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Abstract 

Peripheral nerves are complex organs that spread throughout the entire human body. They 

are frequently affected by lesions not only as a result of trauma but also following radical 

tumor resection. In fact, despite the advancement in surgical techniques, such as nerve-

sparing robot assisted radical prostatectomy, some degree of nerve injury may occur 

resulting in erectile dysfunction with significant impairment of the quality of life. 

The aim of this review is to provide an overview on the mechanisms of the regeneration of 

injured peripheral nerves and to describe the potential strategies to improve the 

regeneration process and the functional recovery. Yet, the recent advances in bio-

engineering strategies to promote nerve regeneration in the urological field are outlined 

with a view on the possible future regenerative therapies which might ameliorate the 

functional outcome after radical prostatectomy. 
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Introduction 

Radical prostatectomy is the gold standard surgical treatment for organ-confined prostate 

cancer. The employment of innovative surgical technique such as nerve-sparing robot 

assisted radical prostatectomy allowed to magnify the anatomical field leading to a three-

dimensional perspective obtained through the robotic lenses and a better anatomical 

knowledge.  

Despite surgical technique advancement, erectile dysfunction rate after radical 

prostatectomy is still high especially in minimal nerve-sparing technique where  frequently 

iatrogenic damage to the autonomic peri-prostatic nerve bundles occurs[1-3]. 

Anatomically, prostate innervations is supplied by peripheral innervation identified in the  

pelvic plexus with a dense innervations network composed by many nerves difficult to 

identify as well the intramural ganglia, particularly dense at  prostate capsule level and 

caudal prostate [4,5]. 

Concerning the peripheral nervous system, we have to discriminate between  somatic and 

autonomic components that show anatomical and structural differences. 

The somatic nervous system includes the sensory and motor nerves that innervate the limbs 

and body wall. Sensory nerve fibers derive from neurons located in the dorsal root 

ganglion and supply skin innervations. The motor neurons cell bodies are located in the 

anterior horn of the spinal cord and supply innervations to the skeletal muscle in which 

they release acetylcholine that  stimulates the voluntary contraction.  

The autonomic nervous system consists of two main divisions, the sympathetic and the 

parasympathetic that affects the peripheral transmission of the visceral organs through 

nerves and ganglia. The efferent pathway involves two neurons: the preganglionic and the 

post ganglionic neurons, preganglionic axons are myelinated with an organization that 

resembles the somatic nerves, while postganglionic axon are unmyelinated and organized 

in small diameter bundles surrounded by a single Schwann cell (type C fibers). The 

sympathetic is involved in responses that would be associated with fighting or fleeing, the 

parasympathetic is involved in energy conservation functions and increases bladder 

contractility, gastrointestinal motility and secretion [6,7].  

In the parasympathetic nervous system preganglionic fibers are myelinated and arise from 

different cranial nerves and from the second to fourth sacral spinal nerves. Postganglionic 

parasympathetic fibers are usually unmyelinated and shorter than the sympathetic fibers, 

since the ganglia they synapse  are in or near the visceral they supply. 
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 The aim of this  narrative review is to provide a brief description of  the different 

types of injuries that can occur in the  peripheral nerves, and to describe the different steps 

of the regeneration process.  

Somatic nerve lesions are common injuries often caused by trauma or accident at work, for 

this reason most of the experimental studies described here are performed viewing these 

nervous components. Despite this, the bases provided in this work have allowed us to 

understand more in detail the therapeutic possibilities in case of autonomic nerve lesions, 

and in particular in case of damage of  the peri-prostatic bundles after radical 

prostatectomy. 

 

 

1. THE BIOLOGY OF NERVE INJURY AND REGENERATION 

 

1.1 Effects of mechanical injury on peripheral nerve fibers  

Peripheral nerves represent the main component of the peripheral nervous system forming 

a complex network that reach the whole body, making them particularly vulnerable to 

injuries.  

Each nerve is a complex structure formed by cellular and tissue elements, and surrounded 

by three basic protective connective tissue layers: the epineurium that support and surround 

the whole nerve, the perineurium that surround each nerve fascicle and the endoneurium 

that protects the nerve fiber [8-10]. 

