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Abstract 

Traditionally, the most popular sentences used to describe the arbuscular mycorrhizal symbiosis sound like: “AM fungi 
form one of the most widespread root symbioses, associating with 80% of land plants. In this symbiosis, the fungus 
provides the plant host with mineral nutrients, especially phosphate, receiving in turn carbohydrates.” In the last years, 
the mycorrhiza research field has witnessed a big step forward in the knowledge of the physiology and the mecha-
nisms governing this important symbiosis, that helped plants colonizing the lands more than 400 MYA. The huge 
expansion of the -omics studies produced the first results on the fungal side, with genomes and transcriptomes of 
AM fungi being published. In parallel, the need for more sustainable agricultural practices has boosted the research 
in the field of the plant symbioses, with the final aim of improving plant productivity employing symbiotic microbes 
as bioinoculants. Beside all the other (positive) effects that mycorrhizal fungi exert on plants, the nutrient exchange is 
considered as the keystone, and the core mechanism governing this symbiosis. This review will focus on the molecu-
lar determinants underneath this exchange, both on the fungal and the plant side. Coming back to the sentence that 
claims this symbiosis as based on phosphate provided to the plant in return to carbohydrate, we will find that some 
concepts of this view still stand, while some others have been partly revolutionized. 
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Introduction
Arbuscular mycorrhizal fungi belong to the basal fun-
gal phylum of Glomeromycota [1]. They are obligate 
biotrophs that associate with plant roots forming the 
mycorrhiza. The establishment of such symbiosis fol-
lows a finely tuned pattern that starts in the soil with the 
exchange of molecular signals produced by both the sides 
of the interaction [2]. Once a host is found, the fungus 
enters the plant root with a mechanism strictly regulated 
by both the partners. The functional core of this sym-
biosis is represented by the arbuscule, a complex, highly 
branched structure formed by the fungus intracellularly, 
and surrounded by a plant membrane called periarbus-
cular membrane (PAM) [3]. Here, the nutrient exchange 
between plant and fungus occurs. Outside the root, the 

fungus forms a net of extraradical hyphae that take up 
nutrients extending the portion of soil that the plant can 
reach with its own roots (Fig. 1).

The rules that govern this exchange of nutrients are 
complex, and should be viewed in the context of two 
symbionts that of course are not interacting alone, but 
also face a plethora of diverse biotic and abiotic stimuli 
in natural conditions. Furthermore, many reports have 
shown that the mycorrhizal outcome in terms of growth 
response can vary considerably, ranging from positive, 
to neutral to even negative [4, 5], and that among the 
AMFs, some have been described as more collaborative 
while some others less [6]. At the moment the bases of 
such variability have not been completely elucidated, 
even if  the researchers already  did big steps forward 
to assess the molecular determinants of the nutrient 
exchange, giving important clues on the factors acting 
as main regulators. All these data are in fact instrumen-
tal to draw the connection between the molecular and 
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the eco-physiological level of the mycorrhizal symbiosis 
functioning.

Major recent breakthroughs in the AM biotrophy, 
as the discovery of the fungal dependency on host fatty 
acids, represented a real paradigm shift, and stimulated 
the researchers to construct an updated scenario of the 
plant–fungal exchanges to integrate the new findings. 
Although both carbon and mineral nutrition in the AM 
symbiosis have been exhaustively reviewed by many 
Authors (as, for example, Casieri et  al. [7], Garcia et  al. 
[8], Shi et al. [9], Wang et al. [10]), the aim of this review 
is to provide the reader with a “handy guide” through the 
current view of the symbiotic transportome.

The first part of the story: the fungus provides the plant 
host with mineral nutrients
The improvement of plant phosphate nutrition by AM 
fungi has been extensively studied over the years. The 
transfer of phosphate from fungi to plant hosts has been 
demonstrated in the 90s, when Trifolium plants were 
mycorrhized in a two-compartment system in which 
radiolabeled P was added to the compartment accessi-
ble to the AM fungus only [11]. AM fungi provide plants 
with phosphate via an indirect pathway, called “the AM 
pathway”, that parallels “the direct pathway” where roots 
directly take up phosphate from the soil [12]. In mycor-
rhizal plants, a considerable part (up to 70%) of the over-
all phosphate uptake can be acquired via the AM pathway 
[13]. Expression of the direct phosphate transporter 
genes in non-mycorrhizal plants is regulated by the 
phosphate starvation signaling pathway; while in AM-
colonized plants, the direct pathway can be modulated 

independent of the phosphate status, as the result of the 
interplay with the AM pathway. It has been demonstrated 
that colonization by AM fungi reduces the direct root 
phosphate uptake locally, but without affecting it in dis-
tant non-colonized roots [14].

