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Objectives
To evaluate: (i) the neuro-regenerative potential of chitosan
membrane (CS-Me) on acutely axotomised autonomic
neurones in vitro; (ii) to exclude the possibility that a pro-
regenerative biomaterial could interfere with the proliferation
activity of prostate cancer cell lines; (iii) to provide an
in vivo proof of the biocompatibility and regeneration
promoting effect of CS-Me in a standardised rat model of
peripheral nerve injury and repair; (iv) finally, to evaluate
the tissue reaction induced by the degrading material; as
previous studies have shown promising effects of CS-Me for
protection of the neurovascular bundles for potency recovery
in patients that undergo nerve-sparing radical prostatectomy
(RP).

Materials and Methods
Addressing aim (i), the neuro-regenerative potential,
organotypic cultures derived from primary sympathetic
ganglia were cultured on CS-Me over 3 days and neurite
extension and axonal sprouting were evaluated.Addressing
aim (ii), effects of CS on cancer cells, different human
prostate cancer cell lines (PC3, DU-145, LN-Cap) were
seeded on CS-coated plates or cultured in the presence of CS-
Me dissolution products.Addressing aims (iii) and (iv),
functional recovery of peripheral nerve fibres and tissue
reaction with the biomaterial, CS-Me and CS nerve guides
were used to repair a median nerve injury in the rat.

Functional recovery was evaluated during the post-recovery
time by the behavioural grasping test.

Results
CS-Me significantly stimulated axon elongation from
autonomic ganglia in comparison to control conditions in
organotypic three-dimensional cultures. CS coating, as well as
the dissolution products of CS-Me, led to a significantly lower
proliferation rate of prostate cancer cell lines in vitro.Tissue
reaction towards CS-Me and standard CS nerve guides was
similar in the rat median nerve model, as was the outcome of
nerve fibre regeneration and functional recovery.

Conclusion
The results of this study provide the first experimental
evidence in support of the clinical safety of CS-Me and of their
postulated effectiveness for improving functional recovery after
RP. The presented results are coherent in demonstrating that
acutely axotomised autonomic neurones show increased
neurite outgrowth on CS-Me substrate, whilst the same
substrate reduces prostate cancer cell line proliferation in vitro.
Furthermore, CS-Me do not demonstrate any disadvantage for
peripheral nerve repair in a standard animal model.
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Introduction
Prostate cancer is the most common cancer amongst men.
An incidence of 214/1000 cases is registered in Europe,
surpassing the number of the lung and colorectal cancers [1]
and representing the second leading cause of cancer mortality
[2].

The current most popular treatment of localised prostate
cancer in patients with a life-expectancy >10 years is radical
prostatectomy (RP; European Association of Urology
Guidelines on Prostate Cancer, 2017 update). Unfortunately,
in patients who undergo RP, frequently iatrogenic damage to
the periprostatic neurovascular bundles (NVBs) occurs,
leading to erectile dysfunction [3].
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There has been much effort to promote a more rapid and
efficient recovery of functions, namely potency and
continence, after RP. Patel et al. [4] conducted a pivotal study
aimed at determining if the use of a dehydrated human
amnion/chorion membrane (dHACM) allograft wrapped
around the NVBs during robot-assisted RP (RARP) is able to
accelerate the return to normal functioning. Interestingly, the
authors did demonstrate that the application of dHACM in
patients accelerates the recovery of potency and continence,
compared to patients who did not receive the membranes.

Recently, the application of membranes made of another
biomaterial of natural origin, namely the chitosan membrane
(CS-Me), on the NVBs after nerve-sparing RARP has been
reported to be safe. The authors also reported encouraging
results regarding recovery of potency [5]. This indicates that
application of CS-Me after nerve-sparing RP may serve as a
valuable adjunct approach to support functional recovery of
the periprostatic NVB and its target tissue.

Starting from the promising clinical evidence, the studies
presented in the present paper were designed to test this
hypothesis and thereby provide a pre-clinical science basis for
further clinical translation. As no standardised pre-clinical
models exist for evaluating the effect of biomaterials to be
applied after RP in men, we selected the rat median nerve
model as an alternative. The rat median nerve model is a
well-established and valuable model to elucidate effects of an
implanted biomaterial on the regeneration of axotomised
neurones towards re-innervation of peripheral target
tissue [6,7].

Our present studies were specifically aimed at: (i)
investigating the neuro-regenerative effect of CS-Me on
ex vivo cultures of acutely axotomised primary autonomic
ganglia; (ii) excluding a potential modifying effect on
prostatic cancer cell growth following oncological surgery for
cancer cells in contact with CS surfaces and CS dissolution
products; (iii) conducting a morphometric analysis of
regenerated nerve fibres and evaluating the functional
recovery in a standardised rat preclinical model of median
nerve lesion repaired with a CS-Me; (iv) finally, to evaluate
the tissue reaction induced by the degrading material.

