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Abstract 

In this paper, we describe an experiment aimed to measure the physical observables, which can be 

used for the assessment of the radiation hardness of commercially available silicon photo diodes 

commonly used as nuclear detectors in particle accelerator laboratories. The experiment adopted the 

methodology developed during the International Atomic Energy Agency (IAEA) Coordinated 

Research Project (CRP No. F11016) “Utilization of Ion Accelerators for Studying and Modelling Ion 

Induced Radiation Defects in Semiconductors and Insulators”.  

This methodology is based on the selective irradiation of micrometer-sized regions with different 
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fluences of MeV ions using an ion microbeam and on the measurement of the charge collection 

efficiency (CCE) degradation by Ion Beam Induced Charge (IBIC) microscopy performed in full 

depletion condition, using different probing ions. 

The IBIC results are analyzed through a theoretical approach based on the Shockley-Read-Hall model 

for the free carrier recombination in the presence of ion-induced deep traps. This interpretative model 

allows the evaluation of the material radiation hardness in terms of recombination parameters for both 

electrons and holes. 

The device under study in this experiment was a commercial p-i-n photodiode, which was initially 

characterized by i) standard electronic characterization techniques to determine its doping and ii) the 

Angle-Resolved IBIC to evaluate its effective entrance window. Nine regions of (100x100) µm2 were 

irradiated with 11.25 MeV He ions up to a maximum fluence of 31012 ions/cm2. The CCE 

degradation was measured by the IBIC technique using 11.25 MeV He and 1.4 MeV He as probing 

ions. 

The model presented here proved to be effective for fitting the experimental data. The fitting 

parameters correspond to the recombination coefficients, which are the key parameters for the 

characterization of the effects of radiation damage in semiconductors. 

Introduction 

Semiconductor detectors are used in mixed radiation fields where more or less high degree of 

radiation tolerance is required: space and avionic applications [1], high energy physics experiments 

[2], medical diagnostic imaging and therapy, industrial imaging and material processing. In particle 

energy spectroscopy, the radiation tolerance of detectors is a major issue, due to the rapid degradation 

of detector performances as function of the ion fluence [3]. This issue is amplified further in activities 

involving the ion beam focused down to the micrometer-size spot, where high ion fluences can be 

easily obtained if selected regions of detectors are irradiated at the micrometer scale, even using 

relatively low ion currents. In this case, although localized irradiation induce negligible effects on 

global parameters, such as leakage current, it can strongly influence the charge collection efficiency 

of the detector.  

A methodology aimed to measure the effective parameters affecting the degradation of electronic 
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properties of a device is therefore of paramount importance for the assessment of the device lifetime 

and for the development of new devices with improved radiation hardness [4]. The new methodology 

including both the experimental protocol and the modeling has been recently developed within an 

IAEA Coordinated Research Project (CRP, reference F11016) “Utilization of Ion Accelerators for 

Studying and Modelling Ion Induced Radiation Defects in Semiconductors and Insulators” [5, 6].  

The experimental protocol is based on the use of energetic accelerated ions in the MeV energy range, 

which play a dual role: (i) as damaging agents to generate defects in the active semiconductor material 

of the electronic device and (ii) as probes to measure the effect of the radiation damage on the Charge 

Collection Efficiency (CCE), as the main feature defining the electronic response of the 

tested/irradiated semiconductor devices. The model is valid for low level damage, which is assumed 

to be an accumulation of simple point defects (vacancies, di-vacancies, interstitials or their complexes 

with atoms present in the crystal lattice) created in ion cascades. We assume that the subsequent 

cascades are separated either in space or time so there is no interaction between them. Focused ion 

microbeams and the Ion Beam Induced Charge [7,8] technique are required in both phases of the 

experiment including (i) the creation of patterned partly damaged areas covering the large range of 

implantation fluences and (ii) measuring of the deterioration of CCE due to created damage. 

One advantage of this methodology for evaluation of the radiation hardness in semiconductor 

materials is that the increase of dark current affecting device features is negligible, due to the small 

size of the damaged region compared to the whole active volume of the device. This is an important 

factor, which allows IBIC to be employed as a very effective characterization technique for the 

functional analysis of electronic materials, both for the solid theoretical foundations, which provide 

effective tools for data analysis, and the easiness of implementation to any nuclear microprobe facility. 

