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Abstract

For a one-dimensional diffusion process X, we derive the Laplace transform and
the moments of the first time at which the age of an excursion above (or below)
the level x is longer than u. The result is then illustrated for diffusion processes
that are found relevant in applications. In the context of pricing Parisian op-
tions, the Brownian motion and the Geometric Brownian motion are considered
and the Laplace transform can be made explicit and explicit expression for the
moments can be derived. In the context of neuronal modeling, the Ornstein–
Uhlenbeck process and the Cox–Ingersoll–Ross process are considered and the
Laplace transform and the moments must be approximated by numerical inver-
sion.
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1. Introduction

Given a Markov process X and a level x that belongs to the state space,
the purpose of excursion theory is to describe the evolution of X in terms of
the set M = {t : Xt = x} and the pieces of the path that are defined over the
complement of that t set, the so called “excursions away from x”.

Such a decomposition is particularly interesting in the regular and instan-
taneous case, where starting at x the process is almost surely both visiting x
and away from x during every arbitrarily small time interval (0, t), t > 0. Then
the random set M is perfect and nowhere dense, see Bertoin (1996). This is
the case of diffusion processes that, starting from x, almost surely have infinite
crossings of the level x in any arbitrarily small time interval.

In 1970 Itô showed how this case can be treated by viewing the excursions
as “points” of a Poisson point process, indexed by local time and whose char-
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acteristic measure describes many interesting features of the original process.
Such remarkable results have been published in Itô (1972), that is considered
the starting point for the excursion theory.

Later, Meyer discussed a more general case by introducing the entrance law,
and Dynkin and Maisonneuve gave a complete analysis of excursions from a
general set, see Meyer (1972), Dynkin (1968, 1971) and Maisonneuve (1975).
Since then, a variety of applications have been developed, starting from the
general theory of Maisonneuve, Getoor studied the excursion straddling a time
t and the first excursion exceeding u in length, in the general setting of Hunt
processes, Getoor (1979). For a complete treatment of excursion theory, readers
can refer to Itô (1972), Rogers (1989), Pitman and Yor (1982) and Pitman and
Yor (2003).

In this paper we focus on a particular excursion of diffusion processes. Specif-
ically, let X be a diffusion process with state space I ∈ R. Given a fixed positive
value u and a given level x ∈ I, let us denote by [Gu,+, Du,+] the excursion in-
terval that corresponds to the first excursion of X above the level x, exceeding
u in length. On such interval, let us define the stopping time H = Gu,+ +u, the
first time the process remains constantly above the level x for a time interval
longer than u.

Starting from Getoor (1979) and Pitman and Yor (2003) we derive an ana-
lytical expression for the Laplace transform of the left endpoint of the excursion
interval Gu,+, for any general diffusion process. Using the same approach, it is
possible to derive the corresponding quantities for Gu,−, accounting for the first
excursion of X below the level x exceeding u in length. The results on Gu,+

can be directly transferred on H.
Our interest in H comes from applications. The r. v. H has been firstly in-

troduced in Chesney et al. (1997) in order to study the so–called Parisian barrier
options. The result presented in this paper solves the problem of Parisian pric-
ing with underlying asset following any diffusion process, included the geometric
Brownian motion. In the latter case, the method here presented provides a for-
mula that requires a straightforward numerical inversion of a Laplace transform,
see Section 4. Moreover, the r. v. H has been recently introduced in Sirovich
and Testa (2016) as the firing time in a single neuron Leaky Integrate and Fire
model. The classical definition of firing time in this context is usually given as
the first hitting time, of a given level, of the underlying membrane potential
process. However, it has been proved Sirovich and Testa (2016) that such a
‘hard threshold’ hypothesis is rarely confirmed by real data from intracellular
recordings. From there, the need of a ‘soft threshold’ definition has been ad-
dressed by introducing the r. v. H, so that the membrane potential process can
cross the threshold level several times before firing. In order to check on data
the predictive performances of the new firing model, theoretical results are here
derived. Classical models for the underlying membrane potential process are
the Orstein–Uhlenbeck and the Cox–Ingersoll–Ross processes. In such cases,
the density of the r. v. H can be approximated by a double numerical inversion
of the Laplace transform, see Section 4.