The smallest functional unit of a peripheral nerve is the nerve fiber, responsible of the 

motor and sensory impulse conduction. Anatomically, depending on the strategy adopted 

from Schwann cells to enclose axons, nerve fibers are distinguished in two subgroups: 

myelinated and unmyelinated. Myelinated nerve fibers consist of a single axon that is 

enveloped individually by a single Schwann cell.  

The Schwann cell membrane wraps around the nerve fiber to form a multilaminated 

myelin sheath. In myelinated fibers axons are enveloped by a chain of Schwann cells, 

arranged in longitudinal sequences along the length of the axon. Between each Schwann 

cell, there is an interspace of unmyelinated axon known as “node of Ranvier” in which the 

axolemma is exposed to the extracellular space. This area allows to extracellular ions to 

reach the axon, inducing the saltatory conduction of the impulse along the nerve fiber 

[10,11]. On the contrary, unmyelinated nerve fibers are composed by a group of several 

axons enveloped by a single Schwann cell  [11].  
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Peripheral nerve injuries are common conditions with broad ranging symptoms depending 

on the severity and nerves involved. If not properly treated, nerve traumas could lead to a 

sensory and motor function deficit. Indeed, despite the spontaneous regeneration potential 

of peripheral nerve fibers, clinical results of nerve injuries are still unsatisfactory, resulting 

in not complete functional recovery. 

Peripheral nerve injuries can be described and classified using Seddon degree in 

neuropraxia, axonotmesis and neurotmesis [12]: 

 Neurapraxia is a mild injury, characterized by local myelin damage. It may result from 

exposure to a wide range of conditions such as heat, cold, irradiation or electrical injuries, 

but it is most commonly due to mechanical stress, such as concussion, compression or 

traction injuries. Axon continuity is preserved, and the nerve does not undergo Wallerian 

degeneration. Paralysis of the innervated body part may occur, with possible atrophy due 

to disuse. The absence of lesion of nerve connective structures makes surgery unnecessary 

and recovery usually occurs within few days, up to a few weeks.  

 Axonotmesis is a middle type of injury, in which peripheral axons are damaged or 

destroyed, but the connective tissue structures remain intact. The axon interruption is often 

the result of nerve pinching, crushing or prolonged pressure. The distal stump of the nerve 

undergoes Wallerian degeneration, but the subsequent axonal regrowth may occur along 

the intact endoneurial tubes. The proximal nerve stump undergoes retrograde degeneration. 

The transmission of pulses is compromised, as well as the functionality of the connected 

area of the body. The time of recovery depends upon the internal nerve disorganization as 

well as the distance of the injury site to the end organ. The absence of lesion of nerve 

connective structures makes surgery unnecessary. 

 Neurotmesis is the most severe type of injury. The nerve is completely disrupted with loss 

of tissue continuity, and the connective tissue is severely damaged. Even in this case the 

proximal nerve stump undergoes retrograde degeneration, while the distal to Wallerian 

degeneration. Functional recovery does not easily occur because of the extent of 

endoneurial tube disruption. Nonetheless, a surgical approach is required to get a proper 

nerve fibers regeneration. 

A further classification provided by Sunderland in 1951 subdivided the injuries according 

to the discontinuity of the different connective tissue layers in 5 degree [13].  

 Sunderland type 1 injury correspond to Seddon’s Neurapraxia with conduction block and 

completely intact stroma; 
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  Sunderland type 2 injury corresponds to Seddon’s axonotmesis represents a severe crush 

injury with disconnection of axons and Schwann cells sheath but preservation of all 

connective tissue layers, endoneurium, perineurium, and epineurium are still intact, but the 

axons are physiologically disrupted. Recovery can occur by axonal regrowth along 

endoneurial tubes, and complete functional recovery can be expected. The time for 

recovery depends on the level of injury, usually months. 

 In Sunderland type 3 injury, the endoneurial layer is disconnected but the surrounding 

perineurium and epineurium are intact. Recovery is incomplete and depends upon how 

well the axons can cross the site of the lesion and find endoneurial tubes.  