In this paper, the above mentioned experimental methodology [6] has been adopted to extract key 

parameters for the characterization of the effects of radiation damage in a commercially available 

silicon photodiode commonly used in ion beam laboratories. These parameters are the recombination 

coefficients, which include the average number of stable radiation induced defects generated by 

irradiation. The experiment was performed in the low level of damage regime, which induces a linear 

degradation of the charge collection efficiency. Such a condition allows the final fitting algorithms to 

be linearized, which leads to a significant simplification of the algorithms for analysis of the 
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experimental data. 

Experimental 

The sample under study was a commercial silicon photo-diode, Hamamatsu S1223 commonly used 

in IBA laboratories [9,10]. The metal can package was opened by removing the borosilicate glass 

window in order to expose the frontal surface of the photodiode to incident MeV ions [11]. Since the 

photodiode is photon-sensitive, all the measurements were carried out in dark conditions to avoid the 

contribution of the photocurrent to the electronic noise. 

Almost constant concentration of donors in the base of about 71013 cm-3 was calculated from 

capacitance-voltage measurements; the p+ layer thickness of about 0.6 µm with a maximum 

concentration of acceptor of 21019 cm-3 was estimated by spreading resistance profiling. These data 

were used for modeling the electrostatics and the transport properties of the diode by solving the 

Poisson’s and the continuity equations [12] by means of Finite Element Methods [13]. Figure 1 shows 

the main quantities resulting from this analysis: the Gunn’s weighting field and the carrier drift 

velocity profiles at a reverse bias voltage of 100 V. 

The preliminary analysis of the sample under study was completed by measurement of the effective 

entrance window (or dead layer) thickness by the angle resolved IBIC analysis (ARIBIC) [14,15,16]. 

The inset of Figure 2 shows a schematics of the measurement, which was performed at the ion 

microbeam facility of Ruder Boskovic Institute [17], using Li ions with energy Eion=2.28 MeV. The 

measurement was carried out in full depletion condition: the applied bias voltage of 20 V induces a 

depletion layer width of 60 µm, which is much larger than the Li ion range in Si (5.2 µm). 

As shown in Fig. 2, the diode’s response at different angle of incidence  decreases due to the increase 

of the energy loss of ion in the dead layer of thickness t*. Assuming that all carriers generated in the 

depletion region induce a charge, which is totally collected, the measured pulse height Q(θ ) at the 

incidence θ normalized to the pulse height measured for normal incidence (θ =0), is given by:  

(1) 
Q(𝜃)

Q(𝜃=0)
= 1 −

1

𝐸ion

d𝐸

d𝑥
|
0
𝑡∗ ∙ (

1

cos(𝜃)
− 1) 

The value of the term 
1

𝐸ion

d𝐸

d𝑥
|
0
𝑡∗ = (0.0407 ± 0.0012) is extracted from the fit of experimental 

data using eq. (1). From SRIM2013 simulation [18], the electronic stopping power of 2.28 MeV Li 
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ions in silicon is 
𝑑𝐸

𝑑𝑥
|
0
= 513 𝑒𝑉/𝑛𝑚   therefore t==180 nm. This value is to be considered the 

effective thickness of the dead layer in silicon, which includes both the top oxide layer (around 110 

nm, as measured by Rutherford Backscattering Spectroscopy (RBS) ) and the thickness in silicon 

immediately beneath the electrode (p+ layer) in which charge collection is inefficient. 

We adopted the protocol described in [6] to assess the radiation hardness of the diode. Nine distinct 

(100x100) µm2 regions of the diode under study were irradiated at increasing fluences of 11.25 MeV 

He ions (in the following named damaging ion beam = DIB) at the ANSTO ion microprobe facility 

[19].  

The effect of the radiation damage was probed using 1.4 MeV and 11.25 MeV He ion microbeam (in 

the following named Probing Ion Beams = PIBs)  the IBIC measurements were carried out at a 

constant applied bias voltage of 100 V, in order to fulfil the full depletion condition. Since the 

characterization phase was carried out a few days (during which the sample was kept at room 

temperature) after irradiation, only permanent damage induced by the displacement of atomic nuclei 

is considered. The median CCE relevant to the central part of the irradiated regions are shown in 

Figure 3 as function of the DIB fluence.  

Data analysis  

The experiment was designed to meet the assumptions of the model described in [6]. The IBIC 

measurements were performed at 100 V and the depletion layer (depth of about 150 µm as shown in 

Fig. 1) extends beyond the range of 1.4 MeV (5 µm) and 11.25 MeV (85 µm) He ions, as shown 

in Fig. 4.  