The paper is organized as follows. Section 2 presents preliminaries on the
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basic relations between the distributions of hitting, occupation, and inverse local
times. The main result of the paper is given in Section 3, where the Laplace
transform E[e−λG

u,+

] is given for any general diffusion process. The result is
then applied in Section 4 in order to calculate the Laplace transform of H for
three different diffusion processes: the Wiener process, the Ornstein–Uhlenbeck
(OU) process and the Cox–Ingersoll–Ross (CIR) process. Section 5 contains
numerical results of the Laplace inversions and the comparisons with Monte
Carlo simulations.

2. Preliminaries

We will suppose through the article that X is a diffusion process with state
space some interval I ⊆ R and infinitesimal generator

G :=
1

2
a(x)

d2

dx2
+ b(x)

d

dx
, (1)

acting on a domain of functions subject to appropriate smoothness and bound-
ary conditions. For all x ∈ int(I), the interior of I, a(x) is assumed to be
continuous and positive and b(x) locally integrable. The process X is a reg-
ular diffusion, i. e. for all x ∈ int(I) and y ∈ I, Px(Ty < ∞) > 0, where
Ty = inf{t > 0 : Xt = y}.

For x ∈ int(I), (Lxt )t≥0 is the local time process of X at level x and the
occupation–measure formula says that, for any bounded measurable function f
supported in int(I), ∫

[0,t]

f(Xs)d〈X,X〉s =

∫
f(x)Lxt dx, (2)

where 〈·, ·〉· is the quadratic variation process. It is well known that the map
t→ Lxt is continuous and increasing with growth set {t ≥ 0 : Xt = x}.

Let (τl)l≥0 denote the right continuous inverse of the local time Lxt ,

τl = inf{s ≥ 0 : Lxs > l}.

The process τl is a strictly increasing subordinator with

E[e−λτl ] = e−lψ(λ),

ψ(λ) = k + γλ+

∫
]0,∞[

(1− e−λr)ν(dr), (3)

where k = ψ(0) ≥ 0 is the killing rate, γ ≥ 0 is the drift coefficient and ν is the
Lévy measure on ]0,∞] satisfying

∫
]0,∞[

(1∧s)ν(ds) <∞. As we are considering

diffusion processes, any x is of potential {0} so that γ = 0, see Getoor (1979).
It is well known, see Bertoin (1996), that either x is recurrent, in which case

k = ψ(0) = 0 and Py(τl < ∞) = Py(Lx∞ = ∞) = 1 for all x, y ∈ int(I), or x
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is transient and τl has a jump to ∞ at an independent local time Lx∞ which is
exponentially distributed with rate k = ψ(0) > 0.

Using the same notation introduced in Getoor (1979), we denote by h(u) =
ν(]u,∞]) the tail of the Lévy measure ν. Clearly, h is a right continuous de-
creasing function on ]0,∞], with h(∞) = ν({∞}) = k and ν(dr) = −dh(r) on
(0,∞). Moreover

∫
]0,t]

h(u)du <∞, ∀t <∞ and in particular limu→0 uh(u) = 0

although h(0+) is infinite.
In Pitman and Yor (2003) the authors proved the following result.