 In Sunderland type 4 only epineurium continuity is preserved, individual nerve fascicles 

are transected, and the continuity of the nerve trunk is maintained only by the surrounding 

epineurium. This type of injury requires surgical repair or reconstruction of the nerve. 

 Sunderland type 5 injury is equivalent to Seddon’s neurotmesis (complete nerve 

trasaction), also the epineurium is disconnected resulting in a complete nerve transaction 

and spontaneous recovery is negligible. 

Although Sunderland’s classification provides a concise and anatomic description of nerve 

injury, the clinical utility of this system is debatable since nerves may undergo a 

combination of different degrees of injury. 

Therefore, in 1988 Susan E. Mackinnon and A. Lee Dellon described a 6th degree of nerve 

injury to address a mixed nerve injury. They use the term “neuroma in continuity” to 

describe a combination of the degrees of injuries per fascicle [14] (Fig.1). 

Time of recovery of peripheral nerve depends on the degree of injury and is summarized in 

Table1.  
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Fig.1: Schematic representation of nerve injuries 
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Table 1: Classification and time of recovery of different peripheral nerve injuries 

 

1.2 The biological mechanisms of peripheral nerve regeneration 

It is known that, differently to the Central Nervous System (CNS), the Peripheral Nervous 

System (PNS) is able to regenerate spontaneously in response to injury although the 

regeneration process  is closely related to the severity of the damage. After a nerve injury, 

several mechanisms occur at the injury site almost immediately including morphologic and 

metabolic changes [15-17].  

The interruption of a peripheral nerve causes significant changes in normal morphology 

and tissue organization both proximally and distally to the lesion site [17,18]. 

The functional significance of the regeneration process is to replace the distal nerve 

segment reaching the target organ and achieving the functional recovery. 

After injury, axons distal to the lesion site are disconnected from the neuronal body and 

undergo degeneration called “Wallerian Degeneration” in honor of Augustus Volney 

Waller, who first characterized the disintegration of the frog glossopharyngeal and 

hypoglossal nerves after axotomy 160 years ago [19]. This process starts immediately after 

injury and involves myelin degradation of axoplasm, axolemma and myelin sheath due to 

proteolysis; myelin is transformed into neutral lipid compounds by Schwann cells, 

infiltrated blood monocytes and macrophages are recruited at the injury site [18,20]. 

Occurrence of Wallerian degeneration contributes to axonal regeneration due to clearance 
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of myelin debris and growth inhibitors, and subsequent creates a regenerative 

microenvironment favorable for the axonal regrowth of surviving neurons [21-24]. 

Whereas the Wallerian degeneration occurs, the soma reacts to the injury with substantial 

metabolic changes necessary for regeneration and axonal elongation. The most relevant 

morphological changes in the neuronal body are the Nissl bodies dissolution followed by 

nuclear eccentricity and enlargement, cell swelling, dendrites retraction.  

In degeneration and regeneration Schwann cells play a critical role: during Wallerian 

degeneration an intense inflammatory response occurs, mediated by Schwann cells, mast 

cells, macrophages and activated endothelial cells leading an increase of chemokines, 

cytokines, interleukin 1 (IL-1) and tumor necrosis factor (TNF) [25,26].  

Furthermore, Schwann cells begin to dedifferentiate in the distal stump: within 48 hours of 

injury, they change their gene expression: myelin proteins (e.g., P0, MAG) [27-29] and 

connexin 32   decrease dramatically as a consequence of axonal degeneration distal to the 

injury site, whereas regeneration-associated genes, and neurotrophin such as NGF, GDNF, 

BDNF and IGF, are up-regulated and promote axon growth [26,30-32]. 

Between days 1 and 5 after injury, Schwann cells start to proliferate peaking around day 3 

post-injury and then decreasing during the following weeks. Proliferating Schwann cells 

align with the endoneurial tubes in columns known as bands of Büngner at the basal 

lamina level, that support and guide the regenerating axons; aligned Schwann cells and 

their extracellular matrix provide indispensable pathways to guide axonal regrowth [33-

35].  

