistent oscillations for all variables of the model.462

We show the transcritical bifurcation between the equilibria E0 and E1 also numerically, varying the463

uptake rate of nutrients by algae, β1, in Fig. 6(a). For low values of β1 (i.e., no nutrients consumed464

by algae), the nutrients remains at a fixed level but their concentration suddenly drops as β1 crosses its465

critical value. Also, there is a transcritical bifurcation between the equilibria E1 and E∗, shown varying466

the natural death rate of bacteria, µ0, in Fig. 6(b). Actually, the coexistence equilibrium E∗ can stably467

achieved for the parameters values as given in Table 1, not shown.468

To see the effect of the delay involved in the conversion of detritus into nutrients and the growth469

of bacterial populations, we set the system at a stable focus in the absence of time delay (τ = 0). We470

gradually increase the value of time delay τ and observe the solution trajectories that still produce a471

stable focus at τ = 10 days, not shown. By increasing the time delay to τ = 15.2 days, the system472

(8.1) exhibits limit cycles, Fig. 7. Next, we increase the values of time delay to τ = 20 days and found473

that the system exhibits period doubling solutions, Fig. 8. The system shows chaotic behavior for474

further increase in time delay (τ = 21.5 days), Fig. 9. For better visualization, we draw the bifurcation475

diagram of the system (8.1) by varying the bifurcation parameter τ ∈ [10, 22], Fig. 10. It is clear from476

the figure that the chaotic regime is reached via a stable focus for τ < 14.5, limit cycle behaviour for477

14.5 ≤ τ ≤ 15.9, period doubling oscillations for 15.9 ≤ τ ≤ 20.2, and higher periodic and chaotic478

oscillations for τ ≥ 20.2. However, we could not provide bifurcation diagram for τ > 22, because the479

solutions trajectories of the system (2.1) blow up after τ > 22. Recall that systems in the absence of480

bacteria (systems (3.1) and (4.1)) are bounded while the systems in the presence of bacteria (systems481

(2.1) and (5.1)) are unbounded. Further, we draw the Poincaré map of the system (8.1) in the A−D−B482
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space fixing N = 0.8, for τ = 21.5 days, Fig. 11. The scattered distribution of the sampling points483

implies the chaotic behavior of the system. We also draw the maximum Lyapunov exponent of the484

system (8.1) for τ = 21.5 days, Fig. 12. To draw the maximum Lyapunov exponent, we first simulate485

the delayed system (8.1). Then considering the times series solutions of each component, we compute the486

Lyapunov exponents by using the algorithm of (59; 60). In the figure, positive values of the maximum487

Lyapunov exponent indicates the chaotic regime of the system. Therefore, we can conclude that the488

system (8.1) shows chaotic behavior for τ = 21.5 days.489

10.1. Sensitivity analysis490

We perform the global sensitivity analysis following the techniques of (61; 62) to identify the most491

influential parameters that have significant impact on some important output variables of the system492

(2.1). We calculate partial rank correlation coefficients (PRCCs) between the parameters q, β1, k1, π, θ1,493

λ1, µ and µ0 from system (2.1) with algae and bacteria in the lake as output. Nonlinear and monotone494

relationships were observed with the input parameters of the model (2.1), which is a prerequisite for495

computing PRCCs. Using the Latin Hypercube Sampling (LHS), we drawn 200 samples from the496

biologically feasible regions of the parameters of interest. The bar diagram of the PRCC values of497

the densities of algae and bacteria against these parameters is depicted in Fig. 13. PRCC values of498

these parameters with the responses suggest that the parameters q, β1, θ1, µ and µ0 have significant499

correlations with the density of algae, Fig. 13(a). The parameter θ1 has maximum positive correlation500

with the density of algae. The bacteria mortality has negative correlation with the density of algae while501

other parameters have positive correlations. For the density of bacteria, the significant parameters are502

β1, θ1, λ1, µ and µ0, Fig. 13(b). The growth rate of bacteria due to detritus of other type than algal503

one, µ, has maximum positive correlation with bacteria. The death rate of bacteria, µ0, has negative504

correlation with bacteria whereas other parameters have positive correlations.505

11. Discussion506

Marine microbes play important roles in aquatic systems, especially marine ones. They influence507

the climate, mediate primary production, participate in biogeochemical cycles, and maintain ecological508

balance (63). The microbes that make up harmful algal blooms are being studied closely by scientists509

(64). Because of high diversity and complexity, the interaction between algae and bacteria has become the510

concern of many researchers. Scientists have explored the relationships between algae and bacteria from511

different perspectives, including the physical, biological, environmental and chemical processes involved512

(64). Microbes, which exist as free-living forms as well as securely attached to algal cells, have now513

been demonstrated to modulate algal growth rates and transitions between life history stages, influence514

toxin production, and even induce the rapid lysis of algal cells (65). However, given the complex array515

of interactions that have evolved between them, some ecological functions and related mechanisms have516

not yet been fully elucidated.517

In this paper, we have investigated the effect of bacteria on the dynamics of algal blooms in lakes.518

