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On the dynamics of a charged particle in

magnetic fields with cylindrical symmetry

Paolo Caldiroli∗, Gabriele Cora†

Abstract

We study the motion of a charged particle under the action of a magnetic field with cylindrical

symmetry. In particular we consider magnetic fields with constant direction and with magnitude

depending on the distance r from the symmetry axis of the form 1+Ar−γ as r → ∞, with A 6= 0

and γ > 1. With perturbative-variational techniques, we can prove the existence of infinitely many

trajectories whose projection on a plane orthogonal to the direction of the field describe bounded

curves given by the superposition of two motions: a rotation with constant angular speed at a unit

distance about a point which moves along a circumference of large radius ρ with a slow angular

speed ε. The values ρ and ε are suitably related to each other. This problem has some interest

also in the context of planar curves with prescribed curvature.

Keywords: Newton-Lorentz equation, magnetic field, motion of charged particles, curves in Eu-

clidean space, prescribed curvature.
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1 Introduction and statement of the result

This paper concerns the dynamics of a particle in a magnetic field. This subject is quite important in

several areas of physics, such as condensed matter theory [8], accelerator physics [13], magnetobiology

[10] and plasma physics [17]. However, despite the relevance and the variety of contexts, it seems that

for this problem, in concrete magnetic fields, only few rigorous results are available in the literature

(see [1, 2, 4, 12, 18]).

From classical physics, in presence of an external magnetic field B, the motion t 7→ q(t) ∈ R3 of a

particle of mass m and charge e is driven by the Lorentz force, according to the equation

mq̈ = eq̇ ∧B. (1.1)

When B is a constant field, namely B = Bν for some versor ν and B positive constant, the system is

integrable and trajectories are helices with axis a line of the field and Larmor ray given by rL = mv⊥
|e|B ,

where v⊥ is the speed orthogonal to the field direction. More precisely, the projection q⊥(t) of q(t) on

a plane orthogonal to ν moves on a circle of radius rL with constant angular speed |e|B/m.

The situation can drastically change if one considers a variable magnetic field, even in the case of

constant direction and magnitude close to a constant. In this work we consider a class of magnetic

fields with cylindrical symmetry, namely we assume that B has a constant direction, which can be
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taken as the third axis, and the magnitude of B depends just on the distance from the third axis. This

means that

B(q1, q2, q3) = (0, 0, B(q1, q2)) ∀(q1, q2, q3) ∈ R3 (1.2)

with B depending just on
√
q21 + q22 . For B of the form (1.2), problem (1.1) reduces to the system





q̈1 = e
mB(q1, q2)q̇2

q̈2 = − e
mB(q1, q2)q̇1

q̈3 = 0 .

(1.3)

In this case, again the component of q(t) in the direction of B, i.e. q3(t), describes a uniform motion,

but the projection of q(t) on the horizontal plane follows a trajectory which in general can be far from

being circular or closed or also globally bounded, even when B is close to a constant.

Considering that the study of the dynamics of a single charged particle in a magnetic field con-

stitutes a first elementary model for the motion of plasma, the search for trapped trajectories (in the

directions orthogonal to the magnetic field) seems properly motivated. For this reason we are inter-

ested in motions q(t) whose projection on the horizontal plane, given by t 7→ (q1(t), q2(t)) =: q̃(t) ∈ R2,

draws a globally bounded, possibly closed, planar curve. We will say that such motions are bounded.

When the projection q̃(t) defines a closed curve, we will say that the corresponding motion is periodic.

With respect to this goal, we can reduce ourselves to study the planar system defined by the first

two equations of (1.3). Setting v(t) = q̃(−mt/e), the planar system for q̃(t) becomes

{
v : R → R2

v̈ = iB(v)v̇
(1.4)

where we identify R2 with the complex plane; the multiplication by the imaginary unit yields a

counter-clockwise rotation of π/2.

Actually, we can change the system in (1.4) into an equivalent scalar problem of geometrical

type, concerning curves with prescribed mean curvature. To this aim, recall that for a regular curve

u : R → R2 of class C2, the curvature at u(t) is given by

K(u(t)) =
iu̇(t) · ü(t)

|u̇(t)|3
. (1.5)

If v solves (1.4) then |v̇| is constant (this can be obtained just multiplying the equation by v̇, that

implies d
dt |v̇|

2 = 0). In particular, if a solution v of (1.4) verifies also |v̇| ≡ 1, then B(v) equals the

curvature of the curve parametrized by v. On the other hand, if u : R → R2 is a bounded solution to

iu̇ · ü

|u̇|3
= B(u) (1.6)

then one can find an increasing diffeomorphism g of R onto R such that u ◦ g solves (1.4) (see Lemma

2.4). In this way, for a vector field B with cylindrical symmetry, i.e., of the form (1.2), we can covert

the problem of bounded trajectories of (1.1) into the geometrical problem about bounded curves with

prescribed curvature B = |B|.

There are many contributions to the issue of planar K-loops, i.e., closed curves in the Euclidean

plane, with prescribed curvature K (see [3, 4, 9, 11, 14, 15, 16]). Among them, we mention a couple

of results more linked to our work: in [11] it is proved that if the prescribed curvature function K is

strictly monotone in a given direction, with non zero derivative, then no (immersed) K-loop exists.

In [14] it is shown that if the prescribed curvature function K is positive, radially symmetric and is

non-increasing as a function of the distance from the radial symmetry point, then any simple K-loop

is in fact a circle.
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In this work are interested in bounded, non round, possibly periodic motions with “high energy”

for a class of mappings B : R2 → R which are radially symmetric (with respect to u ∈ R2) and with a

behavior at infinity of the form

B(u) ∼ 1 +
A

|u|γ
as |u| → ∞ , u ∈ R2 , (1.7)

with γ > 0 and A ∈ R \ {0}. Moreover, we consider a special class of curves, defined (in complex

notation) as

vε,ρ(t) = ρeiεt + eit

with ρ ≫ 1 and 0 < |ε| ≪ 1. Such curves are obtained as a superposition of two motions: a counter-

clockwise rotation with constant angular speed at a unit distance about a point which moves along a

circumference of large radius ρ with a slow angular speed ε (see Fig. 1). The slow rotation is counter-

clockwise if ε > 0, or clockwise if ε < 0. Observe that ρ − 1 ≤ |vε,ρ(t)| ≤ ρ + 1 for every t ∈ R, and

that the (support of the) curve parametrized by vε,ρ does not change after rotations of angles 2πε
1−ε or

2π
1−ε , because vε,ρ satisfies

e
2πiε
1−ε v(t) = e

2πi
1−ε v(t) = v

(
t+

2π

1− ε

)
. (1.8)

In particular vε,ρ is closed if and only if ε is rational.

ε = 1

8
ε = 2

13
ε 6∈ Q

Fig. 1 – Curves parametrized by vε,ρ for different values of ε. If ε = m

n
with m,n ∈ N, m < n, then

vε,ρ is periodic of period 2nπ and, for ρ large enough, parametrizes a closed curve with (n − m)

curls and has a rotational symmetry of an angle 2π/(n −m). If ε 6∈ Q then the range of vε,ρ fills

densely the annulus of radii ρ− 1 and ρ+ 1.

Considering curves vε,ρ is motivated by the observation that we look for solutions to (1.6) living

far away, where B is close to the constant value 1, in view of (1.7). Hence we expect to find solutions

made by almost uniform circular motions of unit radius. Moreover, since we are interested in bounded

trajectories and we deal with a planar problem characterized by radial symmetry, it seems reasonable

to look for solutions of (1.6) as perturbations of vε,ρ in the normal direction, i.e., of the form

u = vε,ρ + φNε,ρ where Nε,ρ :=
iv̇ε,ρ
|v̇ε,ρ|

and φ is a scalar mapping. The discrete symmetry with respect to rotations of angles 2πε
1−ε or 2π

1−ε is

preserved asking φ to be periodic of period 2π
1−ε . In fact, ve can prove the following result:

Theorem 1.1 Let B ∈ C1(R2;R) be a radial function satisfying:

(B1) B(u) = 1+A|u|−γ +A1|u|−γ1 + o(|u|−γ−1) as |u| → ∞, with A,A1 ∈ R, A 6= 0, and 1 < γ < γ1;
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(B2) |∇B(u)| = O
(
|u|−min{γ+1,γ1}

)
as |u| → ∞.

