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1 Introduction

Quantum electrodynamics (QED) in three spacetime dimensions is an interesting theoret-

ical model, with many applications relevant for high- and low-energy physics. On the one

hand, it shares important qualitative features such as charge confinement and dynamical

chiral-symmetry breaking with non-Abelian gauge theories in four dimensions [1]. On the

other hand, it also provides a useful effective description of the long-wavelength physics for

different condensed-matter systems [2–11].

Thanks to its relative mathematical simplicity, this is one of the few quantum field

theories in which non-trivial dynamical properties can be studied analytically. Classical

results include the seminal studies by Polyakov [12, 13]: his semiclassical calculations

showed that the ground state of the theory is a plasma1 of monopoles (which are instanton-

like objects in three dimensions), leading to a linearly confining potential for static electric

probe charges and to a finite mass gap, for all positive values of the gauge coupling e. In

this setup, a crucial ingredient for the existence of monopoles is the compactness of the

U(1) gauge group, which is realized when the theory is regularized on a lattice [15] or when

U(1) is a subgroup of a compact group, as, for example, in the Georgi-Glashow model [16].

Another milestone in the literature on this theory was the analytical proof, due to Göpfert

and Mack [17], of the existence of a non-zero mass gap and of a finite string tension, in the

Villain formulation of the model [18].

Other analytical studies have investigated the interplay of topological properties in

three-dimensional spacetime and the generation of mass for gauge fields [19], the struc-

ture of perturbative expansions for this super-renormalizable theory [20], chiral-symmetry

1Note that the finiteness of the screening length for a Coulomb gas in three spacetime dimensions can

be proven by renormalization-group arguments [14].
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breaking [21–25] and the qualitative change in vacuum structure driven by a sufficiently

large number of dynamical fermion species [26–53], and a number of other interesting

aspects [54–72].

In parallel with these analytical studies, QED in three spacetime dimensions has also

been extensively investigated by means of lattice simulations: this has been done both

with [1, 73–83] and without [84–109] dynamical fermion fields.

The behavior of U(1) gauge theory (regularized on the lattice) at finite temperature

T and without matter fields, which has been studied in refs. [54, 87, 91–94, 101–104], is

particularly interesting: there exists a finite critical temperature Tc such that linear con-

finement persists for temperatures T < Tc, whereas for T > Tc the potential V associated

with a pair of static charges grows logarithmically with their spatial separation r. This can

be compared and contrasted with what happens in SU(N) gauge theories in 3 + 1 space-

time dimensions [110], which exhibit a linearly confining phase at low temperatures and a

phase transition to a deconfined phase at a finite temperature. This deconfinement tran-

sition can be interpreted in terms of spontaneous breakdown of a global symmetry based

on the center ZN of the gauge group: the order parameter is the average Polyakov loop

P, i.e. the trace of a Wilson line winding around the Euclidean-time direction [111–113].

After renormalization of an ultraviolet divergence [114] (see also ref. [115] and references

therein), the average Polyakov loop can be directly related to the free energy associated

with a chromoelectric probe charge: in the thermodynamic limit 〈P〉 vanishes for T < Tc

(implying an infinite energy cost for the existence of an isolated fundamental color source

in the confining phase, i.e. quark confinement), whereas it has a finite expectation value at

T > Tc. In contrast, the U(1) center symmetry of U(1) gauge theory in 2 + 1 dimensions

remains unbroken, and, while in the high-temperature phase the theory does not have a dy-

namically generated, finite, characteristic length scale, the logarithmic Coulomb potential

is still sufficient to confine static charges.

As the finite-temperature transition in U(1) gauge theory in 2+1 dimensions is contin-

uous, one expects that at T = Tc the long-distance properties of the system are equivalent

to those of a two-dimensional spin system with global U(1) symmetry [116], i.e. the classical

XY model, that exhibits a Kosterlitz-Thouless transition [117] (see also refs. [118–121]).

In the past, the validity of this conjecture has been investigated in various numerical stud-

ies [87, 101–103] and the most recent work gives conclusive evidence in support of it [104].

As discussed in ref. [116], this correspondence relies on the continuous nature of the

transition at T = Tc. In turn, the existence of an infinite correlation length is also an

essential necessary condition for scale and conformal invariance. In the two-dimensional

XY model, this condition is realized in a peculiar way: even though the system can never

have spontaneous magnetization [122], at low temperatures the model is in a phase char-

acterized by “topological” order [117], with two-point spin correlation functions decaying

only with inverse powers of the spatial separation r between the spins [123, 124]. The fact

that the whole low-temperature phase of the two-dimensional XY model is gapless and

admits a conformal-field-theory description raises the question, what happens in the cor-

responding phase of the three-dimensional gauge theory, i.e. the high-temperature phase?

To answer this question, in this work we carry out a systematic study of compact U(1)
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lattice gauge theory at T > Tc, and compare a large set of novel numerical results, obtained

by Monte Carlo simulations, with analytical predictions derived from conformal field the-

ory. Specifically, we focus our attention on correlation functions of plaquette operators,

Polyakov loops, and on the profile of the flux tube induced by a pair of static probe charges.

Note that the approach we follow in the present work is different from the one of other

studies, which analyzed the “effective” dimensional reduction of the XY model from three

to two dimensions upon compactification of one of the system sizes [125–133].

The structure of the article is the following: in section 2, we introduce the U(1)

gauge theory in three dimensions, discussing its most important properties and its compact

formulation on an isotropic cubic lattice. In section 3, we present the conformal-field-theory

predictions for the low-temperature phase of the two-dimensional XY model, and discuss

their implications for the corresponding operators defined in the three-dimensional gauge

theory. Our results are presented and analyzed in detail in section 4, while the final section 5

includes a summary of our findings, and a discussion of their implications. The appendix A

presents a review of the renormalization-group analysis of the XY model. Throughout this

article, we work in natural units, setting the speed of light in vacuum, the reduced Planck’s

constant, and Boltzmann’s constant to unity.