Under these full depletion conditions, we can assume that the dominant charge transport mechanism 

is the carrier drift caused by the applied electric field whose direction is perpendicular to the 

electrodes and that all carrier recombination processes caused by ion damage occur within the 

depletion region of the device.  

Assuming complete collection of the induced charge (i.e. CCE = 100 %) in the pristine diode and 

adopting the Shockley-Read-Hall approach to model the carrier lifetime as function of the 

recombination center concentration, which is assumed to be proportional to the concentration of 

vacancy-interstitial Frenkel pairs created by DIB irradiation, the CCE degradation can be expressed 
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through the following expression: 

(2) CCE = ∫ d𝑥 γ(𝑥)
𝑑

0

{
 

 ∫ {𝐸+(𝑦)exp [−𝛼e ∙ Φ ∫ d𝑧
𝜂(𝑧)

𝑣e(𝑧)

𝑦

𝑥
]}

𝑑

𝑥
 d𝑦

+

∫ {𝐸+(𝑦)exp [−𝛼h ∙ Φ∫ d𝑧
𝜂(𝑧)

𝑣h(𝑧)

𝑥

𝑦
]}

𝑥

0
d𝑦 }
 

 
 

where 𝛾 =
1

𝐸I

d𝐸I

d𝑥
  is the normalized ionization energy loss profile of the PIBs, 𝜂  is the vacancy 

profile (the number of vacancies generated per ion per unit length, see Fig. 4) as simulated by SRIM, 

Φ is the DIB fluence, 𝑣e,h are the drift velocities of electrons (subscript e) and holes (subscript h). 

The term E+=
∂E

∂V
 is Gunn’s weighting field defined as the partial derivative of the actual electric field 

(E) with respect to the bias voltage V applied to the sensing electrode, while the other electrode is 

grounded. Gunn’s weighting potential φ+=
∂φ

∂V
  is similarly defined, where φ  is the actual 

electrostatic potential.  

Finally, the terms  

(3) 𝛼e,h = 𝑘e,h ∙ 𝜎e,h ∙ 𝑣𝑒,ℎ
𝑡ℎ  

are the capture (or recombination) coefficients, as usually defined in the Shockley-Read-Hall model: 

𝑣𝑒,ℎ
𝑡ℎ  and 𝜎e,h are the carrier thermal velocities and the carrier capture cross sections, respectively. 

The coefficients 𝑘e,h represent the average number of active defects (carrier traps) generated by a 

single (SRIM simulated) vacancy. 

The low level of damage investigated in this experiment, induces a linear degradation of the CCE, as 

is shown in Fig. 3. Therefore, the exponentials in Eq. (2) can be expanded in Taylor series, providing 

the following approximate expression: 

(4) CCE = 1 − 𝛼e ∙ Φ𝑒
∗ − 𝛼h ∙ Φℎ

∗  

Where we have defined the effective fluences for electrons and holes as follows 

(5) 
Φ𝑒
∗ = Φ ∙ ∫ d𝑥 

𝜂(𝑥)

𝑣e(𝑥)
∙ 𝜑+(𝑥)

𝑑

0
∫ d𝑧 γ(𝑧)
𝑥

0

Φℎ
∗ = Φ ∙ ∫ d𝑥 

𝜂(𝑥)

𝑣h(𝑧)
∙ [1 − 𝜑+(𝑥)]

𝑑

0
∫ d𝑧 γ(𝑧)
𝑑

𝑥

 

Being, by definition 

(6) ∫  𝛾(𝑥)
𝑑

0
d𝑥 = ∫ 𝐸+(𝑦)

𝑑

0
d𝑦 = 1 

Since all terms in the integrals of eq. (5) can be calculated, (𝜂  and γ are known from SRIM 

simulations (see Fig. 4) and 𝑣e,h, 𝜑+  are calculated from the device modeling (see Fig. 1) ), a 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

multivariate linear regression can be used in order to evaluate the parameters 𝛼e and 𝛼h, which 

determine the “best” straight lines through the measured points [20]. For this purpose, the vector of 

the unknown 

(7) 𝛼⃗ = (
𝛼e
𝛼h
) 

can be evaluated through the following matrix equation: 