If A > 0 then there exist positive constants ε, µ, a1, a2 such that for every ε ∈ (0, ε) there are ρε > 0

and a solution uε of (1.4) such that:

a1|ε|
− 1

γ+2 ≤ ρε ≤ a2|ε|
− 1

γ+2 and ‖uε − vε,ρε
‖C2 ≤ µ|ε|

γ
γ+2 .

If A < 0, then the same conclusion holds true with ε ∈ (−ε, 0). Moreover, in both cases, the curve

parametrized by uε is invariant with respect to rotations of angles 2πε
1−ε and 2π

1−ε and is closed if ε is

rational.

The assumption γ > 1 as well as the conditions (B1) and (B2) precise the behavior of B at infinity.

As by-product of Theorem 1.1, we remark that in general the uniqueness result proved in [14] and

previously quoted is true just for simple loops.

Going back to the problem of trajectories of a charged particle in a magnetic field with cylindrical

symmetry, as a consequence of Theorem 1.1, we obtain:

Corollary 1.2 Let B : R3 → R3 be a vector field of the form (1.2) with B ∈ C1(R2;R) radial function

satisfying (B1) and (B2). Then there exists a family of motions for the Lorentz equation (1.1) whose

projections on the horizontal plane, up to reparameterization in time, correspond to the solutions uε
given by Theorem 1.1.

The proof of Theorem 1.1 is based on the Lyapunov-Schmidt reduction method, combined with a

certain variational argument. Firstly, in order to get rid of the parameter ε, we define

uε,ρ(t) := vε,ρ

(
t

1− ε

)
and nε,ρ(t) := Nε,ρ

(
t

1− ε

)
(1.9)

and we look for solutions to (1.6) in the form

u = uε,ρ + ϕnε,ρ (1.10)

with ϕ periodic of period 2π. Plugging (1.10) into (1.6) yields the following nonlinear problem for ϕ:

{
ϕ : R → R , 2π-periodic

Kε,ρ(ϕ) = B(uε,ρ + ϕnε,ρ)
(1.11)

where Kε,ρ is the second order differential operator defined by

Kε,ρ(ϕ) :=
i d
dt (uε,ρ + ϕnε,ρ) ·

d2

dt2 (uε,ρ + ϕnε,ρ)∣∣ d
dt (uε,ρ + ϕnε,ρ)

∣∣3 . (1.12)

Then, we identify the operator obtained by linearizing problem (1.11), in the limit ε→ 0. The resulting

operator, acting among spaces of periodic mappings, turns out to have a two-dimensional kernel. After

detaching its kernel, we can invert it and convert problem (1.11) into a fixed point problem, where

the contraction principle can be applied. Actually, because of the two-dimensional kernel, we arrive

to solve (1.11) for |ε| small enough and for every ρ sufficiently large in a suitable interval of values

depending on ε, apart from a couple of Lagrange multipliers. This is performed in Section 3.

In order to remove the Lagrange multipliers, we exploit the variational nature of problem (1.11).

In fact, (1.11) corresponds ultimately to the Euler-Lagrange equation of a suitable energy functional.

One of the Lagrange multipliers can be eliminated by taking variations with respect to the parameter

ρ. This leads to an equation for ρ with respect to ε, which can be solved in correspondence of some
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ρε taking ε > 0 if A > 0 or ε < 0 if A < 0, as in the statement of Theorem 1.1. The other Lagrange

multiplier comes from the rotational invariance and it disappears for free as soon as the first one

vanishes. This part of the proof is accomplished in Section 4.

From the technical point of view, the argument used in the proof of Theorem 1.1 shares some

features with other works. In particular, we mention a higher dimensional version of the problem,

about surfaces in R3 with prescribed mean curvature, shaped on collars of spheres arranged along a

circumference with large radius, in order to construct a surface with genus 1. This kind of problem has

been recently studied in [5, 6] for a class of mean curvature functions with a behavior at infinity like

(1.7) but in the Euclidean 3-space. We also quote the paper [19], where somehow similar techniques

were already implemented to find multiple solutions to the nonlinear Schröedinger equation with a

radially symmetric potential again with a behavior like (1.7).

2 The curvature operator

As described in the Introduction, the problem is redirected to the search of solutions to (1.6) in

the form u = uε,ρ + ϕnε,ρ where uε,ρ(t) = ρeiεt/(1−ε) + eit/(1−ε), nε,ρ(t) = iu̇ε,ρ(t)/|u̇ε,ρ(t)| and the

unknown is the function ϕ : R → R which is asked to be 2π-periodic. Hence the problem for u, in

turn, is converted into the following nonlinear equation for ϕ:

Kε,ρ(ϕ) = B(uε,ρ + ϕnε,ρ) (2.1)

where Kε,ρ is the second order differential operator defined by (1.12) and B : R2 → R is a radially

symmetric C1 function satisfying (B1) and (B2). Notice that if u = uε,ρ +ϕnε,ρ and ϕ is 2π-periodic,

then by (1.8) and (1.9)

u(t+ 2π) = e
2πi
1−εu(t) = e

2πiε
1−ε u(t) . (2.2)

In this Section we study the operator Kε,ρ, considered from the space of 2π-periodic functions of

class C2, denoted C2(R/2πZ), into the space of 2π-periodic continuous functions, denoted C0(R/2πZ).

Such spaces are Banach spaces endowed with their natural norms. In fact Kε,ρ turns out to be defined

in

N := {ϕ ∈ C2(R/2πZ) | |u̇ε,ρ + ϕṅε,ρ + ϕ̇nε,ρ| > 0 on R} . (2.3)

Lemma 2.1 The operator Kε,ρ is of class C∞ from N into C0(R/2πZ). In particular

K′
ε,ρ(ϕ)[ψ] = aε,ρ(ϕ)ψ

′′ + bε,ρ(ϕ)ψ
′ + cε,ρ(ϕ)ψ ∀ϕ ∈ N , ∀ψ ∈ C2(R/2πZ) , (2.4)

where

aε,ρ(ϕ) =
iu̇ · nε,ρ

|u̇|3
,

bε,ρ(ϕ) =
2iu̇ · ṅε,ρ − iü · nε,ρ

|u̇|3
−

3(iu̇ · ü)(u̇ · nε,ρ)

|u̇|5
,

cε,ρ(ϕ) =
iu̇ · n̈ε,ρ − iü · ṅε,ρ

|u̇|3
−

3(iu̇ · ü)(u̇ · ṅε,ρ)

|u̇|5
,

(2.5)

and u = uε,ρ + ϕnε,ρ.

Proof. The operators ϕ 7→ i d
dt (uε,ρ + ϕnε,ρ) and ϕ 7→ d2

dt2 (uε,ρ + ϕnε,ρ) are bounded linear operators

from C2(R/2πZ) into C0(R/2πZ,R3). Hence they are of class C∞. As the mapping (v, w) 7→ v·w
|v|3 is of

class C∞ in (R2 \{0})×R2, the regularity of Kε,ρ as well as the expression of K′
ε,ρ follows by standard

differential calculus in Banach spaces. �
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The differential operator L0 : C
2(R/2πZ) → C0(R/2πZ) defined as

L0ϕ := ϕ̈+ ϕ (2.6)

will play a key role in the argument, because of the following fact.

Lemma 2.2 Fixing 0 < a1 ≤ a2 and δ ∈ (0, 1), one has that K′
ε,ρ(0) → L0 as ε → 0, uniformly with

respect to ρ ∈ Sε := [a1|ε|−δ, a2|ε|−δ], in the space of bounded linear operators from C2(R/2πZ) in

C0(R/2πZ). More precisely, for |ε| 6= 0 small enough, and for every ρ ∈ Sε one has

‖(K′
ε,ρ(0)− L0)ϕ‖C0 ≤ C|ε|ρ‖ϕ‖C2 ∀ϕ ∈ C2(R/2πZ) (2.7)

where C depends only on a1, a2, and δ.