Nerve regeneration and target reinnervation are complex processes, involving multiple 

factors. Even if the peripheral nervous system is able to regenerate, nerves can regenerate 

on their own if injuries are small; indeed, larger injuries must be surgically treated [36-38]. 

Regenerating axons are usually produced at the node of Ranvier located close to the 

proximal stump of the lesion [39,40] and extend by attaching themselves to the inner 

surface of the basal lamina or on the Schwann cell plasma membrane (Fig.2). 

The advancement of regenerating axons in the distal segment is promoted by different 

factors such as fibronectin and laminin together with several cell adhesion molecules 

through the Schwann cell column[41].  

Adhesion molecules are no longer detected at around the time that Schwann cells begin to 

form the myelin sheath on the axon, whereas the mature unmyelinated fibers in which the 

relationship between axons and Schwann cells is apparently preserved as that during the 

development, continue to exhibit such adhesion molecules [42]. 
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Axons can sprout approaching Schwann cells column or randomly in the connective tissue 

of the nerve. After few time, regenerated axons that reached the target organs display a 

close-to-normal diameter, branches that do not reach the target are pruned away [43]. 

The knowledge of molecular and cellular changes occurring during the degeneration and 

the regeneration process of a peripheral nerve is of importance when attempting to improve 

the available strategies for nerve repair. 

 

 

 Fig. 2: Schematic representation of degeneration and regeneration processes 

 

2. FACTORS INFLUENCING PERIPHERAL NERVE REGENERATION 

In contrast to the central nervous system (CNS), the peripheral nervous system (PNS) is 

able to regenerate spontaneously after injury. The functional recovery in the PNS can be 

attributed to different factors, such as the ability of neurons and/or Schwann cells to 

regenerate neurites, the distal environment supporting axon regrowth, and the target tissues 

receptive to reinnervation [44]. In physiological conditions, nerve fibers regenerate after 

degeneration, and the successful nerve regeneration is considered closely linked to the 

Wallerian degeneration process. 
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Functional recovery after nerve injury depends on several extrinsic and intrinsic factors 

such as: surgeon experience, surgical technique used for the reconstruction, rehabilitation, 

obese conditions, co-morbidity and not least, age [45-47]. 

About co-morbidity, it is well know that axonal regeneration following peripheral nerve 

injury is impaired in diabetic patients and has been documented in experimental diabetic 

animal models: diabetic conditions induce alterations in the biological properties of 

neurons and Schwann cells leading to delay in Wallerian degeneration and macrophage 

infiltration, furthermore reduce the expression of neurotrophic factors and alteration of the 

extracellular matrix components resulting in impairment of axonal regeneration [48,49].  

Age is a further factor that influences peripheral nerve regeneration. Whereas it is well 

reported that young tissue has high regeneration potential, in aged tissue the regenerative 

capability and functional recovery is significantly reduced. Results about the implantation 

of nerve conduit in aged rats showed that axonal regeneration after sciatic nerve defects 

was less effective in aged than in young mice when using either nerve autografts or nerve 

conduits [50].  

Furthermore, morphological and morphometrical studies on crushed sciatic nerve of 6 and 

24 month-old mice analyzed 2, 4, and 8 weeks after injury showed that two weeks after 

axotomy, fascicles of aged mice contained significantly fewer regenerated myelinated 

fibers than young; 4 weeks later, the difference in the number of myelinated fibers was 

less. However, measurements of myelinated fibers of aged mice showed that areas of 

Schwann cell cytoplasm and myelin were significantly reduced at all time points analyzed 

[51-55]. 

Since the aging population is progressively growing, more studies are needed to improve 

the regeneration process in aged animals. 

 

3. STRATEGIES TO IMPROVE PERIPHERAL NERVE REGENERATION 

Strategies to improve the regeneration of peripheral nerves are proposed to reach the 

functional recovery [56,57].  

A possible approach is represented by the delivery of neurotrophic factor (NTFs) such as 

NGF, GDND and FGF into the nerve defect. It is known that neurotrophic factors support 

the different phases of Wallerian degeneration and axonal regeneration. For this reason, 

different studies report the application and the delivery of NTFs for instance conjugated 

with iron oxide nanoparticles (IONP), which were supposed to increase the stability of the 

conjugated NTFs, but also to ensure local and slow release of NTFs [58]. 
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Another approach proposed to enhance nerve regeneration is the administration of drugs 

such as Sildenafil, a selective inhibitor of phosphodiesterase-5 (PDE5) causing 

intracellular accumulation of cGMP. 