Theorem 1. The Laplace exponent ψ(λ) of τl is given by

ψ(λ) = ψ+(λ) + ψ−(λ), (4)

where for ± = + or −

−ψ±(λ) =± 1

2

Φ
′

λ,±(x)

Φλ,±(x)
= ±1

2

d

dz

∣∣∣
z=x±

Pz[exp(−λTx)], (5)

with Φλ,+ and Φλ,− being respectively the decreasing and the increasing solutions
Φ of GΦ = λΦ. Moreover,

ψ±(λ) =

∫
]0,∞]

(1− e−λr)ν±(dr), (6)

for some Lévy measure ν± on ]0,∞], with atoms at infinity of magnitudes

ψ±(0) = −± 1

2
lim
λ↓0

Φ
′

λ,±(x)

Φλ,±(x)
. (7)

Finally, the tail of the Lévy measure h±(u) = ν±(]u,∞]) is given by

h±(r) = ±1

2

d

dz

∣∣∣
z=x±

Pz(Tx ≥ r) (0 < r ≤ ∞), (8)

and eq. (6) can be rewritten as

ψ±(λ) = λ

∫
]0,+∞]

e−λrh±(r)dr. (9)

Let the occupation times A±t be defined as

A+
t =

∫
[0,t]

1(Xs > x)ds, A−t =

∫
[0,t]

1(Xs ≤ x)ds.

As t = A+
t + A−t , we have the decomposition τl = A+

τl
+ A−τl . According to

(Pitman and Yor, 2003, Corollary 2), if X is a recurrent process, the processes
A+
τl

and A−τl are two independent subordinators with Laplace exponents

Ex[exp(−λA±τl)] = exp[−lψ±(λ)], (10)
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and hence the subordinator τl is the sum of two independent subordinators. In
the transient case, the two processes A±τl are independent subordinators only
conditionally on Lx∞. Otherwise, independence fails and only one of them is a
subordinator with a jump to ∞. The other one indeed is constant for every
time larger than τLx∞ .

The above results can be interpreted in the framework of Itô’s excursion
theory. Let M denote the closure of {t ≥ 0 : Xt(ω) = x}. The complement
of M in R+ is expressed, in the canonical form, as a disjoint countable union
of open intervals

⋃
j(aj , bj). The paths defined by Xaj+s, for 0 ≤ s < bj − aj ,

are the so called excursions of X away from x. The length of the excursion
interval (bj − aj), is called lifetime of the excursion. As the excursion intervals
are precisely the open intervals of the type (τl− , τl) for τl− < τl, this suggested
the use of the inverse local time as a new time scale to work on the excursions
of X. More formally, let us introduce the excursion process Π that takes values
in the excursion space

U =
{
f : R+ → R continuous : f−1 (R− {x}) = (0, ζ) for some ζ > 0

}
.

The process Π has a point el at time l if and only if X makes an excursion at
local time l and

el(s) = Xτl−+s, 0 ≤ s < τl − τl− . (11)

The excursion process has been proved to be a Poisson Point Process stopped at
Lx∞ with intensity n, where n is a σ-finite measure on the space of excursions U
called the excursion measure, see Rogers (1989). As the lengths of the excursions
correspond to the amplitude of the jumps of the process τl, we have that

n(ζ ∈ dt) = ν(dt), (12)

where ν is the Lévy measure of the subordinator τl with characteristic exponent
given in (3).

By continuity of the trajectories, each excursion away from x is either a
+ excursion which lies entirely in [x,∞), or a − excursion which lies entirely
in (−∞, x]. Following the same arguments, the lengths of the + excursions
correspond to the amplitudes of the jumps of the process A+

τl
and

n(+ excursions, ζ ∈ dt) = ν+(dt). (13)

Hence, the study of the distribution of the excursions’ lifetimes is strictly con-
nected to the study of the inverse local time.

3. Results

Let Gu be the left endpoint of the first excursion exceeding u > 0 in length
and let Du be its right endpoint. In Getoor (1979) the Laplace transform of
Gu has been derived. We are interested in separating the excursions above the
level x and below the level x. Hence, let Gu,+ and Du,+ be respectively the left
and right endpoints of the first excursion above the level x and exceeding u in
length. Our main result is the Laplace transform of Gu,+.
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Theorem 2. Let X be a recurrent or transient process with ψ+(0) = ψ(0) (or
equivalently ψ−(0) = 0), then

Ex[e−λG
u,+

] =
h+(u)

h+(u) +
∫
]0,u]

(1− e−λr)ν(dr) +
∫
]u,∞]

(1− e−λr)ν−(dr)
, (14)

where ν, h+ and ν− have been defined in eqs. (3), (8) and (6) respectively.