Proof. Since

ṅε,ρ =
iüε,ρ
|u̇ε,ρ|

−
(u̇ε,ρ · üε,ρ)iu̇ε,ρ

|u̇ε,ρ|3

n̈ε,ρ =
i
...
u ε,ρ

|u̇ε,ρ|
−

|üε,ρ|2iu̇ε,ρ + (u̇ε,ρ ·
...
u ε,ρ)iu̇ε,ρ + 2(u̇ε,ρ · üε,ρ)iüε,ρ
|u̇ε,ρ|3

+ 3
(u̇ε,ρ · üε,ρ)2iu̇ε,ρ

|u̇ε,ρ|5

(2.8)

one has that

iu̇ε,ρ · nε,ρ = |u̇ε,ρ| u̇ε,ρ · nε,ρ = 0 iu̇ε,ρ · n̈ε,ρ =
(u̇ε,ρ · üε,ρ)2

|u̇ε,ρ|3
−

|üε,ρ|2

|u̇ε,ρ|

u̇ε,ρ · ṅε,ρ = −
iu̇ε,ρ · üε,ρ

|u̇ε,ρ|
iu̇ε,ρ · ṅε,ρ = 0 iüε,ρ · nε,ρ =

u̇ε,ρ · üε,ρ
|u̇ε,ρ|

inε,ρ · ṅε,ρ =
iu̇ε,ρ · üε,ρ
|u̇ε,ρ|2

nε,ρ · ṅε,ρ = 0 iüε,ρ · ṅε,ρ =
|üε,ρ|2

|u̇ε,ρ|
−

(u̇ε,ρ · üε,ρ)2

|u̇ε,ρ|3
.

(2.9)

By (2.4), (2.5) and (2.9) one infers that

K′
ε,ρ(0)[ϕ] = a0ε,ρϕ̈+ b0ε,ρϕ̇+ c0ε,ρϕ (2.10)

where

a0ε,ρ :=
1

|u̇ε,ρ|2
, b0ε,ρ := −

u̇ε,ρ · üε,ρ
|u̇ε,ρ|4

, c0ε,ρ :=
2(u̇ε,ρ · üε,ρ)2 − 2|üε,ρ|2|u̇ε,ρ|2 + 3(iu̇ε,ρ · üε,ρ)2

|u̇ε,ρ|6
.

Fix 0 < a1 ≤ a2 and δ ∈ (0, 1). Taking into account that

|u̇ε,ρ|2 = (1− ε)−2
[
1 + 2ερ cos t+ (ερ)2

]
|üε,ρ|2 = (1− ε)−4

[
1 + 2ε2ρ cos t+ ε4ρ2

]

u̇ε,ρ · üε,ρ = −(1− ε)−2ερ sin t iu̇ε,ρ · üε,ρ = (1− ε)−3
[
1 + (ε2ρ− ερ) cos t− ε3ρ2

]
,

for |ε| sufficiently small and non zero, ρ ∈ Sε and σ ∈ R the following estimates hold:

∥∥|u̇ε,ρ|σ − (1− ε)−σ
∥∥
C0 ≤ C|ε|ρ ,

∥∥|üε,ρ|σ − (1 − ε)−2σ
∥∥
C0 ≤ C|ε|2ρ ,

‖u̇ε,ρ · üε,ρ‖C0 ≤ C|ε|ρ ,
∥∥iu̇ε,ρ · üε,ρ − (1− ε)−3

∥∥
C0 ≤ C|ε|ρ ,

∥∥|...u ε,ρ|
σ − (1− ε)−3σ

∥∥
C0 ≤ C|ε|3ρ ,

∥∥u̇ε,ρ ·
...
u ερ − (1 − ε)−4

∥∥
C0 ≤ C|ε|ρ ,

(2.11)

where C depends only on a1, a2, δ. By means of (2.11) one obtains that

‖a0ε,ρ − 1‖C0 ≤ C|ε|ρ , ‖b0ε,ρ‖C0 ≤ C|ε|ρ , ‖c0ε,ρ − 1‖C0 ≤ C|ε|ρ ,

The conclusion follows from these estimates and from (2.10). �
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Thanks to Lemma 2.2, the operator L0 defined by (2.6) will constitute the leading term of the

curvature operator, in the limit ε→ 0. It is well known that

ker(L0) = {ϕ ∈ C2(R/2πZ) | L0ϕ = 0} = span{cos t, sin t} .

Moreover, for an arbitrary continuous bounded function f : R → R, the equation L0ϕ = f admits a

two-parameter family of global solutions, which turn out to be periodic if and only if

∫ 2π

0

f(t) cos t dt =

∫ 2π

0

f(t) sin t dt = 0 . (2.12)

Justified by that, we introduce the decomposition

C2(R/2πZ) = span{cos t, sin t}+X⊥ where X⊥ :=
{
f ∈ C2(R/2πZ) | (2.12) holds

}
,

C0(R/2πZ) = span{cos t, sin t}+ Y ⊥ where Y ⊥ :=
{
f ∈ C0(R/2πZ) | (2.12) holds

}
.

Hence the operator L0 is a bijection from X⊥ onto Y ⊥, it is linear and continuous and, by well known

facts, also L−1
0 : Y ⊥ → X⊥ is so. Therefore there exists a constant C0 > 0 such that

‖ϕ‖C2 ≤ C0‖f‖C0 ∀f ∈ Y ⊥ (2.13)

where ϕ is the unique solution of L0ϕ = f in X⊥.

In the remaining part of the work we aim to prove the following result.

Theorem 2.3 Let B ∈ C1(R2;R) be a radial function satisfying (B1) and (B2). There exist positive

constants ε, a1, a2, µ0 such that if A > 0, then for any ε ∈ (0, ε) there exist ρε ∈
[
a1|ε|

− 1
γ+2 , a2|ε|

− 1
γ+2

]

and ϕε ∈ C2(R/2πZ) solving (2.1) and such that ‖ϕε‖C2 ≤ µ0|ε|
γ

γ+2 . If A < 0 the same conclusion

holds true but for ε ∈ (−ε, 0).

Noting that, by (2.8) and (2.11), sup0<|ε|<ε ‖nε,ρε
‖C2 < ∞, Theorem 1.1 is an immediate conse-

quence of Theorem 2.3, whereas Corollary 1.2 easily follows, by the next elementary result:

Lemma 2.4 If u : R → R2 is a classical solution of (1.6), then there exists an increasing diffeomor-

phism g of R onto R such that u ◦ g solves (1.4).

Proof. Let u(t) be a solution to (1.6). The arc length ℓ(t) =
∫ t

0
|u̇(τ)| dτ is a C1, invertible mapping

and denoting g(s) its inverse, the function v = u ◦ g satisfies

v′(s) =
u̇(g(s))

|u̇(g(s))|
, v′′(s) =

ü(g(s))

|u̇(g(s))|2
−
u̇(g(s)) · ü(g(s))

|u̇(g(s))|4
u̇(g(s)) .

In particular |v′| ≡ 1 and v′′ · v′ = 0. Then v′′ is parallel to iv′ and, in view of (1.6), v solves (1.4). �

3 The finite-dimensional reduction

In this Section we tackle equation (2.1) and we prove that it admits solutions for |ε| small enough and

non zero and for every ρ sufficiently large, up to an extra term which is a linear combination of sin t

and cos t. More precisely, the following result holds true:

7



Theorem 3.1 Fix 0 < a1 ≤ a2 and δ ∈ (0, 1). Then there exists ε0 > 0 depending on a1, a2 and δ

such that for every 0 < |ε| ≤ ε0 and for every ρ ∈
[
a1|ε|−δ, a2|ε|−δ

]
there exists ϕε,ρ ∈ C2(R/2πZ)

solving

Kε,ρ(ϕε,ρ)−B(uε,ρ + ϕε,ρnε,ρ) = λ1ε,ρ cos t+ λ2ε,ρ sin t (3.1)

where

λ1ε,ρ =
1

π

∫ 2π

0

[Kε,ρ(ϕε,ρ)−B(uε,ρ + ϕε,ρnε,ρ)] cos t dt ,

λ2ε,ρ =
1

π

∫ 2π

0

[Kε,ρ(ϕε,ρ)−B(uε,ρ + ϕε,ρnε,ρ)] sin t dt .