2 U(1) gauge theory in three spacetime dimensions

The formulation of U(1) gauge theory (without matter fields) in three-dimensional contin-

uum Minkowski spacetime is based on the action

Scont = −1

4

∫
d2 x

∫
d tFµνF

µν , (2.1)

where the field strength is defined as Fµν = ∂µAν − ∂νAµ; note that in three spacetime

dimensions the gauge field A and the electric charge e have energy dimension 1/2, the

Coulomb potential is logarithmic, and the magnetic field is a scalar. The classical equations

of motion derived from eq. (2.1) are ∂µF
µν = 0 and the definition of Fµν implies that the

Bianchi identity εµνρ∂
µF νρ = 0 is trivially satisfied. In turn, the latter property implies

that one can reformulate the theory in terms of the free, massless scalar field φ such that

∂µφ = εµνρF
νρ.

At the quantum level, the most interesting physical properties of the theory become

manifest when one studies it in its compact formulation, i.e. assuming the gauge field

components Aµ to be periodic. If the theory is Wick-rotated to Euclidean spacetime and

regularized on an isotropic cubic lattice Λ of spacing a, one can introduce the link degrees

of freedom Uµ(x) and the Wilson action [15]

SW = − 1

ae2

∑
x∈Λ

∑
1≤µ<ν≤3

Re Uµν(x), (2.2)

where Uµν(x) = Uµ(x)Uν(x+aµ̂)U?µ(x+aν̂)U?ν (x). For later convenience, we also introduce

β = 1/(ae2). The Uµ(x) variables are complex phases and can be thought of as parallel
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transporters relating the reference frames in internal space defined on two nearest-neighbor

sites x and x+ aµ̂:

Uµ(x) = exp

[
ieaAµ

(
x+

a

2
µ̂

)]
. (2.3)

Eq. (2.3) makes it manifest that the theory defined by eq. (2.2) is invariant under Aµ →
Aµ + 2πk/(ea) for any integer k, i.e. that the gauge group is compact. The periodicity of

the gauge field plays a crucial rôle in determining the long-wavelength properties of the

theory: the gauge-field configurations admit topological defects, which can be thought of

as “magnetic monopoles” (actually “instantons” of the theory defined in three spacetime

dimensions). Their condensation in the ground state of the theory implies that the ex-

pectation value of the gauge holonomies of large contours decreases exponentially with the

area they bound, i.e. confinement of electric charges [13] as a dual Meißner effect [134–136].

The calculations presented in ref. [17] show that, at large β, the mass gap mD and the

string tension σ characterizing the linearly confining potential of electric charges scale as

mDa ' k1

√
β exp(−k2β) (2.4)

and

σa2 ' k3√
β

exp(−k2β), (2.5)

where the numerical constants k1 = 2π
√

2, k2 ' 0.2527π2, and k3 = 4
√

2/π are evaluated

in a semiclassical approximation, which is reliable for β � 1.

Eqs. (2.4) and (2.5) have interesting implications for the continuum limit of the lattice

theory. In the “näıve” continuum limit (a→ 0 at fixed e) the screening length diverges and

the string tension vanishes, so that the theory reduces to the continuum Maxwell theory

of non-interacting photons [137]. On the other hand, one can assume the continuum limit

to be taken on a “line of constant physics” at fixed σ: then, given that at large β

m2
D

σ
∝
√
β3 exp(−k2β), (2.6)

mD tends to zero, namely the screening length diverges, and the continuum potential

associated with a pair of probe charges is again purely Coulombic (i.e. logarithmic and

unscreened) at all distances r. Conversely, if the continuum limit is taken at fixed mD, then

from eq. (2.6) it follows that σ diverges: increasing the spatial separation r between two

probe charges by a finite amount ∆r would therefore require an infinite amount of energy,

which means that it is not physically possible to couple charged matter fields to the theory.

As a consequence, the theory never exhibits linear confinement in the continuum limit.

The lattice theories based on the Wilson action [15] defined in eq. (2.2) and on the

“periodic Gaußian” action [18] can be reformulated as a spin model [138–141]: the Feynman

path integral

Z =

∫ ∏
x,µ

dUµ(x) exp[−SW] (2.7)
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(where dUµ(x) is the Haar measure for Uµ(x)) can be rewritten as the one for a lattice

theory with integer-valued degrees of freedom s, defined on the sites of the dual lattice

Z =
∑
{s}

∏
y,ν

I|s(y)−s(y+aν̂)|(β), (2.8)

where Iα(z) is the modified Bessel function of the first kind of order α and the product is

taken over the bonds of the dual cubic lattice, with the appropriate boundary conditions.

Similar relations hold for generic expectation values of gauge-invariant quantities O

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x)O exp[−SW]. (2.9)

In particular, the two-point correlation function 〈P ?(r)P (0)〉 at separation r = Nra can be

rewritten as

〈P ?(r)P (0)〉 =
ZNt×Nr
Z

, (2.10)

having introduced

ZNt×Nr =
∑
{s}

∏
y,ν

I|s(y)−s(y+aν̂)+nν(y)|(β), (2.11)

where nν(y) vanishes on all oriented bonds of the dual lattice, except on those that are dual

to the plaquettes tiling a surface bounded by the Polyakov loops, where it takes value 1 (see

also ref. [142], for an analogous calculation in four dimensions). As was shown in ref. [105]

(and in refs. [143, 144] in the four-dimensional case), the right-hand side of eq. (2.10) can

be conveniently factorized in Monte Carlo calculations, where it can be combined with

powerful error-reduction techniques [145, 146]: in particular, the ratio of correlators at

distances r + a and r can be rewritten as

〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

Nt−1∏
i=0

Z(Nt×Nr)+i+1

Z(Nt×Nr)+i
, (2.12)

where Z(Nt×Nr)+i denotes the partition function of the dual model, in which nν(y) = 1

only on the Nt × Nr links dual to the plaquettes between the worldlines of the sources

at a distance r, and on the first i additional links in the column of plaquettes between

P?(r) and P?(r + a). Thus, eq. (2.12) expresses the ratio of correlators as a product of

expectation values of ratios of modified Bessel functions of the first kind of orders differing

by one, and argument β,

H(r) =
〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

Nt−1∏
i=0

〈
I|s(x)−s(x+aν̂)+1|(β)