Proof. Let us remark that condition ψ+(0) = ψ(0) ensures that the last excur-
sion with infinite length is above the level x a. s., see Pitman and Yor (2003).

Let τl be the right continuous inverse of the local time Lxt . We write
τl = τ1l + τ2l , where (conditionally on l < Lx∞) τ1l and τ2l are two independent
subordinators with exponents

∫
]0,u]

(1− e−λr)ν(dr) and
∫
]u,+∞]

(1− e−λr)ν(dr)

respectively. Hence, τ1l contains all the jumps of τ which are less than or equal
to u, while τ2l contains all the jumps of τ which exceed u.

Moreover, we write τ2l = τ2,+l + τ2,−l , where (conditionally on l < Lx∞)

τ2,±l are two independent subordinators accounting for the + excursions and
the − excursions. Hence they have exponents

∫
]u,+∞]

(1 − e−λr)ν+(dr) and∫
]u,+∞]

(1− e−λr)ν−(dr) respectively.

Let R be the (local) time of the first jump of τ2,+l . Then R is the (local) time
of the first jump of τl that exceeds u and that corresponds to a + excursion. As
the time of the first event in the excursion process, R is exponentially distributed
with parameter h+(u). Moreover, R = LxGu,+ and Gu,+ = τ1R− + τ2,+R− + τ2,−R− =

τ1R− + τ2,−R− as τ2,+R− = 0.
Considering that R is independent from τ1 and τ2,−, it follows

Px(Gu,+ ≤ v) = Px(τ1R− + τ2,−R− ≤ v)

=

∫ ∞
0

Px(τ1l− + τ2,−l− ≤ v | R = l)P(R ∈ dl)

=

∫ ∞
0

Px(τ1l− + τ2,−l− ≤ v)h+(u)e−lh
+(u)dl

=

∫ ∞
0

Px(τ1l + τ2,−l ≤ v)h+(u)e−lh
+(u)dl,

where the last equality holds true as l → τ1l and l → τ2,−l have at most a
countable number of discontinuities.

Finally, taking Laplace transforms and expressing the expectations as func-
tions of the tail probabilities, we obtain

Ex[e−λG
u,+

] =

∫ ∞
0

Ex[e−λ(τ
1
l +τ

2,−
l )]h+(u)e−lh

+(u)dl

=

∫ ∞
0

Ex[e−λτ
1
l ]Ex[e−λτ

2,−
l ]h+(u)e−lh

+(u)dl

6



Considering that τ1l and τ2,−l have exponents
∫
]0,u]

(1−e−λr)ν(dr) and
∫
]u,+∞]

(1−
e−λr)ν−(dr) respectively, we get

Ex[e−λG
u,+

] =

∫ ∞
0

h+(u)e
−l
[
h+(u)+

∫
]0,u]

(1−e−λr)ν(dr)+
∫
]u,+∞]

(1−e−λr)ν−(dr)
]
dl

=
h+(u)

h+(u) +
∫
]0,u]

(1− e−λr)ν(dr) +
∫
]u,+∞]

(1− e−λr)ν−(dr)
.

Corollary 3. Eq. (14) can be rewritten as

Ex[e−λG
u,+

] =
h+(u)∫

]0,u]
λe−λrh+(r)dr + e−λuh+(u) + ψ−(λ)

. (15)

Remark: As we will see in Section 4, eq. (15) turns out to be the most convenient
expression for the numerical calculation of the Laplace transform of Gu,+.
Remark: Under the hypotheses of Theorem 2, from eq. (15) it is easy to verify
that Px(Gu,+ <∞) = 1.

From the Laplace transform, a recursive formula for any k–th moment of
the r. v. Gu,+ is deduced in the following theorem.