(3.2)

Moreover

‖ϕε,ρ‖C2 ≤ µ0|ε|
γ̂ (3.3)

where γ̂ = min{γδ, 1− δ} and µ0 is a constant depending on a1, a2 and δ but not on ε neither on ρ.

Let 0 < a1 ≤ a2 and δ ∈ (0, 1) be fixed and let us introduce some notation. For every ε 6= 0 we

define

Sε :=
[
a1|ε|

−δ, a2|ε|
−δ

]
.

We will always take ρ ∈ Sε. Then, we fix ε1 ∈
(
0, 12

]
satisfying

2 < a1ε
−δ
1 and a2ε

1−δ
1 < 1 . (3.4)

Hence for every ε ∈ [−ε1, ε1] \ {0} one has that Sε ⊂ (2, |ε|−1). In particular we recover the following

inequality, extensively used in the sequel: for ε ∈ [−ε1, ε1] \ {0} and ρ ∈ Sε, it holds

1 < C1|ε|
−δ ≤ |uε,ρ(t)| ≤ C2|ε|

−δ ∀t ∈ R , (3.5)

for some positive constants C1 and C2 depending only on a1, a2 and δ.

Let us introduce the operator Bε,ρ : C
2(R/2πZ) → C0(R/2πZ) defined by

Bε,ρ(ϕ) := B(uε,ρ + ϕnε,ρ) .

The operator Bε,ρ is well defined because B is radial and (2.2) holds. Moreover it inherits the same

regularity of B, i.e., it is of class C1. In particular

B′
ε,ρ(ϕ)[ψ] = ψ∇B(uε,ρ + ϕnε,ρ) · nε,ρ ∀ϕ, ψ ∈ C2(R/2πZ) . (3.6)

Finally, we define the operator Fε,ρ : N → C0(R/2πZ) by setting

Fε,ρ(ϕ) := Bε,ρ(ϕ)−Kε,ρ(ϕ) + L0ϕ . (3.7)

In view of the regularity of Bε,ρ and by Lemma 2.1, Fε,ρ is of class C1 in N . Moreover

Fε,ρ(0) = B(uε,ρ)−K(uε,ρ) ,

F ′
ε,ρ(0)[ϕ] = ϕ∇B(uε,ρ) · nε,ρ −K′

ε,ρ(0)[ϕ] + L0ϕ ∀ϕ ∈ C2(R/2πZ)

with K defined in (1.5).

The following estimates will be useful. From now on, with the symbol ‖ · ‖ without subscript we

will denote the norm in the space of bounded linear operators from C2(R/2πZ) into C0(R/2πZ).
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Lemma 3.2 There exist ε0 ∈ (0, ε1] and M0 > 0 such that for every 0 < |ε| ≤ ε0 and ρ ∈ Sε it holds

‖Fε,ρ(0)‖C0 ≤M0|ε|
γ̂ (3.8)

‖F ′
ε,ρ(ϕ)‖ ≤

1

8C0
if ‖ϕ‖C2 ≤ µ0|ε|

γ̂ (3.9)

where C0 is the constant in (2.13), γ̂ := min{γδ, 1− δ} and µ0 := 8C0M0.

Proof. We have that

‖Fε,ρ(0)‖C0 ≤ ‖B(uε,ρ)− 1‖C0 + ‖K(uε,ρ)− 1‖C0 . (3.10)

Since, by (B1), B(v) = 1 + A|v|−γ + o(|v|−γ) as |v| → ∞, using also (3.5), one can find ε0 ∈ (0, ε1]

such that

‖B(uε,ρ)− 1‖C0 ≤ 2|A|C−γ
1 |ε|γδ ∀ρ ∈ Sε , ∀ε ∈ [−ε0, ε0] \ {0} . (3.11)

On the other hand, by (2.11) we obtain

‖K(uε,ρ)− 1‖C0 ≤ C|ε|1−δ ∀ρ ∈ Sε , ∀ε ∈ [−ε0, ε0] \ {0} (3.12)

where C is a constant depending only on a1, a2 and δ. Hence (3.10)–(3.12) imply (3.8), for some M0

depending on |A|, C1, and C. Let us show (3.9). We have that

‖F ′
ε,ρ(0)‖ ≤ ‖∇B(uε,ρ)‖C0 + ‖K′

ε,ρ(0)− L0‖ (3.13)

By (B2) and (2.11) we have that

‖∇B(uε,ρ)‖C0 ≤ C|ε|δmin{γ+1,γ1} ∀ρ ∈ Sε , ∀ε ∈ [−ε1, ε1] \ {0} . (3.14)

Moreover Lemma 2.2 yields that

‖K′
ε,ρ(0)− L0‖ ≤ C|ε|ρ ≤ C|ε|1−δ ∀ρ ∈ Sε , ∀ε ∈ [−ε1, ε1] \ {0} . (3.15)

By (3.13)–(3.15) and taking a smaller ε0 ∈ (0, ε1], we obtain that

sup
ρ∈Sε

‖F ′
ε,ρ(0)‖ → 0 as ε→ 0 . (3.16)

Now we show that

sup
ρ∈Sε

ϕ∈Mε

‖F ′
ε,ρ(ϕ)−F ′

ε,ρ(0)‖ → 0 as ε→ 0 , (3.17)

where Mε := {ϕ ∈ C2(R/2πZ) | ‖ϕ‖C2 ≤ µ0|ε|γ̂}. Indeed, from (3.5)–(3.7) it follows that

‖F ′
ε,ρ(ϕ)−F ′

ε,ρ(0)‖ ≤ ‖∇B(uε,ρ + ϕnε,ρ)−∇B(uε,ρ)‖C0 + ‖K′
ε,ρ(ϕ) −K′

ε,ρ(0)‖ (3.18)

Moreover, from (B2)

|∇B(uε,ρ + ϕnε,ρ)| ≤ C|uε,ρ + ϕnε,ρ)|
−min{γ+1,γ1} ≤ C(|uε,ρ| − |ϕ|)−min{γ+1,γ1}

and using (3.5) and the bound for ϕ ∈ Mε, we deduce that

‖∇B(uε,ρ + ϕnε,ρ)‖C0 ≤
C

(C1|ε|−δ − µ0|ε|γ̂)min{γ+1,γ1}
.

This estimate together with (3.14) yields

sup
ρ∈Sε

ϕ∈Mε

‖∇B(uε,ρ + ϕnε,ρ)−B(uε,ρ)‖C0 → 0 as ε→ 0 (3.19)
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Now we show that

sup
ρ∈Sε

ϕ∈Mε

‖K′
ε,ρ(ϕ) −K′

ε,ρ(0)‖ ≤ C|ε|γ̂ ∀ε ∈ [−ε1, ε1] \ {0} . (3.20)

By (2.4), ve have that

‖K′
ε,ρ(ϕ) −K′

ε,ρ(0)‖ ≤ ‖aε,ρ(ϕ)− aε,ρ(0)‖C0 + ‖bε,ρ(ϕ) − bε,ρ(0)‖C0 + ‖cε,ρ(ϕ) − cε,ρ(0)‖C0 (3.21)

where aε,ρ(ϕ), bε,ρ(ϕ) and cε,ρ(ϕ) are defined in (2.5). Setting Φε,ρ = ϕnε,ρ, we write

aε,ρ(ϕ) − aε,ρ(0) = i
[
ã(u̇ε,ρ + Φ̇ε,ρ)− ã(u̇ε,ρ)

]
· nε,ρ,

bε,ρ(ϕ)− bε,ρ(0) = 2i
[
ã(u̇ε,ρ + Φ̇ε,ρ)− ã(u̇ε,ρ)

]
·ṅε,ρ − i

[̃
b(u̇ε,ρ + Φ̇ε,ρ, üε,ρ + Φ̈ε,ρ)− b̃(u̇ε,ρ, üε,ρ)

]
·nε,ρ

− 3
[
c̃(u̇ε,ρ + Φ̇ε,ρ, üε,ρ + Φ̈ε,ρ)− c̃(u̇ε,ρ, üε,ρ)

]
·nε,ρ,

cε,ρ(ϕ) − cε,ρ(0) = i
[
ã(u̇ε,ρ + Φ̇ε,ρ)− ã(u̇ε,ρ)

]
·n̈ε,ρ − i

[̃
b(u̇ε,ρ + Φ̇ε,ρ, üε,ρ + Φ̈ε,ρ)− b̃(u̇ε,ρ, üε,ρ)

]
·ṅε,ρ

− 3
[
c̃(u̇ε,ρ + Φ̇ε,ρ, üε,ρ + Φ̈ε,ρ)− c̃(u̇ε,ρ, üε,ρ)

]
·ṅε,ρ,

where

ã(v) =
v

|v|3
, b̃(v, w) =

w

|v|3
, c̃(v, w) =

(iv · w)v

|v|5
∀(v, w) ∈ (R2 \ {0})× R2 .