A nonlinear mathematical model has been proposed by taking nutrients, algae, detritus and bacteria as519

state variables. The model exhibits three non-negative equilibria; E0, E1 and E∗ that are related to520

each other via transcritical bifurcations. Equilibria E0 and E1 are linked on varying the parameter β1,521

the latter arising when the bifurcation parameter β1 crosses from below its critical value. On the other522

hand, the equilibria E1 and E∗ are tied by the parameter µ0, the former arising when the bifurcation523

parameter µ0 crosses from below its critical value. For higher values of µ0, bacteria vanish and hence the524

density of algae in the lake increases up to a limit value. The partial rank correlation coefficient (PRCC)525

technique is performed to assess the sensitivity of the ecosystem with respect to the model parameters.526
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The main parameters influencing the system behavior appear to be q, β1, k1, π, θ1, λ1 and µ. They527

present positive correlations with the densities of algae and bacterial population.528

The effect of time delay on algal bloom into the lake has also been investigated. The time delay has529

been introduced to model more realistically the formation of nutrients from detritus and the subsequent530

growth of bacteria, that are not instantaneous processes. Previous studies show the occurrence of limit531

cycle oscillations through a Hopf-bifurcation by varying the delay parameter (9; 40). However, to the532

best of our knowledge, in the context of algal bloom models no study is carried out for the delayed533

systems showing chaotic dynamics. In the present investigation, we found that as the delay parameter534

increases, the system (8.1) exhibits a transition from stable focus to limit cycle oscillations to period535

doubling oscillations to chaotic dynamics. The density of algae in the lake may increase drastically and536

in that case a massive death of fishes may occur as a consequence of low levels of dissolved oxygen. To537

avoid this unpleasant outcome, the detritus of the lake should be removed before the critical value of538

delay parameter is reached. Longer delay in this action may cause fluctuations in the density of algae539

for a long time and cause hypoxia in the lake. These findings are thus of critical importance for the540

practice of lake restoration.541

The role of space in ecological interactions has been identified as an important factor (66). Spatial542

patterns are ubiquitous in nature and modify the stability properties of ecosystems at a range of spatial543

scales. Spatial variability of algae is very common in aquatic ecosystems. Several attempts have been544

made to explain such spatial variation using different types of mathematical models (67; 68). To further545

extrapolate the results of the present study, extensions of the model presented here might be worth546

investigating, incorporating perhaps diffusion and advection, that play a crucial role in the spatial547

movement of algae in water bodies. A second issue concerns the parameter values used. Here they are548

taken as hypothetical, but tuning them using real data would a be very interesting step. At present549

however, for lack of the field results, is not possible. This investigation might be undertaken in future550

researches.551
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Figure 2: Figure shows bi-stability behavior of the system (5.1). The trajectories with different initial conditions lead to
different attractors. Parameters values are same as in Table 1 except θ1 = 15.5, α1 = 0.3, π1 = 0.23 and λ1 = 0.26.
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Figure 3: The equilibrium values of nutrients, algae, detritus and bacteria as functions of q and k1 with initial conditions
(0.12, 1.15, 0.1, 0.06). Rest of the parameters values are same as in Table 1.
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Figure 4: The equilibrium values of nutrients, algae, detritus and bacteria as functions of µ0 and β10 with initial conditions
(0.12, 1.15, 0.1, 0.06). Rest of the parameters values are same as in Table 1.
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Figure 5: The equilibrium values of nutrients, algae, detritus and bacteria as functions of µ and β1 with initial conditions
(0.12, 1.15, 0.1, 0.06). Rest of the parameters values are same as in Table 1.
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Figure 6: Transcritical bifurcations between equilibria (a) E0 and E1, left to right, when µ = 0.8 and (b) E∗ and E1,
left to right, when µ = 1.85 and the other parameters values are same as in Table 1. Initial conditions are chosen as
(0.12, 1.15, 0.1, 0.06).
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Figure 7: System (8.1) shows limit cycle oscillation for τ = 15.2 days. Initial conditions are chosen as
(0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 8: System (8.1) shows 2-periodic solutions for τ = 20 days. Initial conditions are chosen as
(0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 9: System (8.1) shows chaotic oscillations for τ = 21.5 days. Initial conditions are chosen as
(0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 10: Bifurcation diagram of the system (8.1) with respect to τ ∈ [10, 22]. Here, the maximum and min-
imum values of the oscillations are plotted in blue and red colors, respectively. Initial conditions are chosen as
(0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 11: Poincare map of the system (8.1) in the A−D−B space (N = 10) for τ = 21.5 days. Initial conditions are
chosen as (0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 12: The maximum Lyapunov exponent of the system (8.1) for τ = 21.5 days. Initial conditions are chosen as
(0.3543, 0.8983, 0.6913, 0.1825). Parameters values are same as in Table 1.
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Figure 13: Effect of uncertainty of the model (2.1) on (a) algae and (b) bacteria. Significant parameters are marked by ∗.
Initial conditions are chosen as (0.12, 1.15, 0.1, 0.06). The mean values of parameters are chosen as in Table 1.
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