Theorem 4. Let X be recurrent or transient with ψ+(0) = ψ(0) (or equivalently
ψ−(0) = 0). The k–th moment of Gu,+ can be recursively calculated as

Ex
[(
Gu,+

)k]
= (−1)k+1

k−1∑
j=0

(
k

j

)
dj

dλj
1

D(λ)

dk−j

dλk−j
D(λ)

∣∣∣
λ=0

, (16)

where D(λ) is

D(λ) =

∫
]0,u]

λe−λrh+(r)dr + e−λuh+(u) + ψ−(λ),

with higher order derivatives in λ = 0

dn

dλn
D(λ)

∣∣∣
λ=0

=

∫
]0,u]

(−1)n+1nrn−1h+(r)dr + (−u)nh+(u) +
dn

dλn
ψ−(λ)

∣∣∣
λ=0

.

Proof. Rewriting eq. (15) as Ex[e−λG
u,+

] = h+(u)/D(λ) and recalling that

Ex
[(
Gu,+

)k]
= (−1)k

dk

dλk
Ex[e−λG

u,+

]
∣∣∣
λ=0

,

we get

Ex
[(
Gu,+

)k]
= (−1)k h+(u)

dk

dλk
1

D(λ)

∣∣∣
λ=0

.

Finally, by the quotient formula given in Slevinsky and Safouhi (2009), we get
the convenient expression (16).
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Corollary 5. The expected value of Gu,+ is

Ex[Gu,+] =

∫
]0,u]

h+(r)dr + d
dλψ

−(λ)
∣∣
λ=0

h+(u)
− u (17)

4. Examples

In the following Sections we derive an expression for eq. (18), as explicit as
possible, when X is a Wiener process, an OU process and a CIR process. Let
us recall that

EX0 [e−λH ] = e−λu EX0 [e−λG
u,+

]

= e−λu EX0 [e−λTx ] Ex[e−λG
u,+

] (18)

where Ex[e−λG
u,+

] is given by eq. (15).

4.1. Brownian Motion

In the Wiener case the Laplace transform of the r. v. H can be derived
explicitly and the same expression given in Chesney et al. (1997) and Sirovich
and Testa (2016) is retrieved.

Proposition 1. Let us consider the Wiener process with non negative drift
which satisfies the equation:

dXt = µdt+ σdWt, µ ≥ 0 X0 = 0. (19)

Then the Laplace transform of the r. v. H is given by

E0
(
e−λH

)
= exp

[
µx

σ2
− x

σ

√
2

(
λ+
|µ|2
2σ2

)]
φ
(
µ
σ

√
u
)

φ

(√
2
(
λ+ |µ|2

2σ2

)
u

) , (20)

and

E0[H] =

(
x

µ
+ u

)
+
σ2

µ2

(
1− 1

φ
(
µ
σ

√
u
)) , (21)

where

φ(z) =

∫ +∞

0

re(z r−
r2

2 )dr = 1 +

√
π

2
ze

z2

2

[
1 + erf

(
z√
2

)]
.

Proof. Under the assumption µ ≥ 0, we have ψ+(0) = 0 so, the Laplace trans-

form of H can be calculated by eq. (18), where Ex[e−λG
u,+

] is given by eq. (15).
Let us first calculate ψ±(λ). It is well know that, Siegert (1951),

Ey[e−λTx ] = e
−
(√

µ2+2λσ2 |y−x|
σ2

+µ
(y−x)
σ2

)
. (22)
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Using eq. (5), ψ±(λ) takes the following expression

ψ±(λ) =
1

2σ2
(
√

2λσ2 + µ2 ± µ). (23)

An explicit equation for h±(u) can be obtained from eq. (9) by inverting ψ+(λ)/λ.
We get

h±(u) =
1

2σ2

[
µ erf

(
µ
√
u√

2σ

)
± µ+

√
2σ√
πu

exp

(
−µ

2u

2σ2

)]
. (24)

By replacing eq. (23) and eq. (24) in eq. (15) we get the desired result.
The expected value of H is a straightforward calculation of the derivative of

the Laplace transform (20) at λ = 0.