By (2.8) and (2.11), there exists a constant C > 0 independent of ε and ρ, such that ‖nε,ρ‖C2 ≤ C for

every ε ∈ [−ε0, ε0] \ {0} and for every ρ ∈ Sε. From this it also follows that

‖ϕnε,ρ‖C2 ≤ C|ε|γ̂ ∀ε ∈ [−ε0, ε0] \ {0} , ∀ρ ∈ Sε , ∀ϕ ∈ Mε .

Moreover, by (2.11), there exists a compact setK ⊂ (R2\{0})×R2 such that (u̇ε,ρ(t)+sΦ̇ε,ρ(t), üε,ρ(t)+

sΦ̈ε,ρ(t)) ∈ K for all t ∈ R, s ∈ [0, 1], ε ∈ [−ε0, ε0] \ {0}, ρ ∈ Sε and ϕ ∈ Mε. Using these facts as well

as the regularity of the functions ã, b̃ and c̃, by the mean value theorem, we infer that

‖aε,ρ(ϕ)−aε,ρ(0)‖C0 ≤ C|ε|γ̂ , ‖bε,ρ(ϕ)− bε,ρ(0)‖C0 ≤ C|ε|γ̂ , ‖cε,ρ(ϕ)− cε,ρ(0)‖C0 ≤ C|ε|γ̂ (3.22)

for every ε ∈ [−ε0, ε0] \ {0}, ρ ∈ Sε and ϕ ∈ Mε, and C positive constant independent of ε, ρ and

ϕ. Hence (3.21) and (3.22) imply (3.20), and (3.17) follows from (3.18)–(3.20). Finally (3.9) is a

consequence of (3.16) and (3.17), for a possibly smaller ε0. �

Proof of Theorem 3.1. By (3.7), (2.1) is equivalent to

L0ϕ = Fε,ρ(ϕ) . (3.23)

We aim to rewrite (3.23) as a fixed point problem in C2(R/2πZ). Since range(L0) = Y ⊥, we consider

the projection of Fε,ρ(ϕ) on Y
⊥, given by

F̂ε,ρ(ϕ) := Fε,ρ(ϕ) + λ1ε,ρ(ϕ) cos t+ λ2ε,ρ(ϕ) sin t,

where

λ1ε,ρ(ϕ) := −
1

π

∫ 2π

0

Fε,ρ(ϕ) cos t dt , λ2ε,ρ(ϕ) := −
1

π

∫ 2π

0

Fε,ρ(ϕ) sin t dt .

Observe that

‖F̂ε,ρ(ϕ)‖C0 ≤ 4‖Fε,ρ(ϕ)‖C0 ∀ϕ ∈ N

‖F̂ε,ρ(ϕ1)− F̂ε,ρ(ϕ2)‖C0 ≤ 4‖Fε,ρ(ϕ1)−Fε,ρ(ϕ2)‖C0 ∀ϕ1, ϕ2 ∈ N .
(3.24)
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Then we set

Qε,ρ := L−1
0 ◦ F̂ε,ρ ,

so that if ϕ ∈ C2(R/2πZ) solves

ϕ = Qε,ρ(ϕ) (3.25)

then it satisfies L0ϕ = F̂ε,ρ(ϕ) and thus (3.1). We can solve (3.25) in a suitable neighborhood Nε of 0

in Y ⊥, whose size is determined by the estimate of the “error” Fε(0) according to Lemma 3.2. More

precisely, we set

Nε := {ϕ ∈ X⊥ ∩ N | ‖ϕ‖C2 ≤ µ0|ε|
γ̂}

where N is defined in (2.3) and γ̂ and µ0 are given by Lemma 3.2. By construction, F̂ε,ρ(ϕ) ∈ Y ⊥.

Moreover L−1
0 : Y ⊥ → X⊥. Therefore, Qε,ρ(ϕ) ∈ X⊥ for every ϕ ∈ Nε and, thanks to (2.13) and

(3.24),

‖Qε,ρ(ϕ)‖C2 ≤ 4C0‖Fε,ρ(ϕ)‖C0 ∀ϕ ∈ Nε (3.26)

‖Qε,ρ(ϕ2)−Qε,ρ(ϕ1)‖C2 ≤ 4C0‖Fε,ρ(ϕ1)−Fε,ρ(ϕ2)‖C0 ∀ϕ1, ϕ2 ∈ Nε (3.27)

where C0 is the constant in (2.13). If ϕ1, ϕ2 ∈ Nε then, also sϕ1 + (1 − s)ϕ2 ∈ Nε for every s ∈ [0, 1]

and

‖Fε,ρ(ϕ1)−Fε,ρ(ϕ2)‖C0 ≤ max
s∈[0,1]

‖F ′
ε,ρ(sϕ1 + (1− s)ϕ2)‖‖ϕ1 − ϕ2‖C2 ≤

1

8C0
‖ϕ1 − ϕ2‖C2 (3.28)

thanks to (3.9). Hence, (3.27) and (3.28) imply that Qε,ρ is a contraction in Nε. Moreover, if ϕ ∈ Nε

then, by (3.8) and (3.28), and recalling that µ0 = 8C0M0,

‖Fε,ρ(ϕ)‖C0 ≤ ‖Fε,ρ(0)‖C0 + ‖Fε,ρ(ϕ) −Fε,ρ(0)‖C0 ≤M0|ε|
γ̂ +

1

8C0
‖ϕ‖C2 ≤

µ0|ε|γ̂

4C0

and then, by (3.26), ‖Qε,ρ(ϕ)‖C2 ≤ µ0|ε|γ̂ , namely, Qε,ρ(Nε) ⊂ Nε. Hence the assumptions of the

contraction principle are satisfied and we can conclude that Qε,ρ admits a fixed point in Nε. �

4 The variational argument

In this Section we complete the proof of Theorem 2.3. The starting point is the result stated in

Theorem 3.1, according to which for every |ε| 6= 0 small enough and for every ρ ∈ [a1|ε|
−δ, a2|ε|

−δ]

there exists ϕε,ρ ∈ C2(R/2πZ) with ‖ϕε,ρ‖C2 ≤ µ0|ε|min{γδ,1−δ} satisfying

Kε,ρ(ϕε,ρ)−B(uε,ρ + ϕε,ρnε,ρ) = λ1ε,ρ cos t+ λ2ε,ρ sin t

where the Lagrange multipliers λiε,ρ = λiε,ρ(ϕε,ρ) are given by (3.2). Up to now, a1, a2, δ ∈ R are

arbitrary fixed constants with 0 < a1 ≤ a2 and δ ∈ (0, 1), and µ0 is a constant depending on a1, a2
and δ but not on ε neither on ρ.

Here we prove that for a suitable choice of a1, a2, δ ∈ R with 0 < a1 < a2 and δ ∈ (0, 1), for every

ε 6= 0 small enough and with a suitable sign (the same of the coefficient A in the assumption (B1))

one can find ρε ∈ [a1|ε|−δ, a2|ε|−δ] such that λ1ε,ρ = λ2ε,ρ = 0 when ρ = ρε. To this aim, we exploit

the variational nature of equation (1.6) which in fact corresponds to the Euler-Lagrange equation

associated to a certain energy functional.