I|s(x)−s(x+aν̂)|(β)

〉
(Nt×Nr)+i

, (2.13)

where the notation 〈. . . 〉(Nt×Nr)+i represents an expectation value in the presence of (Nt×
Nr) + i bonds with nν(y) = 1, and the link from x to x+ aν̂ is dual to the plaquette that

is being added, while “deforming” the Wilson line at r into the one at r + a. Note that

each of the factors appearing on the right-hand side of eq. (2.13) is manifestly ultralocal,

and can be computed to very high numerical precision, even for very large r.
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To study the profile of the flux tube induced by a pair of static electric sources, we

also consider the expectation value of the field strength in the background of two Polyakov

lines: the connected correlator of the field-strength component in the direction ν, parallel

to the temporal plane through the electric sources

W (x) =
〈P?(r)P(0)E(x)〉
〈P?(r)P(0)〉

− 〈E(x)〉 (2.14)

has a very simple expression in the dual formulation of the model:

W (x) =
〈s(x)− s(x+ aν̂) + nν(x)〉Nt×Nr√

β
. (2.15)

Following an analogous study for the Ising model [147], in ref. [106] it was shown that

the profile of the flux tube in compact U(1) gauge theory at zero temperature has an

exponential profile: this is what one expects, if the vacuum of the theory is interpreted as

a dual superconductor [134–136]. In addition, we also consider the two-point correlation

function

Y (x) = 〈E(x)E(0)〉 (2.16)

which can be rewritten as

Y (x) = 〈[s(x)− s(x+ a)] · [s(0)− s(a)]〉 (2.17)

in the dual formulation.

As mentioned in section 1, in this work we study the properties of the theory at

finite temperature T . As is known, a continuous transition takes place at a finite critical

temperature Tc and universality arguments [116] suggest that at this critical point, the

infrared physics of the system is insensitive to the details of the action of the theory, and

becomes equivalent to that of the two-dimensional XY model. This expectation is confirmed

by recent lattice calculations [103, 104]. We extend the numerical investigation of the high-

temperature phase of the theory to temperatures above Tc: due to the peculiar features

of the XY model, which are reviewed in the following section 3, universality arguments

analogous to those originally discussed in ref. [116] allow one to derive exact analytical

predictions for various physical quantities in the high-temperature phase of compact U(1)

gauge theory in three dimensions.

3 The two-dimensional XY model and its conformal-field-theory descrip-

tion

The two-dimensional XY model is a statistical model with many important applications

in condensed matter systems, such as Josephson-junction arrays [148–150], thin layers of

superfluid helium [151, 152], planar ferromagnetic materials [153], and the roughening

transition [154]. It describes two-component real vectors ~s(x), of unit length, defined on

the sites x of a square lattice of linear extent L and spacing a, and interacting through the

Hamiltonian

H = −J
∑
〈x,y〉

~s(x) · ~s(y) = −J
∑
〈x,y〉

cos[θ(x)− θ(y)], (3.1)

– 6 –
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where 〈x, y〉 denotes nearest-neighbor pairs of sites, θ(x) is the angle of ~s(x) with respect to

an arbitrarily chosen, fixed direction in the two-dimensional real vector space in which the

vectors are defined, and the interaction is ferromagnetic when the coupling J is positive.

Note that θ(x) is defined modulo 2π. The model is invariant under a global internal O(2)

symmetry, corresponding to rotations of all spins by an arbitrary constant angle.

Let us consider the bidimensional XY model at a temperature T , and define the di-

mensionless parameter K = J/T . As is well known, in two dimensions thermal fluctuations

always disorder a system with a continuous symmetry [122, 155, 156]; as a consequence,

the spontaneous magnetization vanishes at all non-zero temperatures:

〈~s〉 = 0 for all T > 0. (3.2)

More detailed information on the behavior of the model in the high-temperature limit can

be obtained by a Fourier transform over the internal O(2) group: the calculation shows that

at small K the two-point spin correlation function decays exponentially with the spin-spin

spatial separation r:

G(r) = 〈~s(x) · ~s(y)〉 ∼ exp

(
−r
ξ

)
, with r = |x− y|; (3.3)

the correlation length ξ is temperature-dependent.

On the other hand, in the low-temperature (T → 0) limit the ferromagnetic nature of

the interaction favors spin alignment, thus θ is expected to be a slowly varying function of

space, and the cosine appearing in eq. (3.1) can be approximated by the first two terms in

its Taylor expansion:

H ' J

2

∑
〈x,y〉

[θ(x)− θ(y)]2 + const. (3.4)

In this limit, the lowest-energy excitations of the system are spin waves: they induce an

algebraic decay of G(r) with the spin-spin separation [123, 124],

G(r) ∼
(
r

L

)−η
, (3.5)

where the exponent η varies continuously as a function of the temperature, approaching

zero linearly in the temperature as η = 1/(2πK) for T → 0 [118].

The qualitatively different behavior of G(r) at high and at low temperatures indicates

that, while this model does not display genuine long-range order at any finite temper-

ature T , it nevertheless admits two different phases: at high temperatures the system is

disordered, while at low temperatures it is characterized by a non-conventional “quasi-long-

range” order, of topological origin. To understand this, we observe that the equation of

motion derived from eq. (3.1) admits topologically non-trivial “vortex” solutions, in which

the θ field “winds around” a given point (the vortex center) an integer number n of times.

Vortices satisfy
∮
∇θ ·d l = 2πn for all positively oriented loop encircling the vortex center.

The vortex energy goes like πn2J ln(L/a), i.e. is proportional to the square of the vortex

charge and diverges in the thermodynamic limit L → ∞. By contrast, the energy of a

single-charge vortex-antivortex pair separated by a finite distance r remains finite.
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Vortices play a key rôle in determining the properties of the two phases: as the cre-

ation of the core of a vortex requires a finite energy cost Ec, thermally excited vortices

at equilibrium contribute terms proportional to exp(−Ec/T ) to the partition function.