Materials and Methods
CS-Me Preparation

CS, made up of b(1–4) linked D-glucosamine and N-acetyl-D-
glucosamine subunits, is the partially or fully deacetylated
form of chitin, which is found widely in nature in the
exoskeletons of arthropods, shells of crustaceans. However,
being a carbohydrate, persons allergic to shellfish protein, will
not develop allergic symptoms when treated with CS-derived
medical products.

CS-Me were produced from highly purified CS with a degree
of acetylation of 5% (Altakitin SA, Lisbon, Portugal) as
previously described [8]. Briefly, CS was dissolved in 0.75%
acetic acid to obtain a 1.5% solution, filtered, and poured into
Petri dishes, followed by drying at room temperature. The
resulting films were treated with a solution of ammonia in
methanol/water, followed by intense washing with distilled
water, and drying. Finally, the films were cut into the
required size and sterilised by ethylene oxide.

CS nerve guides were manufactured by Medovent GmbH
(Mainz, Germany) under ISO 13485 conditions from chitin
tubes made following three main procedures: the extrusion
process, distinctive washing, and hydrolysis steps to reach the
required medium degree of acetylation (DAII). Tubes were
finally cut into lengths of 12 mm and treated with ethylene
oxide for sterilisation.

Analysis of the Regenerative Potential of CS-Me on
Cultures of Autonomic ganglia

Autonomic Ganglia Dissection

For this study, adult male Wistar rats (Envigo, Udine, Italy)
weighing 190–220 g were used. All procedures were
performed in accordance with the Ethics Committee and the
European Communities Council Directive of 24 November
1986 (86/609/EEC). Adequate measures were taken to
minimise pain and discomfort taking into account human
endpoints for animal suffering and distress.

The rats were humanely killed by lethal injection of
anaesthetic solution with tiletamine + zolazepam (Zoletil�;
Virbac, Carros, France) i.m. (3 mg/kg).

Rats were placed under a surgical microscope with the ventral
side facing up and the caudal end oriented toward the
dissector. Using forceps the neck skin and muscles were
removed allowing access to the carotid artery that runs
alongside the trachea. The carotid bifurcation, at the C2–C3
level, represents an important landmark to identify the
superior cervical ganglia that appears as an almond-shaped
structure surrounded by a connective tissue capsule closely
attached to the artery. Once the ganglion was identified, using
fine forceps it was dissected. Following the sympathetic trunk
along the thoracic level it was possible to identify the stellate
or cervicothoracic ganglion, a large ganglion probably formed
by the fusion of the lower two cervical and the first thoracic
ganglia. Dissection of these ganglia induced acute axotomy of
the autonomic neuronal somata located within the ganglia
because the pre- and postganglionic fibres had been
transected. Culturing of primary organotypic explants thereby
represents an ex vivo model of acutely axotomised neurones
for studying neurite outgrowth and axonal regeneration
processes [9].
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Autonomic Ganglia Explant Cultures

The experiments were performed using organotypic cultures
of the superior cervical and stellate (cervicothoracic) ganglia
harvested as a model for surgical transection of
postganglionic sympathetic nerves during RP.

The autonomic explants containing acutely axotomised
autonomic neurones were cultured on two different
substrates: CS-Me and glass coverslips (control).

After harvesting, the connective tissue capsule around the
ganglia was removed and each ganglion was cut in half to aid
the attachment on the CS-Me, a 50 lL drop of Geltrex
Matrigel (Thermo Fisher Scientific, Waltham, MA, USA) in
F12 medium (50% v/v) was applied on the substrate before
seeding the explants. After 2 h incubation at 37 °C, serum-free
[10] culture medium with nerve grow factor (50 ng/mL;
Invitrogen, Karlsruhe, Germany) was slowly added to the plate.

Immunofluorescence

After 3 days of culture, autonomic explants were fixed in 4%
paraformaldehyde (SIC, Societ�a Italiana Chimici, Rome, Italy)
for 15 min, washed in 0.1 M phosphate buffer (pH 7.2) and
processed for immunofluorescence analysis.

Samples were permeabilised, blocked (0.1% Triton X-100, 10%
normal goat serum/0.1% NaN3, 1 h) and incubated over-night
in anti-bIII-Tubulin (mouse, monoclonal, 1:1000; Sigma-
Aldrich, St. Louis, MO, USA) primary antibody; after incubation
with secondary antibody goat anti-mouse IgG Alexa-Fluor-488-
conjugated (1:200; Molecular Probes, Eugene, OR, USA) for 1 h,
autonomic explants were mounted with a Dako fluorescent
mounting medium (Dako, Glostrup, Denmark).