The present Section consists in three parts: firstly we introduce the energy functional associated

to (1.6) and we discuss its properties useful for the sequel. Then we tackle the equation λ1ε,ρ = 0 and

we prove that is admits a solution ρ = ρε under some conditions. Finally we show that as soon as

λ1ε,ρ = 0, then also λ2ε,ρ = 0.
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4.1 The energy functional

Since B is radially symmetric of class C1, there exists a C1 map b : [0,∞) → R such that B(v) = b(|v|)

for every v ∈ R2. Set

Q(v) =
v

|v|2

∫ |v|

0

b(s)s ds (v ∈ R2 \ {0}) .

Then Q is a vector field with a continuous extension on R2, of class C1 in R2 \ {0} and satisfying

divQ = B on R2

Q(eiθv) = eiθQ(v) ∀θ ∈ R , ∀v ∈ R2. (4.1)

For every ε ∈ R, ε 6= 1, let

W 1,1
ε := {u ∈ W 1,1

loc (R,R
2) | e

2πi
1−εu(t) = u(t+ 2π) ∀t ∈ R }

Ωε := {u ∈ W 1,1
ε | u(t) 6= 0 ∀t ∈ R , u̇ 6= 0 a.e. in R } .

Notice that uε,ρ + ϕnε,ρ ∈ Ωε, as ρ ∈ Sε, ϕ ∈ Nε and |ε| small enough. Set

E (u) :=

∫ 2π

0

(|u̇|+Q(u) · iu̇) dt ∀u ∈ Ωε .

One has that:

Lemma 4.1 The functional E is of class C1 in Ωε and

E
′(u)[h] =

∫ 2π

0

(
u̇ · ḣ

|u̇|
+B(u)iu̇ · h

)
dt ∀u ∈ Ωε , ∀h ∈W 1,1

ε .

If in addition u ∈ C2, then

E
′(u)[h] =

∫ 2π

0

(B(u)−K(u)) iu̇ · h dt ∀h ∈W 1,1
ε

with K as in (1.5).

Proof. We can write

E (u) = L (u) + A (u) where L (u) :=

∫ 2π

0

|u̇| dt and A (u) :=

∫ 2π

0

Q(u) · iu̇dt .

In a standard way one shows that L is of class C1 in Ωε, and

L
′(u)[h] =

∫ 2π

0

u̇ · ḣ

|u̇|
dt ∀u ∈ Ωε , ∀h ∈W 1,1

ε .

Moreover, if u ∈ C2, an integration by parts yields

L
′(u)[h] =

u̇(2π) · h(2π)

|u̇(2π)|
−
u̇(0) · h(0)

|u̇(0)|
−

∫ 2π

0

(
ü

|u̇|
−

(u̇ · ü)u̇

|u̇|3

)
· h dt .

Since u̇(2π) = e
2πi
1−ε u̇(0) and h(2π) = e

2πi
1−εh(0), and using the decomposition

h =
u̇ · h

|u̇|2
u̇+

iu̇ · h

|u̇|2
iu̇
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one obtains

L
′(u)[h] = −

∫ 2π

0

(ü · iu̇)(iu̇ · h)

|u̇|3
dt ∀h ∈ W 1,1

ε .

Let us study the regularity of the functional A . Fix u ∈ Ωε and h ∈ W 1,1
ε . For ǫ 6= 0 small enough

one has that u+ ǫh ∈ Ωε and there exists r0 > 0 such that |u(t) + ǫh(t)| > r0 > 0 for all t ∈ R. One

can write

A (u + ǫh)− A (u)

ǫ
=

∫ 2π

0

Q(u+ ǫh)−Q(u)

ǫ
· iu̇dt+

∫ 2π

0

Q(u+ ǫh) · iḣ dt .

Since Q ∈ C1(R2 \ {0},R2) and, in particular, Q and DQ are locally uniformly continuous in R2 \ {0},

by standard arguments, using also the embedding of W 1,1(0, 2π) into C([0, 2π]), one can prove that

lim
ǫ→0

Q(u+ ǫh)−Q(u)

ǫ
= DQ(u)h and lim

ǫ→0
Q(u+ ǫh) = Q(u) uniformly in [0, 2π].

Therefore, by the Lebesgue Dominated Convergence Theorem, we infer that

lim
ǫ→0

A (u+ ǫh)− A (u)

ǫ
=

∫ 2π

0

DQ(u)[h, iu̇] dt+

∫ 2π

0

Q(u) · iḣdt

=

∫ 2π

0

DQ(u)[h, iu̇] dt−

∫ 2π

0

DQ(u)[u̇, ih] dt+Q(u(2π)) · ih(2π)−Q(u(0)) · ih(0)

=

∫ 2π

0

B(u)h · iu̇dt ,

where the second equality is obtained by integration by parts, whereas, for the last one, one uses

u(2π) = e
2πi
1−ε u(0), h(2π) = e

2πi
1−ε h(0), (4.1) and the algebraic identity

Mv · iw −Mw · iv = (trM)v · iw ∀v, w ∈ R2,

where M is any 2 × 2 matrix and trM denotes its trace. The remaining part of the result can be

proved in a standard way, following the same procedure as in [4] (see also [7]). �

4.2 The equation λ
1
ε,ρ = 0

Fix a1, a2 > 0 such that

0 < a1 <

(
|A|γ

2

) 1
γ+2

< a2 (4.2)

and

δ =
1

γ + 2

and let ε0 be given by Theorem 3.1. One has:

Lemma 4.2 There exists ε ∈ (0, ε0] such that if A > 0 then for every ε ∈ (0, ε) there exists ρε ∈

Sε

[
a1|ε|

− 1
γ+2 , a2|ε|

− 1
γ+2

]
for which λ1ε,ρε

= 0. If A < 0 the same conclusion holds for every ε ∈ (−ε, 0).

Proof. According to (3.2), the equation λ1ε,ρ = 0 can be written in the form

∫ 2π

0

Kε,ρ(ϕε,ρ) cos t dt =

∫ 2π

0

B(uε,ρ + ϕε,ρnε,ρ) cos t dt . (4.3)
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Our goal is to show that, taking δ = 1
γ+2 , one has:

∫ 2π

0

Kε,ρ(ϕε,ρ) cos t dt = −2περ+ F1(ε, ρ) (4.4)

∫ 2π

0

B(uε,ρ + ϕε,ρnε,ρ) cos t dt = −Aγπρ−γ−1 + F2(ε, ρ) (4.5)

with Fi continuous functions such that

sup
ρ∈Sε

|Fi(ε, ρ)| = o
(
|ε|1−δ

)
as ε→ 0 , i = 1, 2 . (4.6)

Assuming for a moment that (4.4)–(4.6) hold true, let us complete the proof of the lemma. From

(4.4)–(4.6), dividing by ερ, equation (4.3) becomes

2−
Aγ

εργ+2
= F (ε, ρ) (4.7)

with F continuous function such that

sup
ρ∈Sε

|F (ε, ρ)| → 0 as ε→ 0 . (4.8)

Observe that for ρ ∈ Sε one has that |ε|ργ+2 ≤ aγ+2
2 . Hence, in order that (4.7) admits a solution, ε

must have the same sign as A. Considering the case A > 0 and defining Gε(ρ) := 2− Aγ
εργ+2 , by (4.2)

we have that

Gε(a1|ε|
−δ) = 2−Aγa

−(γ+2)
1 =: α− < 0 < α+ := 2−Aγa

−(γ+2)
2 = Gε(a2|ε|

−δ) .

Since α± are independent of ε and (4.8) holds, there exists ε ∈ (0, ε0] such that

Gε(a1|ε|
−δ)− F (ε, a1|ε|

−δ) < 0 < Gε(a2|ε|
−δ)− F (ε, a2|ε|

−δ) ∀ε ∈ (0, ε) . (4.9)

Since the mapping ρ 7→ Gε(ρ)− F (ε, ρ) is continuous on Sε, by (4.9), it must vanish at some ρε ∈ Sε,

for every ε ∈ (0, ε), namely (4.7), and thus also (4.3) are satisfied when ρ = ρε. If A < 0 one can

repeat the same argument, taking ε ∈ (−ε, 0). Thus the lemma is proved. It remains to check (4.4)

and (4.5).