The main plant actors of the AM pathway are specific 
phosphate transporters, which have been identified in 
different plant species, including Medicago truncatula, 
Oryza sativa and Lotus japonicus [15–19]. These PHT1 
family transporters show a specific pattern of expression 
in response to AM fungal colonization, being exclusively 
expressed in response to AMFs and localized at the inter-
face of the two symbionts, in the PAM [15].

The best characterized mycorrhiza-inducible PHT1 
gene is MtPT4 from M. truncatula. It has been detected 
in arbusculated cells, and immunolocalization assays sug-
gested its exclusive presence in the PAM [15, 16]. Other 
PHT1 family transporters are present that are likely 
involved in the direct phosphate acquisition pattern. 
In M. truncatula MtPT1, MtPT2, MtPT3, MtPT5 and 
MtPT6 belong to PHT1 family and, though with different 
specific patterns, their expression in mycorrhizal roots is 
generally reduced [20–22]. In rice, the genes OsPT2 and 
OsPT6 likely involved in the direct pathway are down-
regulated by the AM symbiosis, but this repression is 
missing in the mutant line that lacks the mycorrhiza-
responsive phosphate transporter OsPT11 [13].

The AM-inducible phosphate transporters are consid-
ered as good markers for the mycorrhizal status, since 
their transcripts specifically accumulate in response to 
fungal colonization [23–25]. Interestingly, Sawers et al. 
[26] showed that the mycorrhizal outcome in terms of 

Fig. 1  The interaction between Lotus japonicus roots and the arbuscular mycorrhizal fungus Gigaspora margarita. a The L. japonicus roots (R) are 
surrounded by a dense net (arrows) of G. margarita extraradical hyphae that give rise to newly formed fungal spores (S). b A detail of the contact 
between a L. japonicus root (R) and G. margarita hyphae decorated by an auxiliary cell cluster (Au). Bars correspond to 1.3 mm in a and 140 μm in b 
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growth response of maize plants better correlates with 
the abundance of the extraradical mycelium than with 
the accumulation of the mycorrhiza-inducible phos-
phate transporter ZmPT6. This might indicate that the 
fungal ability of exploring the surrounding soil matters 
more than the amount of transporters expressed at the 
PAM. Very recently, a further mycorrhiza-inducible P 
transporter, ZmPt9, has been characterized in maize 
[27] Intriguingly, ZMPT9 seems to localize in the cyto-
plasm, and ZmPt9-overexpressing hairy roots displayed 
a dramatic reduction of AMF colonization [27].

The environmental phosphate level is a key regula-
tor of AM symbiosis. When plants are grown at high 
phosphate concentration, the AM colonization is dras-
tically reduced, with a response that depends on the 
plant species considered [28, 29]. Moreover, the lack of 
functioning of AM-inducible transporters impairs the 
arbuscules formation [15, 17, 19, 30]; these data sug-
gest a role for phosphate transporters (or alternatively 
for the phosphate transfer itself ) in the signaling path-
way that determines the establishment of a successful 
AM colonization. A similar role for phosphate has been 
suggested by Yang et  al., who showed that a mycor-
rhiza-responsive phosphate transporter from rice did 
not display a clear role in phosphate transfer but was 
requested for the correct arbuscule formation [13]. On 
this line, Volpe et al. [19] demonstrated that the expres-
sion of the mycorrhiza-inducible PT4 from M. trunca-
tula and L. japonicus was not restricted to the PAM but 
also present in the root tips of non-colonized plants. 
The authors suggested these PTs might act as transcep-
tors, i.e., proteins with a dual role, in phosphate trans-
port and in the sensing of the phosphate status.

On the fungal side, some phosphate transporters 
appear to be responsible for the first step of the symbiotic 
phosphate transport. They have been described on the 
basis of transcriptomic and genomic data: GmosPT from 
Funneliformis mosseae, GvPT from Diversispora epigaea, 
GiPT from Rhizophagus intraradices, and one from Giga-
spora margarita [31–34]. These PTs are all expressed in 
the extraradical mycelium, where they likely mediate the 
phosphate uptake from the soil. GmosPT from Funneli-
formis mosseae (formerly Glomus mosseae) and GigmPT 
from Gigaspora margarita expression have been recorded 
also in the intraradical hyphae, where they are supposed 
to be active in the phosphate re-uptake from the periar-
buscular space [32, 35, 36]. The inactivation of GigmPT 
by host-induced gene silencing impaired arbuscule devel-
opment, corroborating the view that phosphate sensing 
might also play a role in the establishment of a functional 
symbiosis, possibly entailing a role for PTs as transcep-
tors also on the fungal side. Upon phosphate uptake from 
the soil, its internal levels have to be strictly regulated to 