Quantification of Neurite Outgrowth

Autonomic ganglia were scanned using a Zeiss LSM800
confocal laser microscopy system (Zeiss, Jena, Germany). For
each sample, confocal Z-stacks were used and different
images (910) were captured in order to reconstruct the entire
ganglia.

To evaluate the regenerative capability of the autonomic
ganglia on the CS-Me, Neurite J (ImageJ plugin) was used
and two different parameters were evaluated: neurite
extension and axonal sprouting [11].

Evaluation of CS Effect on the Proliferation of
Different Cancer Cell Lines

In vitro Cell Tests On CS-based Membranes

In vitro cell tests were performed using LN-Cap, DU-145 and
PC3 cell lines. The cytotoxicity test was carried out with the

dissolution products of CS-Me, whilst LN-Cap, DU-145 and
PC3 adhesion, proliferation and protein expression were
evaluated on a CS coating, as detailed below.

Dissolution Products of CS-Me

The effect of the CS-Me-based material extracts was studied
on LN-Cap, DU-145 and PC3 cell lines. Material extracts
were prepared by incubating CS-Me in Dulbecco’s Modified
Eagle Medium-F12 (DMEM-F12; Sigma-Aldrich)
supplemented with 100 U/mL penicillin, 0.1 mg/mL
streptomycin, 1 mM sodium pyruvate, 4 mM L-glutamine (all
Sigma-Aldrich), and stored at 37 °C in a humidified
atmosphere of 5% CO2 for 13 days. As control media,
samples of culture medium without CS were maintained in
the same conditions as the CS-Me samples and then
collected after 15 days. Then, the proliferation assay was
carried out using the collected media. In detail, LN-Cap,
DU-145 and PC3 cells were seeded onto Petri dishes and
cultivated in the previously prepared extract media, at a
density of 5 9 103 cells/cm2. After 1, 3, and 6 days in vitro,
cells were trypsinised and counted in a Burker
haemocytometer chamber. Experiments were performed as
technical triplicates. The counts obtained from assays were
analysed, averaged, and expressed as logarithmic scale of
viable cells/mm2 � SD.

Proliferation Assay on CS Coating

Culture wells were coated with a solution of 2 mg/mL CS in
0.1% acetic acid (EMD Biosciences Inc., San Diego, CA, USA)
or with 0.1% acetic acid alone. Briefly, the solutions were
distributed in an excess volume into each well to ensure the
entire surface area was covered. Plates were placed at 4 °C
overnight. The next day, before plating the prostate cancer
cells, the remaining CS or acetic acid solution was aspirated.
Then the proliferation assay was carried out using LN-Cap,
DU-145 and PC3 cells. Cell lines were seeded and cultivated
in Roswell Park Memorial Institute (RPMI) medium
supplemented with 100 U/mL penicillin, 0.1 mg/mL
streptomycin, 1 mM sodium pyruvate, 4 mM L-glutamine (all
Sigma-Aldrich), and 2% fetal bovine serum, at a density of
5 9 103 cells/cm2 on coated Petri dishes. After 2, 5, and
7 days in vitro, cells were trypsinised and counted in a
Burker haemocytometer chamber. Experiments were
performed as technical triplicates.

In vivo Analysis of Regenerative Capability of CS-Me
for Median Nerve Repair

Animal and Surgical Procedure

The functional animal study was performed with adult female
Wistar rats, weighing ~200 g. All procedures were approved
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by the Bioethics Committee of the University of Torino, by
the Institutional Animal Care and Use Committee of the
University of Torino, and by the Italian Ministry of Health,
in accordance with the European Communities Council
Directive European Communities Council (2010/63/EU), the
National Institutes of Health guidelines, and the Italian Law
for Care and Use of Experimental Animals (DL26/14).

The rats were housed at a constant temperature and
humidity, under 12–12 h light/dark cycles, with free access to
food and water. The rats were randomly divided into two
experimental groups: (i) median nerve repaired with CS-Me
(NeuroShieldTM, Monarch Bioimplants GmbH, Root,
Switzerland) and (ii) median nerve repaired with CS nerve
guide (Reaxon�, Medovent GmbH).

Once the rats were under general anaesthesia (Zoletil
[Virban] + Xilazina [Bayer Corp., Whippany, NJ, USA] by
intraperitoneal injection [40 + 5 mg/kg]), the region was
shaved and disinfected with povidone-iodine (Betadine). All
surgical procedures were performed under a high
magnification surgical microscope.