Moreover, the energy cost of isolated vortices (which is logarithmically divergent with

the system size) forces them to remain bound in vortex-antivortex pairs at low tempera-

tures. However, a simple estimate of the single-vortex free energy, neglecting interactions,

F ' (πJ − 2T ) ln(L/a), reveals that, as the temperature is increased, the energy cost of

an isolated vortex is eventually (over)compensated by entropy, and free vortices start to

proliferate at a finite temperature TKT, where an infinite-order transition takes place: the

Kosterlitz-Thouless phase transition [117].

For all temperatures T > TKT the system behaves as a gas of unbound vortices, in-

teracting with each other through a logarithmic Coulomb potential. The value of the

Kosterlitz-Thouless temperature TKT has been computed numerically to high precision:

TKT/J = 0.89294(8) [157–159]. In fact, in the low-temperature phase, all effects neglected

in the heuristic estimate of the vortex free energy discussed above induce only a quantitative

correction with respect to the result from the spin-wave approximation.

A more quantitative description of the dynamics of the model can be obtained through

the renormalization group, as discussed in detail in the appendix A. The main result of

this analysis is that, for τ = T/TKT − 1→ 0+, the correlation length diverges as

ξ

a
∼ exp

(
b√
τ

)
, (3.6)

with b a non-universal, positive constant, implying that the Kosterlitz-Thouless transition

is of infinite order. In addition, one also finds that the large-distance behavior of the

two-point correlation function at T = TKT is of the form

G(r) ∼ (ln r)2Θ

rη
, (3.7)

with Θ = 1/16 and η = 1/4 [160].

On the other hand, eq. (3.5) shows that for T < TKT the two-point correlation function

always decays like an inverse power of r, with a temperature-dependent exponent [118].

Thus, the whole low-temperature phase of the model is characterized by scale-invariant

behavior (of Gaußian type), and T = TKT is actually a multicritical point: this can be

shown by generalizing the model with two additional parameters, that control the energy

cost of introducing a vortex in the model and the coupling to an explicit symmetry-breaking

interaction [120, 161, 162].

The scale invariance of the XY model for all temperatures T < TKT is closely related

to the fact that the cold phase of this model admits a conformal-field-theory description

in terms of a free, massless compact bosonic field, with central charge c = 1, which can

be identified with the phase θ. The periodicity of this field implies that the theory has

both “electric” and “magnetic” (i.e. “vortex”) operators, obeying a Dirac quantization

condition. It is known that, in a c = 1 theory, the existence of marginal operators with

conformal weights h = h̄ = 1 leads, under appropriate conditions [163], to the existence of a

– 8 –
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continuous line of conformal theories. For the low-temperature phase of the bidimensional

XY model, the marginal operator can be associated with the periodicity of the field. In

refs. [161, 162] it was shown that the operators

sn,m =
Sn,m + S−n,−m√

2
(3.8)

(where Sn,m is an operator creating an excitation with spin-wave index n and vorticity

number m, for integer n and m) have critical indices

xn,m =
1

2

(
n2

2πK
+ 2πKm2

)
, ln,m = −nm (3.9)

for the scaling dimension and spin, respectively. Note that there exists an S-duality, in-

terchanging electric and magnetic excitations, which corresponds to exchanging
√

2πK →
1/
√

2πK. The Kosterlitz-Thouless point, at T = TKT, corresponds to K = 2/π, so in the

low-temperature phase the scaling dimension of the electric operator s1,0 increases contin-

uously with T as x1,0 = 1/(4πK), tending to the critical value 1/8 — see eq. (3.7) – for

T → T−KT.

At the Kosterlitz-Thouless temperature, the electric operator s1,0 of the XY model in

two dimensions can be directly associated with the loop operator P of the three-dimensional

U(1) gauge theory; similarly, the s2,0 (“energy density”) operator has its counterpart in

the action density of the gauge theory [116]. Finally, the connected correlation function of

the field-strength component parallel to the plane through the electric sources defined in

eq. (2.14) is mapped to

Q(r, x) =
〈~s(r)~s(0)φ(x)〉
〈~s(r)~s(0)〉

− 〈φ〉, (3.10)

where φ denotes the “flux” operator in the XY model: its one-point correlation function

vanishes because of scale invariance, hence the last term on the right-hand side of eq. (3.10)

can be dropped. By looking at its symmetries, it is easy to realize that φ does not corre-

spond to one of the On,m; dimensional analysis and Gauß’ theorem suggest that its scaling

dimension is ∆φ = 1, but this value can be affected by corrections due to interactions.

Conformal invariance leads to the prediction

Q(r, x) =
cssφ

(r/4)∆φ

(
1 +

4x2

r2

)−∆φ

= C(r)

(
1 +

4x2

r2

)−∆φ

, (3.11)

where cssφ is the coefficient of the φ term appearing in the operator product expansion of

~s with itself: ~s(x+ δx) · ~s(x) ∼ cssφφ(x) + . . . for δx→ 0 [164].2 For later convenience, we

also define C(r) = cssφ · (r/4)−∆φ .

As the mapping between operators in the three-dimensional U(1) gauge theory and

those in the two-dimensional XY model is based only on the existence of an infinite cor-

relation length (not on the presence of a phase transition), we tested whether it can be

2Alternatively, one can also define the quantity denoted as ccontssφ , which plays the same rôle as cssφ but

for the continuum counterpart of φ, assuming the amplitude of its two-point correlation function to be fixed

to 1.
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ensemble Ns Nt β = 1/(ae2) statistics r/a x/a

A 192 4 3.010 6.4× 105 [0, 31] —

192 4 3.025 6.4× 105 [0, 31] —

192 4 3.050 6.4× 105 [0, 31] —

192 4 3.080 6.4× 105 [0, 31] —

192 4 3.125 6.4× 105 [0, 31] —

192 4 3.250 6.4× 105 [0, 31] —

192 4 3.500 6.4× 105 [0, 31] —

192 4 3.750 6.4× 105 [0, 31] —

192 4 4.000 6.4× 105 [0, 31] —

192 4 4.100 6.4× 105 [0, 31] —

B 128 4 4.0 6.4× 105 [10, 80] [2, 20]

192 4 4.0 6.4× 105 [10, 80] [2, 30]

256 4 4.0 8.0× 106 [10, 80] [2, 40]

320 4 4.0 3.2× 106 60, 80 [2, 40]

Table 1. Setup of our simulations.

extended to the whole high-temperature phase of the U(1) gauge theory, which is expected

to correspond to the low-temperature phase of the XY model. More precisely, we com-

pared the results of a set of high-precision lattice calculations for the U(1) theory with the

analytical conformal-field-theory predictions for the XY model. Our results are presented

in the following section 4.