allow the accumulation and the transfer to the plant host 
of high amounts of phosphate without disturbing the 
fungal homeostasis. The acknowledged model includes 
the phosphate polymerization into polyphosphate 
(polyP) and its storage in the fungal vacuoles, from which 
it can be further released, thanks to the activity of vacu-
olar polyphosphatases, and then exported to the cytosol 
through a vacuolar exporter [37]. The molecular deter-
minants of AM phosphate homeostasis are not clearly 
identified so far. Recently, SPX domain-containing pro-
teins have been widely recognized as main players in the 
regulation of phosphate homeostasis. The SPX domain 
acts by allowing the binding of the regulatory protein 
with inositol polyphosphates (InsPs), thus modulating its 
activity in a phosphate-dependent manner [38]. Recent 
mining of the published genomic and transcriptomic data 
from AMFs detected the presence of genes encoding for 
SPX domain-containing proteins and for InsPs metabolic 
enzymes [37, 39]. Some of them have been found to be 
regulated upon polyP formation and in the response to 
high phosphate concentrations. Strikingly, the R. irregu-
laris genome also revealed the presence of genes encod-
ing for SPX-containing proteins characterized so far only 
in plants, such as the Arabidopsis thaliana SPX1, and 
NLA genes, both involved in the maintenance of plant 
phosphate homeostasis [40, 41]. Taken together, these 
data suggest that a regulatory mechanism based on SPX 
domain-containing proteins and InsPs metabolism might 
have specifically evolved in AMF to meet the double need 
of managing the transfer to the plant of massive amounts 
of phosphate and finely tuning at the same time the fun-
gal phosphate homeostasis.

Although the phosphate transfer surely covers the 
lion’s share, the relevance of nitrogen uptake in the AM 
symbiosis has been also disclosed more recently, with an 
important role played both for plant nutrition and for 
the regulation of the symbiosis functioning itself. In the 
soil, inorganic nitrogen is present as nitrate (NO3) and 
ammonium (NH4

+), and AMF possess specific trans-
porters for both the N forms. In Rhizophagus irregularis, 
three sequences refer to ammonium transporters, and 
one nitrate transporter has been identified [42]. The tran-
scriptome assembly of Gigaspora margarita, an AM fun-
gus belonging to a different order as the model species 
R. irregularis, confirmed a similar equipment in nitrate/
ammonium transporters, being the respective genes well 
expressed in all the considered fungal life stages [34]. The 
expression of R. irregularis ammonium transporter Gin-
tAMT1 has been demonstrated to be induced under low 
environmental NH4

+ conditions [43], while the nitrate 
transporter is induced by the presence of NO3

− [44]. 
When NO3

− is taken up by AMF, it is reduced to nitrite 
by a nitrate reductase and then converted into NH4

+ by a 
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nitrite reductase. The latter (originated by NO3
− reduc-

tion or directly taken up by ammonium transporters) is 
then assimilated into amino acids following two path-
ways: the NAD(P)-glutamate dehydrogenase or the glu-
tamine synthetase–glutamate synthase (GS-GOGAT) 
pathway. The GS-GOGAT pathway generates arginine 
that represents the most abundant amino acid in the ext-
raradical mycelium of AMF. Arginine is then transferred 
through the hyphae to the intraradical mycelium [45], 
where it is broken down into urea and ornithine. Finally, 
NH4

+ is produced from urea via the urease activity, and 
then released in the symbiotic interface. This fungal abil-
ity to take up and transfer N is mirrored by the pres-
ence of specific plant transporters: several AM-inducible 
ammonium transporters have been in fact identified in 
different species such as Lotus japonicus, Glycine max 
(soybean), and Medicago truncatula. In L. japonicus, the 
NH4

+ transporter LjAMT2;2 is exclusively expressed in 
the mycorrhizal roots, and preferentially in arbusculated 
cells [46]. Similarly, in soybean, a specific expression of 
an ammonium transporter has been detected in arbuscu-
lated cortical root cells [47].

AM fungi can also acquire organic N from the soil 
[48]  (Table  1). An amino acid permease, GmosAAP1, 
has been characterized from Funneliformis mosseae (for-
merly Glomus mosseae) as expressed in the extraradical 
mycelium and induced by high levels of organic N [49]. 
Recently, a dipeptide transporter from R. irregularis, 
RiPTR2, has also been described [50]. Its expression pro-
file indicates responsiveness to diverse environmental 
cues when the fungus grows symbiotically, both in intra- 
and extraradical compartments. On the plant side, in 
Lotus japonicus, a high-affinity amino acid transporter 
(LjLHT1.2) has been identified and characterized as pref-
erentially expressed in arbusculated cells. The authors 
suggested for this transporter a possible role in the re-
uptake and the recycling of amino acids from the plant–
fungal symbiotic interface [51].