A median nerve segment of 8 mm was removed from the left
forelimb, the CS-Me were rolled up to obtain a 12 mm long
conduit that was used to bridge the nerve defect. The nerve
guide was sutured with one 9/0 epineural suture at each end
(Fig. 1). In the CS-nerve-guide group, a median nerve
segment was removed from the left forelimb and a 12 mm
chitosan nerve guide (Medovent GmbH) was used to bridge
the nerve defect. The nerve guide was sutured with one 9/0
epineural suture at each end. Both devices were immersed in
sterile saline for at least 10 min before implantation. In the
right forelimb a segment of 12 mm of median nerve was
harvested in order to prevent interference with the functional
test.

At the end of the surgical procedure the skin was sutured
with a 3/0 suture. After 2, 6 and 12 weeks, the rats were
killed humanely by anaesthetic overdose of Zoletil + Xilazina
(>60 mg/kg and >10 mg/kg) by intraperitoneal injection, and
the regenerated nerves were harvested for further analysis.

Postoperative Assessment of Functional Recovery:
Grasping Test

The grasping test was performed to evaluate the functional
recovery after median nerve reconstruction with CS-Me and
the standard CS nerve guide. The grasping test is a simple
method to assess the flexor function in the rat median nerve
model and was first introduced by Bertelli and Mira [12].
The grasping test combines the evaluation of the individual
grasping behaviour (fine motor skills) and regained grip
force (gross motor skills). This behavioural test is now
widely used and commonly applied to evaluate the
functional recovery of the median nerve after traumatic
injury [13–20].

The grasping test for measurement of the forelimb grip force
(in g) was performed in both experimental groups using a
commercial testing device consisting of a triangular grid
connected to a precision dynamometer (BS-GRIP Grip Meter;
2 Biological Instruments, Varese, Italy) [18]. The test is
carried out by holding the rat by its tail and lowering it
towards the device and then, when the rat grips the grid,
pulling it upward until it loses its grip. Each rat was tested
three times and the maximum weight that the rat manages to
hold on before losing its grip was recorded.

Resin Embedding

At the time of euthanasia, a 10-mm-long median nerve
segment was harvested immediately distal to the injury site in
nerve repaired with either the CS-Me or standard CS nerve
guide. A 4/0 suture was used to mark the proximal stump of
the nerve segment. Samples were fixed by immediate
immersion in 2.5% glutaraldehyde (SIC Societ�a Italiana
Chimici) in 0.1 M phosphate buffer (pH 7.4) for 5–6 h at
4 °C. Specimens were then post-fixed in 2% osmium
tetroxide (SIC Societ�a Italiana Chimici) for 2 h and
dehydrated in passages in ethanol (Sigma-Aldrich) from 30%
to 100% (5 min each passage). After two passages of 7 min
in propylene oxide and overnight in a 1:1 mixture of
propylene oxide (Sigma-Aldrich) and Glauerts’ mixture of

A B

Fig. 1 Representative picture of the CS-Me implantation. (A) CS-Me rolled up to form the nerve conduit; (B) Implanted conduit.
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resins, samples were embedded in Glauerts’ mixture of resins
(made of equal parts of Araldite M and the Araldite Harter,
HY 964; Sigma Aldrich). In the resin mixture, 0.5% of the
plasticiser dibutylphthalate (Sigma-Aldrich) was added. For
the final step, 2% of accelerator 964 was added to the resin
in order to promote the polymerisation of the embedding
mixture at 60 °C.

Staining and Light Microscopy

Semi-thin transverse sections of 2.5-lm thickness were cut
starting from the distal stump of each median nerve specimen
using an Ultracut UCT ultramicrotome (Leica Microsystems,
Wetzlar, Germany) and stained with 1% toluidine blue for
high-resolution light microscopic examination and design-
based stereology.

Design-based Quantitative Morphology

A DM4000B microscope equipped with a DFC320 digital
camera and an IM50 image manager system (Leica
Microsystems) was used for stereology.

On one randomly selected toluidine blue stained semi-thin
section, the total cross-sectional area of the whole nerve was
measured at the light microscopic level and 12–16 sampling
fields were selected using a systematic random sampling
protocol. In each sampling field, a two-dimensional dissector
procedure, which is based on sampling the ‘tops’ of fibres,
was adopted in order to avoid the ‘edge effect’ [21,22].

For the assessment of regenerated nerves the following
parameters were estimated:

• Cross-sectional area.

• Density of myelinated nerve fibres.

• Number of myelinated fibres.

• Axons diameter of myelinated fibres.

• Myelin thickness.

• Axon diameter/fibre diameter (g-ratio).