4 Numerical results

Using the dual formulation of the theory, we carried out Monte Carlo calculations of com-

pact U(1) gauge theory on isotropic lattices of spacing a and volume (N2
s × Nt)a

3. In

order to limit the impact of finite-volume effects, all simulations were carried out in the

Ns � Nt regime (with Ns/Nt typically larger than 30). Specifically, for Nt = 4 the value

of β = 1/(ae2) corresponding to the critical temperature is β = 3.005 [104], and β = 4 is

significantly higher than the critical temperature. The setup of our simulations is summa-

rized in table 1, where r denotes the distance between the Wilson lines P, that wind around

the Euclidean-time direction, are oppositely oriented, and separated along one of the main

spatial axes of the lattice. x, on the other hand, denotes the distance from the plane of the

Wilson lines, at which we probe the flux-tube profile, by calculating the expectation value

of the electric-field component defined in eq. (2.14).

The main goal of our analysis consists in testing whether the conjecture that the long-

wavelength properties of the U(1) gauge theory at temperatures T ≥ Tc can be described

by the low-temperature phase of the XY model in two dimensions holds or not.

To this purpose, we first studied the behavior of the 〈P?(r)P(0)〉 correlator, whose

long-distance behavior is expected to be described by eq. (3.5). We computed ratios of
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Figure 1. Example of results obtained for correlator ratios, from simulations at three different

values of β = 1/(ae2). The data from numerical lattice calculations of U(1) gauge theory in three

dimensions are compared with one-parameter fits to the functional form in eq. (4.1), derived from

the conformal-field-theory description of the XY model in two dimensions.

Wilson-line correlators using eq. (2.13) and compared them to the prediction

H(r) =
〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

(
1 +

a

r

)−η
(4.1)

by means of one-parameter fits, with η as the fitted parameter. Three examples of these

fits are shown in figure 1, while the complete results are reported in table 2 and displayed

in figure 2. Remarkably, even though in our fits we discarded the data at small values of

r (which are expected to be affected by lattice-discretization effects3), the curves obtained

from these fits follow closely our numerical results down to values of r/a = O(1).

The analysis shows that, in all cases, the ratios of Wilson-line correlators can be

perfectly fitted to the expected functional form, indicating very clearly that in the high-

temperature phase of U(1) gauge theory 〈P?(r)P(0)〉 decays as a power of r. All values of

the reduced χ2 (listed in the fifth column) for these one-parameter fits are close to 1, and

the statistical uncertainty on the fitted parameter η is of the order of five per mille.

The analysis also shows that, when β is close to the critical value, η tends to 1/4, as

predicted by conformal field theory.

3At the quantitative level, we observe that the fit results, in particular those obtained from data sets at

the β values closest to βc, exhibit some dependence on the smallest value of r that is included in the fit:

the induced systematic uncertainty on η is at most of the order of a few per mille.
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Another interesting observation from our analysis concerns the relation between the

parameters of the U(1) gauge theory and those of the XY model describing the same long-

wavelength physics. On very general grounds, it is known that the T → T+
c limit of a

gauge theory with a continuous thermal transition corresponds to the T → T−c limit of

the spin model [116]. For the U(1) gauge theory in three dimensions, in which the whole

high-temperature phase is mapped to the low-temperature phase of the XY model, one

then expects the long-distance physics at higher and higher temperatures (i.e. further and

further away from Tc) to be captured by the XY model at lower and lower temperatures

(that is, further and further away from TKT). Considering the dimensionless ratios T/Tc

in the three-dimensional U(1) gauge theory and T/TKT in the bidimensional XY model, it

is thus tempting to think that the theories describe the same infrared physics when these

two ratios are (approximately) the inverse of each other.

To test this hypothesis at a quantitative level, we make two further observations.

Firstly, the temperature of the U(1) lattice gauge theory is given by T = 1/(aNt). Since

the squared coupling in a three-dimensional gauge theory has dimension one, the inverse

lattice spacing 1/a (and, as a consequence, T ) is approximately proportional to β = 1/(ae2);

this relation is not expected to be exact, due to quantum corrections. Secondly, the prop-

erties of the bidimensional XY model at finite temperature can be conveniently described

by introducing the spin-wave stiffness ρr
s (see the appendix A): then, the physics of the

model is determined by the dimensionless parameter K = ρr
s/T , which reduces to J/T for

T → 0, and accounts for effects related to the density of vortices at finite temperature.

In particular, in the low-temperature phase, the G(r) correlator decays as described by

eq. (3.5), with η = 1/(2πK). This means that (neglecting the fact that ρr
s is not a con-

stant, but rather a temperature-dependent quantity) η is expected to be approximately

proportional to the temperature of the XY model. Combining these pieces of informa-

tion (with the approximations mentioned), one can thus expect the exponent η extracted

from the numerical results for 〈P(r)P(0)〉 correlators in the U(1) lattice gauge theory at

1 < T/Tc ' β/βc to be equal to the exponent η of the XY model at T/TKT = βc/β, i.e. to

have a linear dependence between η and βc/β. Fitting our results to

η = a1
βc

β
+ a0, (4.2)

we obtain a1 = 0.2767(35) and a0 = −0.0279(31), with 8 degrees of freedom and χ2
red = 1.04,

indicating excellent agreement with this crude model. The result of this analysis is shown

in the inset plot in figure 2.

Next, we analyzed the flux-tube profile, probed by the operator defined in eq. (2.14),

and compared our numerical results with the conformal-field-theory prediction given by

eq. (3.11). Figure 3 shows an example of this analysis, focusing on our simulations at

β = 4, Nt = 4 (corresponding to a temperature significantly higher than Tc): the numerical

results for W (x, r), at fixed r = 32a, are plotted as a function of the distance (in lattice-

spacing units) from the plane through the Wilson lines. The figure shows that the results

for three different values of the spatial linear extent of the lattice (L = 128a, L = 192a, and

L = 256a) are essentially compatible with each other: this indicates that this quantity is not
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Ns Nt β η χ2
red d.o.f.