In more recent times, multiple evidences demonstrated 
that a complex interplay occurs between nitrogen and 
phosphate homeostasis, both at the level of nutrient 
acquisition and sensing, eventually regulating also the 
symbiosis establishment and functioning. A simultane-
ous low phosphate and low nitrogen soil condition dra-
matically increases the extent of AM colonization [52], 
and N starvation is partially overruling the negative effect 
that high soil phosphate availability exerts on mycorrhi-
zation [53]. A striking demonstration of such an inter-
connection has been provided by Breuillin-Sessoms et al. 
[54]. They observed that in the M. truncatula pt4 mutant, 
the premature arbuscule degeneration due to the lack of 
the P transporter is averted when plants are kept under 
nitrogen starvation. This compensatory effect is lost in 

the double mutant pt4,amt2;3. Moreover, no functional 
role in the NH4 + transport could be demonstrated for 
MtAMT2;3. The authors, thus, concluded that AMT2;3 
in M. truncatula represents a keystone in the signaling 
cross-talk between phosphate and nitrogen metabolism, 
with an active role in sensing/signaling more than in 
nutrient transport [54].

Sulphur (S) is an essential macronutrient for plants, 
but its role in the arbuscular mycorrhizal symbiosis has 
been poorly investigated so far. The demonstration that 
AM fungi can take up both organic and inorganic S and 
transfer it to the plant partner only came in recent times 
[55, 56]  (Table  1). Mycorrhizal colonization has been 
demonstrated to positively impact plant sulphur nutri-
tion, with an effect particularly relevant under low envi-
ronmental S conditions [56–58]. Both Lotus japonicus 
and Medicago truncatula possess sulphate transporters 
(LjSultr1;2 and MtSultr1;2, respectively) that respond to 
mycorrhizal symbiosis [18, 57]. LjSultr1;2 has been dem-
onstrated to be strongly activated in arbuscule-contain-
ing root cells [58], being at the same time also involved 
in the sulfate uptake directly from soil. A recent micro-
array study of M. truncatula root and leaf responses to 
S starvation combined with colonization with the AM 
fungus R. irregularis showed that transcriptional changes 
directly linked to a sulphate-deficiency status were less 
dramatic in mycorrhizal versus non-mycorrhizal plants 
[59]. Whether and to which extent mycorrhiza-mediated 
S uptake can interplay with the sensing and transport of 
the other nutrients, and whether the S transporters can 
also have a role in the regulation of the symbiosis itself 
are still a matter of research.

Potassium (K) is perhaps the most neglected macro-
nutrient in the AM symbiosis. Yet, several reports indi-
cate that the mycorrhizal status results in an improved 
K nutrition, and this has been observed in different 
plant–AM fungus associations [60–62]  (Table  1). Sev-
eral types of plant K transporters have been character-
ized, such as Trk (transporter of K), HAK (high-affinity 
K uptake) and SKC (Shaker-like channels), but their role 
in the AM symbiosis [63] has not been investigated so far 
[63]. A few exceptions are represented by a putative HAK 
transporter found as strongly induced in mycorrhizal 
L. japonicus roots [18] and a SKC-like channel of maize 
which resulted up-regulated by AM colonization under 
salt stress [64]. On the fungal side, several sequences 
annotated as putative SKC and HAK are present in the 
genomes of the sequenced AM fungi (see for example 
those available at the JGI MycoCosm portal, https​://
genom​e.jgi.doe.gov/progr​ams/fungi​/index​.jsf ), but more 
focused research is needed to elucidate their possible role 
in the symbiotic K uptake and transfer [8].

https://genome.jgi.doe.gov/programs/fungi/index.jsf
https://genome.jgi.doe.gov/programs/fungi/index.jsf
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Table 1  List of the transporters from different host plants and AM fungi cited in this review

Nutrient Plant transporter name Plant species References

Phosphorus MtPT4 Medicago truncatula Harrison et al. [15]
Javot et al. [16]
Volpe et al. [19]

MtPT1 Bucher [20]
Liu et al. [21]
Grunwald et al. [22]

MtPT2

MtPT3

MtPT5

MtPT6

OsPT2 Oryza sativa Yang et al. [13]

OsPT6

OsPT11

ZmPT6 Zea mays Sawers et al. [26]

ZmPT9 Liu et al. [27]

LjPT4 Lotus japonicus Volpe et al. [19]

Nitrogen LjAMT2;2 Lotus japonicus Guether et al. [46]

LjLHT1.2 Guether et al. [51]

GmAMT4.1 Glycine max Kobae et al. [47]

MtAMT2;3 Medicago truncatula Breuillin-Sessoms et al. [54]

Sulphur LjSultr1;2 Lotus japonicus Guether et al. [18]

MtSultr1;2 Medicago truncatula Casieri et al. [57]

Water LjNIP1 Lotus japonicus Giovannetti et al. [70]

LjXIP1

ZmTIP1;1 Zea mays Barzana et al. [72]