Analysis of Tissue Reaction

Animal and Surgical Procedure

The analysis of the tissue reaction was performed on the
proximal halves of the regenerated tissue repaired with either
CS-Me or standard CS nerve guide harvested at 2, 6 and
12 weeks after injury.

Histological Procedures

Specimens were harvested and fixed overnight at 4 °C in 4%
paraformaldehyde (Sigma-Aldrich) diluted in PBS (Biochrom

GmbH, Berlin, Germany). Afterwards, the samples were
stored in 70% ethanol before paraffin-embedding in a Citadel
tissue embedding-automatic unit (Shandon Citadel 2000;
Thermo Fisher Scientific). Series of 40 blind-coded cross-
sections (thickness 7 lm) starting from mid-graft level were
prepared.

Immunofluorescence

Two nerve cross-sections, consecutive to the haematoxylin
and eosin stained ones, were immunohistologically stained
for activated macrophages (ED1) in order to assess the
degree of a possible foreign body response. Upon blocking in
5% rabbit serum (Sigma-Aldrich) diluted in PBS, sections
were stained with primary mouse anti-ED1 antibody (1:1000
diluted in blocking solution; MCA275R Serotec, Oxford, UK)
overnight at 4 °C, washed thrice in PBS and stained with
Alexa 555-conjugated secondary goat anti-mouse antibody
(1:1000 diluted in blocking solution; A21422; Invitrogen) for
1 h at room temperature. After washing in PBS again, 40,60-
diamidino-2-phenylindole (DAPI; 1:2000 diluted in PBS;
Sigma Aldrich) was applied for nuclear counterstaining
(2 min at room temperature), before mounting with Mowiol
mounting medium (Sigma-Aldrich). Representative
photomicrographs were taken at 980. In each section, 4–6
randomly selected areas in the outer area of the nerve cross-
section were evaluated for the number of ED1-
immunopositive signals per mm² using the ImageJ software
version 1.48 (National Institutes of Health, Bethesda, MD,
USA). DAPI staining served to clearly identify ED1-
immunopositive cells.

Statistical Analysis

For in vitro experiments, statistical analysis was performed
using one-way ANOVA and post hoc Bonferroni.

For neurite outgrowth assays from autonomic ganglia,
statistical analysis was performed using the two-sample t-test.
Statistical analysis was performed using the Statistical Package
for the Social Sciences (SPSS�), version (SPSS statistics v20,
IBM Corp., Armonk, NY, USA.

The level of significance was set at *P ≤ 0.05, **P ≤ 0.01, and
***P ≤ 0.001. Values were expressed as mean � standard
deviation (SD).

For in vivo assessment of regenerated nerve morphometry,
statistical analysis was performed again using SPSS software.
Statistical analysis was performed using the two-sample t-test.
The level of significance was set at *P ≤ 0.05, **P ≤ 0.01, and
***P ≤ 0.001. Values are expressed as mean � standard
deviation (SD).
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Results
CS-Me Represents a Permissive Substrate for Neurite
Regeneration and Axonal Elongation of Autonomic
Explants Ganglia

To evaluate the pro-regenerative capability of CS-Me, we
cultured autonomic explant ganglia over 3 days and
determined the numbers of extending neurites at certain
distance from the explant body according to the Sholl method
[11].

Overall neuritic sprouting was much enhanced in the control
condition and CS-Me explants (Fig. 2). As shown in the
graphs (Fig. 3), autonomic explant ganglia cultured on CS-Me
had a longer neuritic length compared to the control
condition.

Morphological analysis of explanted ganglia stained with bIII-
tubulin showed a high neuritic outgrowth and strong neurite
arborisation supporting the pro-regenerative effect of CS-Me
(Fig. 2).

Dissolution Products of CS-Me Negatively Affect
Proliferation of LN-Cap, DU-145 and PC3 Cell Lines

The proliferation of three different human prostate cancer cell
lines: DU-145, LN-Cap and PC3 cultured in medium
containing dissolution products of CS-Me were evaluated.
After 15 days of CS film dissolution at 37 °C, media collected
were used to cultivate three cell lines and proliferation assays
were carried out. Cells were plated and cultured in the
presence of conditioned media and their proliferation was
evaluated after 1, 3 and 6 days. As control media, samples of
culture medium without dissolution products of CS-Me
maintained in the same conditions were collected after
15 days. The proliferation assay was performed after 1, 3 and
6 days on DU-145, LN-Cap and PC3 cells cultured with this
control condition medium.