4.2. The Geometric Brownian Motion

The r. v. H has been studied in Chesney et al. (1997) where the so called
Parisian barrier options have been introduced. They are path dependent op-
tions. For example, the owner of a Parisian down–and–out call loses the option
if the value of the underlying asset price reaches the knock–out level and re-
mains long enough under this level. For pricing Parisian options the problem is
reduced to finding the Laplace transform of the Parisian stopping time, which
is the r. v. here denoted as H. In Chesney et al. (1997) and Dassios and Wu
(2010) two different methods are presented to find an explicit form for the
Laplace transform of H, when the underlying asset follows a Geometric Brow-
nian motion. The two methods cannot be generalised to different processes,
as they heavily rely on properties of the Brownian motion. The result here
presented is an alternative method to derive an explicit Laplace transform of
the stopping time which turns out to be easily invertible. Moreover, the result
here presented is general, it holds for any one dimensional diffusion process and
hence can be applied for pricing Parisian option when the underlying asset price
is another diffusion process.

Let Q denote the risk neutral probability. Under Q, the dynamics of the
underlying asset follow a geometric Brownian motion S given by

dSt = St ([r − δ] dt+ γdWt) , S0 = s0,

where W is a standard Brownian motion under Q, and r, s0 and γ are positive
constants. By Itô formula, it follows that the solution is a transformation of the
standard Brownian motion W given by

St = s0 exp
([
r − δ − γ2/2

]
t+ γWt

)
.

Hence, the r. v. H for the process S and a given level b can be obtained as the
r. v. H for the Brownian motion with drift and diffusion parameters given by

µ = r − δ − γ2/2
σ = γ

9



and level x = log (b/s0). So, for underlying asset following a Geometric Brow-
nian motion, the problem of pricing Parisian can be reduced to finding the
Laplace transform of the r. v. H for a Brownian motion with suitable drift and
diffusion coefficients and tranformed level x. Eqs. (20) and (21) can be trivially
rewritten and will give the explicit expression for the Laplace transform and the
first moment of the Parisian stopping time.

Remark 1. The two–sided Parisian options have been introduced in Dassios
and Wu (2010). The fully symmetric case has been studied in Dassios and
Lim (2017). Let us remark that in this latter case the Laplace transform of the
two–sided Parisian time is given in Getoor (1979), Proposition (9.2).

4.3. Ornstein–Uhlenbeck process

Unfortunately, for the OU process the only closed form result is the expres-
sion for ψ±(λ), which cannot be inverted analytically. Hence, in order to recover
h±(u) we should rely on numerical algorithms that will be presented in Section
5 and we will only have numerical approximations of Ex0 [e−λH ] and of Ex0 [H].

Proposition 2. Let us consider an OU process given by

dXt = (−βXt + µ) dt+ σdWt, X0 = x0, (25)

where β > 0, µ ≥ 0 and σ > 0. We have that

ψ±(λ) =

(
λ√
β

) H−λ/β−1

(
±x
√
β

σ ∓ µ
σ
√
β

)
H−λ/β

(
±x
√
β

σ ∓ µ
σ
√
β

) , (26)

where ψ± is given by (5) and Hv(z) denotes the Hermite function of degree v,
see Lebedev (1972).

Proof. The result follows from eq. (5) and from the given expressions for the
Laplace transform of the first passage time Tx

Ey[e−λTx ] =


H−λ/β

(
y
√
β

σ −
µ

σ
√
β

)
H−λ/β

(
x
√
β

σ −
µ

σ
√
β

) if y ≥ x,

H−λ/β

(
− y
√
β

σ + µ

σ
√
β

)
H−λ/β

(
− x
√
β

σ + µ

σ
√
β

) if y < x.