ZmTIP1;2

Arsenic

Zinc

Iron

Sugars MtSUTs Medicago truncatula Doidy et al. [96]

MtSucS1 Baier et al. [98]

MtSut2 Kafle et al. [104]

MtSUT4‐1
MtSWEET12

MtSWEET15c

MtSWEET15d

GmSWEET6 Glycine max Zhao et al. [105]

GmSWEET15

StSWEET1a Solanum tuberosum Manck-Götzenberger et al. [103]

StSWEET1b

StSWEET7a

StSWEET12a

Lipids LjCBX1 Lotus japonicus Xue et al. [123]

MtWRI5a Medicago truncatula Jiang et al. [24]

Nutrient Fungal transporter name Fungal species References

Phosphorus GmosPT Funneliformis mosseae Benedetto et al. [32]

GvPT Diversispora epigaea Harrison et al. [31]

GiPT Rhizophagus irregularis Fiorilli et al. [13]

GigmPT Gigaspora margarita Salvioli et al. [34]
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Considering the symbiotic nutrient flow in a broader 
sense, the water transport is also worth to be mentioned. 
Plant water homeostasis is mediated at the cellular level 
by specific channels called aquaporins (AQPs, [65]; 
Table  1). AQPs belong to a large protein family further 
grouped into five sub-families (see Wang et  al. [10] for 
a review). Mycorrhizal plants have been shown to take 
advantage of an improved water flow from the soil, with 
a better tolerance to (mild) drought conditions (see Bal-
estrini et  al. [66] for a review), and this effect has been 
linked to a modulation of the plant AQPs [67–69].

To cite an example, in L. japonicus, two AQP genes 
(LjNIP1 and LjXIP1) have been demonstrated to be 
induced by mycorrhization [70]. Interestingly, laser 
microdissection experiments demonstrated that tran-
scripts of one of these AQPs specifically accumulated in 
arbuscule-containing cells [70].

AM fungi also appear to modulate their AQP genes 
during the symbiosis. The transcript profiles of two R. 
irregularis AQP genes showed an activation in arbuscule-
containing maize root cells [71]. On the same line, the 
expression of the R. intraradices RiAQPF2 gene in tomato 
plants subjected to drought showed a significantly up-
regulation [69].

Beside water transport, AQPs are also involved in the 
translocation of small molecules as ammonia, urea and 
glycerol, and this function might also play a role in the 
mycorrhizal symbiosis [10]. As an example, Barzana 
et al. [72] analyzed the expression of the maize AQPs in 
roots under diverse experimental conditions, and found 
that two of them, namely ZmTIP1;1 and ZmTIP1;2, were 
up-regulated upon mycorrhization [72]. In maize, most 
of the AQPs belonging to the TIP subfamily, including 

ZmTIP1;1 and ZmTIP1;2, have been demonstrated to 
transport NH3 and urea [25, 73]: taken together, these 
data point to a fine-tuned interplay between symbiotic 
mineral nutrition and water flow.

Beyond the mineral nutrition: the dual role of the AM 
symbiosis in plant metal ions uptake
Some metals such as iron (Fe), manganese (Mn), zinc 
(Zn), copper (Cu), molybdenum (Mo) and nickel (Ni) play 
an important role in plant nutrition as essential micronu-
trients (Table 1). They are required in minimal amounts 
by the organisms, but become toxic when present at 
high concentrations, thus polluting soils and water. In 
this respect, plants have remarkable abilities to scavenge 
heavy metals and tolerate them at relatively high concen-
trations, with some species acting as hyperaccumulator 
employed in phytoremediation strategies for the recov-
ery of polluted soils [74]. Mycorrhizal plants exposed to 
high environmental heavy metal concentrations exhib-
ited a wide spectrum of behaviors ranging from hyper 
accumulation to a reduction of the uptake, also includ-
ing neutral responses (see Shi et al. [9] for a review). Early 
reports showed that zinc uptake in maize was positively 
affected by AM fungi, with an increase of plant growth 
parameters [75]. In addition, AM fungi can be acclima-
tized to high heavy metal concentrations, mitigating in 
turn their accumulation in plants, following a mechanism 
that likely involves the binding and immobilization of 
metals on the mycelium surface [76–78]. Unfortunately, 
this tolerance was shown to dramatically decrease being 
even got lost when the acclimatized fungal strain grew 
in heavy metal-free substrate, compromising in turn the 
fungal ability to confer tolerance to the plant host [79]. 