The results demonstrate that cancer cells grown in
conditioned medium with the dissolution products from the
CS-Me had a significantly (P < 0.05) lower proliferation rate
as compared to cells grown in control medium (Fig. 4).

ctr

A B

C D

CS-Me

100 um

Fig. 2 Morphology. Axonal outgrowth of organotypic autonomic ganglia cultured, stained with anti-bIII-tubulin, on CS-Me (B–D) and control (ctr)

substrate represented by glass slides (A–C).
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Direct Contact of Human Prostate Cancer Cell Lines
with CS Coating Substantially Alter their Morphology
and Proliferation Rate

The anti-proliferative effect of CS was further tested on
three different human prostate cancer cell lines: DU-145,

LN-Cap and PC3. Cells were plated in three different
experimental conditions: no-coating (control), CS coating,
and acetic acid coating (the latter represents a control of
the toxicity, as it is the substance in which CS is dissolved
in), and the proliferation assay was performed after 2, 5
and 7 days.
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All cell lines tested showed a significant reduction in their
proliferation when grown on the CS substrate. No
interference with proliferation was found by cultivating the
cells in the presence of a coating of acetic acid at 0.1%
(Fig. 5). Cell morphology reflects the results of the
proliferation experiments. Cells cultured on the CS substrate
lost their normal morphology and adhesion capacity; they
appeared rounded and formed clusters (Fig. 6).

CS-Me Allows Nerve Fibre Regeneration 12 weeks
after Median Nerve Damage and is biologically
inert

Evaluation of Functional Recovery

Functional recovery was evaluated at the 12-week time-point
in regenerated median nerves repaired with CS-Me or with
standard CS nerve guides by means of the grasping test for
measurement of the left forelimb grip force (Fig. 7).

No significant differences in the grip forces were found
between the two experimental groups at 12 weeks. It can be
concluded that the CS-Me nerve conduit allowed peripheral
nerve regeneration similar to the CS tube.

Interestingly, values were already close to those of healthy,
uninjured limbs, which are in the range of 300 [17] to 450 g

[18]. Thus, recovery is fast, also compared to results
described for a direct suturing model of the rat median nerve
(which is less traumatic than the gap model of this study),
resulting in grip forces of merely 100 g at 12 weeks after
implantation [17].

Design-based Quantitative Morphology of
Myelinated Nerve Fibres

Morphological evaluation of toluidine-blue stained cross-
sections of the distal part of the regenerating nerves showed
the presence of myelinated regenerated nerve fibres from
the two experimental groups organised in microfascicles
with well-defined axoplasm and well-organised myelin
sheaths (Fig. 8). Quantitative analysis (Fig. 9) showed that
the cross-sectional area of the distal part of the regenerated
nerves was not statistically different between the two
experimental groups (Fig. 9A). Moreover, the density
(Fig. 9B) and the total number of myelinated fibres
(Fig. 9C) were not statistically different between the two
groups.

With respect to parameters related to the nerve fibre size,
axon size, myelin thickness (Fig. 9D), and g-ratio (axon
diameter/fibre diameter; Fig. 9E), there were no detectable
significant differences between the two groups.
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##P ≤ 0.01; $/###P ≤ 0.001. $ctr vs CS-coating treatment; #acetic acid-coating vs CS-coating treatment.
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Evaluation of Tissue Reaction at the Implantation
Site

As shown in Fig. 10, ED1-immunopositive cells were detectable
in all samples analysed. The bar graph in Fig. 11 shows the
results from the quantification of ED1-immunopositive cells
within the outer layer of the regenerated nerve tissue at mid-
graft level. A significant decrease in the number of activated
macrophages was detectable from 2 to 6 weeks after
implantation in both, the CS-Me and CS-nerve-guide groups
(*P < 0.05). Within the CS-nerve-guide-tube group a
significant decrease in ED1-positive cells further occurred
between each of the time points (*P < 0.05). Within the CS-Me
group, both at 6 weeks and 12 weeks, the number of ED1-
immunopositive cells was significantly reduced (*P < 0.05) in

comparison to 2 weeks after the implantation. The number of
activated ED1-immunopositive macrophages was significantly
lower in CS-Me samples at 6 weeks than in control samples.
From 6 to 12 weeks the number of ED1-immunopositive cells
further decreased in the CS-Me group but not in a significant
amount anymore. The investigated materials can therefore be
considered biologically inert. From these results, it can further
be concluded that the tissue reaction towards the implanted
material is attenuated sooner in the CS-Me group than in the
standard CS-nerve-guide group.