(8) 𝛼⃗ = (𝐴𝑇 ∙ 𝐺 ∙ 𝐴)−1𝐴𝑇 ∙ 𝐺 ∙ ℂ 

Where G is (2xN)x(2xN) diagonal weight matrix 𝐺𝑖,𝑖 = 1/𝜎𝑖
2 and 

(9) 𝐴 =

(

 
 
 
 
 
 

Φ𝑃𝐼𝐵1
𝑒,1
∗ Φ𝑃𝐼𝐵1

ℎ,1
∗

Φ𝑃𝐼𝐵1
𝑒,2
∗ Φ𝑃𝐼𝐵1

ℎ,2
∗

. . . .
Φ𝑃𝐼𝐵1
𝑒,N
∗ Φ𝑃𝐼𝐵1

ℎ,N
∗

Φ𝑃𝐼𝐵2
𝑒,1
∗ Φ𝑃𝐼𝐵2

ℎ,1
∗

Φ𝑃𝐼𝐵2
𝑒,2
∗ Φ𝑃𝐼𝐵2

ℎ,2
∗

. . . .
Φ𝑃𝐼𝐵2
𝑒,N
∗ Φ𝑃𝐼𝐵2

𝑒,N
∗ )

 
 
 
 
 
 

 ;  ℂ =

(

 
 
 
 
 

1 − 𝐶𝐶𝐸𝑃𝐼𝐵1
1

1 − 𝐶𝐶𝐸𝑃𝐼𝐵1
2. .

1 − 𝐶𝐶𝐸𝑃𝐼𝐵1
N

1 − 𝐶𝐶𝐸𝑃𝐼𝐵2
1

1 − 𝐶𝐶𝐸𝑃𝐼𝐵2
2. .

1 − 𝐶𝐶𝐸𝑃𝐼𝐵2
N)

 
 
 
 
 

  

N(=9) is the number of experimental data relevant to a single PIB as reported in Fig. 3. 

The covariance C matrix of the best estimates 𝛼⃗ is given by: 

(10) 𝐶 = (𝐴𝑇 ∙ 𝐺 ∙ 𝐴)−1 

The solution of eq. (8) leads to: 

(11) 𝛼⃗ = (
𝛼e = 1500 𝜇𝑚

3/𝑠

𝛼ℎ = 7800 𝜇𝑚
3/𝑠

) 

And the covariance matrix is given by: 

(12) 𝐶 = 106 ∙ (
0.22 −0.77
−0.77 3.4

) 

The results of the fitting procedure are shown in Fig. 3 (solid lines). The uncertainties of the   

parameters 𝛼e and 𝛼h, correspond to the covariance ellipse shown in Fig. 5. 

Discussion and conclusions 

As already mentioned, the experiment described here was designed in order to fulfil all the conditions 

which underpin the model proposed in [6]. In particular, we confined the analysis to low fluence ion 

irradiation, in order to avoid any significant alteration of the basic device properties (e.g. the effective 

doping density, which modify the electrostatic features of the pristine diode). This low damage regime 

allows the basic theory of charge induction to be applied using the electrostatics and the transport 
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parameters (namely the carrier velocities and the Gunn’s potential) evaluated through the solution of 

the standard semiconductor equations, which are based on the pristine doping profile extracted from 

Capacitance-Voltage and spreading resistance measurements. To complete the evaluation of the active 

region of diode, ARIBIC analysis was performed in order to measure the dead layer underlying the 

front electrode.  

Moreover, the low level damage approximation allows the usage of the Shockley-Read-Hall 

recombination model for free carrier lifetimes, which depend on displacement damage, which is 

assumed to be proportional to the distribution of primary point defects acting as recombination 

centers.  

Under full depletion conditions, the basic IBIC equations can be analytically solved. The resulting 

expression of the CCE incorporates terms relevant to the electrostatic features of the diode, the 

vacancy profile induced by DIB and the carrier generation profile produced by PIBs.  

In this study, we used one shallow (1.4 MeV He) and one deep-penetrating (11.25 MeV He) PIB, in 

order to investigate the effect of damage on the recombination of both the carriers (electrons and 

holes). 