Table 1  (continued)

Nutrient Fungal transporter name Fungal species References

Nitrogen GintAMT1 Rhizophagus irregularis López-Pedrosa et al. [43]

GmosAAP1 Funneliformis mosseae Cappellazzo et al. [49]

RiPTR2 Rhizophagus irregularis Belmondo et al. [50]

Sulphur

Water RiAQPF2 Rhizophagus irregularis Chitarra et al. [69]

Arsenic RiArsAB Rhizophagus irregularis Maldonado-Mendoza and Harrison [84]

RiMT-11 Gonzalez-Chavez et al. [83]

Zinc GintZnT1 Rhizophagus irregularis González-Guerrero et al. [85]

Iron RiFRE1 Rhizophagus irregularis Tamayo et al. [87]

RiFTR1-2

Sugars RiMST2 Rhizophagus irregularis Helber et al. [107]

RiMST5 Ait Lahmidi et al. [108]

RiMST6

Lipids
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Very recently, the possibility to assess the elemental com-
position of living organisms at the -omics level (referred 
as ionomics) has allowed the simultaneous and quantita-
tive analysis of 19 ions including metal ones in leaves and 
roots of maize with and without inoculation with the AM 
fungus F. mosseae [80]. This analysis indicated that a clus-
ter of elements was positively affected by mycorrhization 
in roots, including Ca, Na, Mo, P, Rb, S and Sr, while the 
content of some metals such as Cd, Co, Cu, Mn, Ni and 
Zn was reduced. In the leaves, the influence of AM colo-
nization on the ion profile was different but still evident, 
with Al, As, Co, Fe, Na, Ni and P increased, while Mn and 
Zn were decreased as already evidenced in roots [80]. 
Recent findings demonstrate that the AM symbiosis can 
modulate the expression of genes that play crucial roles 
in the plant heavy metal accumulation and detoxifica-
tion processes. In Festuca arundinacea, the AM fungus 
F. mosseae led to an induction of ABC transporters and 
metallothionein transcripts under high nickel concentra-
tions [81], and the inoculation with a fungal consortium 
that included R. irregularis increased the transcription 
of Solanum lycopersicum phytochelatin synthase, metal-
lothionein and NRAMP (natural resistance‐associated 
macrophage protein) genes in polluted soils [82].

On the fungal side, the metal ion homeostasis has been 
poorly investigated so far. Current data suggest that AM 
fungi respond to high metal concentrations by regulating 
the expression of genes dealing with their transport and 
metabolism. The exposure of R. irregularis to high arse-
nate concentrations led to the up-regulation of the two 
components of the RiArsAB arsenite efflux pump and of 
a methyltransferase (RiMT-11) in the fungal mycelium 
[83, 84]. Putative fungal transporters have been charac-
terized: GintZnT1 from the extraradical mycelium of R. 
irregularis, with a predicted function in the fungal zinc 
homeostasis [85] and RintABC1, putatively involved in 
heavy metal detoxification [86].

Tamayo et al. [87] performed a careful data mining on 
the R. irregularis genome assembly to retrieve and char-
acterize in silico the copper, iron and zinc transporter 
genes. The same authors went more in detail character-
izing the key components of the reductive pathway of Fe 
assimilation in R. irregularis, namely the ferric reductase 
(RiFRE1) and the high-affinity Fe permeases (RiFTR1-2) 
[88]. Expression data of those genes in the fungal myce-
lium and complementation assays of yeast mutants 
indicate their fine-tuning in dependence of the fungal 
life stages and of the external Fe availability, suggesting 
that Fe homeostasis in AMF is tightly regulated. On the 
ecological point of view, the iron uptake from the sur-
rounding environment has important implications for 
immunity, preventing pathogens invasion on one hand 
and being also involved in beneficial plant–microbe 

interactions on the other [89]. Interestingly, compara-
tive transcriptomics of the AM fungus G. margarita 
colonized or not by an obligate intracellular bacterium, 
showed that one of the genes more up-regulated by the 
bacterial presence is actually an iron transporter [34]. 
Taken together, these data strengthen the vision that the 
regulation of iron homeostasis might represent a relevant 
mechanism enabling AM fungi to cope with bacteria in 
the rhizosphere.

Does the plant reward the fungus only with sugars?
Early reports showed that sugars can be transported from 
the plant host to the fungus in the AM symbiosis [90, 
91] (Table 1). Mycorrhizal colonization increases the root 
sink strength, with up to 20% of photosynthates trans-
ferred to the fungus [92]. Consistently, AM plants often 
display an increased photosynthesis [93, 94], that seems 
not only to sustain the fungal metabolism but also to cor-
relate with an increase in plant biomass [95]. Plants have 
different families of sucrose transporters (SUTs) that can 
be involved in the sugar transfer to the colonized roots: 
in M. truncatula, the expression profiles of MtSUTs are 
finely tuned by the presence of the fungal symbiont [96], 
and the three sucrose transporters from tomato are also 
up-regulated in roots colonized by Funneliformis mosseae 
[97]. M. truncatula antisense lines for the biosynthetic 
enzyme sucrose synthase (MtSucS1) in roots displayed 
an abnormal mycorrhizal phenotype, with an impairment 
of plant growth under phosphate limitation, a reduced 
mycorrhization and relevant alterations in the morphol-
ogy and life span of the arbuscules [98]. These traits were 
mirrored by a reduced expression of plant genes markers 
for the AM symbiosis, pointing to a central role of plant-
derived sugars in the mycorrhiza establishment and func-
tioning [98].