Discussion
CS is a derivative of chitin, obtained from the exoskeleton of
crustaceans, which has been receiving significant interest both

PC3 CTRL 2D PC3 CS 2D

PC3 CTRL 5D PC3 CS 5D

PC3 CTRL 7D PC3 CS 7D

Fig. 6 Effects of cell direct contact with CS coating. Morphology: representative panel depicting PC3 cell lines cultivated on the control (CTRL) and on

the CS coating. Cultured cells on the CS substrate lose their normal morphology and adhesion capacity; they appear rounded and form clusters. 2D,

culture at 2 days; 5D, culture at 5 days; 7D, culture at 7 days.
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in basic research and in clinical settings. Its chemical
structure [polysaccharide composed of D-glucosamine and N-
acetyl-D-glucosamine linked with b(1–4) bond] gives it
remarkable hypoallergenicity, making it an excellent candidate
for the development of innovative applications in the field of
medicine and surgery, also thanks to its biocompatibility,
bioavailability, and lack of toxicity. For these reasons, the
potential clinical applications of CS range from orthopaedics

and drug-delivery systems to scaffolds for regeneration of
nerve, skin, bone, and cartilage [6,23–27].

The aims of the present study were focused on: (i) addressing
the axonal-regenerative potential of CS-Me for acutely
axotomised autonomic ganglion neurones in ex vivo cultures
by modelling fibre outgrowth of the transected NVB after RP;
(ii) excluding the possibility that this specific pro-regenerative
biomaterial could increase the cell proliferation in a tumour
site by culturing prostate cancer cell lines on CS and in
presence of CS-Me dissolution products; (iii) evaluating the
regenerative potential and the functional recovery of the CS-
Me to repair a somatic nerve lesion; (iv) assessing the
reaction of the regenerating and the surrounding tissue
towards the material. For addressing study aims (iii) and (iv),
we chose the rat median nerve model, which is well
standardised and known to be able to elucidate nerve
reconstruction conditions and to assess the regeneration
process. To the best of our knowledge, to date no specific and
standardised pre-clinical model exists for simulating
transection of the periprostatic NVB. Furthermore, our group
has profound knowledge of the rat median nerve injury and
repair model and has tested varying biomaterial-based
approaches for nerve repair, including CS-based nerve guides
[28,29]. In addition, clinical data available to date for the
application of CS-Me after RP [5] do not indicate that low
biocompatibility of the material could negatively interfere
with healing process. Therefore, the rat median nerve model
appeared as the most appropriate model to us for
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Fig. 7 In vivo functional analysis. Bar graph reporting the post-traumatic

functional recovery assessed by the grasping test. Values for the left

forelimb grip force are reported as mean � SD. Neuroshield, CS-Me;

Reaxon, CS nerve guide.
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Fig. 8 Representative low- and high-magnification light photomicrographs. Toluidine blue-stained semi-thin cross-sections of nerve repaired with CS

nerve guide (A and B) and CS-Me (C and D) obtained at the distal level. Scale bar, 20 lm.

10
© 2019 The Authors
BJU International © 2019 BJU International

Muratori et al.



comprehensively analyse the properties of CS-Me in nerve
repair.

As regards the first study aim, we used primary organotypic
cultures, which provided a multicellular ex vivo model that
preserves both the cytoarchitecture of the tissue and the
interactions amongst cells, providing a closer approximation
to in vivo conditions [9,30]. As the prostatic plexus is
innervated by autonomic nerve fibres, the regenerative
potential of CS-Me was assessed through acutely axotomised
organotypic sympathetic ganglion cultures that represent an
innovative and original experimental model for testing
autonomic nervous system regenerative properties.

We demonstrated, for the first time in the literature, that CS-
Me not only exert a pro-regenerative effect on somatic
neuronal ganglia [8,27], but also on autonomic neuronal
ganglia. This observation is important as it provides a
possible mechanistic explanation for the positive effects of
CS-Me application on functional recovery after RP [5],
namely that the faster recovery of potency is due to the post-

surgical stimulation of axonal regrowth in the periprostatic
NVBs.

The second aim of the present study was to analyse the safety of
the use of CS-Me in surgical oncology of prostate cancer. Given
the intrinsic cell supportive capacity of CS, we wanted to rule out
that CS might have any negative side-effect due to a proliferative
stimulation of prostate cancer cells. Alongside the pro-
regenerative effects, of great interest is the anti-proliferative
activity of CS reported on different tumour cell lines. Indeed, the
anticancer activity of CS was proved in human breast cancer cell
lines [31], in a human gastric carcinoma cell line MGC803, and
in a human monocytic leukaemia cell line [32,33]. Gibot et al.
[34] analysed the mechanisms underlying the anti-proliferative
effect of CS on human melanoma cell lines and suggested a cell-
line dependent effect on apoptosis and further proposed this
type of analysis as a future instrument for assessing cancer
therapies in the field of melanoma.

We wanted to test the effect of CS-Me dissolution products
on the proliferation of tumour cells derived from prostate
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adenocarcinomas: lymph node, brain and bone metastasis,
respectively, LN-Cap, DU-145 and PC3 cells [35,36].