192 4 3.010 0.2469(12) 1.19 30

192 4 3.025 0.2462(11) 1.02 30

192 4 3.050 0.2455(12) 1.18 30

192 4 3.080 0.2427(13) 1.36 30

192 4 3.125 0.2377(13) 1.59 30

192 4 3.250 0.2299(10) 0.86 30

192 4 3.500 0.2081(12) 1.44 30

192 4 3.750 0.1937(11) 1.39 30

192 4 4.000 0.1798(11) 1.45 30

192 4 4.100 0.1750(9) 0.98 30

Table 2. Fits of H(r) to eq. (4.1), from simulations on a lattice of volume (N2
s × Nt)a3, with

Ns = 192 and Nt = 4, at different values of β = 1/(ae2).

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

β

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

η

0.7 0.8 0.9 1

β
cr

 / β

0.15

0.2

0.25

η

Figure 2. Results obtained for η, in simulations at different values of β and for Ns = 192 and

Nt = 4, from fits of Wilson-line-correlator ratios to eq. (4.1). The orange diamond indicates

the conformal-field-theory prediction η = 1/4 at the critical temperature, which corresponds to

β = 3.005 [104]. In the inset, the same data are shown as a function of βc/β and fitted to eq. (4.2),

with the rationale discussed in the text.
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Figure 3. Flux-tube profile, as probed by the quantity defined in eq. (2.14), from calculations at

β = 4, with Nt = 4 and r = 32a, for Ns = 128 (magenta triangles), Ns = 192 (turquoise squares),

and Ns = 256 (blue circles). The blue curve is the fit of the Ns = 256 data to eq. (3.11) in the

2 ≤ x/a ≤ 40 range.

strongly affected by finite-size effects.4 The data for L = 256a in the range 2 ≤ x/a ≤ 40

are fitted to eq. (3.11), using C(r) and ∆φ as fit parameters, and the result of this fit

is the blue curve: the fitted parameters are C(r) = 0.0097(1) and ∆φ = 0.886(22), with

χ2
red = 1.76. It is remarkable that the agreement of the fitted curve extends well beyond

the interval of fitted data (solid line), both down to shorter and up to larger values of x/a

(dashed portions of the curve).

Table 3 shows a more complete summary of these two-parameter fits. As one can see,

when r is increased, C(r) and the precision on ∆φ decrease. Nevertheless, the precision of

the results is sufficient to observe that essentially all results for ∆φ, reported in the fifth

column, are compatible with each other: a fit to a constant yields ∆φ = 0.933(7), with

χ2
red = 1.87, the only outliers being the results obtained for r = 32a and r = 80a.

A different, and independent, way to extract ∆φ is based on the analysis of the Y (x)

correlator, evaluated according to eq. (2.17): see figure 4 for an example of numerical

results, for β = 4.0, Ns = 192, and Nt = 4. As the lattice realization of the field strength

generally involves mixing of different operators, we fit our results for Y (x) to the functional

4Note that, in contrast to the G(r) correlator, finite-size corrections and the effects of periodic images

of the lattice would be difficult to account for properly, since they have a different impact on the source

worldlines and on the flux operator. To this purpose, we chose to restrict our analysis to values L/x ≥ 5.
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Ns Nt r/a C(r) ∆φ χ2
red

256 4 10 0.0297(2) 0.925(11) 0.86

256 4 16 0.0196(2) 0.959(14) 1.57

256 4 20 0.0154(2) 0.944(17) 0.77

256 4 32 0.0097(1) 0.886(22) 1.76

256 4 40 0.0078(1) 0.935(31) 0.81

256 4 50 0.0063(1) 0.926(39) 0.58

320 4 60 0.0056(2) 1.03(9) 1.79

320 4 80 0.0042(1) 0.79(8) 0.51

Table 3. Results of the fits of eq. (3.11), with C and ∆φ as fit parameters.

form

Y (x) = b0 ·

[(
a

x

)2∆φ

+

(
a

L− x

)2∆φ
]

+ b1 ·

[(
a

x

)4

+

(
a

L− x

)4
]
, (4.3)

which also includes the leading corrections due to the finite spatial extent of the system

and the contribution of the operator with conformal weight 2 (associated with the action

density). It is important to stress that the conformal weight of this marginal operator

is exact [165]. The three-parameter fit of these data in the 10 ≤ x/a ≤ 96 range yields

b0 = 0.1046(33), b1 = 1.40(16), and ∆φ = 0.946(5), with χ2
red = 1.15. It is interesting

to note that b1/b0 = O(10): the large value of the b1 coefficient implies that, while the

behavior of the correlation function at large distances is dominated by the flux operator,

with conformal weight ∆φ ' 1, the mixing with the operator of conformal weight 2 induces

a non-negligible correction at short and intermediate distances.

We remark that the result for ∆φ from this analysis is essentially consistent with the

one obtained from the study of W (x, r), which is based on a different type of operator,

evaluated on a different set of configurations.

We also observe that, if the results for W (x, r) (for β = 4 and Nt = 4) are fitted

to eq. (3.11) at fixed ∆φ = 0.946(5), with C(r) as the only fit parameter, one obtains

the results listed in table 4, in which the statistical uncertainty from the fit is reported

in the first parentheses, while the error induced by the uncertainty on ∆φ is given in

the second parentheses. The fitting range is 2 ≤ x/a ≤ 24 for all values of r/a. Once

again, the fits yield good χ2 values, even including data at small x. Note that in this

case the possible contamination with the operator of scaling dimension 2 is expected to be

completely negligible, being suppressed as 1/r2; this is indeed confirmed: we verified that

if such term is included in the fit, its contribution is always compatible with zero, within

the precision of our data.