Sildenafil is currently used for treatment of erectile dysfunction, and other several 

conditions such as pulmonary hypertension [59,60]. 

Recently has been reported that increasing cGMP in cells can also induce neurogenesis, 

angiogenesis and synaptogenesis in young and old animal models promoting the functional 

recovery of sciatic nerve [61,62]. 

Different materials are currently investigated as device to enhance axonal regeneration, 

both of biologic or synthetic origin.  

According to the material source, they can be classified in different categories: biological 

nerve conduits or syntethic nerve conduits.  

 

3.1 Biomaterials currently used for peripheral nerve repair 

Various materials have been used as gap for peripheral nerves and are classified in: 

non degradable materials, biodegradable synthetic material and biodegradable 

materials of natural origin.  

Non degradable biomaterials 

A wide range of synthetic non degradable materials have been studied and tested for 

the fabrication of artificial nerve device, they possess many useful chemical and 

physical properties such as the  easy manipulation during the fabrication process. 

The most common are represented by: silicone tubes, frequently used for nerve 

repairs empty or filled with collagen, laminin and fibronectin based gel. This 

material is neither biodegradable nor permeable to large molecules resulting in a 

possible fibrotic capsule formation around the guide. 

Other non degradable materials employed for nerve regeneration are composed by 

elastomer hydrogel or pourus stainless steel with the disadvantage in strong scar 

tissue formation and foreign body reaction combined with inflexibility and lack of 

stability of the material [63,64]. 

Biodegradable synthetic materials  

Among biodegradable material, the polyglycolic acid (PGA) represent a 

bioabsorbable material   currently used as suture material for wound closure [65].  
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Polyesters and copolyesters have also been reported as suitable materials for nerve 

regeneration, to this category belong poly(L-lactide) (PLLA), poly(lactide-co-ε-

caprolactone), poly(L-lactide-co-glycolide), poly(1,3-trimethylenecarbonate-co-ε-

caprolactone) and poly(ε-caprolactone) (PCL) [66]. 

Biodegradable materials of natural origin 

These materials are able to degrade within a reasonable period proving different 

useful properties such as flexibility, degradability, porosity and high 

biocompatibility. 

Furthermore these important features can be modified altering the chemical or 

engineering properties of the materials. 

Among these collagen, the major component of the extracellular matrix, has high 

biologic properties for peripheral nerve regeneration able to enhance the regeneration 

process but despite the successful results in animal experimental model, no clinical 

trials have been conducted in human to date [67-70].  

Silk fibroin derived from natural silk has an increased application in biomedical 

fields thanks to its unique properties such as high tensile strength, elasticity and low 

immunogenicity [71]. In peripheral nerve regeneration, silk fibroin has been used as 

biomaterial for nerve guides to clarify the biocompatibility with neural tissues in 

vitro, and for bridging nerve defects in vivo [72-74].  

Other natural proteins like keratins have also been tested as nerve scaffold materials 

[75,76] or as filler to support peripheral nerve regeneration [77].  

Among the biodegradable materials chitosan, a copolymer of D-glucosamine and N-

acetyl-D-glucosamine, obtained from full or partial N-deacetylation of chitin, 

represents a highly biocompatible, biodegradable, low toxic material. The reasonable 

of chitosan as a eligible biomaterial for the development of nerve guides resides in its 

favorable biological properties and in its ability to interact with the ECM molecules. 

The biocompatibility of chitosan-based biomaterials with CNS and PNS cells has 

been widely investigated with success [78-81]. Recently, the study of chitosan tubes 

alone or in combination with other proteins such as poly-L-lysine or with PGA 

demonstrated the efficiency of such nerve guides for bridging peripheral nerve 

defects [82-87]. 