4.4. Cox–Ingersoll–Ross process

As in the previous case, also for the CIR process, the only closed form
result is the expression for ψ±(λ). In Section 5 we will recover a numerical
approximation of Ex0 [e−λH ] and Ex0 [H].
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Proposition 3. Let us consider a CIR process, solution of the equation

dXt = (−γXt + µ) dt+ σ
√
XtdWt, X0 = x0 > 0, (27)

where γ > 0, µ ≥ 0, σ > 0, and 2µ ≥ σ2. Then,

ψ+(λ) =
λ

σ2

Ψ(λγ + 1; 2µ
σ2 + 1; 2xγ

σ2 )

Ψ(λγ ; 2µ
σ2 ; 2xγ

σ2 )
, (28)

and

ψ−(λ) =
λ

2µ

Φ(λγ + 1; 2µ
σ2 + 1; 2xγ

σ2 )

Φ(λγ ; 2µ
σ2 ; 2xγ

σ2 )
, (29)

where Ψ denote the Kummer function of the second kind and Φ denote the
Kummer function of the first kind, see Olver et al. (2010).

Proof. We assume that 2µ ≥ σ2 as under this condition the origin is inaccessible
and the process X ergodic. The expression for ψ±(λ) is recovered from eq. (5)
and the fact that, for y > x

Ey[e−λTx ] =
Ψ(λγ ; 2µ

σ2 ; 2yγ
σ2 )

Ψ(λγ ; 2µ
σ2 ; 2xγ

σ2 )
, (30)

and, for y < x

Ey[e−λTx ] =
Φ(λγ ; 2µ

σ2 ; 2yγ
σ2 )

Φ(λγ ; 2µ
σ2 ; 2xγ

σ2 )
. (31)

5. Numerical Results

In this Section we illustrate the numerical details necessary to deduce an
approximation of the probability density function of the r. v. H and its ex-
pectation for the three processes proposed in Section 4. The goal is twofold.
Firstly, we show that the main result of the paper, illustrated in Theorem 2, can
be successfully used to derive the desired quantities. Secondly, the comparison
between numerical outputs and simulated quantities confirms the validity of our
theoretical results.

For each of the three examples we calculate numerically an approximation of
the density of the r. v. H and plot it against the histogram of sample values of
the r. v. H, obtained from N = 10000 Monte Carlo simulated trajectories of the
underlying diffusion process. As the transition density functions are known for
each of the three processes, the trajectories are simulated exactly. Numerical
inversions of the Laplace transforms have been implemented in Wolfram Math-
ematica using the Gaver-Stehfest algorithm, see Stehfest (1970). Moreover, we
plot the numerical approximation obtained for the expected value E(H) against
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Figure 1: First row: simulated (bar plot) and numerical (continuous line) densities. Second
row: numerical expected values (grey solid line) and simulated 95% confidence intervals (black
vertical bars). Wiener process: x = 10, x0 = 0, u = 2, σ = 1, µ = 0.7. OU process:
x = 10, x0 = 0, u = 2, σ = 1, µ = 0.8, β = 0.08. CIR process: x = 10, x0 = 2.5, u = 2,
σ = 1, µ = 1.2, γ = 0.08.

the confidence intervals for the sample mean obtained from Monte Carlo simu-
lations.

The Wiener process is the only case in which an explicit expression for the
Laplace transform of H can be derived. Hence, the approximated density of
H can be easily obtained by the numerical inversion of eq. (20). Fig. 1 (panel
a1) shows the complete agreement between the numerical and the simulated
densities of H. Fig. 1 (panel a2) plots numerical and empirical expected values
of H.

As previously mentioned, for both the OU and the CIR processes, EX0 [e−λH ]
cannot be derived in closed expression. Hence we need to perform two Laplace
inversions to obtain the density of H. Firstly, we invert ψ±(λ)/λ to get a
numerical expression for h± and secondly we invert eq. (15). The obtained
results are shown in Fig. 1. In both cases the numerical results are completely
satisfactory and simulated data fit perfectly.
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