Yet another test of the conformal-field-theory prediction for the shape of the flux tube

concerns the dependence of C on r: fitting the values of C(r) in table 4 to the expected form

C(r) = cssφ ·
(

4a

r

)∆φ

, (4.4)
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Figure 4. Field-strength two-point correlation function, computed according to eq. (2.17), for

β = 4, Ns = 192, and Nt = 4. The solid curve is obtained from the fit to eq. (4.3), as discussed in

the text.

Ns r/a C(r) χ2
red

256 10 0.03002(20)(29) 0.99

256 16 0.01944(16)(17) 1.54

256 20 0.01541(12)(12) 0.73

256 32 0.00990(10)(5) 2.01

256 40 0.00785(8)(3) 0.78

256 50 0.00634(8)(2) 0.56

320 60 0.00552(11)(2) 1.74

320 80 0.00437(8)(1) 0.64

Table 4. One-parameter fits of W (x, r) (for β = 4 and Nt = 4) to eq. (3.11), with ∆φ =

0.946(5) fixed.
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one obtains cssφ = 0.07115(7) and ∆φ = 0.948(6) with χ2
red = 1.98, when all data for

10 ≤ r/a ≤ 80 are included in the fit. Finally, the value of cssφ with the alternative (“con-

tinuum”) normalization of the field operator mentioned in section 3 reads ccontssφ = 0.2200(34).

5 Discussion and concluding remarks

In this work, we presented a high-precision study of U(1) gauge theory in three spacetime

dimensions, in its compact formulation on a cubic lattice — a theory that, as we discussed

in section 1, has important implications for high-energy elementary-particle physics and

for condensed-matter physics alike.

As is known, a semiclassical analysis shows that at zero and at low temperatures,

the monopoles (or instantons) of the theory are responsible for the dynamical generation

of a finite mass gap and induce a logarithmically confining potential for pairs of probe

charges [13, 17]. These properties persist up to a finite critical temperature Tc, at which

the theory undergoes a transition to a different phase, characterized by restoration of scale

invariance (at least for modes of wavelength much longer than the lattice spacing) and by

logarithmic confinement.

We focused on the dynamics of the theory in this high-temperature regime, and com-

pared a new set of numerical results from Monte Carlo calculations on high-performance

computing machines with analytical predictions from conformal field theory: specifically,

we exploited ideas related to universality and to the construction of a low-energy effective

field theory for systems characterized by at least one diverging correlation length [116] to

map the whole high-temperature phase of this theory to the low-temperature phase of the

XY model in two dimensions. While the latter is not an exactly solvable model, its prop-

erties have been studied for many years and are well understood: in particular, a suitable

generalization of the model reveals that the Kosterlitz-Thouless critical point lies at the

intersection of different critical lines, with continuously varying critical indices [162]. One

of these is the line of Gaußian critical indices described by eq. (3.9): their simplicity and the

fact that they depend on just one real parameter (e.g. the temperature of the system) allow

one to formulate stringent predictions for correlation functions in the XY model. As we

showed here, such predictions entail remarkable implications for the correlation functions

of the U(1) theory in its high-temperature phase. While previous work mainly focused on

the properties of the theory at or very close to the critical temperature [104], here, for the

first time, we extended this theoretical machinery to temperatures well above Tc.

The physical quantities that we considered in detail are the two-point correlation func-

tions of probe-source worldlines, and the flux they induce. Using the traditional dual

formulation of this gauge theory, a toolbox of powerful algorithmic techniques, and high-

performance-computing machines, we were able to track the behavior of these correlators

over very long distances, and to obtain very high, and nearly constant, levels of numeri-

cal precision for quantities varying over several orders of magnitude. One such example

is provided by our analysis of the field-strength two-point correlation function shown in

figure 4.
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The results that we obtained fully confirm the analytical predictions from conformal

field theory, and the validity of the mapping from operators in the high-temperature phase

of the gauge theory to operators in the low-temperature phase of the XY model. For T > Tc,

the Polyakov-loop correlator in the U(1) gauge theory decays as an inverse power of the

distance, with a characteristic exponent η that varies continuously with the temperature.

Further analysis, based on a semi-heuristic argument, also suggests that, at least in the

temperature range considered here, the corresponding temperatures in the gauge theory

and in the bidimensional XY model are approximately inversely proportional to each other.

Similarly, a thorough study of the flux tube induced by a pair of static probe charges

confirms that its dependence on the spatial charge-charge separation r and on the distance

x from the charge-charge axis is accurately described by the functional form predicted by

conformal field theory. The critical index ∆φ associated with the “flux” operator, which

cannot be directly identified with any of the operators defined in eq. (3.8), is found to

differ from its “classical” value 1 by a small but finite negative correction O(10−1), i.e. to

be renormalized as a result of quantum interactions. This result is confirmed by the analysis

of the two-point flux correlation function, in which we detected the leading correction due

to the operator of conformal weight 2 (which can be associated with the cosine of the

phase of the plaquette, appearing in Wilson’s action): the two different lattice operators

mix with each other, and the large coefficient of the operator of conformal weight 2 makes

its contribution non-negligible at short and intermediate distances. As a by-product of

our analysis, we also extracted the value of the cssφ coefficient, that appears in one of the

operator-product expansions relevant for the model.

Our results provide a non-trivial test of the conjecture first put forward in ref. [116],

that here, for the first time, is successfully checked in a whole phase of a gauge theory.

We envisage many different directions, in which the approach developed in this paper

could also be applied.

High-precision numerical calculations, like the ones presented here, could also be car-

ried out to study the behavior of this model in the presence of a constant and uniform

background electric field, which is expected to have interesting implications for the elec-

tric Meißner effect and for the dielectric permittivity of superinsulators [166]. Enforcing a

smooth background field strength on a periodic lattice in a gauge-invariant way implies a

quantization condition on the values of the field that can be studied, but the techniques to

perform this type of calculations are well understood and in recent years have been exten-

sively applied to study the effect of external QED fields on strongly interacting matter at

high temperature [167, 168].