In the roots, the sucrose unloaded from the phloem or 
newly synthesized is thought to be cleaved into monosac-
charides by plant invertases. Monosaccharides are the 
most likely sugar forms transferred to the fungal sym-
biont: consistently, plant monosaccharides transporters 
(MSTs) are finely regulated in roots upon mycorrhizal 
colonization [99–101]. Recently, a new class of sucrose 
and monosaccharide exporters has been characterized 
that likely operates the plant sugar efflux in both patho-
genic and symbiotic interactions [102]. These so-called 
SWEET transporters have been also linked to the AM 
symbiosis, since a recent paper highlighted a transcrip-
tional induction of some of them in arbusculated cells 
from potato plants [103]. Recent findings strongly sug-
gest that sugar transporters can operate at the molecu-
lar level the “reward mechanism” described by Kiers 
et al. [6], which postulated that plants can modulate the 
symbiotic C allocation to reward the most collaborative 
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symbionts. Kafle et  al. [104] provided an elegant dem-
onstration employing the split-root system and 13CO2 
labeling to dissect a tripartite association of M. trunca-
tula with the nodule-forming rhizobacterium Ensifer 
meliloti and the AM fungus R. irregularis. By modulating 
the symbiotic nutrient access and the plant nutritional 
status, they demonstrated that plants under N demand 
preferentially allocated organic C to the nodulated root 
half, but this flux was more balanced when the AM fun-
gus also had access to an exogenous N source. Interest-
ingly, some specific isoforms of the SUT and SWEET 
transporters showed expression patterns that nicely fol-
lowed the plant C partitioning: the expression levels of 
MtSUT2 and MtSUT4‐1 positively correlated with the C 
allocation to the symbiotic partners, and MtSWEET12, 
MtSWEET15c, and MtSWEET15d were up-regulated in 
the mycorrhizal roots when the fungus had access to a 
N source, but were down‐regulated when the host plant 
was not under N starvation. Another recent research 
analyzed the transcriptional responses of soybean roots 
colonized with more or less cooperative (in terms of their 
ability to promote plant growth) AM fungi, and found 
that two SWEET genes (GmSWEET6 and GmSWEET15) 
and one sugar invertase (Glyma.17G227900) were exclu-
sively induced when the roots were colonized with more 
cooperative AMF species [105].

To parallel the activation of plant sugar transporters, 
on the fungal side, a few actors have been demonstrated 
to take part in the symbiotic sugar uptake [106, 107]. In 
particular, RiMST2 from R. irregularis is expressed in the 
intraradical fungal structures, and its silencing affects 
both arbuscule morphology and the extent of the mycor-
rhization [107].

Recently, two further fungal sugar transporters 
(RiMST5 and RiMST6) have been found to be expressed 
also in the extraradical mycelium, being involved in the 
direct uptake from the soil [108]. Both these are mono-
saccharide transporters, and RiMST6 has been character-
ized as a glucose-specific, high-affinity H+ co-transporter. 
However, the contribution of the non-symbiotic sugar 
uptake in AMF has not been clarified yet. Our survey of 
the G. margarita transcriptome highlighted the expres-
sion of fungal sugar transporters also in the pre-symbi-
otic stages of the fungal life cycle. Furthermore, potato 
mutant defective for the SUT gene did not display an 
impaired mycorrhizal phenotype [109]. Taken together, 
these evidences indicate that, though the sugar flux in the 
AM symbiosis is not questioned, this mechanism seems 
not to represent the keystone of the AMF strict biotro-
phy. To justify this peculiar lifestyle, the fungus should be 
dependent on its host for some essential (nutritional) fac-
tors. At the molecular level, this might be due to the lack 
of expression of some crucial genetic determinant in the 