Proof of (4.4). Setting

Rε,ρ(ϕ) := Kε,ρ(ϕ) −Kε,ρ(0)−K′
ε,ρ(0)[ϕ] ∀ϕ ∈ N , (4.10)

we can write

∫ 2π

0

Kε,ρ(ϕε,ρ) cos t dt =

∫ 2π

0

(L0ϕε,ρ) cos t dt+

∫ 2π

0

(K′
ε,ρ(0)− L0)[ϕε,ρ] cos t dt

+

∫ 2π

0

Rε,ρ(ϕε,ρ) cos t dt− ερ

∫ 2π

0

(Kε,ρ(0)− 1) dt+

∫ 2π

0

(Kε,ρ(0)− 1)(ερ+ cos t) dt .

(4.11)

Integrating by parts twice we readily get that

∫ 2π

0

(L0ϕε,ρ) cos t dt =

∫ 2π

0

ϕε,ρ (L0 cos t) dt = 0 , (4.12)
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because cos t ∈ ker(L0). Moreover, by (2.7), since ρ ∈ Sε and ϕε,ρ satisfies (3.3), we have

∣∣∣∣
∫ 2π

0

(K′
ε,ρ(0)− L0)[ϕε,ρ] cos t dt

∣∣∣∣ ≤ C|ε|1−δ+γ̂ .

Therefore we can write

∫ 2π

0

(K′
ε,ρ(0)− L0)[ϕε,ρ] cos t dt = |ε|1−δ+γ̂K1(ε, ρ) (4.13)

where K1 is a continuous function, uniformly bounded with respect to ρ ∈ Sε and ε ∈ [−ε0, ε0] \ {0}.

In order to estimate the third integral on the right-hand side of (4.11), we observe that, fixing ϕ and

t ∈ R, by (4.10) we can write

Rε,ρ(ϕ)(t) = Rε,ρ(0)(t) +

∫ 1

0

R′
ε,ρ(sϕ)[ϕ](t) ds =

∫ 1

0

(
K′

ε,ρ(sϕ)−K′
ε,ρ(0)

)
[ϕ](t) ds .

Hence, taking ϕ = ϕε,ρ and using (3.3) and (3.20), we obtain

‖Rε,ρ(ϕε,ρ)‖C0 ≤ sup
s∈[0,1]

∥∥K′
ε,ρ(sϕε,ρ)−K′

ε,ρ(0)
∥∥ ‖ϕε,ρ‖C2 ≤ C|ε|2γ̂ .

This estimate allows us to write

∫ 2π

0

Rε,ρ(ϕε,ρ) cos t dt = |ε|2γ̂K2(ε, ρ) (4.14)

where K2 is a continuous function, uniformly bounded with respect to ρ ∈ Sε and ε ∈ [−ε0, ε0] \ {0}.

By (3.12) we have that ∣∣∣∣
∫ 2π

0

(Kε,ρ(0)− 1) dt

∣∣∣∣ ≤ C|ε|1−δ

and then

ερ

∫ 2π

0

(1 −Kε,ρ(0)) dt = |ε|2(1−δ)K3(ε, ρ) (4.15)

where K3 is a continuous function, uniformly bounded with respect to ρ ∈ Sε and ε ∈ [−ε0, ε0] \ {0}.

In order to estimate the last integral on the right-hand side of (4.11) we apply Lemma 4.1, with B ≡ 1

and Q(v) = v
2 . In particular we set

E0(u) := L (u) + A0(u) where A0(u) =
1

2

∫ 2π

0

u · iu̇dt .

By Lemma 4.1 we have that
∂

∂ρ
[E0(uε,ρ)] = E

′
0(uε,ρ)[hε]

where hε(t) = e
iεt
1−ε . Since uε,ρ, hε ∈ Ωε, we obtain

(1− ε)
∂

∂ρ
[E0(uε,ρ)] =

∫ 2π

0

[K(uε,ρ)− 1](ερ+ cos t) dt (4.16)

with K as in (1.5). We claim that

(1 − ε)
∂

∂ρ
[E0(uε,ρ)] = −2περ+ |ε|2−δK4(ε, ρ) ∀ρ ∈ Sε , ∀ε ∈ [−ε0, ε0] \ {0} . (4.17)
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where K4(ε, ρ) is a continuous function, uniformly bounded with respect to ρ ∈ Sε and ε ∈ [−ε0, ε0] \

{0}. Therefore, by (4.11)–(4.17), since min{1− δ+ γ̂, 2γ̂, 2− 2δ, 2− δ} > 1− δ for δ = 1
γ+2 and γ > 1,

(4.4) is true.

Proof of (4.17). Recall that E0(u) := L (u) + A0(u). A simple computation shows that

(1− ε)
∂

∂ρ
[A0(uε,ρ)] = −2περ . (4.18)

It remains to estimate the part of the energy associated to the length functional L . A direct compu-

tation yields

(1 − ε)L (uε,ρ) =

∫ 2π

0

√
1 + ε2ρ2 + 2ερ cos t dt .

Notice that ε ∈ [−ε0, ε0] \ {0} and ρ ∈ Sε implies |ερ| ≤ a2ε
1−δ
0 =: r0 < 1, thanks to (3.4), and the

integral on the right-hand side in the above formula is well defined. It is convenient to introduce the

auxiliary function

G(r) :=

∫ 2π

0

√
1 + 2r cos t+ r2 dt ∀|r| < 1 .

A threefold application of the derivation theorem for integrals depending on a parameter yields that

G is of class C3 in (−1, 1), with

G(k)(r) =

∫ 2π

0

∂kg

∂rk
(r, t) dt ∀|r| < 1 (k = 1, 2, 3), where g(r, t) =

√
1 + 2r cos t+ r2 .

In particular G′(0) = 0, G′′(0) = π and ∂3g
∂r3 is uniformly bounded with respect to t ∈ [0, 2π] and

|r| ≤ r0. Therefore

G′(r) = πr + r2H(r) ∀r ∈ [−r0, r0]

where H is a continuous function on [−r0, r0]. Since (1 − ε)L (uε,ρ) = G(ερ), ρ ∈ Sε and ε ∈

[−ε0, ε0] \ {0}, we obtain that

(1− ε)
∂

∂ρ
[L (uε,ρ)] = πε

[
ερ+ |ε|2(1−δ)H̃(ε, ρ)

]
∀ε ∈ [−ε0, ε0] \ {0} , ∀ρ ∈ Sε , (4.19)

where H̃(ε, ρ) = ρ2|ε|2δH(εδ) is a continuous function, bounded uniformly with respect to ε ∈

[−ε0, ε0] \ {0} and ρ ∈ Sε. Thus (4.17) follows from (4.18) and (4.19).

Proof of (4.5). It is convenient to write

B(v) = 1 +
A

|v|γ
+
B1(v)

|v|γ+β
(4.20)

where

β := min{1, γ1 − γ} ∈ (0, 1]

and B1 : R
2 → R is a continuous radially symmetric function, defined by (4.20), satisfying

B1(v) =

{
o(1) if γ1 > γ + 1

A1 + o(|v|β−1) if γ1 ≤ γ + 1
as |v| → ∞.

By (4.20), we have that

∫ 2π

0

B(uε,ρ + ϕε,ρnε,ρ) cos t dt = A

∫ 2π

0

cos t

|uε,ρ|γ
dt

+A

∫ 2π

0

cos t

(
1

|uε,ρ + ϕε,ρnε,ρ|γ
−

1

|uε,ρ|γ

)
dt+

∫ 2π

0

B1(uε,ρ + ϕε,ρnε,ρ)

|uε,ρ + ϕε,ρnε,ρ|γ+β
cos t dt .

(4.21)
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In order to estimate the first integral on the right-hand side of (4.21), we write

∫ 2π

0

cos t

|uε,ρ|γ
dt = ρ−γG1

(
ρ−1

)
where G1(r) =

∫ 2π

0

cos t

(1 + 2r cos t+ r2)
γ
2

dt .