Another interesting generalization is the inclusion of fermionic matter fields. As we

already mentioned above, when the theory is coupled to a sufficiently large number nf

of dynamical charged fermion species, its long-distance properties can be described by a

strongly coupled conformal field theory: this was shown to be the case in the large-nf

limit [26], and is expected to persist also at finite values of nf. It would be very interesting

to perform Monte Carlo calculations of three-dimensional U(1) gauge theory coupled to

dynamical fermions and to perform a systematic comparison of the numerical results with

analytical predictions from conformal field theory.
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It is worth remarking that inclusion of fermions in this theory comes with some sub-

tleties. In particular, in a three-dimensional (or, more generally, odd-dimensional) space-

time, the parity transformation P, defined as inversion of all spatial coordinates, is in the

group of spatial rotations, hence one defines a different discrete symmetry R, which inverts

only one spatial coordinate. Classically, U(1) gauge theory defined in three spacetime di-

mensions coupled to one species of massless Dirac fermions of charge 1 (in units of e) is

invariant under R, but this symmetry is anomalous, i.e. the theory cannot be quantized in

a gauge-invariant, R-preserving way [169–171]. This anomaly, however, is absent when nf

is even — or a multiple of 4, on non-orientable manifolds [172].

Adding interacting fermions to this model is also interesting for another reason, namely

the rich network of dualities that arise in quantum field theory in 2+1 dimensions [173–184].

Such dualities can be considered as a generalization of the conventional particle/vortex

duality [185, 186], and are reviewed in ref. [187]; an analogous web of dualities arises in

two dimensions [188]. In particular, it is known that a free electronic Dirac cone is dual

to quantum electrodynamics in three dimensions with a single species of fermions and

with a “mixed” Chern-Simons term that couples a background Abelian gauge field and a

dynamical one [189, 190]. This duality has important applications in condensed-matter

theory, in particular for metallic surfaces of topological insulators and for Fermi liquids

induced by strong magnetic fields at half filling of the lowest Landau level [191, 192].

Another interesting topic to be studied is the behavior of equilibrium thermodynamic

quantities in three-dimensional compact U(1) lattice gauge theory. On the one hand,

its T < Tc phase shares many qualitative features with non-Abelian gauge theories in

3 + 1 [193–202] or in 2 + 1 dimensions [203–206]. On the other hand, the properties of

the theory at T > Tc are very different from those of its non-Abelian counterpart (most

remarkably, the high-temperature phase is confining).

Finally, it would also be interesting to repeat the present study at larger values of Nt,

and to study quantitatively the dependence of the results on this parameter. Addressing

this issue, however, is clearly beyond the scope of this article, and we leave it for future work.
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A Renormalization-group analysis of the XY model in two dimensions

In this appendix, we discuss the analysis of the XY model in two dimensions by the

renormalization group and present a derivation of eq. (3.6).

For a renormalization-group analysis of the XY model in two dimensions, it is conve-

nient to consider the variation in free-energy density f = F/L2 that is induced by imposing
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a gradient v to the phase field θ(x):

θ(x)→ θ(x) + v · x, (A.1)

and to introduce a quantity ρr
s, called the spin-wave stiffness, defined as the second deriva-

tive of f with respect to v. From eq. (3.1) it follows that at T = 0 the spin-wave stiffness

equals J . At finite temperatures below TKT, ρr
s can be expressed in terms of the zero-

momentum limit of the Fourier transform ñ(q) of the vortex density:

ρr
s = J − (2πJ)2

T
lim
q→0

〈ñ(q)ñ(−q)〉
q2

. (A.2)

Introducing the dimensionless ratio K0 = J/T and its counterpart K = ρr
s/T , which

accounts for thermal effects, eq. (A.2) can be expanded in powers of the vortex fugacity

y = exp(−Ec/T ), which is small at low temperatures. The result is

1

K
=

1

K0
+ 4π3y2

∫ L

a

d r

a

(r
a

)3−2πK
, (A.3)

so that inclusion of vortices has an effect similar to an increase in temperature. Eq. (A.3) is

the basis for a renormalization-group analysis [119–121] showing that, upon an infinitesimal

variation of the lattice spacing a→ a exp(`) ' a(1 + `), the parameters K and y vary as

1

K
→ 1

Kr

=
1

K
+ 4π3y2

∫ ae`

a

d r

a

(r
a

)3−2πK
, y → yr = y exp[(2− πK)`]. (A.4)

Finally, these equations can be rewritten in differential form as

`
dK−1

r

d`
= 4π3y2

r +O(y4
r ), `

dyr
d`

= (2− πKr)yr +O(y3
r ), (A.5)

or, setting X = 2− πKr and Y = 4πyr (and neglecting subleading terms),

`
dX
d`

= Y2, `
dY2

d`
= 2XY2, (A.6)

whose solutions near X = Y = 0 are hyperbolæ X 2 − Y2 = const. When the hyperbola

vertices lie on the X axis and the initial value of X is negative (that is, T < TKT), the renor-

malization flow drives the system to Y = 0 and Kr to a finite value K∞r : this corresponds

to a line of low-temperature critical points, where correlations decrease as r−T/(2πK
∞
r ). On

the other hand, in the high-temperature phase one has X 2−Y2 = −s2 < 0; it is then con-

venient to parametrize X and Y in terms of a variable ψ, ranging from an initial value ψin

to π/2, and such that X = s tanψ, Y = s secψ, and ` = exp[(ψ−ψin)/s]. When the initial

value of X (and thus ψin) is negative, the domain where eqs. (A.6) are valid corresponds

to Y ' s, i.e. to

λ ' exp(−ψin/s). (A.7)

This value can be interpreted as the largest length scale (in units of a) at which the system

remains nearly critical, i.e. with the correlation length in units of the lattice spacing.

– 20 –
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Then, the initial values of X and Y must be close to the critical line Y = −X (hence

sinψin = X/Y ' −1, i.e. ψin is close to −π/2). Then, denoting the critical value of X
corresponding to that initial value of Y as Xc (i.e. Xc = −Y), we have s2 = Y2 − X 2 =

X 2
c −X 2 = 2Xc(X − Xc), i.e. Y ∝ (X − Xc) or, equivalently, s2 ∝ (Kc −K). Plugging this

result into eq. (A.7), one eventually finds that, for τ = T/TKT − 1 → 0+, the correlation

length diverges as described by eq. (3.6), where the constant b is positive.

Open Access. This article is distributed under the terms of the Creative Commons
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