asymbiotic phase, or alternatively to the absence of the 
coding potential for an essential pathway. The availability 
of genomic data on the first sequenced AMF R. irregula-
ris followed in the last year by other species and genera 
[42, 110–113] allowed to reveal that AMF do not possess 
the genes encoding the fungal type I Fatty acid Synthase 
(FASI). Some very recent researches well characterized 
at the molecular level the dynamics of such a fatty acid 
auxotrophy, and clarified that lipids are likely transferred 
from the plant host to the fungus at the symbiotic inter-
face  (Table  1). First of all, a number of fatty acid- and 
lipid-biosynthesis genes were found to be up-regulated 
in arbusculated roots, including a specific acyl-ACP thi-
oesterase (FatM) and a glycerol-3-phosphate acyl trans-
ferase (RAM2) required for the symbiosis [101, 114–116]. 
L. japonicus fatm mutant lines showed a reduced shoot 
phosphate content attributable to an impaired symbi-
otic functionality, and biochemical analyses evidenced a 
decrease of the mycorrhiza-specific phospholipids and an 
alteration of the fatty acid profile [117]. Also, mutations 
in FatM, RAM2 and another FA biosynthetic gene called 
DIS (encoding a β-keto-acyl-ACP synthase I) resulted 
in an impaired mycorrhization, with alteration of the 
arbuscule morphology [115, 116, 118, 119]. The lack of a 
specific ABC transporter that localizes at the symbiotic 
interface (STR-STR2) displays a phenotype very similar 
to that of the AM-specific lipid biosynthesis mutants: this 
transporter represents a plausible candidate to operate 
the lipid flow from the plant to the fungus [116, 118, 120]. 
The next step has been the demonstration that a trans-
fer of lipids from the plant to the fungus actually takes 
place, and this has been provided by different research 
groups following distinct approaches on Lotus japoni-
cus and Medicago truncatula [116, 118, 121]. Taken all 
these data together, the current model for lipid transfer 
from the plant to the AM fungus includes an induction 
of fatty acid biosynthesis in the colonized roots, with 16:0 
fatty acids produced by DIS and released by FatM. Then, 
RAM2 transfers the newly generated FAs to a glycerol 
moiety to produce 16:0 monoacylglycerols (MAG). This 
lipidic molecule is then transported through the PAM by 
the STR–STR2 transporter, and taken up by the fungus 
with a mechanism that remains still unknown. The AMF 
can, thus, use these symbiotic 16:0 MAGs directly for 
energy production or in anabolic processes, modifying 
the FA structure by means of FA active enzymes as elon-
gases and desaturases encoded by the fungus itself.

Recent findings shed some lights on the regula-
tory mechanisms that orchestrate the plant symbiotic 
responses in terms of nutrient exchange.

The RAM1 transcription factor has been identified as 
an early regulator of the mycorrhiza-specific reprogram-
ming, activating on the one hand genes involved in the 
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transfer of FAs to the fungus [121] and the AM-specific 
phosphate transporter PT4 on the other [122]. Follow-
ing different strategies to screen for transcription factors 
that could bind the promoters of mycorrhiza-inducible 
genes, two very recent researches identified elements 
acting downstream RAM1, namely LjCBX1 in Lotus 
japonicus [123] and MtWRI5a in Medicago truncatula 
[124]. LjCBX1 binds the conserved cis-regulatory motif 
“CTTC” enriched in mycorrhiza-regulated genes as well 
as an AW-box motif present in the promoters of glyco-
lysis and fatty acid biosynthesis genes. Accordingly, the 
authors showed that LjCBX1 can activate the transcrip-
tion of FA metabolic genes as well as of the L. japonicus 
PT4 [123]. The M. truncatula MtWRI5a transcription 
factor has also been shown to bind the AW-box motif 
present in the promoter of the fatty acid ABC trans-
porter STR, as well as the phosphate transporter MtPT4, 
enhancing their expression [124]. On the contrary, 
hairy roots of M. truncatula wri5a mutants showed an 
impaired arbuscule formation [124]. These two WRIN-
KLED1-like transcription factors seem to represent key 
elements in the regulation of the symbiotic bidirectional 
nutrient exchange, and well fit into an updated the sce-
nario of the “reciprocal rewards” in the AM symbiosis 
[6], that also accounts for the central role played by FAs 
beside sugars.

Conclusions
The nutrient exchange has surely been the more exten-
sively studied aspect of the arbuscular mycorrhizal 
symbiosis. Yet, recent findings demonstrated that the 
scenario depicted in many years of research was far to be 
conclusive, and that much work is still needed to clarify 
the mechanics and the implications underneath this flow 
of nutrients. In particular, some important milestones 
have been recently placed:

•	 In the fungus-to-plant direction, the relevant role of 
the transfer of nutrients other than P and N has been 
brought to light, as well as the intricate network of 
connections that orchestrates the regulation of the 
nutrient exchange as a whole;

•	 In the plant-to-fungus direction, recent compelling 
results requested a real paradigm shift that shook up 
the mainstream bulk of knowledge: beside sugars, 
lipids are also transferred from the plant to AMFs, 
and their transfer might represent the key of the fun-
gal obligate biotrophy.

The advancements made in the deciphering of this mul-
tifaceted scenario are extremely meaningful for the myc-
orrhiza scientific community. Nonetheless, they are also 

instrumental to the implementation of the mycorrhizal 
symbiosis into agronomical practices aimed at improving 
the health and productivity of crop plants.
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