Notice that as ρ ∈ Sε and ε ∈ (0, ε0], one has that 0 < ρ−1 ≤ a−1
1 εδ0 =: r1 < 1. A double application of

the derivation theorem for integrals depending on a parameter yields that G1 is of class C2 in (−1, 1),

with

G′
1(r) =

∫ 2π

0

∂g1
∂r

(r, t) dt and G′′
1(r) =

∫ 2π

0

∂2g1
∂r2

(r, t) dt where g1(r, t) =
cos t

(1 + 2r cos t+ r2)
γ
2

.

In particular G1(0) = 0, G′
1(0) = −γπ and ∂2g1

∂r2 is uniformly bounded with respect to t ∈ [0, 2π] and

|r| ≤ r1. Therefore

G1(r) = −γπr + r2H1(r) ∀r ∈ [−r1, r1]

where H1 is a continuous function on [−r1, r1]. As a consequence

∫ 2π

0

cos t

|uε,ρ|γ
dt = −γπρ−γ−1 + ρ−γ−2H1(ρ

−1) = −γπρ−γ−1 + |ε|δ(γ+2)B̃1(ε, ρ) (4.22)

where B̃1(ρ) is a continuous function, bounded uniformly with respect to ε ∈ [−ε0, ε0]\{0} and ρ ∈ Sε.

The second integral on the right-hand side of (4.21) can be estimated as follows. By the mean value

theorem, and using (3.3) and (3.5), for every t there exists s ∈ [0, 1] such that

∣∣|uε,ρ(t) + ϕε,ρ(t)nε,ρ(t)|
−γ − |uε,ρ(t)|

−γ
∣∣ ≤ γ|uε,ρ(t) + sϕε,ρ(t)nε,ρ(t)|

−γ−1‖ϕε,ρ‖C2 ≤ C|ε|δ(γ+1)+γ̂ .

Therefore ∫ 2π

0

(
1

|uε,ρ + ϕε,ρnε,ρ|γ
−

1

|uε,ρ|γ

)
cos t dt = |ε|δ(γ+1)+γ̂B̃2(ε, ρ) (4.23)

where B̃2 is a continuous function, uniformly bounded with respect to ε ∈ [−ε0, ε0] \ {0} and ρ ∈ Sε.

The estimate of the last integral on the right-hand side of (4.21) can be accomplished in different ways

according that γ1 > γ + 1 or γ1 ≤ γ + 1. Let us examine firstly the case γ1 > γ + 1, in which β = 1

and B1(v) = o(|v|) as |v| → ∞. Since |uε,ρ(t) + ϕε,ρ(t)nε,ρ(t)| ≥ C|ε|−δ for every t, we have that

∣∣∣∣
∫ 2π

0

B1(uε,ρ + ϕε,ρnε,ρ)

|uε,ρ + ϕε,ρnε,ρ|γ+β
cos t dt

∣∣∣∣ ≤ C|ε|δ(γ+1) sup
|v|≥C|ε|−δ

|B1(v)| .

For δ = 1
γ+2 , one has that δ(γ + 1) = 1− δ and

∫ 2π

0

B1(uε,ρ + ϕε,ρnε,ρ)

|uε,ρ + ϕε,ρnε,ρ|γ+β
cos t dt = |ε|1−δB̃3(ε, ρ) (4.24)

where B̃3 is a continuous function, such that supρ∈Sε
|B̃3(ε, ρ)| → 0 as ε → 0. Therefore in this case,

by (4.21)–(4.24), since min{δ(γ + 2), δ(γ + 1) + γ̂} > 1 − δ for δ = 1
γ+2 and γ > 1, (4.5) is proved.

Finally let us consider the case γ1 ≤ γ + 1, in which β ∈ (0, 1] and B1(v) = A1 + |v|β−1B2(v) with

B2(v) → 0 as |v| → ∞. We split the last integral on the right-hand side of (4.21) as follows:

∫ 2π

0

B1(uε,ρ + ϕε,ρnε,ρ)

|uε,ρ + ϕε,ρnε,ρ|γ+β
cos tdt = A1

∫ 2π

0

[
1

|uε,ρ + ϕε,ρnε,ρ|γ+β
−

1

|uε,ρ|γ+β

]
cos t dt

+A1

∫ 2π

0

cos t

|uε,ρ|γ+β
dt+

∫ 2π

0

B2(uε,ρ + ϕε,ρnε,ρ)

|uε,ρ + ϕε,ρnε,ρ|γ+1
cos t dt .

(4.25)
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The first two integrals on the right-hand side of (4.25) can be studied as (4.23) and (4.22), respectively,

with γ+β instead of γ, whereas the third one is like (4.24), with B2 instead of B1. In conclusion, since

γ+β > γ, (4.24) holds true even for γ1 ≤ γ+1. Hence, noting that min{δ(γ+1)+ γ̂, δ(γ+2)} > 1−δ

for δ = 1
γ+2 , (4.21)–(4.24) imply (4.5). �

4.3 The equation λ
2
ε,ρ = 0

The fact that the second Lagrange multiplier λ2ε,ρ vanishes whenever the first one does is discussed

below and is a consequence of the invariance under rotation.

Lemma 4.3 If u = uε,ρ + ϕnε,ρ solves K(u) − B(u) = λ sin t, with K defined in (1.5), and ϕ ∈ Nε,

then λ = 0.

Proof. Since Q solves (4.1) and
∣∣ d
dt (e

iθu)
∣∣ = |u̇| for every θ ∈ R, one has that

E (eiθu) = E (u) ∀θ ∈ R .

Hence, by the C1 regularity of E (Lemma 4.1),

0 =
d

dθ

[
E ((eiθu)

]
= E

′(eiθu)[h] where h = ieiθu̇ . (4.26)

As eiθu, h ∈ Ωε, by Lemma 4.1 and by the symmetry of B, one has that

E
′(eiθu)[h] =

∫ 2π

0

[B(eiθu)−K(eiθu)]ieiθu̇ · ieiθu dt =

∫ 2π

0

[B(u)−K(u)]u̇ · u dt . (4.27)

Using the assumptionK(u)−B(u) = λ sin t, integrating by parts and taking into account that |u(2π)| =

|u(0)|, by (4.26) and (4.27) we obtain

0 = λ

∫ 2π

0

|u|2 cos t dt . (4.28)

Recalling that u = uε,ρ + ϕnε,ρ, with |uε,ρ|2 = ρ2 + 1 + 2ρ cos t and |nε,ρ| = 1, from (4.28) it follows

that

λ

[
2ρ

∫ 2π

0

cos2 t dt+

∫ 2π

0

(
ϕ2 + 2ϕuε,ρ · nε,ρ

)
cos t dt

]
= 0 . (4.29)

Finally, we observe that, since ϕ ∈ Nε,

∣∣∣∣
∫ 2π

0

(
ϕ2 + 2ϕuε,ρ · nε,ρ

)
cos t dt

∣∣∣∣ ≤ C
(
|ε|2min{γδ,1−δ} + (ρ+ 1)|ε|min{γδ,1−δ}

)
< 2ρ

∫ 2π

0

cos2 t dt

for |ε| 6= 0 small enough, and then (4.29) implies λ = 0. �
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[1] J. Aguirre, J. Giné, D. Peralta-Salas: Integrability of magnetic fields created by current distributions, Nonlinearity

21 (2008), 51–69.

[2] J. Aguirre, A. Luque, D. Peralta-Salas: Motion of charged particles in magnetic fields created by symmetric config-

urations of wires, Physica D: Nonlinear Phenomena 239 (2010), 654–674.

[3] F. Bethuel, P. Caldiroli, M. Guida: Parametric surfaces with prescribed mean curvature, Rend. Sem. Mat. Univ.

Poli. Torino 60 (2002), 175–231.

[4] P. Caldiroli, M. Guida: Helicoidal trajectories of a charge in a nonconstant magnetic field, Adv. Differential Eq. 12

(2007), 601–622.

[5] P. Caldiroli, M. Musso: Embedded tori with prescribed mean curvature, Adv. in Math. 340 (2018), 406–458.

[6] P. Caldiroli, A. Iacopetti, M. Musso: Delaunay tori with radially symmetric, prescribed mean curvature, in prepa-

ration.

[7] G. Cora: Nonlinear variational problems with lack of compactness, Ph.D. thesis, University of Turin (2018),

arXiv:1901.08337
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