Chitosan is a biodegradable scaffold with very positive effects on nerve regeneration, 

facilitating nerve healing and improving nerve growth. 
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For these reasons, chitosan is actually used as scaffold for regeneration of various 

tissues (nerve, skin, bone, cartilage) [85] (Fig. 3). 

 

Fig. 3: Schematic representation of the potential strategies to improve nerve regeneration. 

 

4. APPLICATION OF MEMBRANES TO IMPROVE THE REGENERATION OF 

PERI-PROSTATIC NERVES AFTER NERVE-SPARING ROBOT ASSISTED 

RADICAL PROSTATECTOMY 

Recently, new strategies to improve the regeneration of the prostate nerves are arising to 

reach the functional recovery in patients who underwent radical prostatectomy. In 

urological context, the application of different type of  membranes is particularly useful to 

protect and to enhance the regeneration process of the periprostatic nerve inside the 

neurovascular bundle that surround the prostate. In the following paragraphs a description 

of the two main clinical membranes applied to neurovascular bundle will be provide. 
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4.1 Application of dehydrated human amnion/chorion membrane on the 

neurovascular bundle after nerve sparing radical prostatectomy 

Some authors described the application of dehydrated human amnion/chorion membranes 

(dHACM) on the neurovascular bundles after nerve sparing radical prostatectomy as a 

neuroprotective, pro-regenerative and anti-inflammatory device.  

Patel et al. reported the clinical use of dHACM as a novel source of implantable 

neurotrophic factors and cytokines useful to enhance the regeneration process [88,89]. This 

pivotal study was conducted in patients who underwent bilateral nerve sparing radical 

prostatectomy with the bilateral application of dHACM for a total of 58 patients 

preoperatively potent and continent. Postoperative evaluation of patients by follow-up 

information showed that a high percentage of patients recover the urinary continence 8 

weeks after surgery. With regard to the potency, considered as the ability to achieved and 

maintain the erection, they reported a significant shorter mean time period in patients with 

the dHACM application resulting in a early potency return [90]. 

Another study by Ogaya-Pinies et al. provide encouraging data regarding the enhancement 

of the functional recovery using dHACM wrap around the neurovascular bundle after 

radical prostatectomy as an innovation in this clinical field. More specifically, dHACM 

house and release many important factors involved in tissue repair and growth such as 

VEGF, TGF-β, FGF, PDGF. Result obtained by follow-up of patients belonging to 

dHACM group showed a short mean time to return to potency compared with the group of 

non-graft patients supporting the hypothesis that the application of dHACM is able to 

accelerate the return to potency. Furthermore, it has been demonstrated that the application 

of dHACM does not increase the risk of biochemical cancer recurrence (BCR) [91]. 

 

4.2 Application of chitosan membrane to improve the functional recovery after nerve 

sparing radical prostatectomy 

In order to improve the regeneration process and the functional recovery of peripheral 

nerves, different artificial devices have been developed and proposed for clinical 

application [71,92,93]. Interestingly, the application of membranes made of another 

biomaterial of natural origin namely chitosan has been reported to be safe and effective on 

the neurovascular bundles after nerve-sparing robot-assisted radical prostatectomy, 

appreciating also some positive results regarding potency recovery [94]. 

Chitosan a derivative of chitin, obtained from the exoskeleton of crustaceans, is achieving 

resounding interest both in basic research and in clinical settings due to its 
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biocompatibility, biodegradability, low toxicity and adhesion to the injury site. For this 

reason, chitosan-based nerve graft have been widely employed for nerve reconstruction as 

an alternative to autologous nerve graft. The characteristics of chitosan useful in the intra-

operative field are (Fig. 4):  

(i) Neuroprotective/neuroregenerative effect [84]  

(ii) Antitumoral activity [95] 

(iii) Antinflammatory and analgesic effect [96] 

(iv) Hemostatic activity [97]  

(v) Antimicrobial activity [98] 

In vitro studies on chitosan membrane showed its suitability as a substrate for proliferation, 

survival of Schwann cells as well as survival and differentiation of neuronal cells. 

The direct contact of Schwann cells with the biomaterial proved its good biological 

properties allowing important cell functions such as ensheathment, myelination and 

production of extracellular matrix [78,80,81,85,99].  