In the low damage regime, the CCE dependence of the DIB fluence (eq. 6) can be linearized, 

providing a simpler approach to fit the experimental data. The slopes of the fitting lines resulting from 

a bivariate linear procedure are the two recombination coefficients (𝛼e and 𝛼h), which are indicators 

of the radiation hardness of a semiconductor material. Actually they (eq. (3) ) depend on (i) the capture 

cross sections e,h, which identify the nature of the recombination centers and (ii) the parameters ke,h, 

which are proportionality factors relating active recombination centers with the concentration of 

Frenkel pairs introduced as primary point defects, the latter being predicted by SRIM. 

The results of this analysis are summarized in eq. (11) and in Fig. 6. Assuming carrier thermal 

velocities values of 𝑣e
th =2.05·107 cm/s and 𝑣h

th=1.69·107 cm/s [21] the ke,h e,h products derived 

from Eq. (3) are kee = 7.4·10-17cm2 and kh·h = 4.6·10-16cm2 for electrons and holes, respectively. 

If a single acceptor state of divacancy is assumed to be the most abundant electronically active defect 

in the high purity and low doped n-type silicon created by ion irradiation [22], the capture cross 

sections are e=5·10-15 cm-2 and h=5·10-14 cm-2 [23], for electrons and holes, respectively. Therefore, 

the relevant k-term values are ke1.5·10-2 and kh1.0·10-2, i.e. about 67 and 100 radiation induced 
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defects are required to form one stable electron and hole recombination center, respectively.  

The covariance ellipse shown in Fig. 5, provides information on the parameter uncertainties.  

The principal axes of the ellipse have an angle of about 13° with respect to the 𝛼h  axis, which 

indicates a correlation between the two recombination coefficients. This can be attributed to the 

definitions of the effective fluences (eq. (5) ), which involve common terms given by the normalized 

charge generation profiles  , the vacancy distribution  and the weighting potential +. Therefore, 

the final general expression Eq. (4) naturally correlates the two contributions. The major axis of the 

ellipse is mainly related to the uncertainty of the hole recombination coefficient 𝛼h. Actually, the 

hole trapping contribution to the CCE degradation can be ascribed only to measurements carried out 

with PIB=11.25 MeV He, whose generation profile cover the damage profile (see Fig. 4), rapidly 

decreasing at the vacancy peak. Therefore, holes (moving towards the cathode (front electrode) 

located at x=0) partially suffer recombination at the highly damaged region and their contribution to 

the CCE degradation is relatively small and subjected to high uncertainty. On the other hand, electrons 

move left to right across the depletion region, and for both the PIBs they cross the highly damaged 

region, providing the dominant contribution to the CCE degradation.  

Finally, it is worth noting the main limited validity of the results presented in this work. As previously 

stated [6], the vacancy profile  used in this work is presumably underestimated, owing to the 

limitations of the binary collision approximation, which is at the basis of SRIM simulations, 

neglecting both the crystal structure and the diffusion of initially generated displacement defects. 

Therefore, these results can be unreliable for more detailed investigations on the nature of stable 

radiation induced defects.  

However, assuming that SRIM provides realistic but un-normalized vacancy and ionization profiles, 

the capture coefficients extracted from the fitting procedure can be considered reference values, which 

can be used to compare the radiation hardness of different semiconductor materials or devices and to 

envisage the corresponding CCE degradation for any ion irradiation and bias conditions.  
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Figure Captions 

Figure 1: Left scale: Electron (ve)/ hole (vh) velocity .Right scale: Gunn’s weighting potential (+) 

profiles at a bias voltage of 100 V. 

 

Figure 2: Peak channel vs. tilting angle: experimental data (markers) and fit (solid curve) by means 

of Eq. (1).Inset: Scheme of the Angle-Resolved IBIC experiment to evaluate the entrance window 

thickness. 

 

Figure 3: CCE degradation as function of the DIB=11.25 MeV He fluence and probed with 1.4 MeV 

He and 11.25 MeV PIBs. Markers represent experimental data and the solid lines result from the 

fitting procedure described in the text. 

 

Figure 4: Left axis: ionization energy loss for different PIBs in silicon calculated by SRIM 

simulations. Right axis: vacancy profile (blue curve) of 11.25 MeV He ions in Si. All the profiles 

were calculated by SRIM simulations.  

 

Figure 5: covariance ellipse of the fitting quantities e and h . 
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Figure 4: Left axis: ionization energy loss for different PIBs in silicon calculated by SRIM 

simulations. Right axis: vacancy profile (blue curve) of 11.25 MeV He ions in Si. All the profiles 

were calculated by SRIM simulations.  
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