It is known from the literature that CS products are able to
stimulate regeneration and therefore the positive effect on the
neuronal population is not only due to direct contact with the
material but also from its degradation [37]. Interestingly, we
observed that cancer cells grown in conditioned medium with the
dissolution products from CS-Me exhibit a significantly lower
proliferation rate compared to cells grown in control medium.

The direct contact of CS with cancer cell lines was tested with
regard to cell proliferation and morphology. This experiment
revealed a significant reduction in proliferation of the prostate
cancer cell lines grown on the CS substrate. The analysis of the

cell morphology also reflected this aspect: cultured cells on the
CS substrate lost their normal morphology and adhesion
capacity, and finally appeared rounded and formed clusters.

As already explained above, for evaluating the regeneration of
the damaged NVB after nerve-sparing RP with regard to
functional and quantitative parameters, standardised pre-
clinical models are controversial. Therefore, these additionally
important aspects have been investigated in an alternative
experimental model, which allows a precise, effective, and
highly standardised evaluation of the same, the resection and
repair of the median nerve.

In this context, the third aim of the present study was the
evaluation of the CS-Me in terms of regeneration after median
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Fig. 10 Representative photomicrographs taken from median nerve cross-sections at mid-graft level. ED1-immunopositive cells display a red cytoplasm

and blue nuclei counterstained with DAPI in CS nerve guide and CS-Me. (A-C-E) nerve repaired with CS nerve guide harvested at 2, 6 and 12 weeks,

respectively after surgery; (B-D-F) nerve repaired with CS-Me harvested at 2, 6 and 12 weeks, respectively after surgery. Scale bars, 10 lm. Asterisks

indicate cellular profiles counted as activated ED1-immunopositive macrophages.
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nerve transection and the assessment of functional recovery in
comparison with the standard CS nerve guide that evidently
represents a pro-regenerative device [25,27,28,38].

The comparison between CS-Me and the CS nerve guide
revealed a substantial equivalence of the two medical devices
for repairing a 10 mm-long nerve gap in the rat median nerve.

Functional recovery of neuromuscular function is the most
relevant issue in a pre-clinical perspective. Behavioural testing
of the recovery of the grasping function (controlled by the
median nerve innervation of flexor digitorum muscles)
showed no significant differences between the two devices at
12 weeks postoperatively. This result is noteworthy, as the
flexion of the fingers for grasping an object is a voluntary
movement, the recovery of which reflects not only the re-
innervation of the muscles but also the recovery of the central
control of the relevant neural pathways.

Equivalent results with these two devices were also found when
comparing the quality of nerve fibre regeneration by quantitative
morphological analysis (using unbiased stereology), namely no
differences were found between the two experimental groups for
the number, density and size of regenerated axons, as well as the
myelin sheath thickness and g-ratio.

The tissue reaction towards the implanted biomaterial,
addressed in the fourth aim of the present study, was similar
for both devices, characterised by the absence of
polymorphonuclear cells, lymphocytes, plasma cells, necrosis
and fibrosis of the tissue peripheral nerve. The decreasing
number of activated macrophages over time are indicators of a
very mild tissue response that decreases over time. Remarkably,
there were statistically significant fewer ED1-immunopositive

cells detected at 6 weeks after implantation with CS-Me in
comparison to the CS nerve guide. This indicates that the CS-
Me induced a milder tissue reaction at this time point, whilst
at 12 weeks no differences were found between the two
devices. Furthermore, there were no statistical differences in
the number of ED1-immunopositive cells in CS-Me at 6 and
12 weeks, indicating steady state conditions.

Prostate cancer, whose surgical therapy, RP, remains the ‘gold
standard’ therapy today, is increasing in incidence every year,
exceeding the number of lung cancer and colorectal cancers.
Following the removal of the prostate, the NVBs may be
damaged, leading to functional deficits such as erectile dysfunction
and incontinence. There has been much clinical research effort to
minimise side-effects and limit residual functional deficiencies.
Recently, Porpiglia et al. [5] reported the preliminary results of a
clinical trial in which they tested CS, already known for its
effectiveness in promoting nerve regeneration [8], in the form of
membranes they aimed to protect the NVB following RP. They
showed the feasibility of the application of CS-Me and the safety
of the material, meanwhile observing a promising effect on the
recovery of potency in the patients.

Taken together, the results of the present study provide strong
evidence, using pre-clinical basic science models, underscoring
the previously reported promising clinical results. The present
results further support the view that application of CS-Me can
be a simple, safe and an effective adjunct strategy to support
timely functional recovery of the periprostatic plexus after
nerve-sparing RP. We conclude that this approach deserves
further efforts towards widespread clinical application.
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