In addition, several in vivo studies showed that chitosan, in form of hollow conduits, 

achieved promising results improving peripheral nerve regeneration [100-104]. 

In particular, an in vivo study with different degrees of acetylation of chitosan tubes used to 

reconstruct 10 mm nerve defects in the adult rat displayed functional and morphological 

nerve regeneration confirmed by stereological analyses. At the same time in vitro 

cytotoxicity was studied to test the biocompatibility of the chitosan tubes showing that the 

degradation products released by the conduit did not affect negatively the metabolic 

activity of cells [84,93]. 

Chitosan nerve conduits have shown promising results not only to bridge somatic nerve 

defects but also in case of autonomic nerves such as sympathetic and phrenic nerves that 

following thoracic sympathectomy can be occasionally resected leading to respiratory 

dysfunction [104]. 

Recent advancements showed that tissue regeneration can be achieved also by chitosan 

degradation products called “chitooligosaccharides” (COS) deriving from partially 

hydrolyzed chitosan with high water-solubility. It is reported that COS are able to support 

the local microenvironment at the injury site and display neuroprotective effects on 

neurons making them particularly suitable for medical application [105]. COS support 

nerve cell adhesion and promote neuronal differentiation and neurite outgrowth through 

upregulating the expression of both neurofilament and N-cadherin factors [106-108]. 
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Furthermore COS display important interactions with Schwann cells that are essential for 

nerve regeneration [109]. 

In addition to its well-known properties useful for tissue repair (biocompatibility, 

biodegradability, low toxicity), chitosan has also shown excellent potential for supporting 

three-dimensional organization of regenerating tissues [85,110,111]. 

Furthermore, another important property of chitosan is represented by its anti-proliferative 

capability in case of cancer cells. 

The mechanism of action of chitosan as an anti-proliferative agent has been well reported, 

even if the underlying molecular mechanism has not been fully investigated yet. The anti-

proliferative properties of chitosan have been tested in several reports with different human 

cancer cell lines such as breast, gastric carcinoma, melanoma and monocytic leukemia cell 

lines [95,112-116].  

 

 

 

Fig. 4: Schematic representation of chitosan useful properties  
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DISCUSSION 

Erectile dysfunction represents an important impairment in patients following prostate 

cancer resection, and despite the advancement of the surgical technique such as nerve-

sparing robot assisted radical prostatectomy that allowed to preserve the peri-prostatic 

nerves, the percentage of patients presenting this condition is still considerable.  

Furthermore, different pathological conditions such as diabetes can negatively affect the 

peripheral nerve regeneration, for this reason impairing the functional recovery. 

The application of dehydrated human amnion/chorion membranes (dHACM) on the 

neurovascular bundles has been proposed as scaffold to improve the functional recovery 

thanks to many growth factors with a neuroprotective, pro-regenerative and anti-

inflammatory role. Despite these important properties the application of dHACM  has 

limitations related to the availability and the high clinical cost of the device as well as the 

controversial use of growth factors in a region in which a tumor has been developed. 

The use of a biomaterial such as chitosan, that has already achieved the clinical application 

for somatic nerve repair, represents a high available and low-cost alternative. 

Chitosan has been receiving growing interests among basic and clinical research: results 

obtained in different in vitro and in vivo studies showed that chitosan represents an optimal 

candidate as a neural repair scaffold supporting axonal regeneration. 

Its adhesive capability allows the application on neurovascular bundle after robot assisted 

radical prostatectomy and it can be easily manipulated with the aim to create devices with 

different structural features.  

Moreover, interesting clinical results were obtained by Porpiglia and colleagues reporting a 

clinical trial in which they tested chitosan membrane, already known for its effectiveness 

in promoting nerve regeneration [117], as protective device for neurovascular bundles 

following bilateral nerve-sparing radical prostatectomy [94]. 

For this reason chitosan could be a suitable scaffold to improve the regeneration of 

periprostatic nerve and the functional recovery in the context of peri-prostatic nerves 

regeneration. 

Finally multicentre clinical trials will be carried out to study the efficacy of chitosan 

membrane in the clinical setting. 
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